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Abstract. This work presents a new algorithm to identify the occurrence of impact (or
contact) among general structures. Structures are modeled here by finite elements and the
resulting model is employed in two-dimensional frame impact problems by the Lagrange
Multiplier technique. The proposed algorithm is based on potential theory, largely employed
in various fields of physics. Together with the potential theory, integral equations are used,
allowing the geometrical evaluation between relative node positions of the projectile
structures and domains of the target structures. The present technique is general and can be
used to model contact among two or three-dimensional structures and also between structures
and rigid obstacles. Numerical results are compared with other references.
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1. INTRODUCTION

The dynamic contact among structures is subject of great interest for various engineering
fields, as mechanic, civil and aeronautic. During the last two decades there were a great
advance on the numerical modeling of impact, contact or crash problems, meanly using FEM.
One of the difficulties that emerge when dealing with impact problem is the friction model to
be adopted. Usually, the preferred one is the Coulomb model. The Coulomb model states a
relation between normal forces and shear forces at the contact interface. This relation can be
linear, non-linear or even discontinuous when the contact situation passes from static to
dynamic. The non-linearity associated with more complete models is referred to relative
velocity between contact surfaces, i.e., for larger relative velocity smaller relation between
normal and shear forces is expected. The contact model used in this paper is based on a
geometrical description of Coulomb friction model. Another difficulty that emerges when
dealing with numerical modeling of impact is the proper identification, at a specific instant,
whether the contact takes place or not. A new algorithm to identify the occurrence of impact
(or contact) among general structures is presented. In this work two dimensional straight
frame elements have been used in order to demonstrate the technique, but the algorithm is
also valid for membrane elements, mixed problems and 3D applications. Rigid bodies are
discretized by straight-lines, but any spatial variation could be adopted.

Following a natural presentation order, we start describing the impact identification
algorithm in the next section and later the geometrical friction algorithm. At the end of the
paper some results are shown in order to validate the proposed technique.

2. PROPOSED IMPACT IDENTIFICATION ALGORITHM

In the specialized literature there are several algorithms that identify the contact by a
local procedure, as for example Belytschko & Neal (1991), Wang et al. (2001) and
Belytschko & Yeh (1993). In this case the contact identification is done for any point of the
projectile structure with respect to circular (or other geometry) (2D) or spherical (3D) regions
defined in the neighborhood of the target structure nodes, called here influence regions
(Zhong & Nilsson, 1996). This kind of prediction can present some problems when the
geometry of the studied structures is very complicate. In this situation the referred
methodology can present superposition between influence regions dealing to difficulties in the
choice of the contact element. The proposed technique does not depend upon local geometry
of the colliding bodies, overcoming difficulties of contact identification.

Other sophisticated and important algorithms can be found in literature; for example,
references Chaudhary & Bathe (1986), Hughes et al. (1976), Bathe & Chaudhary (1985) and
Hallquist at al. (1985) are related to contact identification and momentum conservation.
Recently other important works Wriggers et al. (1990) and Mahmoud et al. (1998) have been
published trying to improve the numerical contact identification and the collision modeling,
proving that it is an important subject not totally solved. ,

The majority of works on collision problems uses FEM as the numerical tool. It is
interesting to note that BEM works on the subject use the same contact identification
procedures proposed by FEM researchers, Lorenzana & Garrido (1998) and Landenberger &
El-Zafrany (1999). This observation is very important because the proposed collision
identification procedure is new even for researchers used to potential theory.

The proposed algorithm is based on boundary integral equations written for stead state
potential problems, Jaswon (1963) and Symm (1963). The idea is to make an analogy
between the geometry of the bodies, involved in the real impact problem, and the boundary of



virtual two-dimensional (or three) bodies with the same geometry. For each virtual body
(target) a hypothetical potential integral equation, like the usual ones found in boundary
element formulations, is written, having as source points the nodes of the other involved
structures (projectiles). If any source point (unit potential source) is inside the virtual domain
(representing the target structure) the integral equation must give the number 1 as result, if the
source point is outside the virtual domain the result must be zero and if it is on the boundary
the result gives a number between 1 and zero depending upon the target structure geometry.

