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a b s t r a c t 

This paper is the last paper (independently of possible future refinements and complements) aiming to 

the partition of optical forces in the framework of generalized Lorenz–Mie theory. After a paper devoted 

to forces exerted on quadrupoles, the present paper is devoted to forces exerted on arbitrary sized par- 

ticles. These forces are expressed in terms of the beam shape coefficients which encode the structure of 

the illuminating beam and of Mie coefficients which encode the properties of the scatterer. The partition 

relies on a three-level categorization (mixing and recoil forces, gradient and non-gradient forces, scatter- 

ing and non-standard forces) and on a two-level decomposition ( K-forces with K being an integer ranging 

from 1 to ∞ , and electric/magnetic/magnetoelectric forces). 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The present introduction is a summary of a previous introduc- 

ion written at the occasion of a paper devoted to optical forces ex- 

rted on quadrupoles in the framework of the generalized Lorenz–

ie theory (GLMT). In the present introduction, we recall a few es- 

ential features and kindly ask the reader to report himself/herself 

o Gouesbet et al. [1] for more details. 

Optical forces have been expressed in terms of beam shape 

oefficients (BSCs), which encode the structure of the illuminat- 

ng beam, in a general off-axis configuration [2] , following the re- 

tricted case of an on-axis configuration [3] . It is here recalled that 

hese BSCs are obtained from the expressions of the radial electric 

nd magnetic fields, e.g. Section 3.3.1. in Gouesbet and Gréhan [4] . 

lthough these papers emphasized the case of illuminating Gaus- 

ian beams, the expressions provided for the optical forces were 

alid for arbitrary shaped beam illumination, see [5,6] . As dis- 

ussed in Section 2 , these papers already introduced the first-level 

ategorization between mixing and recoil forces. The basic expres- 

ions of this first-level categorization will serve as starting bricks 

o develop the formalism presented in the following sections. Al- 

hough the emphasis is made on homogeneous spherical particles, 

t must be noted that the GLMT formalism ( stricto sensu , i.e. in the
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ase of homogeneous spherical particles) for optical forces is valid 

s well to the cases of multilayered particles when the expressions 

f the BSCs are unchanged, requiring only to modify the expres- 

ions of the Mie coefficients [7,8] , and to other kinds of particles 

eading to expressions which are formally identical to the ones of 

he GLMT stricto sensu , namely assemblies of spheres and aggre- 

ates [9–11] and spheres with an eccentrically located spherical 

nclusion [12–15] 

Numerical evaluations of optical forces in the GLMT framework, 

ossibly in relationship with experimental results, have afterward 

een provided in Ren et al. [16,17] , Polaert et al. [18] , Martinot-

agarde et al. [19] . Optical torques in spherical coordinates have 

lso been discussed by Polaert et al. [20] . Concerning complemen- 

ary studies in spheroidal coordinates, for both optical forces and 

orques, the reader may refer to Xu et al. [21] and to Xu et al. [22] .

any other works from various worldwide authors contributed as 

ell to the issue and have been recently quoted in a review paper 

ith 284 references [23] . Many other examples may be found in 

ouesbet [24] and Gouesbet [25] , namely about 50 references in 

ouesbet [24] for the period 2009–2013 and about 150 references 

n Gouesbet [25] for the period 2014–2018, concerning in particu- 

ar (to cite a few topics) optical tweezers, stretching and deform- 

ng, transporting and sorting, binding, and pushing and pulling. 

After Arthur Ashkin’s work, compiled in Ashkin [26] , it has been 

raditional to think of the optical forces in terms of a partition be- 

ween gradient and scattering forces which may be viewed as a 

econd-level categorization. However, although it may look strange 

https://doi.org/10.1016/j.jqsrt.2023.108661
http://www.ScienceDirect.com
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or a theory completed in 1987 and 1988, a systematic study of 

ptical force partition in GLMT, after a first occurrence in terms of 

radient and scattering forces by Lock [27] , only started recently 

n a systematic way in Gouesbet [28] when studying forces ex- 

rted on electric dipoles (in particular Rayleigh particles) where it 

as been uncovered that the categorization in terms of gradient 

nd scattering forces actually generates two levels of categoriza- 

ion between gradient and non-gradient forces, non-gradient forces 

n turn being separated into scattering and non-standard forces. 

he results obtained in Gouesbet [28] required several papers to 

ully understand the situation, see a review in Section 10 of Goues- 

et and Ambrosio [29] . These studies on electric dipoles have been 

ompleted by a study devoted to magnetodielectric dipoles [30,31] , 

nd by an extension to the case of quadrupoles [1] . The present 

aper is the last one of the series (notwithstanding possible future 

efinements and complements) and therefore deals with the case 

f arbitrary sized particles. It somehow completes and more im- 

ortant concludes the series. 

Furthermore, beside the three-level categorization previously 

evealed, we must also introduce a parallel two-level decomposi- 

ion of optical forces. The first decomposition concerns what we 

hall call K -forces or, in another language which may be conve- 

ient, forces of order K, which is a decomposition into an infinite 

umber of forces ( K from 1 to ∞ ). The second-level decomposi- 

ion distinguishes between electric, magnetic and magnetoelectric 

orces. 

The paper is organized as follows. Section 2 recalls a back- 

round on optical forces which will display the first-level catego- 

ization in terms of mixing and recoil forces as already displayed 

early four decades ago and which will serve to derive the ex- 

ressions of K-forces in terms of BSCs and of Mie coefficients. 

ection 3 displays the expressions of K-forces. Section 4 will pro- 

ide the interpretations of mixing forces, while Section 5 will pro- 

ide the interpretations of recoil forces. Section 6 is a summary 

nd a discussion of the results generated by the 3-level categoriza- 

ion and by the 2-level decomposition. Section 7 is a conclusion. 

wo appendices will refer to mixing gradient K-forces exhibited in 

q. (24) of Zheng et al. [32] . 

. Mixing and recoil forces 

We consider a Cartesian coordinate system O P xyz with a scat- 

erer located at the origin O P of the coordinates. The scatterer is il- 

uminated by a structured beam encoded by the double set of BSCs 

 

m 

n,T M 

and g m 

n,T E 
( T M standing for “Transverse Magnetic” and T E for 

Transverse Electric”, n from 1 to infinity, and m from −n to + n )

ith a time-dependence of the form exp (iωt) which is the usual 

onvention in the GLMT framework. The axis O P z is traditionally 

hosen to define the direction of propagation of the beam. Spheri- 

al coordinates associated with the Cartesian coordinate system are 

enoted (r, θ, ϕ) as usual. 

The distinction between mixing and recoil forces, already put 

orward nearly forty years ago [2,3] , has been recalled, although 

ith another language than the one used in the present paper, 

n a textbook [4] . Longitudinal mixing forces, corresponding to the 

orward momentum removed from the beam, are provided by the 

rst term of Eq. (3.145) of [4] , while recoil forces, corresponding 

o the forward momentum given by the scatterer to the scattered 

ave, is given in the second term. Transverse forces are similarly 

xpressed by Eqs. (3.160) and (3.161) of [4] . It is traditional in 

LMT to express these forces in terms of cross-sections denoted 

 (θ, ϕ) C ext (for the mixing forces) and F (θ, ϕ) C sca (for the recoil 

orces), in which F (θ, ϕ) stands for cos θ for the longitudinal forces 

nd sin θ cos ϕ , sin θ sin ϕ for the transverse components ( x - and y - 

omponents respectively). This notation is borrowed from van de 

ulst [33] . The forces (cross-sections) C = C pr,i ( i = x, y, z) are then
2

xpressed, see Section 2.1 in Gouesbet et al. [1] , as: 

 pr,z = cos θ C ext − cos θ C sca (1) 

 pr,x = sin θ cos ϕ C ext − sin θ cos ϕ C sca (2) 

 pr,y = sin θ sin ϕ C ext − sin θ sin ϕ C sca (3) 

n which we attached a privilege to the z-component because it is 

asier to evaluate than the other components. These equations ex- 

ress a first-level categorization between mixing forces with a sub- 

cript “ext” and recoil forces with a subscript “sca”. Let us com- 

ent the terminology used, referring ourselves to Eq. (1) (similar 

omments could be done for the two other equations). The sub- 

cript “ext” is motivated by the fact that the corresponding forces 

re obtained from a weighted integration of the extinction cross- 

ection C ext and the corresponding forces are then called extinction 

orces as well. However, because (i) the word “extinction” refers to 

absorption plus scattering” and (ii) pure scattered fields are in- 

olved in the second term of the r.h.s. of the equation, we found 

he terminology of extinction forces confusing and eventually pre- 

erred the one of mixing forces. Similarly, the subscript “sca” is 

otivated by the fact that only scattered fields are involved in the 

valuation of cos θ C sca but this terminology should not be confus- 

ng up to the point that we would believe that these “sca” forces 

orrespond to scattering forces. Instead, as we shall see, we shall 

nd that recoil forces associated with the subscript “sca” contain 

radient forces. 

The relationship between forces F expressed as cross-sections C 

i.e. in square meters) and actual forces expressed in newtons 

eads as F newton = I 0 C /c in which c is the speed of light and in

hich I 0 , namely the intensity of the incident light (for a plane 

ave) [33] , may here be viewed as a normalization factor. Relying 

n Eq. (3.106), which defines a normalization factor as E 0 H 

∗
0 / 2 = 1 ,

nd Eq. (3.144) of [4] , and using c = 1 / 
√ 

εμ, with ε and μ be-

ng respectively the permittivity and the permeability of the host 

edium, we obtain: 

 newton = 

1 

2 

ε | E 0 | 2 C (4) 

hich is valid because the host medium is lossless. 

