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This paper is the last paper (independently of possible future refinements and complements) aiming to
the partition of optical forces in the framework of generalized Lorenz-Mie theory. After a paper devoted
to forces exerted on quadrupoles, the present paper is devoted to forces exerted on arbitrary sized par-
ticles. These forces are expressed in terms of the beam shape coefficients which encode the structure of
the illuminating beam and of Mie coefficients which encode the properties of the scatterer. The partition
relies on a three-level categorization (mixing and recoil forces, gradient and non-gradient forces, scatter-
ing and non-standard forces) and on a two-level decomposition (K-forces with K being an integer ranging
from 1 to oo, and electric/magnetic/magnetoelectric forces).
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1. Introduction

The present introduction is a summary of a previous introduc-
tion written at the occasion of a paper devoted to optical forces ex-
erted on quadrupoles in the framework of the generalized Lorenz-
Mie theory (GLMT). In the present introduction, we recall a few es-
sential features and kindly ask the reader to report himself/herself
to Gouesbet et al. [1] for more details.

Optical forces have been expressed in terms of beam shape
coefficients (BSCs), which encode the structure of the illuminat-
ing beam, in a general off-axis configuration [2], following the re-
stricted case of an on-axis configuration [3]. It is here recalled that
these BSCs are obtained from the expressions of the radial electric
and magnetic fields, e.g. Section 3.3.1. in Gouesbet and Gréhan [4].
Although these papers emphasized the case of illuminating Gaus-
sian beams, the expressions provided for the optical forces were
valid for arbitrary shaped beam illumination, see [5,6]. As dis-
cussed in Section 2, these papers already introduced the first-level
categorization between mixing and recoil forces. The basic expres-
sions of this first-level categorization will serve as starting bricks
to develop the formalism presented in the following sections. Al-
though the emphasis is made on homogeneous spherical particles,
it must be noted that the GLMT formalism (stricto sensu, i.e. in the
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case of homogeneous spherical particles) for optical forces is valid
as well to the cases of multilayered particles when the expressions
of the BSCs are unchanged, requiring only to modify the expres-
sions of the Mie coefficients [7,8], and to other kinds of particles
leading to expressions which are formally identical to the ones of
the GLMT stricto sensu, namely assemblies of spheres and aggre-
gates [9-11] and spheres with an eccentrically located spherical
inclusion [12-15]

Numerical evaluations of optical forces in the GLMT framework,
possibly in relationship with experimental results, have afterward
been provided in Ren et al. [16,17], Polaert et al. [18], Martinot-
Lagarde et al. [19]. Optical torques in spherical coordinates have
also been discussed by Polaert et al. [20]. Concerning complemen-
tary studies in spheroidal coordinates, for both optical forces and
torques, the reader may refer to Xu et al. [21] and to Xu et al. [22].
Many other works from various worldwide authors contributed as
well to the issue and have been recently quoted in a review paper
with 284 references [23]. Many other examples may be found in
Gouesbet [24] and Gouesbet [25], namely about 50 references in
Gouesbet [24] for the period 2009-2013 and about 150 references
in Gouesbet [25] for the period 2014-2018, concerning in particu-
lar (to cite a few topics) optical tweezers, stretching and deform-
ing, transporting and sorting, binding, and pushing and pulling.

After Arthur Ashkin’s work, compiled in Ashkin [26], it has been
traditional to think of the optical forces in terms of a partition be-
tween gradient and scattering forces which may be viewed as a
second-level categorization. However, although it may look strange
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for a theory completed in 1987 and 1988, a systematic study of
optical force partition in GLMT, after a first occurrence in terms of
gradient and scattering forces by Lock [27], only started recently
in a systematic way in Gouesbet [28] when studying forces ex-
erted on electric dipoles (in particular Rayleigh particles) where it
has been uncovered that the categorization in terms of gradient
and scattering forces actually generates two levels of categoriza-
tion between gradient and non-gradient forces, non-gradient forces
in turn being separated into scattering and non-standard forces.
The results obtained in Gouesbet [28] required several papers to
fully understand the situation, see a review in Section 10 of Goues-
bet and Ambrosio [29]. These studies on electric dipoles have been
completed by a study devoted to magnetodielectric dipoles [30,31],
and by an extension to the case of quadrupoles [1]. The present
paper is the last one of the series (notwithstanding possible future
refinements and complements) and therefore deals with the case
of arbitrary sized particles. It somehow completes and more im-
portant concludes the series.

Furthermore, beside the three-level categorization previously
revealed, we must also introduce a parallel two-level decomposi-
tion of optical forces. The first decomposition concerns what we
shall call K -forces or, in another language which may be conve-
nient, forces of order K, which is a decomposition into an infinite
number of forces (K from 1 to co). The second-level decomposi-
tion distinguishes between electric, magnetic and magnetoelectric
forces.

The paper is organized as follows. Section 2 recalls a back-
ground on optical forces which will display the first-level catego-
rization in terms of mixing and recoil forces as already displayed
nearly four decades ago and which will serve to derive the ex-
pressions of K-forces in terms of BSCs and of Mie coefficients.
Section 3 displays the expressions of K-forces. Section 4 will pro-
vide the interpretations of mixing forces, while Section 5 will pro-
vide the interpretations of recoil forces. Section 6 is a summary
and a discussion of the results generated by the 3-level categoriza-
tion and by the 2-level decomposition. Section 7 is a conclusion.
Two appendices will refer to mixing gradient K-forces exhibited in
Eq. (24) of Zheng et al. [32].

2. Mixing and recoil forces

We consider a Cartesian coordinate system Opxyz with a scat-
terer located at the origin Op of the coordinates. The scatterer is il-
luminated by a structured beam encoded by the double set of BSCs
g;’:TM and g;?,TE (TM standing for “Transverse Magnetic” and TE for
“Transverse Electric”, n from 1 to infinity, and m from —n to +n)
with a time-dependence of the form exp(iwt) which is the usual
convention in the GLMT framework. The axis Opz is traditionally
chosen to define the direction of propagation of the beam. Spheri-
cal coordinates associated with the Cartesian coordinate system are
denoted (1,6, ¢) as usual.

The distinction between mixing and recoil forces, already put
forward nearly forty years ago [2,3], has been recalled, although
with another language than the one used in the present paper,
in a textbook [4]. Longitudinal mixing forces, corresponding to the
forward momentum removed from the beam, are provided by the
first term of Eq. (3.145) of [4], while recoil forces, corresponding
to the forward momentum given by the scatterer to the scattered
wave, is given in the second term. Transverse forces are similarly
expressed by Egs. (3.160) and (3.161) of [4]. It is traditional in
GLMT to express these forces in terms of cross-sections denoted
F(@, ¢)Cex (for the mixing forces) and F (0, ¢)Csq (for the recoil
forces), in which F (0, ¢) stands for cosd for the longitudinal forces
and sin @ cos ¢, sin6 sin ¢ for the transverse components (x- and y-
components respectively). This notation is borrowed from van de
Hulst [33]. The forces (cross-sections) C = Cp; (i =X,y 2) are then
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expressed, see Section 2.1 in Gouesbet et al. [1], as:

Cprz = €050 Coxr — €050 Cseq (1)
Corx =sinf cos@ Cexr — SiNO oS @ Cseq (2)
Cpry = sin6@ sin @Cex — sinf sin @Csq (3)

in which we attached a privilege to the z-component because it is
easier to evaluate than the other components. These equations ex-
press a first-level categorization between mixing forces with a sub-
script “ext” and recoil forces with a subscript “sca”. Let us com-
ment the terminology used, referring ourselves to Eq. (1) (similar
comments could be done for the two other equations). The sub-
script “ext” is motivated by the fact that the corresponding forces
are obtained from a weighted integration of the extinction cross-
section Cexr and the corresponding forces are then called extinction
forces as well. However, because (i) the word “extinction” refers to
“absorption plus scattering” and (ii) pure scattered fields are in-
volved in the second term of the r.h.s. of the equation, we found
the terminology of extinction forces confusing and eventually pre-
ferred the one of mixing forces. Similarly, the subscript “sca” is
motivated by the fact that only scattered fields are involved in the
evaluation of cos Csq but this terminology should not be confus-
ing up to the point that we would believe that these “sca” forces
correspond to scattering forces. Instead, as we shall see, we shall
find that recoil forces associated with the subscript “sca” contain
gradient forces.

The relationship between forces F expressed as cross-sections C
(i.e. in square meters) and actual forces expressed in newtons
reads as Fpewton = IpC/c in which c is the speed of light and in
which Iy, namely the intensity of the incident light (for a plane
wave) [33], may here be viewed as a normalization factor. Relying
on Eq. (3.106), which defines a normalization factor as EgHj/2 =1,
and Eq. (3.144) of [4], and using c=1/,/ex, with ¢ and u be-
ing respectively the permittivity and the permeability of the host
medium, we obtain:

1
Fnewton = §8|50|2C (4)

which is valid because the host medium is lossless.