There are three types of virtual domains to be considered, the finite, the infinite and the
finite with cavities. The difference between the first two is given by the sense of boundary
integration. If the integration is done in clockwise sense the body is infinite otherwise it is
finite. If a simple crash between two ordinary bodies is to be considered both virtual domains
must be considered finite. But if one desires to study the behavior of a structure confined
inside a closed region, as for example, a snooker ball colliding with the table limits, the ball
must be considered as a finite virtual region and the table limits as an infinite region, see
figure 1a and 1b. Obviously this virtual infinite region is modeling a frame or a cavity inside
an infinite medium. The third type is a mixed problem and is easily treated by doing a
clockwise integration for internal boundaries and anti-clockwise for external boundaries, see
figure lc.

In figures la, 1b, Ic letters m e I represent, respectively, normal and tangential directions
regarding the virtual boundary. The virtual boundary, straight elements have been adopted
(like boundary elements). In this work the virtual boundary elements geometry coincides with
the adopted finite elements at the boundary of the structure. In the case of not connected
structures additional “virtual boundary elements” should be provided in order to close de
virtual domain. It is worth noting that if a structure is only a projectile (users decision) it does
not need associated virtual boundaries. For multi-body crash one needs to give information
about the structure status. For example when one has three structures named A, B and C he
may decide that A is target for B and C, B is target for C (but is projectile for A) and C is only

projectile. In this way the nodes of B and C will be virtual sources for A and the nodes of C
will be virtual sources for B. ‘

Figure 1 - Kinds of virtual bodies and sense of integration

Self-contact can be handled by assuming dummy virtual domains as exposed in a recent
work accepted to be published (Greco, Coda and Venturini, 2003).

As mentioned before it is considered that each node of a projectile structure is a source
point (S), as in boundary element procedures, for a target structure. So one can easily write
the following potential boundary integral equation (Kellogg, 1929) for each node (S) of the
projectile structure and for each boundary (I") of the target structure.
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Where (p) is the potential, (¢) is the flux, defined in Eq. (2), and the superscript star
stands for fundamental values, given in Eq. (3) and (4).
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The constant (c(s)) of Eq. (1) depends upon the position of source point (S), remembering
that S is a node of projectile structure the following result is generated.

(c(S)=20 for § externaltothet arg et domain

c(S)= Zi Jor S ontheboundary (ais the angle at non — smooth surface)
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This is the simple proposed test that should be done in order to identify if any point of the
target structure is colliding or not at any instant.

At this point our impact identification algorithm is summarized in calculating cs) that is
easily done, as follows:

One has to substitute the exact boundary by the approximated one, in this case straight
lines and choose an approximate pattern for potential and flux, in the present work it is
considered constant along the virtual boundary elements. So, Eq. (1) is rewritten as follows:

N . N, -
C(S)P(S)+Z[ffi dF}?F Z[IP df}u (6)

/=1\r j=I\r

Where (j) are the virtual boundary elements. The integral inside parenthesis can be done
analytically (for this case) and is represented in an algebraic form as:
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For a particular problem the term in the right side of Eq. (7) (flux) can be considered zero
and all potentials set equal to the unity. From these considerations follows a simple equation

that identifies the relative position of a source point (projectile) regarding the virtual body
(target), that is:
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To discover, for any instant, if the projectile node is inside or outside the target structure
one should perform Eq. (8) and see if the result is 1 (inside), 0 (outside) and other number
(over the boundary). The last case (over the boundary) is a particular case that does not
deserves return action. The case for which the projectile node is inside the target deserves a
return action to.the nearest target element. This element is indicated by potential theory
results, i.e., it is the one that presents the nearest to Y4ndividual integral value.