In the present paper, the word “force” is conveniently used 

o denote actual forces in newtons or forces expressed as cross- 

ections, or it may as well be used to denote a force in the vec-

orial sense or to denote the components of a vectorial force, any 

ossible ambiguity being removed by the context. The minus signs 

f the second members of the r.h.s. of Eqs. (1) –(3) are omitted in

he sequel. 

Considering the expressions for the forces explicitly given in 

ubsections, 3.12.2 and 3.12.3 of [4] , we may observe that forces 

re obtained by summing up an infinite number of subforces. From 

uch expressions, we extract K-forces which are obtained from the 

eneral expressions of forces by extracting the terms involving the 

ie coefficients a K and b K , and their products with Mie coefficients 

f order (K + 1) . These K-forces are denoted by using a superscript

. 

. Forces of order K versus BSCs 

Forces of order 1 and 2 have been discussed in Gouesbet et al. 

1] and references therein. It is emphasized in Gouesbet et al. 

1] that 1-forces and 2-forces, although exhibiting very strong 

imilarities, exhibit as well a few differences. The most impor- 

ant difference is that the third-level categorization in which non- 

radient terms are decomposed into scattering and non-standard 

orces rely, in the case of 1-forces, on perfectly discriminating def- 

nitions. Namely, for 1-forces, scattering forces are non-gradient 
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orces which are proportional to the Poynting vector while non- 

tandard forces are non-gradient forces which are not proportional 

o the Poynting vector. Such definitions do not however extend to 

-forces, for K > 1 . However, the three-level categorization has to 

e preserved for K > 1 for at least two reasons (i) scattering and

on-standard forces may be defined on the basis of their structural 

roperties and (ii) it provides a classification of optical forces valid 

hatever the value of K. Other reasons related to the coherency 

f the formalism will be notified when appropriate. In the present 

aper, only K-forces with K > 1 will be discussed (we shall omit in

he sequel to repeat this condition). For 1-forces, the reader may 

efer to Gouesbet et al. [1] and references therein. 

From Eq. (3.158) in Gouesbet and Gréhan [4] , the mixing longi- 

udinal K-force is found to read as: 

os θC K ext = 

λ2 

π
Re 

(
a K Z 

K 
E + b K Z 

K 
H 

)
(5) 

n which: 

 

K 
E = 

1 

K 

2 

K−1 ∑ 

p= −K+1 

(K + | p | )! 

(K − 1 − | p | )! 
g p∗

K−1 ,T M 

g p 
K,T M 

+ 

1 

(K + 1) 2 

+ K ∑ 

p= −K 

(K + 1 + | p | )! 

(K − | p | )! 
g p 

K,T M 

g p∗
K+1 ,T M 

− (2 K + 1) i 

K 

2 (K + 1) 2 

+ K ∑ 

p= −K 

p 
(K + | p | )! 

(K − | p | )! 
g p 

K,T M 

g p∗
K,T E 

(6) 

 

K 
H = 

1 

K 

2 

K−1 ∑ 

p= −K+1 

(K + | p | )! 

(K − 1 − | p | )! 
g p∗

K−1 ,T E 
g p 

K,T E 

+ 

1 

(K + 1) 2 

+ K ∑ 

p= −K 

(K + 1 + | p | )! 

(K − | p | )! 
g p 

K,T E 
g p∗

K+1 ,T E 

+ 

(2 K + 1) i 

K 

2 (K + 1) 2 

+ K ∑ 

p= −K 

p 
(K + | p | )! 

(K − | p | )! 
g p∗

K,T M 

g p 
K,T E 

(7) 

n which the subscript E corresponds to an electric force associ- 

ted with the Mie electric coefficient a K , while the subscript H

orresponds to a magnetic force associated with the Mie magnetic 

oefficient b K . We shall later similarly use a subscript EH to de- 

ote magnetoelectric terms (and forces). The use of the letter Z

ecalls us that we are dealing with longitudinal forces. Further- 

ore, we begin our analysis with longitudinal terms (and forces) 

ecause they are simpler to investigate than transverse forces (for 

hich, instead of Z, we shall use the letters X and Y for x - and

 -components respectively). For K = 2 , we recover Eqs. (78) and 

79) of [1] . 

From Eq. (3.155) in Gouesbet and Gréhan [4] , the recoil longitu- 

inal K-force is found to read as: 

os θC K sca = 

−2 λ2 

π
Re 

(
ia K b 

∗
K Z 

KK 
EH + a K a 

∗
K+1 Z 

K K +1 
E + b K b 

∗
K+1 Z 

K K +1 
H 

)
(8) 

n which: 

 

KK 
EH = 

2 K + 1 

K 

2 (K + 1) 2 

+ K ∑ 

p= −K 

p 
(K + | p | )! 

(K − | p | )! 
g p 

K,T M 

g p∗
K,T E 

(9) 

 

K K +1 
E = 

−1 

(K + 1) 2 

+ K ∑ 

p= −K 

(K + 1 + | p | )! 

(K − | p | )! 
g p 

K,T M 

g p∗
K+1 ,T M 

(10) 

 

K K +1 
H = 

−1 

(K + 1) 2 

+ K ∑ 

p= −K 

(K + 1 + | p | )! 

(K − | p | )! 
g p 

K,T E 
g p∗

K+1 ,T E 
(11) 

For K = 2 , we recover Eqs. (81) –(84) of [1] . From general equa-

ions available from [1,2] and [4] , and which are not repeated in 
3 
he present paper, we similarly obtain the mixing x -transverse K

force reading as: 

in θ cos ϕ C K ext = 

λ2 

2 π
Re 

(
a K X 

K 
E + b K X 

K 
H 

)
(12) 

n which: 

 

K 
E = X 

αK 
E + X 

βK 
E 

+ iX 

γ K 
E 

(13) 

 

K 
H = X 

αK 
H + X 

βK 
H 

+ iX 

γ K 
H 

(14) 

n which: 

 

αK 
E = 

1 

K 

2 

K−1 ∑ 

p=1 

(K − 1 + p)! 

(K − 1 − p)! 

(
g p−1 

K,T M 

g p∗
K−1 ,T M 

+ g −p∗
K−1 ,T M 

g −p+1 
K,T M 

)

+ 

1 

(K + 1) 2 

K−1 ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K+1 ,T M 

g p 
K,T M 

+ g −p 
K,T M 

g −p+1 ∗
K+1 ,T M 

)

+ 

(2 K)! 

(K + 1) 2 

(
g K−1 ∗

K+1 ,T M 

g K K,T M 

+ g −K 
K,T M 

g −K+1 ∗
K+1 ,T M 

)
(15) 

 

αK 
H = 

1 

K 

2 

K−1 ∑ 

p=1 

(K − 1 + p)! 

(K − 1 − p)! 

(
g p−1 

K,T E 
g p∗

K−1 ,T E 
+ g −p∗

K−1 ,T E 
g −p+1 

K,T E 

)

+ 

1 

(K + 1) 2 

K−1 ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K+1 ,T E 
g p 

K,T E 
+ g −p 

K,T E 
g −p+1 ∗

K+1 ,T E 

)

+ 

(2 K)! 

(K + 1) 2 

(
g K−1 ∗

K+1 ,T E g 
K 
K,T E + g −K 

K,T E g 
−K+1 ∗
K+1 ,T E 

)
(16) 

 

βK 
E 

= 

−1 

K 

2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K−1 ,T M 

g p 
K,T M 

+ g −p 
K,T M 

g −p+1 ∗
K−1 ,T M 

)

− 1 

(K + 1) 2 

K ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g p−1 

K,T M 

g p∗
K+1 ,T M 

+ g −p∗
K+1 ,T M 

g −p+1 
K,T M 

)

− (2 K + 2)! 

(K + 1) 2 

(
g K K,T M 

g K+1 ∗
K+1 ,T M 

+ g −K−1 ∗
K+1 ,T M 

g −K 
K,T M 

)
(17) 

 

βK 
H 

= 

−1 

K 

2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K−1 ,T E 
g p 

K,T E 
+ g −p 

K,T E 
g −p+1 ∗

K−1 ,T E 

)

− 1 

(K + 1) 2 

K ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g p−1 

K,T E 
g p∗

K+1 ,T E 
+ g −p∗

K+1 ,T E 
g −p+1 

K,T E 

)

− (2 K + 2)! 

(K + 1) 2 

(
g K K,T E g 

K+1 ∗
K+1 ,T E + g −K−1 ∗

K+1 ,T E g 
−K 
K,T E 

)
(18) 

 

γ K 
E 

= 

2 K + 1 

K 

2 (K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p 

K,T M 

g −p+1 ∗
K,T E 

+ g −p∗
K,T E 

g −p+1 
K,T M 

− g p−1 
K,T M 

g p∗
K,T E 

− g p−1 ∗
K,T E 

g p 
K,T M 

)
(19) 

 

γ K 
H 

= 

2 K + 1 

K 

2 (K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K,T M 

g p 
K,T E 

+ g p−1 
K,T E 

g p∗
K,T M 

− g −p∗
K,T M 

g −p+1 
K,T E 

− g −p 
K,T E 

g −p+1 ∗
K,T M 

)
(20) 

For K = 2 , we recover Eqs. (85) –(93) of [1] . Next, the recoil x -

ransverse K-force is found to read as: 

in θ cos ϕ C K sca = 

λ2 

π
Re 

(
ia K b 

∗
K X 

KK 
EH + a K a 

∗
K+1 X 

K K +1 
E + b K b 

∗
K+1 X 

K K +1 
H 

)
(21) 
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Y
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Y

Y

Y

Y

Y

Y

 

y

s

i

Y

Y

Y

i

Y

Y

Y

Y

n which: 

 

KK 
EH = X 

γ KK 
EH 

(22) 

 

K K +1 
E = X 

αK K +1 
E + X 

βK K +1 
E 

(23) 

 