In the present paper, the word “force” is conveniently used
to denote actual forces in newtons or forces expressed as cross-
sections, or it may as well be used to denote a force in the vec-
torial sense or to denote the components of a vectorial force, any
possible ambiguity being removed by the context. The minus signs
of the second members of the r.h.s. of Egs. (1)-(3) are omitted in
the sequel.

Considering the expressions for the forces explicitly given in
subsections, 3.12.2 and 3.12.3 of [4], we may observe that forces
are obtained by summing up an infinite number of subforces. From
such expressions, we extract K-forces which are obtained from the
general expressions of forces by extracting the terms involving the
Mie coefficients ax and by, and their products with Mie coefficients
of order (K + 1). These K-forces are denoted by using a superscript
K.

3. Forces of order K versus BSCs

Forces of order 1 and 2 have been discussed in Gouesbet et al.
[1] and references therein. It is emphasized in Gouesbet et al.
[1] that 1-forces and 2-forces, although exhibiting very strong
similarities, exhibit as well a few differences. The most impor-
tant difference is that the third-level categorization in which non-
gradient terms are decomposed into scattering and non-standard
forces rely, in the case of 1-forces, on perfectly discriminating def-
initions. Namely, for 1-forces, scattering forces are non-gradient
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forces which are proportional to the Poynting vector while non-
standard forces are non-gradient forces which are not proportional
to the Poynting vector. Such definitions do not however extend to
K-forces, for K > 1. However, the three-level categorization has to
be preserved for K > 1 for at least two reasons (i) scattering and
non-standard forces may be defined on the basis of their structural
properties and (ii) it provides a classification of optical forces valid
whatever the value of K. Other reasons related to the coherency
of the formalism will be notified when appropriate. In the present
paper, only K-forces with K > 1 will be discussed (we shall omit in
the sequel to repeat this condition). For 1-forces, the reader may
refer to Gouesbet et al. [1] and references therein.

From Eq. (3.158) in Gouesbet and Gréhan [4], the mixing longi-
tudinal K-force is found to read as:

_ 2
cos ectlzgct = %Re(al(zé( + b[(Z;g) (5)
in which:
7 = “Zl CEKAIPD
E K-1.TMEK.TM
i K=T=1pD!
1 (K +1 +1pD!
(1(+1)2 Z Y 8 M8 1 M
(2K + 1)i (K + |p))!
- K(K+1)? Z Px= |p|)|gI<TMgKTE (6)
K1
K (K+1pD! o
Zy = Z (K—1- |p|)|g1< 11E8K TE

=—K+1

1 i’é (K+1+pD! ,

(K + 1)2 ~ (K—1p)! 8 TE8K 1. TE
L @K+ & (K+|p)h!
Tz K+ 1)2 Z (K |p|)|gl( M8k TE (7)

in which the subscrlpt E corresponds to an electric force associ-
ated with the Mie electric coefficient ag, while the subscript H
corresponds to a magnetic force associated with the Mie magnetic
coefficient bg. We shall later similarly use a subscript EH to de-
note magnetoelectric terms (and forces). The use of the letter Z
recalls us that we are dealing with longitudinal forces. Further-
more, we begin our analysis with longitudinal terms (and forces)
because they are simpler to investigate than transverse forces (for
which, instead of Z, we shall use the letters X and Y for x- and
y-components respectively). For K = 2, we recover Eqs. (78) and
(79) of [1].

From Eq. (3.155) in Gouesbet and Gréhan [4], the recoil longitu-
dinal K-force is found to read as:

—2A2 .
cosOCK, = = Re(laKb,*(Zg‘,’,< + agag, 1 ZKHT 4 be;;Hng“) (8)

in which:
2K+1 5 (K [pD)!
KK
Zei = K2(1<+1)ZZ K- |p|)|gKTMgKTE (9)

-1 & ®+1+1p)!,

KK+1 _

Z T (K+1)2 X:K K—pD! 8k TMEK 1. TM (10)
-1 & K+1+]pD!

KK+1 _

£ (K—i—l)2 Z (K—[p! 8k TE8K 1.1 (11)

For K = 2, we recover Eqgs. (81)-(84) of [1]. From general equa-
tions available from [1,2] and [4], and which are not repeated in
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the present paper, we similarly obtain the mixing x-transverse K
-force reading as:

— A2
sinf cos pCX, = ERe(akxg + bieXff) (12)
in which:
XK = XK 4 xPX 4 ix7* (13)
XK = XgK 4 xBX 4 ixrX (14)
in which:
(K — 1 +p)! —px —p+1
XE‘K = Z K—1—p)! (gKTMgK 1,TM +ngl TMgKI?I;/I)
1 (I< + p) 1% —p+1x
+ (K+1)2 Z K—p)! (8% M8kt + 8k Tm€K 1 T)
(2K)! « K oKt
(K+1)2 (8l v + &K 8Kt 1) (15)
K-1
(K - 1 + p) ~p* —p+1
Xi< = K2 Z ) (gK T68k1.7E + &3 Te8KTE )

1 (I< + p) 1% - —p+1%
+ (K+1)2 Z K—p)! (8% re8k 15 + 8xTe8k i 1E)

(2K)! . K Kalx
K112 ( 1 Te8k T + gl(lg'EgKﬂi-lHTE) (16)

K (K+ p)! 1% 1%
Xf = Z K—p)! ( 1 TmBk v T+ 8k TnEk T, TM)

1 (K+1+p)!
K12 Z K+1=p)! 8k m8K 1.1+ 81 w8

(2K + 2)! e
- T ( K.TM K+1 ™ +g1(§1 1TMgKI'<rM) (17)
(K+1)

p+1)

K K+ p)! 1x 1+
X = ra Z K—p)! (8k1're8kre + 8k e8i 1 e)

1 (K+1+p)!
T K+1)2 Z K+1-p)! (gK 168k T 8k Te8K T )

(21<+2)I L e
K12 (8ic e8I 1T + 81 re8ice) (18)

XK =
E K2 (K +1)2 £

2K +1 K+ p)! ~p+le | i =+l
Z K—p)! (B m8cTe " + &8k v

1x
- gﬁ,TMg;TE 8krr 8k, TM) (19)

2K+1 (K+p)!
yK _ 1%
X = 1 K+ 1)2 Z K —p)! (8k T8k 1z + 8k re8k T
—p* —p+1x
ngTMgKI;JE — &8k’ ) (20)

For K =2, we recover Eqs. (85)-(93) of [1]. Next, the recoil x-
transverse K-force is found to read as:

XKK

sinf cos pCX, = —Re(laKb* Qe XERHY 4 biebi XKK+T)

(21)
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in which:
XE = Xig" (22)
XKIH _ x|y B (23)
XKKHT _ xakke1 y xBKic (24)
in which:
1 K+p! o 1
KK+1 __ * +1%
Xg K+ 17 £ Z K—p)! (k1 8kt + &€k 1w)
(25)
1 (K + p) 1% —p+1x
Xt = K + 1)2 Z K—p)! (gﬁﬂ 1e8k e + 8k TESK . TE) (26)
K+1
gkl —1 (K+1+p)! —p+1
Xg K+ 1)2 Z K+1-p)! (B TmER 1.7 + BT TR T )
(27)
K+1
gkl —1 (K+1+p)! —p+
Xi T2 Z K+1-p)! (8kre8ksn.e + &1 re8x e )
(28)
KK 2K+1 (K+p)! v il
Xiy = K2 (K+1)2 Z K—p) (Te8k M — Bk TmEk e
T 1x
+8’ TMgKI?l':‘ — 8k e 8k, TM) (29)

For K = 2, we recover Eqs. (94)-(97) of [1]. Next, the mixing y-
transverse K-force is found to read as:

- A2

sinf sin pCK, = Elm(aKYEK + byYy) (30)
in which:

YE = YK v iy (31)
YK = YK v 4 vk (32)
in which:

(K — 1 +p)! —p+1
el = a3 Z K—1=p)! (gK TMEK-1.TM — 8k1.TMEK. TTVI)

1 5 K+p)! 14 1
+ K+1)? > K—p)! (8T8 v — &k TmSkrm)
p=1 ’
(2K)! P
K+1)? (8 TS T — 8k Tk M) (33)
K-1
(K- 1 +p)! 1
g« = K2 Z K—1=p)! (gK Te8k-1.1¢ ~ 81 78k TE )
1 S K+p) 1 e
+ (K+1)2 Z K—p)! (8 re8ict e — 8k 1E8k 1)
p=
(2K)! e
+ K+1)72 (8 e8ickT e — 8kin regk re) (34)
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K (K+p)! 1x 1%
YEﬁ = Z K—p)! ( KTMngT ™ — 8k-1.TmEK, TM)
1 K+1+p)! 1
T T 1)2 Z K+1=p)! (gI(TMgKH ™ gK+l TMgKl?l'JIrVI)
(2K + 2)1 o
T ¥1)2 ( KTMg’lgﬂ ™ gKfl ]TMgK TM) (35)
K (K + P) ! 1 T
Vi = i3 Z K—p)! (k' re8kl 1 e — 8k—1re8k 1e)
1 K+1+p)! 1
T F 1)2 Z K+1-p)! (EkTE8k1.7e — 868k TE )
(21(-1—2)! . CKele
TKE1)2 (8K re8K1re — 8i\1re8k TE) (36)
K 2K +1 (K +p)! 1x —pHlx
Y = K2(K+1)2 £ Z K—p)! (8F 7 8w + 8 Tm8k 1
1 ~px —p+1
- gK.TMgZ.TE gl(I;'EngT_;\—/I) (37)
K 2K +1 (K +p)! “pr —p+l
Y= K2(K+1)? £ Z K—p)! (Skre8k v + 8k TwEK Tk
1% —p+1x
— 8k mBk e — 8K TEngTerw ) (38)

