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Abstract. Uncertainty is a multifaceted concept, and a system for au-
tomated reasoning with multiple representations of uncertainty was pro-
posed in [CASRII93]. In this work we base on that system and present
an efficient language for reasoning with fuzzy predicates.

The language in [CASRI93] is developed as a PROLOG meta-interpreter.
Since the first implementation of this langnage is not very efficient, we
propose two optimization strategies to improve its computational cffi-
ciency in time. In order to avoid redundant or unnecessary intermediate
computations, we employ two classical optimization techniques, respec-
tively solution caching and a-f pruning.
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1 Introduction

Uncertain Reasoning - the general denomination given to the problems of rca-
soning with and abowt uncertainty - is an interesting and challenging issue for
researchers in Artificial Intelligence. One of the multiple forms of uncertainty
that can be identified is the result of pervasive imprecision in concepts expressed
in natural language.

In 1965, Zadeh [Zad65] introduced the theory of fuszy sefs as a tool to deal
with vaguely defined classes. The key idea behind the formalism of fuzzy sets
is the extension of the concept of characicristic functions from binary-valued to
real-valued functions: the characteristic function jyic of a “conventional”™ set C
takes elements of a universe [/ to the values 1 and 0, associated intuitively to
elements belonging and not belonging to C. Nence,
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The characteristic function s of a fuzzy set F takes elements of I/ to val-
ues within the real-valued interval [0, !]. The intuitive meaning of pr(f) = 0
and ue(f) = 1 is the same as for “conventional” sets, and intermediate values
represent the “degrees” to which elements of U are members of F:

- pr:U—=[0,1)
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“to some extent”

- pr(f) =

The “fuzzy characteristic function” pp is commonly referred to in the liter-
ature as the degree-of-membership function.

Fuzzy set theory has been used as the basis Lo represent various forms of
uncertainty, e.g. possibilistic degrees of belief [DP87}, fuzzy quantifiers [Zad88]
and fuzzy predicates [Zad65, CASRII93]. In this article we concentrate on the
latter. The problem in which we are interested can be characterized by the
following example: “given that tall people wear large shoes, and given that John
is tall, what can he inferred about John’s shoe number?”

Many implementations of automated rcasoning systems thal can provide an
answer ta this problem have been proposed (see e.g. (Hin86, IK85, Lee72, Orc89,
Sha83, vE86)). Building general efficient implementations, however, has proved
to be a hard task. In this article we base on the system proposed in [CdSRII93] for
automated reasoning with many types of uncertainty, and present a system for
reasoning with luzzy predicates. We propose the utilization of two optimization
strategies in the implementation of this system to improve its runtime perfor-
mance. Both optimizations were implemented and tested, and we present the
experimental results we have ohtained with them.

The paper is organized as follows: in order to sct the notation and to make
this work self-contained, in section 2 we review the main concepts of fuzzy set
theory and logic programming which are used throughout the work. In section 3
we introduce a logic programming language that works with fuzzy predicates and
negation by finite failure. In scction 4 we discuss the optimization strategies that
we have employed, and explore some implementation issues related to runtime
performance of resolution with fuzzy predicates. In section 5 we present our
system for reasoning with luzzy predicates, and the comparative performance
results we have obtained with respect to the system introduced in [CdSRII93].
Finally, in section 6 we summarize and conclude this work.

2 Fuzzy Sets and Logic Programming — a Brief Review

In this section we review the concepts of fuzzy measures and logic programming
that we use in the rest of the work. First we introduce the concept of fuszy sels
and relations, to be used in the interpretation of fuzzy sentences, then we review
those concepts of logic programming that we need to define our own language,
which include models for interpretation and execution ol logic programs.

2.1 Fuzzy Mecasures

Given a countable universal set {7, fuzzy sct theory was developed to treat vaguely
defined subsets by allowing degrees of membership. A fuzzy membership function



measures the degree to which an element belongs 10 a set or, alternatively, the
degree of similarity between the class (set) to which an element belongs and a
reference class (universal set). Formally, a fuzzy subset ¥ of a relerential set U
is defined by an arbitrary mapping up : U — [0,1], in which, for an element
f €U, up(f) = 1 corresponds to the intuitive notion that f € F and jup(f) =0
to the notion that f ¢ F.