K K +1 
H = X 

αK K +1 
H + X 

βK K +1 
H 

(24) 

n which: 

 

αK K +1 
E = 

1 

(K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K+1 ,T M 

g p 
K,T M 

+ g −p 
K,T M 

g −p+1 ∗
K+1 ,T M 

)

(25) 

 

αK K +1 
H = 

1 

(K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K+1 ,T E 
g p 

K,T E 
+ g −p 

K,T E 
g −p+1 ∗

K+1 ,T E 

)
(26) 

 

βK K +1 
E 

= 

−1 

(K + 1) 2 

K+1 ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g p−1 

K,T M 

g p∗
K+1 ,T M 

+ g −p∗
K+1 ,T M 

g −p+1 
K,T M 

)

(27) 

 

βK K +1 
H 

= 

−1 

(K + 1) 2 

K+1 ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g p−1 

K,T E 
g p∗

K+1 ,T E 
+ g −p∗

K+1 ,T E 
g −p+1 

K,T E 

)

(28) 

 

γ KK 
EH 

= 

2 K + 1 

K 

2 (K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p∗

K,T E 
g −p+1 

K,T M 

− g p−1 
K,T M 

g p∗
K,T E 

+ g −p 
K,T M 

g −p+1 ∗
K,T E 

− g p−1 ∗
K,T E 

g p 
K,T M 

)
(29) 

For K = 2 , we recover Eqs. (94) –(97) of [1] . Next, the mixing y -

ransverse K-force is found to read as: 

in θ sin ϕ C K ext = 

λ2 

2 π
Im 

(
a K Y 

K 
E + b K Y 

K 
H 

)
(30) 

n which: 

 

K 
E = Y αK 

E + Y 
βK 

E 
+ iY 

γ K 
E 

(31) 

 

K 
H = Y αK 

H + Y 
βK 

H 
+ iY 

γ K 
H 

(32) 

n which: 

 

αK 
E = 

1 

K 

2 

K−1 ∑ 

p=1 

(K − 1 + p)! 

(K − 1 − p)! 

(
g p−1 

K,T M 

g p∗
K−1 ,T M 

− g −p∗
K−1 ,T M 

g −p+1 
K,T M 

)

+ 

1 

(K + 1) 2 

K−1 ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p 

K,T M 

g −p+1 ∗
K+1 ,T M 

− g p−1 ∗
K+1 ,T M 

g p 
K,T M 

)

+ 

(2 K)! 

(K + 1) 2 

(
g −K 

K,T M 

g −K+1 ∗
K+1 ,T M 

− g K−1 ∗
K+1 ,T M 

g K K,T M 

)
(33) 

 

αK 
H = 

1 

K 

2 

K−1 ∑ 

p=1 

(K − 1 + p)! 

(K − 1 − p)! 

(
g p−1 

K,T E 
g p∗

K−1 ,T E 
− g −p∗

K−1 ,T E 
g −p+1 

K,T E 

)

+ 

1 

(K + 1) 2 

K−1 ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p 

K,T E 
g −p+1 ∗

K+1 ,T E 
− g p−1 ∗

K+1 ,T E 
g p 

K,T E 

)

+ 

(2 K)! 

(K + 1) 2 

(
g −K 

K,T E g 
−K+1 ∗
K+1 ,T E − g K−1 ∗

K+1 ,T E g 
K 
K,T E 

)
(34) 
4 
 

βK 
E 

= 

−1 

K 

2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p 

K,T M 

g −p+1 ∗
K−1 ,T M 

− g p−1 ∗
K−1 ,T M 

g p 
K,T M 

)

− 1 

(K + 1) 2 

K ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g p−1 

K,T M 

g p∗
K+1 ,T M 

− g −p∗
K+1 ,T M 

g −p+1 
K,T M 

)

− (2 K + 2)! 

(K + 1) 2 

(
g K K,T M 

g K+1 ∗
K+1 ,T M 

− g −K−1 ∗
K+1 ,T M 

g −K 
K,T M 

)
(35) 

 

βK 
H 

= 

−1 

K 

2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p 

K,T E 
g −p+1 ∗

K−1 ,T E 
− g p−1 ∗

K−1 ,T E 
g p 

K,T E 

)

− 1 

(K + 1) 2 

K ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g p−1 

K,T E 
g p∗

K+1 ,T E 
− g −p∗

K+1 ,T E 
g −p+1 

K,T E 

)

− (2 K + 2)! 

(K + 1) 2 

(
g K K,T E g 

K+1 ∗
K+1 ,T E − g −K−1 ∗

K+1 ,T E g 
−K 
K,T E 

)
(36) 

 

γ K 
E 

= 

2 K + 1 

K 

2 (K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K,T E 
g p 

K,T M 

+ g −p 
K,T M 

g −p+1 ∗
K,T E 

− g p−1 
K,T M 

g p∗
K,T E 

− g −p∗
K,T E 

g −p+1 
K,T M 

)
(37) 

 

γ K 
H 

= 

2 K + 1 

K 

2 (K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 

K,T E 
g p∗

K,T M 

+ g −p∗
K,T M 

g −p+1 
K,T E 

− g p−1 ∗
K,T M 

g p 
K,T E 

− g −p 
K,T E 

g −p+1 ∗
K,T M 

)
(38) 

For K = 2 , we recover Eqs. (98) –(106) of [1] . Finally, the recoil

 -transverse K-force is found to read as: 

in θ sin ϕ C K sca = 

λ2 

π
Im 

(
ia K b 

∗
K Y 

KK 
EH + a K a 

∗
K+1 Y 

K K +1 
E + b K b 

∗
K+1 Y 

K K +1 
H 

)
(39) 

n which: 

 

KK 
EH = Y 

γ KK 
EH 

(40) 

 

K K +1 
E = Y αK K +1 

E + Y 
βK K +1 

E 
(41) 

 

K K +1 
H = Y αK K +1 

H + Y 
βK K +1 

H 
(42) 

n which: 

 

αK K +1 
E = 

1 

(K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p 

K,T M 

g −p+1 ∗
K+1 ,T M 

− g p−1 ∗
K+1 ,T M 

g p 
K,T M 

)

(43) 

 

αK K +1 
H = 

1 

(K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g −p 

K,T E 
g −p+1 ∗

K+1 ,T E 
− g p−1 ∗

K+1 ,T E 
g p 

K,T E 

)
(44) 

 

βK K +1 
E 

= 

1 

(K + 1) 2 

K+1 ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g −p∗

K+1 ,T M 

g −p+1 
K,T M 

− g p−1 
K,T M 

g p∗
K+1 ,T M 

)

(45) 

 

βK K +1 
H 

= 

1 

(K + 1) 2 

K+1 ∑ 

p=1 

(K + 1 + p)! 

(K + 1 − p)! 

(
g −p∗

K+1 ,T E 
g −p+1 

K,T E 
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− g p−1 
K,T E 

g p∗
K+1 ,T E 

)
(46) 

 

γ KK 
EH 

= 

2 K + 1 

K 

2 (K + 1) 2 

K ∑ 

p=1 

(K + p)! 

(K − p)! 

(
g p−1 ∗

K,T E 
g p 

K,T M 

+ g −p 
K,T M 

g −p+1 ∗
K,T E 

− g p−1 
K,T M 

g p∗
K,T E 

− g −p∗
K,T E 

g −p+1 
K,T M 

)
(47) 

For K = 2 , we recover Eqs. (107) –(110) of [1] . 

. Interpretations of mixing forces 

.1. Mixing forces in the z-direction 

Eq. 5 is the sum of an electric force cos θC K 
ext,E 

associated with 

he electric Mie coefficient a K and of a magnetic force cos θC K ext,H 
ssociated with the magnetic Mie coefficient b K . Both of these 

orces may be decomposed into two subforces. The decomposition 

f the electric force cos θC K ext,E reads as: 

os θC K ext,E = cos θC KR 
ext,E + cos θC KI 

ext,E (48) 

n which: 

os θC KI 
ext,E = 

−λ2 

π
Im (a K ) Im (Z K E ) (49) 

os θC KR 
ext,E = 

λ2 

π
Re (a K ) Re (Z K E ) (50) 

n which the subscripts I and R refer to the imaginary and real 

arts respectively of the BSC-dependent terms. In the present case, 

he same subscripts correspond as well to the imaginary and real 

arts respectively of the Mie coefficients, but this feature is ac- 

idental and is not to be considered as a rule, as later counter- 

xamples will show. For K = 1 and 2, cos θC KI 
ext,E is a mixing gradi-

nt force [1] . We shall argue in Section 4.4 that the same is true

or K > 2 . For K = 1 and 2 again, cos θC KR 
ext,E 

is the sum of a mix-

ng scattering force and of a mixing non-standard force [1] . Let us 

arry the same decomposition for K > 2 before commenting and 

ustifying. We then have, adding a supercript S standing for “Scat- 

ering” and NS standing for “Non-Standard”: 

os θC KRS 
ext,E = 

λ2 

π
Re (a K ) Re (Z KS 

E ) (51) 

os θC KRNS 
ext,E = 

λ2 

π
Re (a K ) Re (Z KNS 

E ) (52) 

n which: 

 

KS 
E = − (2 K + 1) i 

K 

2 (K + 1) 2 

+ K ∑ 

p= −K 

p 
(K + | p | )! 

(K − | p | )! 
g p 

K,T M 

g p∗
K,T E 

(53) 

 

KNS 
E = 

1 

K 

2 

K−1 ∑ 

p= −K+1 

(K + | p | )! 

(K − 1 − | p | )! 
g p∗

K−1 ,T M 

g p 
K,T M 

+ 

1 

(K + 1) 2 

+ K ∑ 

p= −K 

(K + 1 + | p | )! 