For K =2, we recover Eqs. (98)-(106) of [1]. Finally, the recoil
y-transverse K-force is found to read as:

2

— A
sin @ sin @C, Sca = Z Im (laKb* YKK +aKal*(+1YEKK+1 +be?(+1yIli(K+1)

(39)
in which:
YEKK“ _ Y;‘KK“ n YE;‘JKKH (41)
Y,f’(“ _ Y;}‘KK“ i YF,?KKH (42)
in which:
1 (K + p)! 1x 1x
= e . Z ®—p1 B Tmic 1 v — 8k Tk )
(43)
1 (K+p)! 1 1+
yaKic . Z - (T8 e — Bk reSkre) (44)
K+1) (K- p)!
K+1
Kis1_ (K+1+p)! 1 *
v K+ 1)2 Z (K+1-p)! (8% rw8icrin — 8lcrm8icia.rm)
(45)
yAKK+1 _ 1 Kiﬁ (K+1+p)! ( g pas
f = (K+ 1)2 - (K-i-l p)| I(+1 TESK,TE
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—1 %
~ 8k 18k ,TE) (46)

KK 2K +1 (K+p)! 1% - —p1x
W= Z (gﬁ 18 8k v + Bk TMEK TE

B T KZ(K+1)2 & (K—p)!
1 1
- gﬁ,mgﬁ,m 8. TEgK%I ) (47)

For K = 2, we recover Egs. (107)-(110) of [1].
4. Interpretations of mixing forces
4.1. Mixing forces in the z-direction

Eq. 5 is the sum of an electric force cos QCKt ¢ associated with

the electric Mie coefficient ax and of a magnetic force cos 9C£Xt H
associated with the magnetic Mie coefficient byx. Both of these
forces may be decomposed into two subforces. The decomposition

of the electric force cos QCm ¢ reads as:

cos OCS, ;= cosOCKE ; + cos OCK, ¢ (48)
in which:
A2
cos6C! |, = 7lm(a,<)1m(z§) (49)
22
cosOCKR . = Re(a1<)Re(Z§) (50)

in which the subscripts I and R refer to the imaginary and real
parts respectively of the BSC-dependent terms. In the present case,
the same subscripts correspond as well to the imaginary and real
parts respectively of the Mie coefficients, but this feature is ac-
cidental and is not to be considered as a rule, as later counter-
examples will show. For K =1 and 2, cos GC{;{’t p 1s a mixing gradi-
ent force [1]. We shall argue in Section 4.4 that the same is true
for K > 2. For K=1 and 2 again, cosOCKE ; is the sum of a mix-
ing scattering force and of a mixing non-standard force [1]. Let us
carry the same decomposition for K > 2 before commenting and
justifying. We then have, adding a supercript S standing for “Scat-

tering” and NS standing for “Non-Standard”:

2
cos OCKRS, — A Re(aK)Re(ZEKS) (51)
2
cos OCKRNS — )L—Re(a,()Re(Zé‘Ns) (52)
in which:
K
ks QK+1)i — _(K+|pD!
% = K2(K+1)2 Z P = |p|)|gKTMgKTE (53)
K-1
(1<+ PD! .
= 2 K |p|)|gﬁ 1 mER M
2 i Fn
LS (K+1+|pl)
KT 12 Z D! K TMEK 1. TM (54)

For K =2, we recover Eq. (117)-(120) of [1]. As previously re-
called, for K =1 this decomposition has a strong physical mean-
ing since the force generated by Z’E<S is proportional to the z -
component of the Poynting vector while ZKNS generates a non-
gradient force which is not proportional to this z-component, a
meaning which does not propagate to the case K > 1. However,
structural differences, valid for K = 1, do propagate to K > 1, and
serve as justifications to distinguish between scattering and non-
standard forces. First, mixing scattering forces couple TM and TE
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partial waves while non-standard forces are generated by TM — TM
couplings (it will be TE — TE in the case of magnetic forces). Sec-
ond, all subscripts of the scattering force are equal to K while
non-standard forces contain subscripts of different orders (K — 1, K,
K +1). In summary, the discrimination between scattering forces
and non-standard forces for K > 1 relies on (i) the fact that it al-
ready exists in the case of 1-forces where it is the consequence
of precise and accurate definitions of scattering and non-scattering
forces and (ii) on structural differences which are valid what-
ever K and therefore provide a unified scheme of discrimination.
Section 6 will furthermore show how much the distinction be-
tween scattering and non-standard forces introduces a deep co-
herency in the optical force partition. Another issue is that the
non-standard 1-forces provide a contribution to spin-curl forces in
the context of the dipole theory of forces [34-38], and in the con-
text of GLMT, e.g. [31,39,40], and references therein. The physical
signification of non-standard forces for K>1 then raises a question
which is however outside of the scope of the present paper al-
though it will have to be investigated.

Similarly, the decomposition of the magnetic force cos QCM "
reads as:

cos OCK,. ;= cosOCKE | + cos OCK, (55)
in which:

- 52

cosOCK, |, = 7Im(bK)Im(Zﬁ) (56)
- 22

cosOCKR |, = ?Re(bK)Re(Zﬁ) (57)

in which cos0CKl  will be shown to be a mixing gradient force

(Section 4.4) while cos GCKR ' H is the summation of a scattering and
of a non-standard force accordmg to:

2
cos OCKRS, = )L—Re(bK)Re(ZKS) (58)
2
CoSACERY = - Re(bRe(Z§) (59)
in which:
K
s QK+1Di & (K+|p)!
Zyj _K2(1<+1)2 Z (K [pD! KTMgKTE (60)
K-1
(K +|p|) .
Zi* = Z K |p|).gﬁ 1 TEEK TE
—K+1
1 X (K+1+|p|)
(1(+])2 Z PY gKTEgK+1 TE (61)

For K = 2, we recover Egs. (121)-(125) of [1].

4.2. Mixing forces in the x-direction

Similarly as for the z-direction, Eq. (12) is the sum of an electric

force sin6 cos (,oCe ¢ and of a magnetic force sin cos gonx[H The
electric force is decomposed in two subforces reading as:

A2
sinf cos pCKR . = o ~—Re(ag)Re(X¥) (62)
[ A2
sinf cos pCXl, . = —~—Im(ax)Im(XX) (63)

2
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As previously, sin@cosq)Cé(x’tE must be a gradient force

(Section 4.4) while sinf cos CKR _ is decomposed as the sum of

a scattering force and of a non-standard force according to:

—_—F )LZ VK

sin6 cos pCX®, = ERe(aK)Re(lxg’ ) (64)
S okrns _ A ok BK

sin@ cos pCyi p = ERe(aK)Re Xg" + Xg (65)

with the same justifications as for the z-component, as can be ob-
served by examining the structure of XEV K to be compared with

.the.structure of (XK +X£K). The magnetic force sin6 cos ¢CK, ,,
is similarly decomposed as:

2
sinf cos pCKR |, = %Re(bK)Re(X,'_f) (66)
. 32

sin® cos pCXl |, = ﬁlm(bK)lm(X,’j) (67)

Once more, we anticipate that sinf cos oCKl

force (Section 4.4) while sin® cos pCXR , is decomposed as the sum

of a scattering force and of a non-standard force according to:

is a gradient

A Aaz .

sin 6 cos KRS, = ERe(bK)Re(IX,fI’K) (68)
2

sin 6 cos pCKRNS — %Re(bK)Re(XﬁK +X1§K> (69)

with again the same justifications as previously. For K = 2, we re-
cover the results of Section 6.1.2 of [1].