Set-theoretic operations can be extended to fuzzy scts. In [DIP89] the require-
ments for operations on fuzzy sets to be considered extended sct operations are
presented as follows: let [ and g be conventional unary and binary operations
on 9V _ the set of subsets of I/ - and let f and § be their extensions on the set
2Y of fuzzy subsets of U. The extensions should be such that

1. they are closed, i.e. the results of operations on sets are also scts (Fy, Fa €
Y = fReY, AgFe?Y) and

2. they are reducible {o lhe conventronal operafions, i.e. the results of the ex-
tended operations on conventional sets coincide with the ones of conventional

operations (C},Ca € 2V = fC, = fC),C14Ca = C1gCn).

Triangular norms and conorms have heen proved to obey these requirenients
as extensions to the operations of intersection and union, respectively [Kleg&2].
A triangular norm is any function T : {0, 1] x [0,1] — [0, 1] such that:

- T(z,1) = r (boundary condition});

- zy L za.3 L y2 = T(z1.y) € T(r2,¥2) (monotonicity);
- T(z,y) = T(y.r) (commutativity);

- T(T(z,y),:) = T(z, Ty, :)) (associativity).

The conorm of a triangular norm is the function § : [0,1] x [0, 1] — [0,1]

defined by:
- S(z,y)=1-T(1—-z,1-y).

Furthermore, following [DPR9], any function ' : [0,1] — [0, 1] such that
Cpr(d)) = | — up(d) obeys the requirements as extension of complementation.

Not all algebraic properties of sct opcrations are shared by general tnangular
norms and conorms. In fact, as presented in [K1e82], the only norms and conorms
that are also distributive and idempotent' are T = min and § = mar - proposed
in [Zad65) and known as Zadch's triangular norms and conorms. llenceforth,
in order to keep fuzzy set operations as close as possible to conventional set
operations, we adopt the following functions as our extended set operations of
intersection, union and complementation®:

! j.c. that obey the following rules:

S$(z,T(y.2)) = T(S(z.y). S(x.z)) S
1. { T(z. S(y. =) = S(T(r, 9} T(r.2)) (distrnihulivity);
2. T(x,z) = r and S{r,r) = 5 (ilempaotency).

Conventional set union and intersection are both distributive and idempotent
? these are the most commonly used dehnitions of fuzzy set operatians



— intersection: pranp(z) = min{ua(z), pp(z)};
- union: ptaup(z) = maz{palz). pn(z)};
— complementation: pg(x) = 1 — pa(z).

2.2 Logic Programming with Negation

The language presented here is defined after [Kun89). The class of logic pro-
grams supported by this language is that of function-free, normal, non-cyclical
programs which are strict with respect to queries and allowed (sce definitions
below). The symbols of the language are: )

variables z,y, ...;

constants a, b, ...

— n-ary predicates p.q,...:

the connectives *—" (*if"), ‘=" (*not™), *," (“and™).

A term is a variable or a constant, an afom is a predicate application on
terms, and a literal is an atom (positive literal) or the negation of an atom
(negative literal). A normal clause is an expression p — 1, ....7, where p is an
atom and qy,...,q, are literals, n > 0. p is called the head of the clause and
Q14+, qn is called the body of the clause. When n = 0 the clause is called a unst
clause. A query clause is an expression q,, ..., g, where n > 0. A normal program
is a finite non-empty set of normal clauses.

Let Prp be the set of predicates in the program P. The immediale dependency
relation J is defined as follows:

— given p.q € Prp,p 3 q ifl there is a clause in {7 in which p occurs in the
hiead and q occurs in the body.

The dependency relation > is dcfined as the least transitive reflexive relation
on Prp extending J: p 2 q means that p depends hereditarily on q.
Signed dependencies are defined as {ollows:

~ p 41 q il there is a clause in P in which p occurs in the head and g occurs
in a posifive literal in the body;
- p3_y qifl there is a clanse in P in which p occurs in the head and q occurs
in a negative literal in the body;
- >41 and >_; are the least pair of relations satisfying:
® P24 D
* pJ GNG 2, TP 2, T

A program P is called call-consisfent iff it does not have any p such that
p 2_1 p. Il P also does not have any p such that p >4 p then it is called non-
cycheal. P is called strict uath respect to a query i iff there are nop € P,q€ ¢
such that ¢ >_y pand q 24 p. P is called allowed iff cvery variable occurring in
cach clause of P occurs in at least one positive literal in the body of the clause.