(K − | p | )! 
g p 

K,T M 

g p∗
K+1 ,T M 

(54) 

For K = 2 , we recover Eq. (117) –(120) of [1] . As previously re-

alled, for K = 1 this decomposition has a strong physical mean- 

ng since the force generated by Z KS 
E 

is proportional to the z - 

omponent of the Poynting vector while Z KNS 
E 

generates a non- 

radient force which is not proportional to this z-component, a 

eaning which does not propagate to the case K > 1 . However, 

tructural differences, valid for K = 1 , do propagate to K > 1 , and

erve as justifications to distinguish between scattering and non- 

tandard forces. First, mixing scattering forces couple T M and T E
5

artial waves while non-standard forces are generated by T M − T M

ouplings (it will be T E − T E in the case of magnetic forces). Sec- 

nd, all subscripts of the scattering force are equal to K while 

on-standard forces contain subscripts of different orders ( K − 1 , K, 

 + 1) . In summary, the discrimination between scattering forces 

nd non-standard forces for K > 1 relies on (i) the fact that it al-

eady exists in the case of 1-forces where it is the consequence 

f precise and accurate definitions of scattering and non-scattering 

orces and (ii) on structural differences which are valid what- 

ver K and therefore provide a unified scheme of discrimination. 

ection 6 will furthermore show how much the distinction be- 

ween scattering and non-standard forces introduces a deep co- 

erency in the optical force partition. Another issue is that the 

on-standard 1-forces provide a contribution to spin-curl forces in 

he context of the dipole theory of forces [34–38] , and in the con- 

ext of GLMT, e.g. [31,39,40] , and references therein. The physical 

ignification of non-standard forces for K > 1 then raises a question 

hich is however outside of the scope of the present paper al- 

hough it will have to be investigated. 

Similarly, the decomposition of the magnetic force cos θC K 
ext,H 

eads as: 

os θC K ext,H = cos θC KR 
ext,H + cos θC KI 

ext,H (55) 

n which: 

os θC KI 
ext,H = 

−λ2 

π
Im (b K ) Im (Z K H ) (56) 

os θC KR 
ext,H = 

λ2 

π
Re (b K ) Re (Z K H ) (57) 

n which cos θC KI 
ext,H will be shown to be a mixing gradient force 

 Section 4.4 ) while cos θC KR 
ext,H 

is the summation of a scattering and 

f a non-standard force according to: 

os θC KRS 
ext,H = 

λ2 

π
Re (b K ) Re (Z KS 

H ) (58) 

os θC KRNS 
ext,H = 

λ2 

π
Re (b K ) Re (Z KNS 

H ) (59) 

n which: 

 

KS 
H = 

(2 K + 1) i 

K 

2 (K + 1) 2 

+ K ∑ 

p= −K 

p 
(K + | p | )! 

(K − | p | )! 
g p∗

K,T M 

g p 
K,T E 

(60) 

 

KNS 
H = 

1 

K 

2 

K−1 ∑ 

p= −K+1 

(K + | p | )! 

(K − 1 − | p | )! 
g p∗

K−1 ,T E 
g p 

K,T E 

+ 

1 

(K + 1) 2 

+ K ∑ 

p= −K 

(K + 1 + | p | )! 

(K − | p | )! 
g p 

K,T E 
g p∗

K+1 ,T E 
(61) 

For K = 2 , we recover Eqs. (121) –(125) of [1] . 

.2. Mixing forces in the x -direction 

Similarly as for the z-direction, Eq. (12) is the sum of an electric 

orce sin θ cos ϕ C K 
ext,E 

and of a magnetic force sin θ cos ϕ C K 
ext,H 

. The 

lectric force is decomposed in two subforces reading as: 

in θ cos ϕ C KR 
ext,E = 

λ2 

2 π
Re (a K ) Re (X 

K 
E ) (62) 

in θ cos ϕ C KI 
ext,E = 

−λ2 

2 π
Im (a K ) Im (X 

K 
E ) (63) 
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As previously, sin θ cos ϕ C KI 
ext,E 

must be a gradient force 

 Section 4.4 ) while sin θ cos ϕ C KR 
ext,E is decomposed as the sum of 

 scattering force and of a non-standard force according to: 

in θ cos ϕ C KRS 
ext,E = 

λ2 

2 π
Re (a K ) Re 

(
iX 

γ K 
E 

)
(64) 

in θ cos ϕ C KRNS 
ext,E = 

λ2 

2 π
Re (a K ) Re 

(
X 

αK 
E + X 

βK 
E 

)
(65) 

ith the same justifications as for the z-component, as can be ob- 

erved by examining the structure of X 
γ K 
E 

to be compared with 

he structure of (X αK 
E 

+ X 
βK 
E 

) . The magnetic force sin θ cos ϕ C K ext,H 
s similarly decomposed as: 

in θ cos ϕ C KR 
ext,H = 

λ2 

2 π
Re (b K ) Re 

(
X 

K 
H 

)
(66) 

in θ cos ϕ C KI 
ext,H = 

−λ2 

2 π
Im (b K ) Im 

(
X 

K 
H 

)
(67) 

Once more, we anticipate that sin θ cos ϕ C KI 
ext,H 

is a gradient 

orce ( Section 4.4 ) while sin θ cos ϕ C KR 
ext,H is decomposed as the sum 

f a scattering force and of a non-standard force according to: 

in θ cos ϕ C KRS 
ext,H = 

λ2 

2 π
Re (b K ) Re 

(
iX 

γ K 
H 

)
(68) 

in θ cos ϕ C KRNS 
ext,H = 

λ2 

2 π
Re (b K ) Re 

(
X 

αK 
H + X 

βK 
H 

)
(69) 

ith again the same justifications as previously. For K = 2 , we re-

over the results of Section 6.1.2 of [1] . 

.3. Mixing forces in the y -direction 

From Eq. (30) , we similarly have: 

in θ sin ϕ C KR 
ext,E = 

λ2 

2 π
Im (a K ) Re (Y K E ) (70) 

in θ sin ϕ C KI 
ext,E = 

λ2 

2 π
Re (a K ) Im (Y K E ) (71) 

n which, noting an interchange between the roles of the super- 

cripts R and I, sin θ sin ϕ C KR 
ext,E 

is a gradient force ( Section 4.4 ) 

hile sin θ sin ϕ C KI 
ext,E 

is decomposed as: 

in θ sin ϕ C KIS 
ext,E = 

λ2 

2 π
Re (a K ) Im (iY 

γ K 
E 

) (72) 

in θ sin ϕ C KINS 
ext,E = 

λ2 

2 π
Re (a K ) Im (Y αK 

E + Y 
βK 

E 
) (73) 

Also, we have: 

in θ sin ϕ C KR 
ext,H = 

λ2 

2 π
Im (b K ) Re (Y K H ) (74) 

in θ sin ϕ C KI 
ext,H = 

λ2 

2 π
Re (b K ) Im (Y K H ) (75) 

n which sin θ sin ϕ C KR 
ext,H is a gradient force ( Section 4.4 ) while 

in θ sin ϕ C KI 
ext,H 

may be decomposed as: 

in θ sin ϕ C KIS 
ext,H = 

λ2 

2 π
Re (b K ) Im (iY 

γ K 
H 

) (76) 

in θ sin ϕ C KINS 
ext,H = 

λ2 

2 π
Re (b K ) Im (Y αK 

H + Y 
βK 

H 
) (77) 

For K = 2 , we recover the results of Section 6.1.3 in Gouesbet 

t al. [1] . 
6 
.4. Mixing gradient forces 

In the three previous subsections above, we announced 

hat three electric forces, namely cos θC KI 
ext,E 

, sin θ cos ϕ C KI 
ext,E 

, 

in θ sin ϕ C KR 
ext,E 

, and three magnetic forces, namely cos θC KI 
ext,H 

, 

in θ cos ϕ C KI 
ext,H , sin θ sin ϕ C KR 

ext,H are gradient forces. It is the great 

erit of Zheng et al. [32] to have demonstrated that these forces 

re indeed mixing gradient forces. For this, they rely on an arXiv 

aper by Jiang et al. [41] , see as well [42] . In these works, the opti-

al forces are deduced by using the Maxwell stress tensor, leading 

o the first categorization in terms of mixing/recoil forces omit- 

ing however to mention that such a categorization was already 

vailable nearly four decades ago. Other similar omissions seem to 

ave been the motivation for a criticism by Nieto-Vesperinas [43] . 

evertheless, the expressions by Zheng et al. [32] of the mixing 

radient forces, obtained by coupling field multiple derivatives and 

n angular spectrum decomposition, represent a genuine advance 

n the field of optical forces. Furthermore, the agreement between 

heir results and ours is a corroboration of the validity of the re- 

ults concerning mixing gradient forces. They also obtained expres- 

ions for recoil gradient forces but failed to see that recoil gradient 

orces may be readily expressed in terms of mixing gradient forces 

ith simple formulas, as we shall demonstrate below. 

The mixing gradient electric forces cos θC KI 
ext,E 

, sin θ cos ϕ C KI 
ext,E 

nd sin θ sin ϕ C KR 
ext,E 

above (renamed cos θC KIG 
ext,E 

, sin θ cos ϕ C KIG 
ext,E 

and 

in θ sin ϕ C KRG 
ext,E 

with “G ” standing for “Gradient”) may indeed be 

hown to be equivalent to the corresponding forces expressed in 

q. (24) of Zheng et al. [32] . However, rather than using the tradi-

ional BSCs of GLMT, Zheng et al. introduced so-called partial wave 

xpansion coefficients (PWECs). The translation between PWECs 

nd BSCs is provided in Appendix A. The translation between the 

lectric forces of the present section and those of Eq. (24) in Zheng 

t al. [32] is provided in Appendix B which discusses as well the 

ase of the mixing gradient magnetic forces (renamed cos θC KIG 
ext,H 

, 

in θ cos ϕ C KIG 
ext,H 

, sin θ sin ϕ C KRG 
ext,H 

). For K = 2 , see Section 6.1.4 of [1] .