4.3. Mixing forces in the y-direction

From Eq. (30), we similarly have:

2
sin sin pCAR | = Z)L—ﬂ[m(aK)Re(YEK (70)
I A2
sin@ sin pCX} ; = ERe(aK)Im(YEK (71)

in which, noting an interchange between the roles of the super-

scripts R and I, sin6 Si“‘/’cﬁs is a gradient force (Section 4.4)

S .
while sin¢ singC,,, ; is decomposed as:

- 2

sin@ sin (pCEXIEE = Z)L—nRe(aK)Im(iYEVK) (72)
S 22 BK

sinf sin gLy = 5 Re(aoIm(Yg + v/ (73)

Also, we have:

- 2
B SingCL% ;= 2 1m(bRe (%) (74)
- A2
sin@ sinCkl |, = ERe(bK)Im(YI{I() (75)

in which sin@ sin pCKR

ext.H is a gradient force (Section 4.4) while

sin @ sin ¢C§xlr,H may be decomposed as:
2
sinf sin pCKlS,, = %Re(bK)lm(iyg") (76)
A )\.2 BK
sin@ sin pCKINS — ERe(bK)lm(Y,_‘}‘K +Y5 (77)

For K = 2, we recover the results of Section 6.1.3 in Gouesbet
et al. [1].
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4.4. Mixing gradient forces

In the three previous subsections above, we announced

; KI ; KI
that three electric forces, namely cos6Cg, p, schosgoCm’E,

and three magnetic forces, namely cosdCK!

ext,H’
sinf cos pCK, ;, sinf sinpCkR | are gradient forces. It is the great
merit of Zheng et al. [32] to have demonstrated that these forces
are indeed mixing gradient forces. For this, they rely on an arXiv
paper by Jiang et al.[41], see as well [42]. In these works, the opti-
cal forces are deduced by using the Maxwell stress tensor, leading
to the first categorization in terms of mixing/recoil forces omit-
ting however to mention that such a categorization was already
available nearly four decades ago. Other similar omissions seem to
have been the motivation for a criticism by Nieto-Vesperinas [43].
Nevertheless, the expressions by Zheng et al. [32] of the mixing
gradient forces, obtained by coupling field multiple derivatives and
an angular spectrum decomposition, represent a genuine advance
in the field of optical forces. Furthermore, the agreement between
their results and ours is a corroboration of the validity of the re-
sults concerning mixing gradient forces. They also obtained expres-
sions for recoil gradient forces but failed to see that recoil gradient
forces may be readily expressed in terms of mixing gradient forces
with simple formulas, as we shall demonstrate below.
The mixing gradient electric forces cos@CKL ., sinf cos CK!

nd <inoCkR
sin® sin pCgj ¢,

ext E’ ext ,E

ond<n oCkR KIG o KIG
and sin@ sinpC; ; above (renamed cos 0C,,’;, sin6 cos pCy’p and
sin@ sin pCKRC. with “G” standing for “Gradient”) may indeed be

shown to be equivalent to the corresponding forces expressed in
Eq. (24) of Zheng et al. [32]. However, rather than using the tradi-
tional BSCs of GLMT, Zheng et al. introduced so-called partial wave
expansion coefficients (PWECs). The translation between PWECs
and BSCs is provided in Appendix A. The translation between the
electric forces of the present section and those of Eq. (24) in Zheng
et al. [32] is provided in Appendix B which discusses as well the

case of the mixing gradient magnetic forces (renamed cos@CKIC |

sin® sin pCKRC ). For K = 2, see Section 6.1.4 of [1].

: KIG
siné cos pCp,y,

5. Interpretations of recoil forces
5.1. Recoil forces in the z-direction

The recoil force of Eq. (8) is the summation of a magnetoelectric

K ; K ;
force cos0C, gy, of an electric force cosC, ; and of a magnetic

force cos OCfCQ 5+ The magnetoelectric force may be decomposed in

two terms according to:

cos OCK , gy = cosOCKR 1\ + cosOCKL ¢y (78)
in which:
KR _2)\’2 * s 7KK
[ ecsca.EH = 771_ Re(aKbK)Re(lZEH (79)
K1 2)\'2 * 7KK
cos OCK! ., = Z=—Im(agbj)Im (iZKK (80)

N
Then, using Egs. (9), (51), (53), (58), (60), and (79) we demon-
strate that:

Re(axby) —
OCKRS
Re(ak) 08P hexc

Re(axbi) —— krs
WCOS OCext (81)

which is a generalization of Eqs. (35) and (141) of [1].
Eq. (81) shows that the longitudinal recoil magnetoelectric force
cosOCKR .., (now renamed cos OCKB,,)) is a recoil scattering mag-
netoelectric force which may be expressed in terms of longitudinal

mixing scattering pure electric and pure magnetic forces. Such a

KR
cosOCyh gy = 2

=2
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relation (and many others of the same kind), exhibiting a relation-
ship between recoil scattering forces and mixing scattering forces
is another argument, valid as well for non-standard forces (e.g. an
example in Eq. (89)), which supports the interest of the decom-
position of non-gradient forces into scattering and non-standard
forces. Concerning cosOCKl ., (now renamed cosOCKING, ), it is
classified as being a non-standard force because (i) for K =1,itis
indeed a non-standard force as being a non-gradient force which
is not a scattering force and (ii) although the original definition of
scattering force does not propagate from K =1 to K > 1, there is a
structural difference (i.e. the use of Re in Eq. (79) versus the use of
Im in Eq. (80)) which does propagate from K =1 to K > 1.

Next, the electric force cos GCSCG ¢ may be decomposed into two
subforces reading as:

2
cosOCKR | = —24 Re(axay,;)Re(Z§T) (82)
K1 27)*2 * KK+1
cosOCK! . = - Im (axag,,,)Im(Zg<1) (83)
From Eq. (10), we deduce:
-1« (1<+ P!
Zg ' = e Z 8k 1.Tm8K TM (84)
KL (K—1-[p]!
Afterward, we use Egs. (10), (54) and (84) to obtain:
Zé_(l@r] — —ZENS _Zé_(—]K* (85)
Inserting Eq. (85) into Eq. (82), we obtain:
2M2
cosOCKR . = = Re(aKa;‘(H)[Re(ngS) T Re(Z’E“”()] (86)

We may then use Eqs. (52) and (82), adapted from K to (K — 1),
to obtain, from Eq. (86):

Re( KaK+1) QCKRNS Re(al<al(+‘l)

cos Gcch}; E= ZW ext.E

K—1R
Re(ax_1ay ) 056Ccar (87)

Assume, as a recurrence assumption, that cosCX_i¥ is a non-

standard force (this is true for K = 2), then cosQCﬁaE is a non-
standard force. Also, this equation is not valid for K =1 since
cosOCOR . does not exist, providing a supplementary reason (al-
though not the most important one) to distinguish the cases K =1
and K > 1. Clearly, we could obtain an equation which is valid
as well for K =1 by using a multiplicative prefactor of the form
(1 = 6k_1,0) but even this process would emphasize that K =1 is a
special value.

As a variant, let us return to Eq. (52) which expresses
cos OCKR versus ZENS. Using Eq. (85), cosQCK’f"gS may be ex-
pressed as a summation of two non-standard forces, one of them
reading as:

_ )2
cos OCARV? = - Re(ax)Re(ZF*+1) (88)
leading to:

Re(aka
C0sACEE; = 2 o) Gosgm (59)
which confirms that cos 6CKR . (now renamed cos 6C5’<C§’\’ES) is a non-

standard force. We then have the case of a recoil non-standard
electric force which may be expressed in terms of a mixing non-
standard electric force. For K = 2, we recover Eq. (198) of [1].

We now consider cos QCm ¢ of Eq. (83), and begin by elaborate
a bit on the case K = 2. It has been found, see Eqs. (179)-(180) in
Gouesbet et al. [1], that cos QCsca ¢ may be written as the summa-
tion of two forces according to:

cos0C, ;. = cosOCAY, + cosOCP (90)

sca,E
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in which:
2 cosOC!
cos 0C2e . = 2Im(a,a3) Z Im(aex)t E (91)
i

22 . _ 1k "
cos ecszclfs = 7Im(aza§)lm{llg(gl,lTMgl.!l'E - g},TMg}.TE)

A2 5i
T Im(aza3)Im [ 3 (gilTMgilr*E — 8 TmEY'TE)

401 9 y
T3 (gz TMg22TE g%.TMg%,TE):I} (92)
Let us introduce:
K
ki1 _ —(K+1)i — _(K+|pD!
AZg T KK+ 1)2 Z Pz D k. vk 1 (93)
Eq. (92) then becomes:
2)2 2 -
cos GCfJfE == Im (a,a3)Im’y V7 (94)

j=1

In order to provide a demonstration by recurrence, we now
assume that Eqs. (91) and (94) are valid for (K — 1)-forces and
demonstrate that they are valid for K-forces. We then have:

K1 cosOC! |
cos OCK 1 = 2Im(ax_1ay) Z Taej"; (95)
232 K-1
cosOCk P = - Im(a 1a;)Im Y AZLH (96)
j=1
Using Egs. (6), (10), (84), and (93), we establish:
Z§I(+1 — —Z}lz(_lK* _Z;:_( + AZII:-<K+] (97)

which, using Eq. (83), leads to:

2)2
cosOCK! . = ?Im(aKa,*(H)lm(AZ’E(K“)

222
— —lm(aKaKH )Im(ZE )

242
+ 7Im(a,<a;§+1 )Im(ZE-1) (98)

Let us first work out the last line of (98), denoted as III. From
Eq. (83), we have:

202
cosOCK 1 = ?[m(aK_la;})lm(ZflK) (99)
leading to:
Im(axag._ ;)
=== 0 Kif;;) cosOCK (100)