An instance of an expression? € is the expression €' obtained by replacing all
occurrences of a variable z in £ by a term different from z. The opceration that
generates instances is called subsfifution. Essentially, a substitution is a mapping
from variables to terms. A ground instance of an expression £ is any variable-free
instance of £. Given a program P, ground(P) stands for the set of all ground
instances of the clauses in P.

A substitution ¢ of two expressions €, and £7 is a nutfier iff £;0 = £a0. It
is a most general umfier (mgu) iff for any other unifier 7 of £, and £, £ 7 are
instances of §;o(i = 1,2).

Assuming first-order logic with equality as the underlying langnage, the com-
pletion of a program P (Comp(P)) is defined by the rules and axioms presented
in figure 1 [Tur89).

- Rules:
Denoting by Dec [, the definition of the predicate p in the program:

o De [, = the set of clauses in P with pin the head.

Defp = 1'
1. Yx{=p(x)
2

Defp={p(t) — v :v=1..k) #{}
vx[p(x) — Vo, 3((x = t) A )]

where

(a) x,t. are tuples, with the proper arity, of variables ([r,..... rm]) and terms

([tiaee- .. L)), respectively;
(b) x =t, stands for £y = 4|, A ... A Iy = Liny;
(c) the scope of the existential quantifier is the variables occurring in the bodies
of the clauses in Defp,
(d) ¥, are (possibly empty) conjunctions of literals; and
(e) the connective — stands for equivalence.
~ Axioms:
1. equality axioms [Men87):
(a) Yz(z = z) (reflexivity).
(b) zv = 12 — (Clry.£1) — C(11, r2)) (substitutivity).
where 7, £,, 22 are variables, C(r,, r ) is a clause and C(r,.73) is the same
clause with some (but not necessarily all) occurrences of 7, replaced by ry;
2. 1(z) # r for each term in which 1 occurs.

Fig. 1. Completion Comp({ P} ol program #

The semantic model of a program P is defined in terms of its completion
Comp(P). The domain of Comp( P) consists of Lhe non-empty set U of constants
occurring in P. The interpretation of a predicate p € Prp is a function [(p) :

3 an expression is a term, a literal or a clanse



Un — {T,L} where n is the arity of p, T stands for “true” and L stands for
“false” . The interpretation of the equality and the truth tables of the connectives
occurring in Comp(P) are defined as usual (see, for example, [Men87}). Any
interpretation that takes every expression occurring in Comp(P’) to the value T
is a model of P.

Now it is possible to introduce an inference procedure for this language. The
procedure is SLDNF!. First we must introduce some notation. In what follows:

— yp; are literals;

~ pi,g; are positive literals;

~ gi are positive ground literals;

— &;,v; are (possibly empty) conjunctions of literals;

- o, x are substitutions;

— R stands for “returns”: ¢ Ro holds ill SLDNF succeeds on ¢ with the sub-
stitution & as an answer, in which case we say that ¢ belongs to the success
set 12 of the program;

~ F stands for “fails”; ¥ F holds iff SLDNF fails, in which case we say that ¢
belongs to the finite failure set F of the program;

— {true stands for the empty query clause;

~ yes stands for the identity substitution.

The procedure is defined hy the inductive rules presented in figure 2.

1. true R yes.