. Interpretations of recoil forces 

.1. Recoil forces in the z-direction 

The recoil force of Eq. (8) is the summation of a magnetoelectric 

orce cos θC K 
sca,EH 

, of an electric force cos θC K 
sca,E 

and of a magnetic 

orce cos θC K 
sca,H 

. The magnetoelectric force may be decomposed in 

wo terms according to: 

os θC K sca,EH = cos θC KR 
sca,EH + cos θC KI 

sca,EH (78) 

n which: 

os θC KR 
sca,EH = 

−2 λ2 

π
Re (a K b 

∗
K ) Re (iZ KK 

EH ) (79) 

os θC KI 
sca,EH = 

2 λ2 

π
Im (a K b 

∗
K ) Im (iZ KK 

EH ) (80) 

Then, using Eqs. (9) , (51), (53), (58), (60) , and (79) we demon-

trate that: 

os θC KR 
sca,EH = 2 

Re (a K b 
∗
K ) 

Re (a K ) 
cos θC KRS 

ext,E 

= 2 

Re (a K b 
∗
K ) 

Re (b K ) 
cos θC KRS 

ext,H (81) 

hich is a generalization of Eqs. (35) and (141) of [1] . 

q. (81) shows that the longitudinal recoil magnetoelectric force 

os θC KR 
sca,EH 

(now renamed cos θC KRS 
sca,EH 

) is a recoil scattering mag- 

etoelectric force which may be expressed in terms of longitudinal 

ixing scattering pure electric and pure magnetic forces. Such a 
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elation (and many others of the same kind), exhibiting a relation- 

hip between recoil scattering forces and mixing scattering forces 

s another argument, valid as well for non-standard forces (e.g. an 

xample in Eq. (89) ), which supports the interest of the decom- 

osition of non-gradient forces into scattering and non-standard 

orces. Concerning cos θC KI 
sca,EH 

(now renamed cos θC KINS 
sca,EH 

), it is 

lassified as being a non-standard force because (i) for K = 1 , it is

ndeed a non-standard force as being a non-gradient force which 

s not a scattering force and (ii) although the original definition of 

cattering force does not propagate from K = 1 to K > 1 , there is a

tructural difference (i.e. the use of Re in Eq. (79) versus the use of

m in Eq. (80) ) which does propagate from K = 1 to K > 1 . 

Next, the electric force cos θC K 
sca,E 

may be decomposed into two 

ubforces reading as: 

os θC KR 
sca,E = 

−2 λ2 

π
Re (a K a 

∗
K+1 ) Re 

(
Z K K +1 

E 

)
(82) 

os θC KI 
sca,E = 

2 λ2 

π
Im (a K a 

∗
K+1 ) Im 

(
Z K K +1 

E 

)
(83) 

From Eq. (10) , we deduce: 

 

K−1 K 
E = 

−1 

K 

2 

K−1 ∑ 

p= −K+1 

(K + | p | )! 

(K − 1 − | p | )! 
g p 

K−1 ,T M 

g p∗
K,T M 

(84) 

Afterward, we use Eqs. (10) , (54) and (84) to obtain: 

 

K K +1 
E = −Z KNS 

E − Z K −1 K ∗
E (85) 

Inserting Eq. (85) into Eq. (82) , we obtain: 

os θC KR 
sca,E = 

2 λ2 

π
Re (a K a 

∗
K+1 ) 

[
Re (Z KNS 

E ) + Re (Z K−1 K 
E ) 

]
(86) 

We may then use Eqs. (52) and (82) , adapted from K to (K − 1) ,

o obtain, from Eq. (86) : 

os θC KR 
sca,E = 2 

Re (a K a 
∗
K+1 ) 

Re (a K ) 
cos θC KRNS 

ext,E −
Re (a K a 

∗
K+1 ) 

Re (a K−1 a 
∗
K 
) 

cos θC K−1 R 
sca,E (87) 

Assume, as a recurrence assumption, that cos θC K−1 R 
sca,E 

is a non- 

tandard force (this is true for K = 2 ), then cos θC KR 
sca,E is a non-

tandard force. Also, this equation is not valid for K = 1 since 

os θC 0 R 
sca,E 

does not exist, providing a supplementary reason (al- 

hough not the most important one) to distinguish the cases K = 1 

nd K > 1 . Clearly, we could obtain an equation which is valid

s well for K = 1 by using a multiplicative prefactor of the form

1 − δK−1 , 0 ) but even this process would emphasize that K = 1 is a

pecial value. 

As a variant, let us return to Eq. (52) which expresses 

os θC KRNS 
ext,E 

versus Z KNS 
E 

. Using Eq. (85) , cos θC KRNS 
ext,E 

may be ex- 

ressed as a summation of two non-standard forces, one of them 

eading as: 

os θC KRNS2 
ext,E = 

−λ2 

π
Re (a K ) Re (Z K K +1 

E ) (88) 

eading to: 

os θC KR 
sca,E = 2 

Re (a K a 
∗
K+1 ) 

Re (a K ) 
cos θC KRNS2 

ext,E (89) 

hich confirms that cos θC KR 
sca,E (now renamed cos θC KRNS 

sca,E 
) is a non- 

tandard force. We then have the case of a recoil non-standard 

lectric force which may be expressed in terms of a mixing non- 

tandard electric force. For K = 2 , we recover Eq. (198) of [1] . 

We now consider cos θC KI 
sca,E 

of Eq. (83) , and begin by elaborate 

 bit on the case K = 2 . It has been found, see Eqs. (179) –(180) in

ouesbet et al. [1] , that cos θC 2 I sca,E may be written as the summa- 

ion of two forces according to: 

os θC 2 I sca,E = cos θC 2 Iαsca,E + cos θC 
2 Iβ
sca,E 

(90) 
7 
n which: 

os θC 2 Iαsca,E = 2 Im (a 2 a 
∗
3 ) 

2 ∑ 

j=1 

cos θC jI 
ext,E 

Im (a j ) 
(91) 

os θC 
2 Iβ
sca,E 

= 

λ2 

π
Im (a 2 a 

∗
3 ) Im 

{ 

i [3 

(
g −1 

1 ,T M 

g −1 ∗
1 ,T E − g 1 1 ,T M 

g 1 ∗1 ,T E 

)

+ 

λ2 

π
Im (a 2 a 

∗
3 ) Im 

[ 
5 i 

3 

(g −1 
2 ,T M 

g −1 ∗
2 ,T E − g 1 2 ,T M 

g 1 ∗2 ,T E ) 

+ 

40 i 

3 

(
g −2 

2 ,T M 

g −2 ∗
2 ,T E − g 2 2 ,T M 

g 2 ∗2 ,T E 

)] } 

(92) 

Let us introduce: 

Z K K +1 
E = 

−(2 K + 1) i 

K 

2 (K + 1) 2 

+ K ∑ 

p= −K 

p 
(K + | p | )! 

(K − | p | )! 
g p 

K,T M 

g p∗
K,T E 

(93) 

Eq. (92) then becomes: 

os θC 
2 Iβ
sca,E 

= 

2 λ2 

π
Im (a 2 a 

∗
3 ) Im 

2 ∑ 

j=1 

�Z j j +1 
E 

(94) 

In order to provide a demonstration by recurrence, we now 

ssume that Eqs. (91) and (94) are valid for (K − 1) -forces and 

emonstrate that they are valid for K-forces. We then have: 

os θC K−1 Iα
sca,E = 2 Im (a K−1 a 

∗
K ) 

K−1 ∑ 

j=1 

cos θC jI 
ext,E 

Im (a j ) 
(95) 

os θC 
K−1 Iβ
sca,E 

= 

2 λ2 

π
Im (a K−1 a 

∗
K ) Im 

K−1 ∑ 

j=1 

�Z j j +1 
E 

(96) 

Using Eqs. (6) , (10), (84) , and (93) , we establish: 

 

K K +1 
E = −Z K −1 K ∗

E − Z K E + �Z K K +1 
E (97) 

hich, using Eq. (83) , leads to: 

os θC KI 
sca,E = 

2 λ2 

π
Im (a K a 

∗
K+1 ) Im (�Z K K +1 

E ) 

− 2 λ2 

π
Im (a K a 

∗
K+1 ) Im (Z K E ) 

+ 

2 λ2 

π
Im (a K a 

∗
K+1 ) Im (Z K−1 K 

E ) (98) 

Let us first work out the last line of (98) , denoted as I I I . From

q. (83) , we have: 

os θC K−1 I 
sca,E = 

2 λ2 

π
Im (a K−1 a 

∗
K ) Im (Z K−1 K 

E ) (99) 

eading to: 

 I I = 

Im (a K a 
∗
K+1 ) 

Im (a K−1 a 
∗
K 
) 

cos θC K−1 I 
sca,E (100) 

But cos θC K−1 I 
sca,E 

can be decomposed according to: 

os θC K−1 I 
sca,E = cos θC K−1 Iα

sca,E + cos θC 
K−1 Iβ
sca,E 

(101) 

We then decompose I I I into I I I α + I I I β , and relying on

qs. (100) and (101) , we have: 

 I I α = 

Im (a K a 
∗
K+1 ) 

Im (a K−1 a 
∗
K 
) 

cos θC K−1 Iα
sca,E (102) 

 I I β = 

Im (a K a 
∗
K+1 ) 

Im (a K−1 a 
∗
K 
) 

cos θC 
K−1 Iβ
sca,E 

(103) 
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We may now use the recurrence assumption of Eq. (95) to ob- 

ain: 

 I I α = 2 Im (a K a 
∗
K+1 ) 