The values of  are obtained analytically due to the simplicity of straight elements and
two-dimensional applications, for three-dimensional problems or curved elements numerical
evaluation can be adopted, as usually done in Boundary Element Techniques (Banerjee,
1994). The analytical integration process follows the general scheme depicted in figure 2. In

this figure global and local co-ordinates reference axis (XY) and (XY ), respectively, are
depicted.
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Figure 2 - Element integration scheme
For each boundéry element the integral is written as:
Hj;: __Ja_Rdr_ il a_RnX+a_Rm, dr (9)
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Looking at figure 3 one writes Eq. (9) in a more convenient form as:
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By the local system of co-ordinates one knows that a is negative, and then:

= o (11)
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The local co-ordinate of a field point (P) is written as a function of ¢ as follows:

X,=X;-as%% (12)
sen @

The differential relation between the infinitesimal integrands can be obtained by simple
differentiation: ’

dX,=dI’ (13)
And:

dXp __«a (14)

do  sen’ @

Putting together (13) and (14), results:

dlI' =

—dp (15)
sen” @ :

Replacing Eq. (11) and (15) into (10) the integral referred to the angle ¢ becomes:

3 / ! -1 Ps1—9s
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In Eq. (16), ¢4 is the angle ¢ measured regarding the initial node of the boundary element
(node A4) and g is the angle measured at the final node (node B). Equation (16) is very

simple, but an extra care should be taken when the interval — <@, — @p=<m is not respected.
In this case the following rule should be imposed.

= If Ap =@, —pp=m, Then: Ap=Ap— 2m.
= If Ap=< —mx, Then: Ap=A¢ + 2.

Therefore, Eq. (8) can be simplified to:
N
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Equation (17) finishes the identification procedure together with algorithm (5).

3. GEOMETRICAL FRICTION MODEL AND RETURN ALGORITHM

Before describing the proposed friction algorithm it is worth describing the dynamic

integration procedure used to achieve stable solutions for both proposed and compared
formulations.



In figure 3, a collision between two bodies is depicted. I'y is the surface of prescribed
forces, I'; is the surface of prescribed displacement and I'c is the contact region.
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Figure 3 - Impact between two elastic bodies

The nil penetration condition is a necessary constraint for the collision analysis, when
penetration occurs the following equation holds:

ReXs =X, 0=0 (18)

Where § is the initial distance between two considered contact points, X7 is the target
position, Xs+; is the position vector and R, is the constraint direction of the contact. The
penetration condition is determined as described before.

The dynamic equilibrium equation can be written as:

U,
aX S+

+MX g+ CXg = FST + R, XselTc (19)

Where C is the-damping matrix (Rayleigh) as given by Clough & Penzien (1993) and

As+s is the Lagrange multiplier. The Lagrange multiplier can be interpreted as an external
force that guaranties the nil penetration condition.

More details about Eq. (19) can be found in ‘An easy large deflection formulation for
frames by the Finite Element Method’ and ‘A novel dynamic fem formulation for 2D frame
analysis with large deflections and rotations® (Greco & Coda, 2003).

A classical Lagrange multiplier formulation Chaudhary & Bathe (1986) makes use of
FEM together with the Newmark time integration algorithm with constants y=0.5 and

B=0.5. The positions, velocities and accelerations are related each other by the classical
Newmark equations.

Xs+/=X.$+Ath+Afz[[§_ﬂ)j(.s+ﬂ)?s+/:| (20)

X=X + A1 = y)X s +yAX s, | 1)

For usual structures these coefficients are efficient, but in the studies of Carpenter ef al.
(1991) and Taylor & Papadopoulos (1993), these adopted parameters are criticised. These
works present some alternatives in order to improve the time integration in collision analysis.