9 {g:.9). 3{p — ¥]: 0 = mgu(q, p).(¥.8)e Rx
’ (9.8) it (o)
=q,6),9F,8Ro

k%
g, a
(9,6),—~3[p — ¥] : Imgulq,
4 (a) p(q,a)lr gulq. )
(9.6).¥Ip, — ¥w]: 37 = mgu{q.p,) = (¢, 8)a F
(®) 1

(q.4)
5 (=g9.8),g Ryes
T (g8 F

Fig.2. SLONF

¢ SLDNF stands for Linear Resolution with a Selection Rule for Definite Clauses,
extended with Negation by Finite Failure. “Linear™ indicates that each inference
step uses the most-recently resolved clause as an input, “selection rule” indicates the
use of some fixed rule to sclect the other inputs of each inference, “definite clauses™
defines the class of clauses initially tractable by the procedure (a dehinite clause is
a normal clause in which all literals are positive), and “negation by finite failure”
indicates that these clauses are extended 1o accommadale negation - resulting in
what we are calling normal clanses - and that negation is interpreied in the specific
way presented in the lollowing paragraphs



In [Apt87] we have that SLDNF is sound, i.e. that given a query ¢ and a
program P, il (using our notation) ¢:fia then Comp(P) |= vo, and if ¢F then
Comp(P) £ ~, where Comp(P) |= @ means that & is a semantic consequence
of Comp(P). A completeness result can be found in {Kun89): for the classes
of programs and queries considered in our work (actually, [Kun89] treats more
general classes of programs and querics, allowing e.g. cycles and functions), if
Comp(P) |= %o then YRo, and if Comp(P) = ¢ then ¥ F. This defines a rich
subset of first-order logic with a computationally efficient inference procedure
and a formally specified declarative semantics.

3 A Language to Reason with Fuzzy Predicates

The relationship hetween fuzzy logics and the resolution principle is well estab-
lished. Since [Lee72], one of the pioncering works in the arca, several proposals
have been made, aiming at richer languages in respect of both the logical and
the fuzzy relations supported.

In [Lee72] the language is limited to definite clauses [Apt87, Hog90] allowing
fuzzy predicates with truth-values always greater than 0.5%. The semantics of
the relevant connectives is defined according to Zadeh’s triangular norms and
conorms and resolution is extended to propagate truth-values in a way that
is sound and complete with respect to the llerhrand interpretation of sets of
clauses. Several implementations based on [Lee72] have been proposed, e.g. the
ones described in [I1in86, [KK85, Orc89].

More recent developments [Fit88, Fit90, KS91, Sha83, vE86) have focused
on fixpoint semantics, either working with definite programs or approaching the
definition of negation by means other than finite failure. \We adopt negation
by finite failure in this work, in order 1o have the more conventional languages
which are based on this principle (e.g. pure PROLOG) as proper subsetls of
our language. This choice is corroborated by the results found in [Turg9, CL89,
Fit85, Kun87, Kan89, Kun90], which determine large classes of normal programs
with a well-defined declarative semantics.

In what follows we introduce a language Lo deal with fuzzy predicates. First
we present the language, then its model theory and inference procedure.

Fuzzy predicates can be defined by analogy with the concept of fuzzy sets.
The interpretation of predicates can bhe generalized to a function I(p) : /™ —
[0,1], with the extreme values corresponding to the previous values T and L
(namely, T = 1 and L = 0). This function can be construed as a fuzzy member-
ship function and the logical connectives can he interpreted as fuzzy sel operators
- ‘= corresponding to complementation, "V’ corresponding 1o union, *A’ corre-
sponding to intersection, and ‘—" corresponding ta set-equivalence. Intuitively,
the semantics of a closed formula becomes a “degree of truth”, rather than sim-
ply one value out of {T,.L}). Let 7 denote this value and T(y, r) state that “the

% the limitations on the types of clauses and range of truth-values are conditions im-
posed to obtain soundness for the specific resolution procedure emploved in [Lee72]



truth-degree of ¥ is r”. This evaluation can be made operational using an ez-
tended SLDNF (e-SLDNF) procedure, to be related to the model of an erfended
completion of a program P (e-Comp(P)). We assume that the unit clauses (and
only them) in the program express truth-degrees, that is, unit clauses are of the

form T(p, ), where 7 > 0.
The extended completion of a program P (e-Comp (P)) is defined as presented

in figure 3.
Two classes of formulae can be identified in e-Comp(P):

— unil formulae, generated by rule 1 or from the unit clauses occurring in P;
and

— equivalence formulae, i.e. the remaining ones, all of them containing the
connective —.