K-
But cos OCSCG ¢ can be decomposed according to:

cosOCK U = cosOCK 1 + cosOCL, |’ (101)
We then decompose Il into %+ IIf, and relying on
Egs. (100) and (101), we have:
Im(agay, ;)

e = 0Kk ok 102
Im(a K—laK) sca (102)
Im(axay, )

i = k) g k-1 103
Im( ag_ 1‘1,() s6 sca.E ( )
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We may now use the recurrence assumption of Eq. (95) to ob-
tain:

K-1cos6C)!

o * ext,E
* = 2Im(agay, ;) ; “Ima) (104)
and the recurrence assumption of Eq. (96) to obtain:

252 k-1
e = —-Im(axag,,) Im )" AZJ*! (105)
j=1
Similarly as for Eq. (101), we decompose cos0CK! . as:
cosOCK!, . = cosOCKI, + cosOCKY, (106)
in which, using Eq. (98), we have:
— 2M2
cos OCKl, = —7lm(a,<a;‘<+1)lm(2,’§) + 1 (107)
—— xip _ 2A* . KK-+1 B
cosOC,, p = p Im(agag, ) Im(AZ" ) + 11 (108)
which, using Eqs. (104) and (105) imply:
_ K cos@c!
x t.E

cos 0C%, = 2Im(axay, ;) ; ﬁ (109)
in which cos cha,g has been renamed cos GCgiﬁE. Therefore
cosOCKl*. which may be renamed cosfCKIC,, is a recoil gra-

dient electric force, which is the gradient force contribution to
cos QCchIa.E' and may be expressed in terms of mixing gradient elec-
tric forces. Eq. (109) is the generalization of Eq. (179) in Gouesbet
et al. [1].

The following equation is also implied:

cosOCKB — 2)2

K
* Jj+1
scaf = Im(aKaKH)ImZ AZg

=1

(110)

in which cos QCSI?Q’SE, renamed cos QCS’E’CI;’E, is the non-standard con-

tribution to cosCK| ;, by extension of the case K =1, see con-
veniently Section 6 in Gouesbet et al. [1]. For K = 2, Eq. (110) is
shown to be equivalent (after a small amount of computation) to
Eq. (181) in Gouesbet et al. [1].

The magnetic contribution cos OCK

o 1S treated quite similarly
as for the electric contribution cos OCfm p» With quite similar com-
ments. To begin with, we decompose it into two subforces accord-

ing to:

cosOCK, = cosOCKR |, + cos OCY, (111)
in which:
. 932
cosOCKR = = Re(bybj,1)Re(ZKK+T) (112)
epckl E * KK+1
cosOCiqy = pe Im(bgby.,)Im(Z;"*) (113)
Similarly as Eq. (87), we then obtain:

— Re(bxbi, 1) — Re(bgb:, ) ——

KR __ K+1 KRNS __ K+1 K—1R
cosOCiyy = ziRe(bK) cosO0Coy Re(bx1by) cos0C,

(114)

or, as a variant:
— Re(bkby, ;) ——

KR __ K+1 KRNS2
cosOCyh y = 27Re(b,<) cos 0Cyy 13 (115)
in which:
. 12
cos OCKRN2 — iRe(bK)Re(Zg"“) (116)

T

Journal of Quantitative Spectroscopy & Radiative Transfer 307 (2023) 108661

KR e ACKRNSY ;
Therefore, cos@CmvH (renamed cos@CmVH) is a recoil non-

standard magnetic force which is expressed in terms of a mixing
non-standard magnetic force. For cos GCSIE{I_H, proceeding again sim-
ilarly as for the electric case, we first establish two recurrence as-

sumptions reading as:

K1 cosC!

cos GCfC;ga = 2Im(bg_1b}) Z Tb‘;";f’ (117)

j=1
—— kg 2A2 =i
cosOC,, " = ?lm(b,<,1b*,<)[m > o AZY (118)

j=1
in which:
. 4K
ki1 —CK+Di o (K+[pD! 5

AZH - KZ(K-l— ])2 p;(p(l( _ |p|)!gK.TEgK,TM (1]9)
and afterward establish by recurrence that:

K cosac!

ext,H (120)

cos 0t = 2m(bibi1) 3
j=1

in which cos@Cé)'([ y» Which is a gradient force, has been re-
Klor

payal(€ K
named cosQCext‘H. Therefore cosOCscavH,

cosfCKIC, , is a recoil gradient magnetic force, which is the gra-

dient force contribution to cos@CK! ., and may be expressed in
terms of mixing gradient magnetic forces. Eq. (120) is the gener-
alization of Eq. (185) in Gouesbet et al. [1]. We similarly establish

that:

which may be renamed

cosOCKB — 232

K
* jj+1
scaH = " Il‘l‘l(beKH)Im Z AZI]-I]+

j=1

(121)

in which cos GCSKCTH, renamed cos OCKINS "is the non-standard con-

tribution to cos@CK! ., by extension of the case K =1, see con-

veniently Section 6 in Gouesbet et al. [1]. For K =2, Eq. (121) is
shown to be equivalent to Eq. (186) in Gouesbet et al. [1].

5.2. Recoil forces in the x-direction

The recoil force of Eq. (21) is the summation of a magnetoelec-

. - K . . Y I(
tric force sin6 cos pCy, ;. of an electric force sin6 cos ¢C o and

SC
of a magnetic force sin 6 cos (pCSKm.H. The magnetoelectric force may

be decomposed in two terms according to:

sin6 cos pCX, gy = sin6 cos pCkR ., + sin O cos pCXL, oy (122)
in which:
2
sin6 cos pCXR ) = %Re(aKb*K)Re(iXé(,ff) (123)
. 32
sin@ cos pCK! = %[m(akbj()lm(ixé(,ff ) (124)
From Egs. (19), (20), (22) and (29), we have:
Xé([{[( :Xlz‘/l-;a( :Xg/K _ _XIZI/K* (125)
so that:
sinf cos pCKR .. = )LZR bi)Re(iX?*
Plscarn = - e(axby)Re(iX;™)
. )\.2 " YK
= ?Re(aKbK)Re(lXH ) (126)

We then use Eqs. (64) and (68) to establish:
kR Re(agby)
Re(ak)

sinf cos pCkR .\ =2 CKRS

sin® cos pCoy;
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_ Re(axbj,)

<in O coc (KRS
Re(by) sin® cos Coyy (127)

———— R <nd cos (KRS Y i
Therefore, sint) cos ¢C; ¢y (renamed sin6 cos ¢Ci>py) is a re-

coil scattering magnetoelectric force which may be expressed in
terms of mixing scattering pure electric and magnetic forces,
while sin6 cos pCK! ., (renamed sin 6 cos pCKIN3, ) is a recoil non-
standard magnetoelectric force, with the same justification than
the one used for cosOCK! ., of Eq. (80). Eq. (145) of [1] for K =2
is recovered from Eq. (127).

Next, the electric force sin@ cos pCK

ap Can be decomposed in
two subforces according to:

sin® cos pCX, ; = sinf cos pCX . + sinf cos pCL, ¢ (128)
in which:
A2

sind cos pCXR . = ;Re(aka,*(ﬂ JRe(XKK+T) (129)
<in A cnc (Kl _)\'2 KK+1

sin® cos pCy, p = ?Im(aKa;‘m)Im(XE ) (130)

Using Eqgs. (15), (17), (23), (25) and (27), we establish:

Re(X{H1) = Re(X¢* + X[ - XK 1K) (131)

so that sin8 cos pCKR .

of Eq. (129) becomes:

_— A2
sin@ cos pCR . = —Re(axaj,) [Re(Xg"( +XP5y - Re(Xé‘*”()]

(132)
which, using Egs. (62) and (65) leads to:
—_— Re(axay, ;) ———
sin® cos pCkR . = Wsm@ cos pCKRNS
Re(agay, ;) ————
(A K“)sin@ cos pCx, i (133)

Re(ax_1ay)

. 2 Y l(_‘lR .
Since sin® cosC, ;" is a non-standard force for K =2, e.g.

Eq. (59) in Gouesbet et al. [1], it follows by recurrence that
sinf cos pCKR . (renamed sin® cos CKRYS) is a non-standard force
whatever K. As a variant, let us return to Eq. (65) which ex-

presses sin@ cos pCKRNS versus Re(XgK-i-XfK). Using Eq. (131),

ext,E
sinf cos pCXM® may be expressed as a summation of two non-
standard forces, one of them reading as:
sin6 cos pCMP2 = ERe(aK)Re(XgK“) (134)
leading to:
[ Re(agay,,) —
sin® cos pCkR . = Z%Sin 6 cos RS2 (135)
which  confirms  that  sin@cosgCiR . (now  renamed

sinf cos pCKRNS) is indeed a non-standard force. We then have
the case of a recoil non-standard electric force which may be ex-
pressed in terms of a mixing non-standard electric force. Another
variant for K = 2 is available from Eq. (203) in Gouesbet et al. [1].

