

ANAIS

X SIMPÓSIO DE QUANTIFICAÇÃO EM GEOCIÊNCIAS

Balneário Camboriú, Santa Catarina 2025

Editores

Daniel Fabian Bett¿
Adilson Viana Soares Júnior
Daniela Kuranaka
Lindaura Maria Steffens
Paulo César Soares

lata Anderson de Souza Danielle Simeão Silvério Rocha Ana Paula Soares Francisco Manoel Wohnrath Tognoli

X SIMPÓSIO DE QUANTIFICAÇÃO EM GEOCIÊNCIAS

17 a 20 de agosto de 2025 / Balneário Camboriú - SC

COMPARAÇÃO ENTRE MAPAS AUTO-ORGANIZÁVEIS E K-MEANS NA MODELAGEM E ESTIMATIVA DE DOMÍNIOS DE TEORES EM DEPÓSITOS DE FERRO

Ivan Silva Carvalho^{1,2}, Marcelo Monteiro da Rocha², Cleyton de Carvalho Carneiro^{1,3}

^{1,2} iNtra USP, Universidade de São Paulo, e-mail: ivan_carvalho@usp.br ² Instituto de Geociências, Universidade de São Paulo, e-mail: mmrocha@usp.br ³ Escola Politécnica, Universidade de São Paulo, e-mail: cleytoncarneiro@usp.br

A quantificação de recursos minerais é fundamental em todas as etapas de um empreendimento de mineração, o que exige métodos que garantam precisão e eficiência na definição de domínios de estimativa. Dentre os algoritmos de agrupamento disponíveis, o K-means e os Mapas Auto-Organizáveis (SOM, do inglês Self-Organized Maps) demonstram-se como ferramentas muito úteis em aplicações relacionadas às Geociências. A avaliação quanto à efetividade destes algoritmos, no entanto, envolve tanto a variabilidade estatística quanto a preservação da continuidade espacial. Este trabalho visa avaliar os algoritmos K-means e SOM em termos da variabilidade estatística e espacial. Os algoritmos foram aplicados em dados provenientes de um depósito de ferro do Quadrilátero Ferrífero, utilizando um banco de dados com 9.502 amostras compostas por 5 variáveis geoquímicas (Fe (%), Si (%), Al (%), Mn (%) e P (%)) e a variável analisada de Perda ao Fogo (LoI (%).O índice Davies-Bouldin indicou a divisão ótima dos dados relacionados ao depósito em três domínios, posteriormente classificados como, minério rico, minério pobre e rejeito, classificação possível de ser feita consistentemente entre ambos os algoritmos. O K-means, implementado via scikit-learn, destacou-se pela menor variabilidade estatística e maior teor médio de Fe (%). Já o SOM, executado com a biblioteca IntraSOM, demonstrou superioridade na geração de dominios Quasi-estácionarios, evidenciada por variogramas experimentais mais estruturados e valores elevados de validação cruzada, refletindo maior qualidade nas estimativas. Ambos os métodos reduziram subjetividades na definição de domínios, com resultados estatisticamente coerentes e semelhantes àqueles obtidos através das práticas manuais, embora o modelo gerado por SOM tenha gerado domínios menores e maior detalhamento espacial. A combinação de eficiência computacional, reprodutibilidade e aderência às características geoestatísticas do depósito reforça a efetividade de uso de técnicas automatizadas como Kmeans e SOM para apoio à quantificação de recursos minerais, oferecendo alternativas eficientes à tradicional compartimentação manual. A convergência entre os resultados automatizados e manuais sugere que essas abordagens não são apenas complementares, mas também capazes de aperfeiçoar processos críticos na indústria mineral, como a estimativa de teores e a classificação de recursos minerais dos blocos estimados, sem comprometer a confiabilidade das informações geradas.

Palavras-chave: Domínios de Estimativa, Mapas Auto-Organizáveis, Análise estatística multivariada.