The connectives occurring in e-Comp(P) are interpreted according to the
truth-functions defined below:
Assuming that:

— T(6,75), and
- T(¥.1v)

We have that:

T6AY),7)=>1=min{rs, 7y}

T8V Y), )= 1 =mar{rs, 1y}

T((-&)r)=>r=1-m7

- {'T((ﬁ — ), 1)2>T=Ty
T((6—~¥)0)=>m # 7

The completion of a conventional program defines a unique model for the
program. For the extended completion to do the same, a necessary condition is
to fix the truth-values for the unit clauses occurring in I as valucs greater than
0. This condition is also sufficient, as all the other formulae in e-Comp(P) - i.e.
the equivalence formulae and the unit formulae generated by rule 1 - must have
truth-values equal to 1 in the model of the program.

A model for a program containing fuzzy predicates is any interpretation for
which every expression  occurring in e-Comp( ) has a truth-value 7 > 0.

Our nolation for logic programs and the ¢-SLDNF procedure is basically the
notation used in figure 2, with the following altcrations:

- R* stands for “returns with a truth-value greater than 07: ¢ R (o, 1) holds
iff e-SLDNF succeeds, assigning a truth-value 7 to ¢, with the substitution
o as an answer;

¢ the restrictions on how to declare truth-degrees are imposed to avoid ambiguity,
redundancy and conflicting declarations. The language presented here is monotonic
and does not contain mechanisms to resolve Lruth-degrees if they are declared for
unit clauses as well as larger constructs (e.g. general normal clauses)



' Def, =
& Yx[T(~plx), 1))

2. D‘fp=‘P(‘-l)“"/'v:‘=l-----k}f{}
YX[T (p(x),7) = maz{r : (x = G)A(¥y # {} A T(n.1,))
V("l = “ A T(P(tl)- rl))]} = 1’]

where

(a) Defp is the set of clauses in I with p in the head:

(b) x.t, are tuples of variables ([z,,....zm]) and terms ([tae. .. L]}, respec-
tively;

(c) x ="t stands for £} = £, A ... A L = tymi;
(d) ¥\ are (possibly empty) conjunctions of literals;
(¢} the connective — stands for equivalence.

— Axioms:

® same as in figure 1.

Fig. 3. Extended completion of P

— F* stands for “fails": ¢:F* holds il e-SLONF fails, implying the assignment
of a truth-value r = 0 to y.

e-SLDNF is defined inductively as presented in figure 4.

The intuition underlying the definitions of e-Comp(P) and e-SLDNF is that
we need the truth-degrees declared in the unit clauses in a program I "trans-
ferred” to the heads of the clauscs in P in a consistent way. Central to these
definitions is the notion of completed database, which makes it possible to define
the truth-degrees to be “transferred” as unique.

One feature of the way the language is formalized is that it can he pro-
grammed

as a PROLOG meta-interpreter almost literally, i.e. we can identify a lerm,
predicate and clause in the PROLOG implemientation with each term, predicate
and clause in the language in an almost immediate way. Unfortunately, this
implementation is not very efficient, as it requires the sxhaustive search of all
possible ways of achieving all solutions for any query to select the appropriate
truth-value.

The implementation can be presented as [ollows (adapted from [CdS92)):

Given a program P and a query T (¢, r):

1. assume that ¥ = (2, 6), where ¢ is a literal and 6§ is a query clause (notice that
@ = (@, true)).

2. solve T(p, r,,), resulting either  R® (7, 7,) or o F°.
il ¢ F* then return ¥ F*. -

3. il ¢ R* (0,,7;) then solve T(ba,, ra). resulting cither § R (o .04, 74) or bo.. F°.
if 8o, F* then return v F°.

4. il 6 R® (6,04, 74) then rerurn ¥ R” (o 08, min{r,, ra}).