K−1 ∑ 

j=1 

cos θC jI 
ext,E 

Im (a j ) 
(104) 

nd the recurrence assumption of Eq. (96) to obtain: 

 I I β = 

2 λ2 

π
Im (a K a 

∗
K+1 ) Im 

K−1 ∑ 

j=1 

�Z j j +1 
E 

(105) 

Similarly as for Eq. (101) , we decompose cos θC KI 
sca,E 

as: 

os θC KI 
sca,E = cos θC KIα

sca,E + cos θC 
KIβ
sca,E 

(106) 

n which, using Eq. (98) , we have: 

os θC KIα
sca,E = −2 λ2 

π
Im (a K a 

∗
K+1 ) Im (Z K E ) + I I I α (107) 

os θC 
KIβ
sca,E 

= 

2 λ2 

π
Im (a K a 

∗
K+1 ) Im (�Z K K +1 

E ) + I I I β (108) 

hich, using Eqs. (104) and (105) imply: 

os θC KIα
sca,E = 2 Im (a K a 

∗
K+1 ) 

K ∑ 

j=1 

cos θC jI 
ext,E 

Im (a j ) 
(109) 

n which cos θC 
jI 
ext,E 

has been renamed cos θC 
jIG 
ext,E 

. Therefore 

os θC KIα
sca,E 

, which may be renamed cos θC KIG 
sca,E 

, is a recoil gra- 

ient electric force, which is the gradient force contribution to 

os θC KI 
sca,E 

, and may be expressed in terms of mixing gradient elec- 

ric forces. Eq. (109) is the generalization of Eq. (179) in Gouesbet 

t al. [1] . 

The following equation is also implied: 

os θC 
KIβ
sca,E 

= 

2 λ2 

π
Im (a K a 

∗
K+1 ) Im 

K ∑ 

j=1 

�Z j j +1 
E 

(110) 

n which cos θC 
KIβ
sca,E 

, renamed cos θC KINS 
sca,E 

, is the non-standard con- 

ribution to cos θC KI 
sca,E 

, by extension of the case K = 1 , see con-

eniently Section 6 in Gouesbet et al. [1] . For K = 2 , Eq. (110) is

hown to be equivalent (after a small amount of computation) to 

q. (181) in Gouesbet et al. [1] . 

The magnetic contribution cos θC K sca,H is treated quite similarly 

s for the electric contribution cos θC K 
sca,E 

, with quite similar com- 

ents. To begin with, we decompose it into two subforces accord- 

ng to: 

os θC K sca,H = cos θC KR 
sca,H + cos θC KI 

sca,H (111) 

n which: 

os θC KR 
sca,H = 

−2 λ2 

π
Re (b K b 

∗
K+1 ) Re (Z K K +1 

H ) (112) 

os θC KI 
sca,H = 

2 λ2 

π
Im (b K b 

∗
K+1 ) Im (Z K K +1 

H ) (113) 

Similarly as Eq. (87) , we then obtain: 

os θC KR 
sca,H = 2 

Re (b K b 
∗
K+1 ) 

Re (b K ) 
cos θC KRNS 

ext,H −
Re (b K b 

∗
K+1 ) 

Re (b K−1 b 
∗
K 
) 

cos θC K−1 R 
sca,H 

(114) 

r, as a variant: 

os θC KR 
sca,H = 2 

Re (b K b 
∗
K+1 ) 

Re (b K ) 
cos θC KRNS2 

ext,H (115) 

n which: 

os θC KRNS2 
ext,H = 

−λ2 

Re (b K ) Re (Z K K +1 
H ) (116) 
π

8 
Therefore, cos θC KR 
sca,H 

(renamed cos θC KRNS 
sca,H 

) is a recoil non- 

tandard magnetic force which is expressed in terms of a mixing 

on-standard magnetic force. For cos θC KI 
sca,H , proceeding again sim- 

larly as for the electric case, we first establish two recurrence as- 

umptions reading as: 

os θC K−1 Iα
sca,H = 2 Im (b K−1 b 

∗
K ) 

K−1 ∑ 

j=1 

cos θC jI 
ext,H 

Im (b j ) 
(117) 

os θC 
K−1 Iβ
sca,H 

= 

2 λ2 

π
Im (b K−1 b 

∗
K ) Im 

K−1 ∑ 

j=1 

�Z j j +1 
H 

(118) 

n which: 

Z K K +1 
H = 

−(2 K + 1) i 

K 

2 (K + 1) 2 

+ K ∑ 

p= −K 

p 
(K + | p | )! 

(K − | p | )! 
g p 

K,T E 
g p∗

K,T M 

(119) 

nd afterward establish by recurrence that: 

os θC KIα
sca,H = 2 Im (b K b 

∗
K+1 ) 

K ∑ 

j=1 

cos θC jI 
ext,H 

Im (b j ) 
(120) 

n which cos θC 
jI 
ext,H 

, which is a gradient force, has been re- 

amed cos θC 
jIG 
ext,H 

. Therefore cos θC KIα
sca,H 

, which may be renamed 

os θC KIG 
sca,H 

, is a recoil gradient magnetic force, which is the gra- 

ient force contribution to cos θC KI 
sca,H 

, and may be expressed in 

erms of mixing gradient magnetic forces. Eq. (120) is the gener- 

lization of Eq. (185) in Gouesbet et al. [1] . We similarly establish 

hat: 

os θC 
KIβ
sca,H 

= 

2 λ2 

π
Im (b K b 

∗
K+1 ) Im 

K ∑ 

j=1 

�Z j j +1 
H 

(121) 

n which cos θC 
KIβ
sca,H 

, renamed cos θC KINS 
sca,H 

, is the non-standard con- 

ribution to cos θC KI 
sca,H 

, by extension of the case K = 1 , see con-

eniently Section 6 in Gouesbet et al. [1] . For K = 2 , Eq. (121) is

hown to be equivalent to Eq. (186) in Gouesbet et al. [1] . 

.2. Recoil forces in the x -direction 

The recoil force of Eq. (21) is the summation of a magnetoelec- 

ric force sin θ cos ϕ C K sca,EH , of an electric force sin θ cos ϕ C K sca,E and 

f a magnetic force sin θ cos ϕ C K 
sca,H 

. The magnetoelectric force may 

e decomposed in two terms according to: 

in θ cos ϕ C K sca,EH = sin θ cos ϕ C KR 
sca,EH + sin θ cos ϕ C KI 

sca,EH (122) 

n which: 

in θ cos ϕ C KR 
sca,EH = 

λ2 

π
Re (a K b 

∗
K ) Re (iX 

KK 
EH ) (123) 

in θ cos ϕ C KI 
sca,EH = 

−λ2 

π
Im (a K b 

∗
K ) Im (iX 

KK 
EH ) (124) 

From Eqs. (19) , (20), (22) and (29) , we have: 

 

KK 
EH = X 

γ KK 
EH 

= X 

γ K 
E 

= −X 

γ K∗
H 

(125) 

o that: 

in θ cos ϕ C KR 
sca,EH = 

λ2 

π
Re (a K b 

∗
K ) Re (iX 

γ K 
E 

) 

= 

λ2 

π
Re (a K b 

∗
K ) Re (iX 

γ K 
H 

) (126) 

We then use Eqs. (64) and (68) to establish: 

in θ cos ϕ C KR 
sca,EH = 2 

Re (a K b 
∗
K ) 

Re (a ) 
sin θ cos ϕ C KRS 

ext,E 

K 
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= 2 

Re (a K b 
∗
K ) 

Re (b K ) 
sin θ cos ϕ C KRS 

ext,H (127) 

Therefore, sin θ cos ϕ C KR 
sca,EH 

(renamed sin θ cos ϕ C KRS 
sca,EH 

) is a re- 

oil scattering magnetoelectric force which may be expressed in 

erms of mixing scattering pure electric and magnetic forces, 

hile sin θ cos ϕ C KI 
sca,EH 

(renamed sin θ cos ϕ C KINS 
sca,EH 

) is a recoil non- 

tandard magnetoelectric force, with the same justification than 

he one used for cos θC KI 
sca,EH of Eq. (80) . Eq. (145) of [1] for K = 2

s recovered from Eq. (127) . 

Next, the electric force sin θ cos ϕ C K 
sca,E 

can be decomposed in 

wo subforces according to: 

in θ cos ϕ C K sca,E = sin θ cos ϕ C KR 
sca,E + sin θ cos ϕ C KI 

sca,E (128) 

n which: 

in θ cos ϕ C KR 
sca,E = 

λ2 

π
Re (a K a 

∗
K+1 ) Re (X 

K K +1 
E ) (129) 

in θ cos ϕ C KI 
sca,E = 

−λ2 

π
Im (a K a 

∗
K+1 ) Im (X 

K K +1 
E ) (130) 

Using Eqs. (15) , (17), (23), (25) and (27) , we establish: 

e (X 

K K +1 
E ) = Re 

(
X 

αK 
E + X 

βK 
E 

− X 

K−1 K 
E 

)
(131) 

o that sin θ cos ϕ C KR 
sca,E of Eq. (129) becomes: 

in θ cos ϕ C KR 
sca,E = 

λ2 

π
Re (a K a 

∗
K+1 ) 

[ 
Re (X 

αK 
E + X 

βK 
E 

) − Re (X 

K−1 K 
E ) 

] 
(132) 

hich, using Eqs. (62) and (65) leads to: 

in θ cos ϕ C KR 
sca,E = 2 

Re (a K a 
∗
K+1 ) 

Re (a K ) 
sin θ cos ϕ C KRNS 

ext,E 

−Re (a K a 
∗
K+1 ) 

Re (a K−1 a 
∗
K 
) 

sin θ cos ϕ C K−1 R 
sca,E (133) 

Since sin θ cos ϕ C K−1 R 
sca,E 

is a non-standard force for K = 2 , e.g. 

q. (59) in Gouesbet et al. [1] , it follows by recurrence that 

in θ cos ϕ C KR 
sca,E 

(renamed sin θ cos ϕ C KRNS 
sca,E 

) is a non-standard force 

hatever K. As a variant, let us return to Eq. (65) which ex- 

resses sin θ cos ϕ C KRNS 
ext,E 

versus Re (X αK 
E 

+ X 
βK 
E 

) . Using Eq. (131) , 

in θ cos ϕ C KRNS 
ext,E 

may be expressed as a summation of two non- 

tandard forces, one of them reading as: 

in θ cos ϕ C KRNS2 
ext,E = 

λ2 

2 π
Re (a K ) Re (X 

K K +1 
E ) (134) 

eading to: 

in θ cos ϕ C KR 
sca,E = 2 

Re (a K a 
∗
K+1 ) 

Re (a K ) 
sin θ cos ϕ C KRNS2 

ext,E (135) 

hich confirms that sin θ cos ϕ C KR 
sca,E 

(now renamed 

in θ cos ϕ C KRNS 
sca,E 

) is indeed a non-standard force. We then have 

he case of a recoil non-standard electric force which may be ex- 

ressed in terms of a mixing non-standard electric force. Another 

ariant for K = 2 is available from Eq. (203) in Gouesbet et al. [1] . 