We now consider sinf cosCKl . For K =2, we used the de-

sca.E*
composition:
sin® cos pC2, ; = sin® cos pC2%, + sinf cos pC27 (136)
in which, see Eq. (187) in Gouesbet et al. [1]:
2 sin6 cos pC’!
t.E
sca, = (]37)

i O e a2 *
sinf cos C2Yr = 2Im(aya3) ; Im(a;)
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For sin @ cos (pCZ"ﬂ we used Eq. (83) of [30], and (144), (188) of

E?
[1] to establish: *
I, 2 S0 e o(JEHI
sinf cos pC2? . = —Im(aya3) > Sin6 cos pCoea”
j=1

Im(ajb’]f) (138)

sca,E T

from which we deduce two assumptions ready for a demonstration
by recurrence, reading as:

- K=15in6 cos ¢CI!

sin@ cos pCK 1" = 2Im(ay_1a) ) # (139)
j=1 J

- K=15in @ cos pC’!

sinf cos pCX, P = —Im(ax_1a}) > Tb:)w’m (140)
j=1 J7j

and whose validity whatever K is now to be demonstrated. Us-
ing Eqgs. (23), (25), (27) for XX+1 and XX-1K Eq. (15) for XX and

Eq. (17) for XEK, we obtain:

Im(XKK1) = Im(XK1€) + lm(ng +x§’<> (141)
which, using Eq. (13) may be rewritten as:
Im(XE*1) = Im(XE) + Im(xK) — Im (ix}") (142)
Inserting Eq. (142) into Eq. (130), we have:
A }\42 .
sin6 cos pCK! ; = ;Im(aKa,*G])Im(lXEyK)
)"2 * K
— ?Im(aKaKH)Im(XE
M i) Im XK 143
o Im(ax e, )Im X ™) (143)

Let the last line of Eq. (143) be called III. Using Eq. (130), we
obtain:

Im(axag_ ;)

= (@ 1a;) sin@ cos pCX_ (144)
which may be decomposed into two terms according to:
o1 =1 + 118 (145)
in which:
Im(agay, ) ———
e = 1 K-l 146
M@ sin® cos pC, (146)
i = MK ien) e ks (147)
- lm(aK,1a,*() sca.E
We then decompose sin# cos (pCfCIG,E of Eq. (143) according to:
sinf cos pCXL ; = sinf cos pCK%; + sin 6 cos pCLr, (148)
in which:
—_— A2
sin cos pCKlo, = —;Im(a,(a;‘(H Mm(XK) + 11 (149)
Sinfcos gl = 27 © OIm (XY + 1P 150
Poscar = m(agay,)Im@X;") + (150)

From Egs. (63), (149) and the first recurrence assumption of
Eq. (139), we then have:

K

. sinf cos pC!!
sinf cos pCloy = 2Im(axay,,) Y Salkificd ™2
=1

ext ,E
m(a,) (151)

sca,

which is a recoil gradient electric force (renamed sin @ cos pCKIS,)

which may be expressed in terms of mixing gradient electric forces
siné cos wCéit_E (which have been renamed siné cos goCéifE). For
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K =2, see Eq. (187) in Gouesbet et al. [1] or, equivalently return
to Eq. (137).

For sin@ cosgacﬁf, we use the fact that iXE”Kzl'Xglf,< (see
Eq. (125)), and afterward Eq. (124) to use the relationship between

sinf cos CX! - and Im(iX[{), and finally the second recurrence

assumption of Eq. (140) to express sin cos wCii;lE’ﬂ of 1P to ob-
tain:
K

—Im(agag, ;) Z
=

sinf) cos G, py

S a o kif
sin @ cos ¢C, m(ab))

sca,E —

(152)

which is a recoil non-standard electric force (to be renamed
sin® cos pCKINS) which may be expressed in terms of recoil non-
standard magnetoelectric forces.

The treatment of the magnetic force sin® cos ‘PCcha y is exactly

parallel to the one of the electric force sin6 cos pCK_, so that we
shall now omit most details and focus on the results. To begin
with, the magnetic force sin@ cos gCK .y is decomposed into two

SCe
subforces according to:

sin6 cos pCX, ;; = sinf cos pCLR | + sin 6 cos pCkL (153)
in which:
eyt SN b . KK+1
sin® cos pCpo y = ?Re(be,<+1 YRe (X" ) (154)
. )2
sin® cos pCK! |, = TIm(be;‘(H Im(XSKT) (155)
We then establish:
_— Re(bxby 1) ———
sinf cos pCkR | = Wﬁ’:fsm 0 cos pCKRNS
Re(be* )7 =
KELsin 6 cos pCK I (156)

B Re (b[(,] b;?)

to be compared with Eq. (133), from which we argue, similarly
as for the corresponding electric force, that sind cosCKR . is a
recoil non-standard magnetic force. As a variant, let us return to

Eq. (69) which expresses sin6 cos pCKRNY versus Re(XﬁK—ngK).

Using Egs. (16) for X%K, (18) for Xl’jK and Eqs. (24), (26), (28) for
both XXK*1 and Xf~1X, we establish the magnetic counterpart of
Eq. (131), namely:

Re(XgX +X[) = Re(X[KK+1 4 XK-1K) (157)

so that sinf cos oCKRNS may be expressed as a summation of two
non-standard forces, one of them reading as:

_— A2

sinf cos pCKfN? = ERe(bK)Re(X,Q‘K“) (158)

leading to:

_— Re(bkbt, ) ————

sin@ cos pCKk , = o ReOxbic,) G os CKRNS2 (159)
’ Re(bk) '

which  confirms  that  sinfcosCKR, (now  renamed

sinf cos pCKRNY) is indeed a non-standard force. We then have

the case of a recoil non-standard magnetic force which may be
expressed in terms of a mixing non-standard magnetic force.
Another variant for K = 2 is available from Eq. (204) in Gouesbet
et al. [1].

For 51H9C05</’C5KC'0,H- we first demonstrate two recurrence as-

sumptions similar to the ones of Eqs. (139) and (140), reading as:

K-1

sinf cos pC/!
= 2Im(by_1by) )
j=1

$inf cos ok, L o

(160)
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K=15in @ cos ¢C!

sin@ cos oC<_ 1P — Im(by_yby) > _scatl (161)
s 2 im(g;h)
which are used to establish:
— K sin® cos pC/!
sin@ cos pCXlo, = 2Im(byb, ;) JZ]: Wj)m (162)
. K sin cos ¢C!
sin 6 cos = - Swfd
in6 cos pClr, P sca (163)

Im(bgby 1) Y _
+ e Im(ajbj)

. . . . A l(l
Similarly as for the corresponding electric case, sinf cos ©Can

A KIG . . . .
(renamed sin6 coswCsw,H) is a recoil gradient magnetic force

which may be expressed in terms of mixing gradient mag-

netic forces (which have been renamed as siné cos (pcgf y)» while
SinB cos oCKIB S0 cos oCKINS Y i ;
sm@cosgoCscaH (to be renamed sin® cos ¢Cg;'y) is a recoil non-

standard magnetic force which may be expressed in terms of recoil
non-standard magnetoelectric forces. For K = 2, see Eq. (189) in
Gouesbet et al. [1] for sinf cos C2%, and Eq. (190) in Gouesbet
et al. [1] for a variant equivalent to Eq. (163).

5.3. Recoil forces in the y-direction

Recoil forces in the y-direction are treated similarly as for the
x-direction, with however an interchange between the subscripts R
and I. We shall therefore do the economy of demonstrations to fo-
cus on the results. We begin with the recoil magnetoelectric force
of Eq. (39) which is decomposed into two subforces according to:

sin@ sin pCX, ;y = sin 6 sin@CLy oy + sin 6 sinpCl, oy (164)
in which:
22

sin® sin pCkk .y = ?lm(aKb*K)Re(iYﬁ

_ M £ \Re( iy VKK

= Zim(acbiRe (¥") (165)
— A2
sin@sinpCX! .y = ?Re(aKb*K)lm(iYE’ﬁ(

_ N . VKK

= ?Re(aKbK)Im(lYEH ) (166)
in which we used Eq. (40). We then establish:
—_— Re(axb}) —————
sin@ sin pCXL oy = TaK’){smG sinpCa

Re(agby) ——— s
= ZWSIHG sin pCoyp' (167)

to be compared with Eq. (127), and showing that sin sinCK!
(renamed sin® sin¢C5’§ﬁEH) is a recoil scattering magnetoelectric

force which may be expressed in terms of mixing scattering

pure electric and magnetic forces, while sinf sin (pCS’E’;VEH (renamed
sin@ sinCKRNS,) is a recoil non-standard magnetoelectric force
with the same justification than for sin6 cos pCKl ... For K = 2, we
recover Eq. (149) of [1].