1. true R* (ycs, 1)
T [Pi = "Illal = mgu(q, pi)s
(¥, 8)a. R (7, 7.) Vo, = mgu(q, p),

(9.8 m8Z 4 (5)5; R® (xi, 7)), T((p)on, 7'), i
min{r], 7'} =1,
Eal) .01 (0%, 7)
where o= is the substitution that generates r and the v, are non-empty conjunc-
tions.
by (260 R (ves.').r’ < 1.8 R (o.6").min{(1 = ).’} = 1
( .0 (0.7

3 (—9.8).9F°.8 R* (a.7)
' (=g, 8) R (a.7)
4 (a) (2.6).~3[p —:']I'Z.’amgu(q_p)

(b} (9.8).Y[p — ] : 3o = mgulg.p.) = (¢.8)a F*
0.5 F
g (29.8).9 R* (yes.1)
. (—g, 0)

Fig.4. e-SLDNF

To solve T(p, To):

—

il ¢ = true then return frue R° (yes, 1),
il @ = posilive literal g then find the collection C of all expressions E in P such
that

™~

(a) E =p. — ¢ and 3o, = mgu(q,p.) and T(¥,0i,7), or
{b) E =T(p.,,7.)and 3a: = mguiq, p.).

if C = {} then return ¢ F*. Otherwise

select from C the index 7 such that r, = mazc{n} and return ¢ R* (o,,7;).
3. if ¢ = negative gronnd literal ~g then solve T (g, 74)-

if g F© then return ~g % (yes,1).

ilg R* (7g,1) thea return ~gF”.

il g R (7g.74). g < 1 then return ~g R (04,1 = 1g).

One possible way to improve the runtime performance of this system is by
avoiding the exhaustive scarch of all paths to all solutions for a query. To do this,
the system must ignore intermediate computations that no longer will affect the
selection of the appropriate truth-value.

In order to avoid these redundant or unnecessary calculations, we apply two
classical program optimization techniques, respectively solution caching and o-3
pruning.

In the following section, we explore the applicability of these two techniques
to the meta-interpreter in order 1o improve its efliciency in time.

10



4 Optimization Strategies for Fuzzy Reasoning

As mentioned above, the two optimization techniques we explore are solution
caching and a-3 pruning.

4.1 Solution Caching

The solution caching strategy can be described as “storing conclusions found
during an evaluation process in a way that allows the system to reuse these
conclusions to answer subsequent queries”.

When the evaluation of a clause is required in different points of a program,
a subtree is generated repeatedly to resolve a query. If this generation is com-
putationally costly, it can be worthwhile to store the result of its evaluation the
first time it is gencrated in order to avoid its recalculation.

Unfortunately, storing and recalling values also imply in computational costs.
The trade-off is advantageous only when these costs are smaller than the costs
of generating repeatedly the subtrees which evaluation is being stored.

So, the improvements on efficiency by applying solution caching depend on
the characteristics of specific programs. It may not be useful also when queries
are not repeated a considerably large number of times during resolution.

4.2 a-f Pruning

The a-@ pruning strategy was originally proposed to increase efficiency of search
processes in game trees without loss of information [Pea84]. llere, it is employed
to guide query evaluation.

The key idea is that some operations can be simplified in the evaluation
procedure whenever a vahie is selected from a partially ordered set of alternatives
and the choice is made based on this partial order.

When computing a collection of expressions, some valucs are generated and
immediately discarded, since only the maximum value in this collection is used
for further calculations. Similarly, when computing a conjuctive query, only the
minimum value obtained is used.

The idea is to avoid unnecessary computations. \We do not have to generate
the truth-values for all elements of a collection of expressions if we can generate
one value and verifly that no other value can be greater than it. Analogously, we
do not have to generate the truth-values for each conjunct in a query if we can
generate one value and verify that no other conjunct can produce a smaller one.
The a-8 pruning technique tries to verify these conditions.

llowever, this strategy can be totally ineflective depending on the order in
which clauses are sclected for unification. So, the improvements on efliciency
obtained by applying it also depend on the characteristics of specific programs.

Generally speaking, we can expeet an improvement on the average runtime
behavior of the system alter we emplov these optimization strategics, although
not much can be guaranteed about their effect on the behavior of the system for
specilic programs.



In the following section, we detail some experimental results we have obtained
from using solution caching and a-8 pruning to evaluate fuzzy query clauses.