We now consider sin θ cos ϕ C KI 
sca,E . For K = 2 , we used the de-

omposition: 

in θ cos ϕ C 2 I sca,E = sin θ cos ϕ C 2 Iαsca,E + sin θ cos ϕ C 
2 Iβ
sca,E 

(136) 

n which, see Eq. (187) in Gouesbet et al. [1] : 

in θ cos ϕ C 2 Iαsca,E = 2 Im (a 2 a 
∗
3 ) 

2 ∑ 

j=1 

sin θ cos ϕ C jI 
ext,E 

Im (a j ) 
(137) 
s

9

For sin θ cos ϕ C 
2 ,Iβ
sca,E 

, we used Eq. (83) of [30] , and (144), (188) of 

1] to establish: 

in θ cos ϕ C 
2 Iβ
sca,E 

= −Im (a 2 a 
∗
3 ) 

2 ∑ 

j=1 

sin θ cos ϕ C jEHI 
sca 

Im (a j b 
∗
j 
) 

(138) 

rom which we deduce two assumptions ready for a demonstration 

y recurrence, reading as: 

in θ cos ϕ C K−1 Iα
sca,E = 2 Im (a k −1 a 

∗
K ) 

K−1 ∑ 

j=1 

sin θ cos ϕ C jI 
ext,E 

Im (a j ) 
(139) 

in θ cos ϕ C 
K−1 Iβ
sca,E 

= −Im (a K−1 a 
∗
K ) 

K−1 ∑ 

j=1 

sin θ cos ϕ C jI 
sca,EH 

Im (a j b 
∗
j 
) 

(140) 

nd whose validity whatever K is now to be demonstrated. Us- 

ng Eqs. (23) , (25), (27) for X K K +1 
E 

and X K−1 K 
E 

, Eq. (15) for X αK 
E 

and

q. (17) for X 
βK 
E 

, we obtain: 

m (X 

K K +1 
E ) = Im (X 

K−1 K 
E ) + Im 

(
X 

αK 
E + X 

βK 
E 

)
(141) 

hich, using Eq. (13) may be rewritten as: 

m (X 

K K +1 
E ) = Im (X 

K−1 K 
E ) + Im (X 

K 
E ) − Im 

(
iX 

γ K 
E 

)
(142) 

Inserting Eq. (142) into Eq. (130) , we have: 

in θ cos ϕ C KI 
sca,E = 

λ2 

π
Im (a K a 

∗
K+1 ) Im (iX 

γ K 
E 

) 

− λ2 

π
Im (a K a 

∗
K+1 ) Im (X 

K 
E ) 

− λ2 

π
Im (a K a 

∗
K+1 ) Im (X 

K−1 K 
E ) (143) 

Let the last line of Eq. (143) be called I I I . Using Eq. (130) , we

btain: 

 I I = 

Im (a K a 
∗
K+1 ) 

Im (a K−1 a 
∗
K 
) 

sin θ cos ϕ C K−1 I 
sca,E (144) 

hich may be decomposed into two terms according to: 

 I I = I I I α + I I I β (145) 

n which: 

 I I α = 

Im (a K a 
∗
K+1 ) 

Im (a K−1 a 
∗
K 
) 

sin θ cos ϕ C K−1 Iα
sca,E (146) 

 I I β = 

Im (a K a 
∗
K+1 ) 

Im (a K−1 a 
∗
K 
) 

sin θ cos ϕ C 
K−1 Iβ
sca,E 

(147) 

We then decompose sin θ cos ϕ C KI 
sca,E 

of Eq. (143) according to: 

in θ cos ϕ C KI 
sca,E = sin θ cos ϕ C KIα

sca,E + sin θ cos ϕ C 
KIβ
sca,E 

(148) 

n which: 

in θ cos ϕ C KIα
sca,E = −λ2 

π
Im (a K a 

∗
K+1 ) Im (X 

K 
E ) + I I I α (149) 

in θ cos ϕ C 
KIβ
sca,E 

= 

λ2 

π
Im (a K a 

∗
K+1 ) Im (iX 

γ K 
E 

) + I I I β (150) 

From Eqs. (63) , (149) and the first recurrence assumption of 

q. (139) , we then have: 

in θ cos ϕ C KIα
sca,E = 2 Im (a K a 

∗
K+1 ) 

K ∑ 

j=1 

sin θ cos ϕ C jI 
ext,E 

Im (a j ) 
(151) 

hich is a recoil gradient electric force (renamed sin θ cos ϕ C KIG 
sca,E 

) 

hich may be expressed in terms of mixing gradient electric forces 

in θ cos ϕ C 
jI 
ext,E 

(which have been renamed sin θ cos ϕ C 
jIG 
ext,E 

). For 
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 = 2 , see Eq. (187) in Gouesbet et al. [1] or, equivalently return

o Eq. (137) . 

For sin θ cos ϕ C 
KIβ
sca,E 

, we use the fact that iX 
γ K 
E 

= iX KK 
EH 

(see 

q. (125) ), and afterward Eq. (124) to use the relationship between 

in θ cos ϕ C KI 
sca,EH and Im (iX KK 

EH ) , and finally the second recurrence 

ssumption of Eq. (140) to express sin θ cos ϕ C 
K−1 Iβ
sca,E 

of I I I β to ob- 

ain: 

in θ cos ϕ C 
KIβ
sca,E 

= −Im (a K a 
∗
K+1 ) 

K ∑ 

j=1 

sin θ cos ϕ C jI 
sca,EH 

Im (a j b 
∗
j 
) 

(152) 

hich is a recoil non-standard electric force (to be renamed 

in θ cos ϕ C KINS 
sca,E 

) which may be expressed in terms of recoil non- 

tandard magnetoelectric forces. 

The treatment of the magnetic force sin θ cos ϕ C K 
sca,H 

is exactly 

arallel to the one of the electric force sin θ cos ϕ C K sca,E so that we 

hall now omit most details and focus on the results. To begin 

ith, the magnetic force sin θ cos ϕ C K 
sca,H 

is decomposed into two 

ubforces according to: 

in θ cos ϕ C K sca,H = sin θ cos ϕ C KR 
sca,H + sin θ cos ϕ C KI 

sca,H (153) 

n which: 

in θ cos ϕ C KR 
sca,H = 

λ2 

π
Re (b K b 

∗
K+1 ) Re (X 

K K +1 
H ) (154) 

in θ cos ϕ C KI 
sca,H = 

−λ2 

π
Im (b K b 

∗
K+1 ) Im (X 

K K +1 
H ) (155) 

We then establish: 

in θ cos ϕ C KR 
sca,H = 2 

Re (b K b 
∗
K+1 ) 

Re (b K ) 
sin θ cos ϕ C KRNS 

ext,H 

−Re (b K b 
∗
K+1 ) 

Re (b K−1 b 
∗
K 
) 

sin θ cos ϕ C K−1 R 
sca,H (156) 

o be compared with Eq. (133) , from which we argue, similarly 

s for the corresponding electric force, that sin θ cos ϕ C KR 
sca,H 

is a 

ecoil non-standard magnetic force. As a variant, let us return to 

q. (69) which expresses sin θ cos ϕ C KRNS 
ext,H 

versus Re (X αK 
H 

+ X 
βK 
H 

) . 

sing Eqs. (16) for X αK 
H 

, (18) for X 
βK 
H 

and Eqs. (24) , (26), (28) for

oth X K K +1 
H 

and X K−1 K 
H 

, we establish the magnetic counterpart of 

q. (131) , namely: 

e (X 

αK 
H + X 

βK 
H 

) = Re 
(
X 

K K +1 
H + X 

K−1 K 
H 

)
(157) 

o that sin θ cos ϕ C KRNS 
ext,H 

may be expressed as a summation of two 

on-standard forces, one of them reading as: 

in θ cos ϕ C KRNS2 
ext,H = 

λ2 

2 π
Re (b K ) Re (X 

K K +1 
H ) (158) 

eading to: 

in θ cos ϕ C KR 
sca,H = 2 

Re (b K b 
∗
K+1 ) 

Re (b K ) 
sin θ cos ϕ C KRNS2 

ext,H (159) 

hich confirms that sin θ cos ϕ C KR 
sca,H (now renamed 

in θ cos ϕ C KRNS 
sca,H 

) is indeed a non-standard force. We then have 

he case of a recoil non-standard magnetic force which may be 

xpressed in terms of a mixing non-standard magnetic force. 

nother variant for K = 2 is available from Eq. (204) in Gouesbet 

t al. [1] . 