The time scheme integration used in this paper is based on Hu (1997); modified parameters
for the Newmark time integration is presented, including damping and plasticity, not
previously considered. The proposed modification is based on the observation that the return
to nil penetration, from a penetration numerical trial position, should not be applied
nstantaneously. If it is done instantaneously the deformed shape concentrates in the first
element (in the contact) and is not appropriately spread into the body, dealing to numerical
oscillations. Following this reasoning it is desirable to spread the influence of the Lagrange
multiplier (As+1) to through the next time step. The easier way to spread this influence is to
use the Newmark coefficients as y= 1.5 and f=1.0.

Replacing Eq. (20) and (21) into Eq. (18) and (19) is possible to obtain expressmns
written in function of acceleration, Eq. (22) and (23).

BA R X,y = X = Reb, (22)
3 EXT oUr
(M + YAC)X g, = Fel) +Rehgyy — 2 Cb, (23)
S+/
b(,=XS+ArXS+AtJ(§—ﬂ]X‘g (24)
by =Xg~a(l-y)¥g (25)

In classical formulations the use of small time steps induces oscillations in the numerical
response and large time steps result in non-accurate values. In the proposed formulation it is
desirable to assume small time steps (Af) in order to reduce the undesirable numerical
damping present when these Newmark constants are adopted, Hu (1997).

Equations (22) and (23) can be rewritten in a matrix form as:

(M +yArC) =R [ X, | JFET _q Cb, | _Jo| _ 26)
BACR. 0 {|Ag, ¥ ox 2y o[V
T~ fct

Considering the non-linear characteristic of Eq. (26), one may use Taylor expansion of
first order achieving a trial and corrector algorithm, as follows:

i+ i a‘//i : oy’ i
= +—AX:0 AX:— 27
v v a’YS+/ - a)(S+I W ( )
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One finds incremental equation for displacements considering Eq. (27) and (28) together:
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The contact force modulus, in the exact representation, is the Lagrange multiplier but in
the approximation level, mainly in the linear representation, it loses this precision, Chaudhary
& Bathe (1986). Following this reasoning the Lagrange multiplier is used to constrain the
movement while the contact force is calculated directly from the equilibrium equation for the
impact time step (s+7), Eq. (19).

FCON _ pEXT _[aUT

S+/ S+/

+MXy,, +CXS+IJ Xsuelc (33)
s+l

It is usual in friction contact procedures to describe friction from forces definition, see for
example Heege et al. (1995) and Curnie (1994). In these approaches the tangential forces are
written as function of the normal forces that are developed during the contact evolution, Simo
& Laursen (1992) and Curnier & Alart (1988). The dependence can be more ore less
complicated, and the simplest one is the Coulomb model, where this dependence is linear.
During a dynamic analysis, this approach, despite not microscopic, needs information about
the behavior of friction forces for several different situations that can be very complicate, for
example, with temperature changes, local yielding etc. Another difficulty that arises when
dealing with friction impact is the worse behavior of the existent technique regarding stability
when compared with the frictionless counterpart. The stability of the referred techniques, as
well as the one proposed here, is much improved following the time integration proposed in
Hu (1997) as described before.

Following the above comments, this work presents a macroscopic approach for friction,
1.e., a methodology that considers the global behavior of experimental results in order to
model similar situations, together with Lagrange multiplier and Hu’s time integrator. For this
~ procedure only one friction parameter should be considered to model impact among bodies.

The previous features associated with the proposed impact prevision algorithm results a stable
and reliable friction algorithm for general contact impact problems.

In figure 4 are presented the main angles used in the friction model. Anti-clockwise sense
1s used to measure the angles.



" "

A

¢ e

) //fﬂ\\ \
ﬂ/ﬂ

Figure 4 - Return angles used in bi-dimensional contact

The angle ¢ is a structural node path CD; B indicates the normal direction between target
surface AB and point D.