Concerning the recoil electric field sin® sinpCK . of Eq. (39),
we decompose it in two subforces according to:
sin@ sinCL, ; = sinf sin pCkR ; + sin 6 sin pCXL (168)
in which:

)»2

sin@ sin pCkk ; = —Im(agdj, )Re(YXKHT) (169)
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sin@ sinpCXl . = —Re(axai,; HIm(YXKT) (170)
We then establish:
sin@ sin pClL ;= ZTGK;SIHG sinC&Ne
Re(agay ;) ———
(@ K“)sinH sinCK Y (171)

Re(ax_1ap)

which is to be compared with Eq. (156), from which we simi-
larly argue that sin® sin wCs’ga_E (to be renamed sin 6 sin pCKI? )is
a recoil non-standard electric force. As a variant, let us return to

Eq. (73) which expresses sin@ sin pCANG versus Im(Y2K + YEﬁK). Us-

ing Egs. (33) for YE"’K, (35) for YEﬁK and Eqgs. (41), (43), (45) for both
YXK+T and YX-1K we establish the y-component electric counter-

part of Eq. (157), so that sin6 sin@CKINS may be expressed as a

summation of two non-standard forces, one of them reading as:
A2

sin sin pCkN$? = ERe(aK)lm(Yb!(’(“) (172)
leading to:

_ Re(aga},, ) ———

sin@ sinpCXl . = wsine sin pCKING? (173)

which confirms that sin® sinCK . is indeed a non-standard force.

We then have the case of a recoil non-standard electric force which
may be expressed in terms of a mixing non-standard electric force.
Another variant for K = 2 is available from Eq. (205) in Gouesbet
et al. [1].

Next, similarly as for Eqs. (139) and (140), we establish two re-
currence assumptions:

P K1 5in @ sin pCR

S8 sin gCK, 1R = 2im(ag 1ay) Y # (174)
= j

oo K=15in @ sin pCF

sin @ sin pCl, ¥ = SING SO sca bn (175)

—Im(ax_1ay) > .
= Im(a;b j)
from which, similarly as for the x-component case, we establish:

K sin@ sin pCR

sin 6 sin pClr = 2Im(axay,,) Y @) ext.E (176)
j=1 /
K G sin iR
sin @ sin @C;
sin@ sin pC*» — _Im(ayay, ;) PRE———_a— (177)
sea, = Im(ajbj)
so that sinf sinCKR% (to be renamed sin® sin pCiR%) is a re-

coil gradient electric force which may be expressed in terms

of mixing gradient electric forces, while sinf sin<pC5KC§’L“;5 (to be
renamed sin@ sinCXRNS) is a recoil non-standard electric force

which may be expressed in terms of recoil non-standard magne-
toelectric forces.

We finish with the magnetic forces sinfsingCK , of
Eq. (39) that we decompose again into two subforces accord-

ing to:

sin@ sinpCk, ,; = sin@ sinpCLk ,; + sin @ sin pCkL, (178)
in which:
A2
sin@ sin pCY |, = —Im(bichi, )Re(YXKHT) (179)
A2
sin@ sin pCL, ;= ;Re(be}}H HIm (YT (180)

1
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For sin@ sinCKR instead of Eq. (171), we establish:

sca,H’
- Re(bgby ;) ———
sin@sinpCl! |, = 2$sin9 sin CKING
Re(bgby ) ———
brbie) g singCK- 1! (181)

~ Re(bk_1by)

which is a recoil non-standard magnetic force. As a variant, let us

return to Eq. (77) which expresses sin sin CKIN> versus Im(YZK +

yF%). Using Eqs. (34) for Y@K, (36) for /X and Egs. (42), (44),

(46) for both YX¥+1 and YX-1K we establish the magnetic com-
H H

ponent of Eq. (173), so that sin8 sin 9CKIN> may be expressed as a

ext,H N
summation of two non-standard forces, one of them reading as:

sin@ sin pCKIN2 = ERe(bK)Im(ng“) (182)

leading to:

_— Re(bkb%. ) ———

sinf sinpCX! |, = o ReOxbics) @CKIN>2 (183)
: Re(bg) '

which  confirms that sinfsingCkl ; (to be renamed

sin® sin CkIN?) is indeed a non-standard force. We then have

the case of a recoil non-standard magnetic force which may be
expressed in terms of a mixing non-standard magnetic force.
Another variant for K = 2 is available from Eq. (206) in Gouesbet

et al. [1].
Also, instead of Eqs. (176) and (177), we obtain:

- K sin sin pCk "

sin@ sin pCkR%, = 2Im (byby, ) ]_Z] W])M (184)

K Gnd<in ok

—— Rp X sin@ smprm,EH

sin@ sinCy./, = Im(bgby, ) ; Tim@p) (185)
Eq. (184) shows that sinfsingCKR% ~(to be renamed

sin@ sintpCé‘C’fH) is a recoil gradient magnetic force which may
be expressed in terms of mixing gradient magnetic forces, while
sinf singonchH (to be renamed sin6 sinngfC'é{‘g) is a recoil non-
standard magnetic force which may be expressed in terms of recoil
non-standard magnetoelectric forces. For K = 2, Eq. (184) reduces
to Eq. (193) of [1] while Eq. (185) is found to be equivalent to

Eq. (194) of [1].
6. Summary of results and classifications

We now conveniently summarize the classification of K-forces
(K > 1) developed in the present paper, based on a three-level cat-
egorization and a two-level decomposition. The classifications and
comments are listed starting from the z-components which are
the easiest to evaluate, followed by the x- and y-components. We
have tried to discuss the various components following the order
in which they occurred in the paper, excepted for some cases mo-
tivated by symmetry, aesthetic and convenience considerations. We
shall consider (i) mixing forces, (ii) type-1 recoil forces which are
not expressed in terms of mixing forces (recoil forces in their own
right) and (iii) type-2 recoil forces which are expressed in terms
of mixing forces (recoil forces mixing-force dependent). This clas-
sification is displayed at the best of our present knowledge and
understanding, although it might have possibly to be modified by
further investigations.

6.1. Mixing forces

The classification of mixing forces has been obtained as follows.
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(i) Mixing gradient electric forces cos8CKIC | sin@ cos pCKIC

ext E’ ext,E’
sin 6 sin pCKRG,, see Eqs. (49), (63), (70).
(ii) Mixing gradient magnetic forces cos §CK,;, sin@ cos pCKIe,,
sin 6 sin pCKES,, see Eqs. (56), (67), (74).
(iii) Mixing scattering electric forces cosOCKES, sin6 cos pCi&*,
sinf sinpCKS ., see Eqs. (51), (64), (72).
(iv) Mixing ~ non-standard  electric ~ forces  cosOCKENS,
siné cos wCéﬁﬁ{\f, sin® sin pCKINS, see Eqs. (52), (65), (73).
(v) Mixing scattering ~ magnetic forces cos OCK®,,
siné cos ngﬁfH, sin@ sin ngfH, see Egs. (58), (68), (76).
(vi) Mixing  non-standard ~ magnetic  forces  cosOCKENS,
siné cos nggg\g, sin® sin pCKINS | see Eqs. (59), (69), (77).

6.2. Type-1 recoil forces

(vii) Recoil non-standard magnetoelectric forces cos@CKING |

sin® cos pCKINS, . sin 0 sin @CKRNS see Eqs. (80), (124), (165).

i _ i KINS i KINS
Recoil non-standard electric force cos 8C( 'z, sin6 cos pC;%,

sin@ siané‘C‘;{\’Es, see Egs. (110), (152) (expressed in terms
of recoil non-standard magnetoelectric forces), (177) (ex-
pressed as well in terms of recoil non-standard magneto-
electric forces).

(ix) Recoil ~ non-standard ~ magnetic ~ forces  cosOCKIN,

sinf cos CKINS | sin 6 sin CKRNY, see Eqs. (121), (163) (ex-
pressed as well in terms of recoil non-standard magneto-
electric forces), (185) (expressed as well in terms of recoil

non-standard magnetoelectric forces).

(viii

=

6.3. Type-2 recoil forces

(x) Recoil ~ scattering magnetoelectric forces cosOCKRS,,,

siné cos <pC§’<C’;_SEH, sind sin (pCé‘C’aS py- These forces may be
expressed in terms of mixing scattering pure electric and
magnetic forces, see Eqs. (81), (127), (167).

(xi) Recoil ~ non-standard  electric ~ forces  cosCKRNS,

sinf cos pCKRNS,  sin@ sinCKINS. These forces may be
expressed in terms of mixing non-standard electric forces,
see Eqgs. (89), (135), (173).

; ; ; KIG g KIG
Recoil gradient electric forces cos6C( 'y, sin6 cosCi ",

sin @ sin CKRG,. These forces may be expressed in terms of
mixing gradient electric forces, see Egs. (109), (151), (176).
(xiii) Recoil ~ non-standard  magnetic  force  cos@CKRNS

sca,H’
Sind cos oCKRNS i@ sin oCKINS
sinf cos pC.y, sin@singC Y. These forces may be

expressed in terms of mixing non-standard magnetic forces,
see Egs. (115), (159), (183).

; ; ; KIG o KIG
Recoil gradient magnetic forces cos QCSCCLH, sin 6 cos ©Coar

sin@ sin CXRC, These forces may be expressed in terms of

mixing gradient magnetic forces, see Eqs. (120), (162), (184).

(xii

=

(xiv

=

Let us remark, if applicable, that non-standard forces are expressed
in terms of non-standard forces, that scattering forces are ex-
pressed in terms of scattering forces, and that gradient forces are
expressed in terms of gradient forces. These features confirm by
their coherency the interest of the categorization in terms of gra-
dient, scattering and non-standard forces. Another remarkable fea-
ture is that recoil gradient forces may be expressed in terms of
mixing gradient force.