5 An Efficient Language to Reason with Fuzzy Predicates

In order to obtain an efficent language to reason with fuzay predicates, we base
on the PROLOG meta-interpreter described in section 3 and apply the explored
optimization strategies to this implementation.

We have built three PROLOG programs, implementing:

- the“non-optimized” meta-interpreter;
~ the interpreter employing the solution caching strategy;
— the interpreter employing hoth a-8 pruning and solution caching strategies.

In what follows we present an efficient language to deal with fuzzy predi-
cates including both optimization strategies. We also present some experimental
results based on representative examples of ils use.

5.1 The Optimized System

Ilere we present the language obtained by employing both optimization strategies
to the meta-interpreter. Its implementation can be described as follows (adapted
from [CdS92)):

Given a program P and a query T(¥, r):

—

. assume that ¥ = (p,8), where ¢ is a literal and & is a query clause.
2. solve T(w, r,), resulting either ¢ R (a,,1,) or ¢ F*.
il @ F* then return ¢ F*.
3. il R*(o,,7,) then solve aT(ba,, 74).
il #5 > 1, then return ¥ R (0,.7,). Otherwise
4. solve T(8a,,1s), resulting cither & R* (o, a4, 1s) oF b0, F°.
il 8o, F* then return ¢ F*.
5. il § R* (0, 04,75) then return ¥ R (o 04, min{r,, 1s}).

To solve T(p, r,):

. il ¢ = true then rctuen true R* (yes, 1).
. il ¢ = positive literal g then

D =

(a) il » = ground literal and there is one previously stored expression £ in P of
the form Tm(q, 7q) then return o R* (yes, rq). Otherwise
(b) find one expression E in P such that
i. £=p — ¥ and 30, = mgulg,p,) and T(¥,a,,7.), or
ii. £=7T(pi,r,)and 30, = mgu(q,p:).
if there is no such E then return ¢ F°. Otherwise solve 8T (¢, 7).
if #, < ri then store in P the expression Tm(ya,, ) and return p R* (0., 7).

Otherwise find another cxpression E with the same conditions and iterate the
prnc(‘s!.



3. il ¢ = negative ground literal —~g then solve T(g. 7).
if g F° then return =g R° (yes, 1).
ilg R* (ag,1) then return ~gF°.
il g R* (95, 75), 7y < 1 then return ~g R* (0g,1 —1,).

To solve o« T (v, r): similar to T(y,7), replacing T(y, r,) by aT(p, ro).

To solve a7 (y, )

1. if = true then return frue R® (yes, 1).
2. if @ = positive literal ¢ then find one expression Ein P such that
(a) E=p, — ¢, and Jo, = mgau(q.p) and T(y,a,, 1), or
(b) E=T(p,,7) and 30, = magu(q, p).
if there is no such £ then return q F*. Otherwise return r,.
3. il p = negative ground literal ~g then solve T(g.14).
il g F* then return r, = 1.
if g R* (o4,1) then return =g F".
il g R (a3g,19). 79 < | then return fo=1-r,

To solve 37 (¢, r):

-

. assume that ¢ = (y,§), where v is a literal and § is a query clause.
2. solve T(p,1,), resulting either o R* (0., 7,) or ¢ F*.
il @ F© then return ¢ F°. Otherwise return To.

To solve A7 (p, 7,): similar to T{p.1y), replacing 7(...) by BT(...)

5.2 Experimental Results

In order to verify the cffectiveness of the optimization strategics applied to the
meta-interpreter. we develop an empirical comparative analysis of the system
runtime efficiency.

For this analysis we consider the available PROLOG programs. Pl corre-
sponds to the “non-optimized” language, P2 corresponds to the version includ-
ing solution caching, and P3 corresponds to the version combining hoth solutron
caching and a-3 pruning.

To compare the cfficiency in time of the ahove implementations, we use rep-
resentative examples of two types, henceforth called Ak and Be. k= 1.....10.in
which respectively o ~ 8 pruning is and is nof effective.

We assume that the and/or resolution trees are generated depth-first and
left-to-right.