B=90°+6 (34)
The angle -y indicates the direction DC.
Yy=180° +¢ (35)

The proposed friction model is based on a return coefficient (R) that varies between 0 and

1, positioning the return point / into the segment PN. Therefore, the return angle w depends
on the return coefficient.

v =90° +6+R(90" -6 +(p) (36)

Angle w can vary from the normal to the target surface return direction representing the
frictionless situation (R = 0) until the line CD direction, representing the adherence condition

(R=1). The maximum adherence condition may be violated by Coulomb model if not
foreseen.

4. NUMERICAL EXAMPLES

Two applications involving impact between structures and rigid obstacles are presented in
this work. Structures are represented by frame elements. The rigid obstacles are discretized in
the “virtual space’ resulting into virtual rigid bodies where structures cannot enter.

4.1 Impact between three rings

This example is used to demonstrate that the proposed technique can also be applied to
solve multi body collision problems. It shows the collision among three bodies (rings)
modeled by frame elements. In order to simplify the description, the left structure is called
structure 4, the middle one is called B and the right one C. Structure A4 is initially moving with
a constant velocity from left to right, structures B and C are initially at rest. Each structure is



discretized by 32 straight frame finite elements. The initial distance between structure 4 and B
is 6=0.01m. Structures B and C are initially in contact. Physical, geometric and cinematic
properties of the analysis are given in figure 5. The adopted time step is Af=0.001s. No
friction is considered. To implement the collision detection formulation the following
information is given. Structure B is target of 4 but projectile for C. Structure C is target of 4
and B. The co-ordinate X is defined to state the initial point of impact.
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Figure 5 - Impact between three rings

In figure 6(a) there are presented horizontal displacements of nodes / , 33, 49 and 65. In
figure 6(b) the contact forces for nodes / and 49 are also shown. The impact between
structures 4 and B finish at time #=0./5s. The impact between structures B and C has a shorter

duration and stops at =0.14s. It presents a temporary separation duration extended from
1=0.017s to t=0.042s.
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Figure 6 - Displacements (a) and contact forces (b) in direction X for the impacting nodes



4.2 Impact of an elastic ring on a rigid obstacle

The example shows the impact between a ring structure and a rigid ground (modeled by a
virtual body), and can be found in Wriggers et al. (1990). Initially, the structure moves in an
inclined path with constant velocity. It has been used 16 straight finite elements to model the
ring. The initial position and physical, geometric and cinematic properties of the analysis are
depicted in figure 7. The adopted time step is Ar= 0.05. The problem is analyzed considering
two situations: frictionless and frictional case. Only four virtual boundary elements are used
to model the obstacle.

In figure 8 are presented the reference responses for the frictionless case (on the left) and
for the same problem with friction (on the right). In figure 9 are presented the responses
obtained from the proposed formulation for the same two cases. In both cases, results are in
good agreement. For frictionless case the achieved reflection angle is 49.83° and for frictional
case the reflection angle is 34.86°. The reference presents reflection angles equal 50° and 35°,
as presented in figure 8. In the proposed return algorithm, for the frictional case, an equivalent

return coefficient (R=0.10) is used to simulate the friction conditions presented in the
reference.

20 E-100.0
1=83333310°°
A=10

#=0.01

20

Figure 7 - Impact of a ring on a rigid obstacle modeled by a closed domain

V

Figure 8 - Reference responses for frictionless and frictional cases
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Figure 9 - Obtained responses for frictionless and frictional cases

In figure 10 is shown the ring structure impact in a bitten rigid wall (frictional case with

R=0.10). It is interesting to note the complexity of the ring movement for the bitten wall
case.
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Figure 10 - Bitten wall frictional case.

5. CONCLUSIONS

It has been proposed a simple and original penetration prevision algorithm for general
impact problems. Examples demonstrate the applicability of the technique. The algorithm is
precise, general and is of straightforward implementation. The necessary integrals can be
done analytically for the two-dimensional case with straight elements. For three-dimensional
problems or curved elements standard numerical integration procedures can be adopted.
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