Another presentation of these results (not present in our pre-
vious paper [1]), distinguishing between gradient, scattering and
non-standard forces, may be more appealing to the reader. We
then obtain the following partition:

12

Journal of Quantitative Spectroscopy & Radiative Transfer 307 (2023) 108661

6.4. Gradient forces

N Mixi ; KIG : KIG
(i) Mixing  electric ~ forces  cos@Cg;,  sin cos OCox e
sin @ sin CKRC | see Eqs. (49), (63), (70) which are expressed
using electric Mie coefficients a.
Y Mixi : KIG : KIG
(ii) Mixing magnetic forces cos GCext’H, siné cos OCoxr'
sin@ sin CRC | see Eqs. (56), (67), (74) which are expressed
using magnetic Mie coefficients by.
; : KIG <0 cos oCKIG
(iii) Recoil  electric  forces  cosOC ;y,  sin6 cos pCi .
sin@ sin pCKRG,. These forces may be expressed in terms

(iv

)

of mixing gradient electric forces, see Eqs. (109), (151),
(176), and involve a coupling between electric Mie coeffi-
cients ag and aj ;.

; ; “os ACKIG Sind cos oCkIG
Recoil magnetic forces cosOC. .y,  sin6 cospCiy,

sin @ sin pCLRG,. These forces may be expressed in terms of
mixing gradient magnetic forces, see Eqgs. (120), (162), (184),
and involve a coupling between magnetic Mie coefficients

b and by_ ;.

6.5. Scattering forces

(v) Mixing  electric ~ forces  cosOCES,,  sin® cos pCKES,,
sin@ sinCKl> | see Eqs. (51), (64), (72) which are expressed
using electric Mie coefficients a.

N Mixi : KRS : KRS

(vi) Mixing magnetic forces cos QCM_H, siné cos OCorttr
sin@ sinpCk? ., see Eqs. (58), (68), (76) which are ex-

(vii

)

pressed using magnetic Mie coefficients by.

; ; KRS ; KRS
Recoil magnetoelectric forces cosOC( ., sin® cos Coepy,

sinf siansﬁfEH. These forces may be expressed in terms
of mixing scattering pure electric and magnetic forces, see
Eqgs. (81),(127), (167), and involve a coupling between elec-

tric Mie coefficients ax and aj ;.

6.6. Non-standard forces

SO M : “0sOCKRNS ST cos o CKRNS
(viii) Mixing  electric ~ forces  cos QCM,E , sinf cos OCoxt >
sin @ sin CKINS, see Eqs. (52), (65), (73) which are expressed

(ix

(x

(xi

(xii

)

)

)

-

using electric Mie coefficients ag.

Mixing ~magnetic forces cosOCKEN;,  sin6 cos pCARY,
sinf sin pCEM;, see Eqs. (59), (69), (77) which are ex-
pressed using magnetic Mie coefficients b.

Recoil ~electric  forces  cosOCKRNS,  sin@ cos pCKR'S,
sin@ sinpCKINS. These forces may be expressed in terms

of mixing non-standard electric forces, see Eqgs. (89), (135),

: S o S
(173) (Type-2 recoil forces) and cosOCKNZ, sinf cos pCKLE,

sin@ sin pCKR, see Eqs. (110), (152), (177) (Type-1 recoil
forces expressed in terms of recoil non-standard magneto-
electric forces, i.e. not expressed in terms of mixing forces).
They involve a coupling between electric Mie coefficients ay

X
and g, q-

; i “0sOCKRNS 518 cos oCKRNS
Recoil magnetic forces cos6Cy, sin6cosCgy,

sin@ sinpCKINS These forces may be expressed in terms of
mixing non-standard magnetic forces, see Egs. (115), (159),

; KINS o KINS
(183) (Type-2 recoil forces) and cosGCmvH, sind cos ©Coca i

sinf sin CKRNS, see Eqs. (121), (163), (185) (Type-1 recoil
forces expressed in terms of recoil non-standard magneto-
electric forces, i.e. not expressed in terms of mixing forces).

They involve a coupling between magnetic Mie coefficients

by and b ;.

; ; KINS i KINS
Recoil magnetoelectric forces cos@Csca,EH, sin 6 cos OCsca Err
sin@ sin pCKRS,, see Eqs. (80), (124), (165) which involve
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a coupling agby between electric and magnetic Mie coeffi-
cients of the same order.

7. Conclusion

The present paper discussed the partition of optical forces ex-
erted by EM arbitrary shaped beams on arbitrary sized particles in
the framework of GLMT. It complements and concludes a series of
papers which previously considered successively the case of elec-
tric dipoles (in particular Rayleigh particles), of magnetoelectric
dipoles and of quadrupoles. The partition first relies on a first-level
categorization between mixing and recoil forces already published
nearly four decades ago in early works devoted to GLMT. A second-
level categorization distinguishes gradient forces and non-gradient
forces. Although non-gradient forces are usually named scattering
forces, we rely on the existence of non-standard forces uncovered
in Gouesbet [28] (where they were called axicon forces in an in-
appropriate way) to introduce a third-level categorization in terms
of scattering and non-standard forces. A parallel two-level decom-
position distinguishes between (i) K-forces, K from 1 to oo and (ii)
electric, magnetic and magnetoelectric forces. All the forces in the
different partitions are expressed in terms of BSCs which encode
the description of the illuminating beam and of Mie coefficients
which encode the properties of the scatterer. One of the most ap-
pealing results is that most of the recoil forces may be expressed
in terms of mixing forces. In particular, all recoil gradient forces
may be expressed in terms of mixing gradient forces. Furthermore,
the reader which would be content with a decomposition between
conservative (gradient) forces and non-conservative forces would
simply obtain these non-conservative forces by summing up the
scattering and the non-standard forces.
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Appendix A. Translation between PWECs and BSCs

The relationships between expansion coefficients used in Zheng
et al. [32], denoted PWECs, and the traditional BSCs of the GLMT
are established in Appendix A of [1]. We then obtained:

Qmn = 1(=1)" 1 (< 1) (m=lmb/2

2n+1 \/(n—m)!(n+m)!
\/n(n+1) (n—|m)! n.TE (186)
n+m m—|m 2n+1 \/(n—m)!(n+m)!
Prn = (= 1) (1) |>/z\/n(n+1) SO,
(187)

It may be interesting to separate the cases m >0 and m < 0.
We then obtain:

2n+1

(1t (n+m)!
qmn:l(_l) 1\/n(n+1)

n—m)] (188)

g form=0

13

Journal of Quantitative Spectroscopy & Radiative Transfer 307 (2023) 108661

Gmn = i(—l)”“\/nz(z I 1) EZ - z;:gm” form<0  (189)

pmn=(—1)n+m\/n2(2ﬂ) EZtZi:gﬂm form=0  (190)
2 —m)!

Prun = (1)"\/n(211) EZJrz;!g’,;{TM for m <0 (191)

Appendix B. Comparing mixing gradient forces

According to Eq. (24) in Zheng et al. [32], the mixing gradient
electric force reads as:

, E, |2
FmieC — _2mre ' k°2| [Im(az)Im(A} + Ax_1 + Uy)] (192)
The longitudinal component then becomes:
) Eq |2
Ft!f%m”“c =-21e | k02| [Im(ax)Im(Af, + Ak-1z + Ukz)] (193)

From Egs. (9), (10) in Zheng et al. [32], we may evaluate Ay,
Ak_1z and Uy, in terms of Zheng’'s expansion coefficients, and
thereafter use Appendix A to express the results in terms of BSCs.
After a bit of straightforward (but tedious) calculations, we then

obtain:

Ai, + Ax-1z + Uk, = —Zf (194)
Therefore, Eq. (193) leads to:

pes _ e B0l Im(ZK 195

By = T2MET S m(az)Im(Z) (195)

to be compared to Eq. (49) which is conveniently repeated below:

32

= ilm(aK)lm(Zg)

cos9CcX
ext,E T

(196)

This comparison is sufficient to demonstrate that cos 9C§x’t£ is
indeed a mixing gradient force. For a better agreement, we con-
vert cross-sections (forces expressed in square meters) to genuine
forces in newtons, relying on Eq. (4) to obtain:

|Eo|?
k2

which differs from Eq. (195) by a sign difference. This sign differ-
ence is due to the fact that the time-harmonic convention used
by Zheng et al. [32] is of the form exp(—iwt) in contrast with the
time convention in GLMT which is of the form exp(iwt), implying
that we have to change a, to @, i.e. Im(ay) to —Im(ay).

We may similarly deal with the transverse electric components
sin@ cos pCKl . and sin@singCXR ., and with the magnetic com-

ext, ext,E’
ponents cosOCK! .. sin® cos CKl, . sin6 sinpCKR | (although it is

JText,H 7 ext,H’ .
more expedient to invoke a duality between electric and mag-
netic components, as already discussed in Gouesbet et al. [30]), to

demonstrate that these forces are mixing gradient forces as well.

FK 1

ext,E = —2me

Im(ay)Im(Z2) (197)
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