The Ak/Bk-examples are presented as flollows:

Examples At:

Al:

as(X'): —ai(N).az{.N),as(X). T{(ai(a},0.1).
a3(X): —aa(X). T(as(a),0.9).
a2(X) : —ay(X). T(as(a),0.2).
az({X') : —ac(X).

az(,\') : -—lln(.\.).

ns(.\') : —ll-,(.\‘)‘



(-..)

Al0:

ao(X): —a)(X),a3(XN),a3(.N). T(a1{a),0.1).
ay(X) : ~aa(.X). T(aa(a),0.9).
az(X}: —aq(X). T(az(a),0.1).
az(X): —as(X). :

a2(X): —ag(X). T(ass(a),0.1).
ae(X): ~as(X). T(ass(a),0.9).

as(X): —ar(X),as8(X),a9(X). T(as9(a),0.2).
a9(X): —ag(X).

cu(x) H —asn(.\’).
asa(.XN): —ass(\).
asa(XN): —aso{.V).
au(A\'): —us’(.\').

Examples Bk:

B

ao({X) : —a;(X),a2(X),as(X). T(aa(a),0.1).
a2(X) : —ay(X). T(aes(n),0.9).
a1(X) : —a(X). T(a4(a),0.2).
a1 {X): —as(X).

a1 (X): —ag(X).

as(X): =a (X).

(.)

Bio:

ao(XN): =a1(X),02{X),e3(N). T(a3(a),0.1).

a2(X): —as(X). T(ac(a),0.9).

a1 (X)) : —aq (X). T(as(a).0.1).

a1(X): —as(X). :

a;(X) H —ag(x). T(nu(a).o.l).
ﬂ;(x) H -a.(X). T(am(a), 0.9).

ag{N): —ar(N),as(X),a9(N). T(asa(a),0.2).
as(XN): —ar(X).

ll“(.\.) : —ﬂsl(.\' )
lls;(.\’) ' —'l-,g(.\').
055(.\') ' —um(.\').
ase(XN): —asa(.N).

Based on these examples, we obtain the execution times for programs Pl,
P2 and P3 to solve query ag(a)?, as presented in tables 1 and 2 and figures 5

T the experiments were mn using SICStus PROLOG on SPARC workstations. The
execution times are presented in milliscconds.
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and 6.

P1 |P2[P3
Al [[70 [40 |30
A2 [[2300 |70 |60
A3 |[84720[110/90
A4 - [140(120
A5 - |180]150
A6 - |220/180
AT - 2501210
A8 - |280[240
A9 - |320{260
Al0]l - 360200

Table 1. Experimental Results - Execution Times for Resolving Ak-examples (msecs)

Py o [P2|P3
0ot |[1o 50 |60
32 [[7050 |80 [110
B3 [/529709[120(150

B4 - 160(190
ns - 200|250
113 - 230(290
B7 - 270[340
08 - 310|370
B9 - 340410
Bio|| - 370(470

Table 2. Experimental Results - Execution Times for Resolving Bk-examples {msecs)

Both Ak and Bk-examples show positive results for the implementation em-
ploying solution caching (P2). The program still makes an exhaustive search of
all paths to all solutions, but it docs not have to recaleulate the truth-value of
a ground query once it is already stored.

The Ak-examples are also paositive with respect 1o the implementation em-
ploying both strategies {(P3). The order in which clauses are selected for uni-
fication is suitable for the a-3 prunmg strategy. This does not accur for the
B-examples, for which this strategy is totally incffective.
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Fig. 6. Experimental Results - Execution Times for Resolving Bk-examples (msecs)

8 Discussion and Conclusions

In this paper we have discussed the problem of efficient reasoning with fuzzy
predicates. As the experimental results presented have shown, this is a very
relevant problem if we are interested in building practical applications of fuzzy
teasoning, since great improvements in performance were achieved employing
rather simple optimization techniques.

“Software engincering for logic programming” is a research area at its infancy
as yet (sce e.g. [KMNO3] for a recent reference in this subject), what to say
“software engincering for fuz:y logic programming”. We cxpect this paper to
be the first of many fo come exploring the issue of complexity of automated
deduction for logic programs with fuzzy predicates.

In our future work, we plan to derive analytic bounds for the complexity of e-
SLDNF resolution strategies, and verify the realtions between our experimental
results and those bounds.
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