For sin θ cos ϕ C KI 
sca,H 

, we first demonstrate two recurrence as- 

umptions similar to the ones of Eqs. (139) and (140) , reading as: 

in θ cos ϕ C K−1 Iα
sca,H = 2 Im (b k −1 b 

∗
K ) 

K−1 ∑ 

j=1 

sin θ cos ϕ C jI 
ext,H 

Im (b j ) 
(160) 
10 
in θ cos ϕ C 
K−1 Iβ
sca,H 

= Im (b K−1 b 
∗
K ) 

K−1 ∑ 

j=1 

sin θ cos ϕ C jI 
sca,EH 

Im (a j b 
∗
j 
) 

(161) 

hich are used to establish: 

in θ cos ϕ C KIα
sca,H = 2 Im (b k b 

∗
K+1 ) 

K ∑ 

j=1 

sin θ cos ϕ C jI 
ext,H 

Im (b j ) 
(162) 

in θ cos ϕ C 
KIβ
sca,H 

= Im (b K b 
∗
K+1 ) 

K ∑ 

j=1 

sin θ cos ϕ C jI 
sca,EH 

Im (a j b 
∗
j 
) 

(163) 

Similarly as for the corresponding electric case, sin θ cos ϕ C KIα
sca,H 

renamed sin θ cos ϕ C KIG 
sca,H 

) is a recoil gradient magnetic force 

hich may be expressed in terms of mixing gradient mag- 

etic forces (which have been renamed as sin θ cos ϕ C 
jIG 
ext,H 

), while 

in θ cos ϕ C 
KIβ
sca,H 

(to be renamed sin θ cos ϕ C KINS 
sca,H 

) is a recoil non- 

tandard magnetic force which may be expressed in terms of recoil 

on-standard magnetoelectric forces. For K = 2 , see Eq. (189) in 

ouesbet et al. [1] for sin θ cos ϕ C 2 Iα
sca,H 

and Eq. (190) in Gouesbet 

t al. [1] for a variant equivalent to Eq. (163) . 

.3. Recoil forces in the y -direction 

Recoil forces in the y -direction are treated similarly as for the 

 -direction, with however an interchange between the subscripts R 

nd I. We shall therefore do the economy of demonstrations to fo- 

us on the results. We begin with the recoil magnetoelectric force 

f Eq. (39) which is decomposed into two subforces according to: 

in θ sin ϕ C K sca,EH = sin θ sin ϕ C KR 
sca,EH + sin θ sin ϕ C KI 

sca,EH (164) 

n which: 

in θ sin ϕ C KR 
sca,EH = 

λ2 

π
Im (a K b 

∗
K ) Re (iY KK 

EH ) 

= 

λ2 

π
Im (a K b 

∗
K ) Re (iY 

γ KK 
EH 

) (165) 

in θ sin ϕ C KI 
sca,EH = 

λ2 

π
Re (a K b 

∗
K ) Im (iY KK 

EH ) 

= 

λ2 

π
Re (a K b 

∗
K ) Im (iY 

γ KK 
EH 

) (166) 

n which we used Eq. (40) . We then establish: 

in θ sin ϕ C KI 
sca,EH = 2 

Re (a K b 
∗
K ) 

Re (a K ) 
sin θ sin ϕ C KIS 

ext,E 

= 2 

Re (a K b 
∗
K ) 

Re (b K ) 
sin θ sin ϕ C KIS 

ext,H (167) 

o be compared with Eq. (127) , and showing that sin θ sin ϕ C KI 
sca,EH 

renamed sin θ sin ϕ C KIS 
sca,EH 

) is a recoil scattering magnetoelectric 

orce which may be expressed in terms of mixing scattering 

ure electric and magnetic forces, while sin θ sin ϕ C KR 
sca,EH (renamed 

in θ sin ϕ C KRNS 
sca,EH 

) is a recoil non-standard magnetoelectric force 

ith the same justification than for sin θ cos ϕ C KI 
sca,EH 

. For K = 2 , we

ecover Eq. (149) of [1] . 

Concerning the recoil electric field sin θ sin ϕ C K 
sca,E 

of Eq. (39) , 

e decompose it in two subforces according to: 

in θ sin ϕ C K sca,E = sin θ sin ϕ C KR 
sca,E + sin θ sin ϕ C KI 

sca,E (168) 

n which: 

in θ sin ϕ C KR 
sca,E = 

λ2 

Im (a K a 
∗
K+1 ) Re (Y K K +1 

E ) (169) 

π
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in θ sin ϕ C KI 
sca,E = 

λ2 

π
Re (a K a 

∗
K+1 ) Im (Y K K +1 

E ) (170) 

We then establish: 

in θ sin ϕ C KI 
sca,E = 2 

Re (a K a 
∗
K+1 ) 

Re (a K ) 
sin θ sin ϕ C KINS 

ext,E 

−Re (a K a 
∗
K+1 ) 

Re (a K−1 a 
∗
K 
) 

sin θ sin ϕ C K−1 I 
sca,E (171) 

hich is to be compared with Eq. (156) , from which we simi- 

arly argue that sin θ sin ϕ C KI 
sca,E (to be renamed sin θ sin ϕ C KINS 

sca,E 
)is 

 recoil non-standard electric force. As a variant, let us return to 

q. (73) which expresses sin θ sin ϕ C KINS 
ext,E 

versus Im (Y αK 
E 

+ Y 
βK 
E 

) . Us- 

ng Eqs. (33) for Y αK 
E 

, (35) for Y 
βK 
E 

and Eqs. (41) , (43), (45) for both

 

K K +1 
E 

and Y K−1 K 
E 

, we establish the y -component electric counter- 

art of Eq. (157) , so that sin θ sin ϕ C KINS 
ext,E 

may be expressed as a 

ummation of two non-standard forces, one of them reading as: 

in θ sin ϕ C KINS2 
ext,E = 

λ2 

2 π
Re (a K ) Im (Y K K +1 

E ) (172) 

eading to: 

in θ sin ϕ C KI 
sca,E = 2 

Re (a K a 
∗
K+1 ) 

Re (a K ) 
sin θ sin ϕ C KINS2 

ext,E (173) 

hich confirms that sin θ sin ϕ C KI 
sca,E is indeed a non-standard force. 

e then have the case of a recoil non-standard electric force which 

ay be expressed in terms of a mixing non-standard electric force. 

nother variant for K = 2 is available from Eq. (205) in Gouesbet 

t al. [1] . 

Next, similarly as for Eqs. (139) and (140) , we establish two re- 

urrence assumptions: 

in θ sin ϕ C K−1 Rα
sca,E = 2 Im (a K−1 a 

∗
K ) 

K−1 ∑ 

j=1 

sin θ sin ϕ C jR 
ext,E 

Im (a j ) 
(174) 

in θ sin ϕ C 
K−1 Rβ
sca,E 

= −Im (a K−1 a 
∗
K ) 

K−1 ∑ 

j=1 

sin θ sin ϕ C jR 
sca,EH 

Im (a j b 
∗
j 
) 

(175) 

rom which, similarly as for the x -component case, we establish: 

in θ sin ϕ C KRα
sca,E = 2 Im (a K a 

∗
K+1 ) 

K ∑ 

j=1 

sin θ sin ϕ C jR 
ext,E 

Im (a j ) 
(176) 

in θ sin ϕ C 
KRβ
sca,E 

= −Im (a K a 
∗
K+1 ) 

K ∑ 

j=1 

sin θ sin ϕ C jR 
sca,EH 

Im (a j b 
∗
j 
) 

(177) 

o that sin θ sin ϕ C KRα
sca,E 

(to be renamed sin θ sin ϕ C KRG 
sca,E 

) is a re- 

oil gradient electric force which may be expressed in terms 

f mixing gradient electric forces, while sin θ sin ϕ C 
KRβ
sca,E 

(to be 

enamed sin θ sin ϕ C KRNS 
sca,E 

) is a recoil non-standard electric force 

hich may be expressed in terms of recoil non-standard magne- 

oelectric forces. 

We finish with the magnetic forces sin θ sin ϕ C K sca,H of 

q. (39) that we decompose again into two subforces accord- 

ng to: 

in θ sin ϕ C K sca,H = sin θ sin ϕ C KR 
sca,H + sin θ sin ϕ C KI 

sca,H (178) 

n which: 

in θ sin ϕ C KR 
sca,H = 

λ2 

π
Im (b K b 

∗
K+1 ) Re (Y K K +1 

H ) (179) 

in θ sin ϕ C KI 
sca,H = 

λ2 

π
Re (b K b 

∗
K+1 ) Im (Y K K +1 

H ) (180) 
11 
For sin θ sin ϕ C KR 
sca,H 

, instead of Eq. (171) , we establish: 

in θ sin ϕ C KI 
sca,H = 2 

Re (b K b 
∗
K+1 ) 

Re (b K ) 
sin θ sin ϕ C KINS 

ext,H 

− Re (b K b 
∗
K+1 ) 

Re (b K−1 b 
∗
K 
) 

sin θ sin ϕ C K−1 I 
sca,H (181) 

hich is a recoil non-standard magnetic force. As a variant, let us 

eturn to Eq. (77) which expresses sin θ sin ϕ C KINS 
ext,H 

versus Im (Y αK 
H 

+ 

 

βK 
H 

) . Using Eqs. (34) for Y αK 
H 

, (36) for Y 
βK 
H 

and Eqs. (42) , (44),

46) for both Y K K +1 
H 

and Y K−1 K 
H 

, we establish the magnetic com- 

onent of Eq. (173) , so that sin θ sin ϕ C KINS 
ext,H 

may be expressed as a 

ummation of two non-standard forces, one of them reading as: 

in θ sin ϕ C KINS2 
ext,H = 

λ2 

2 π
Re (b K ) Im (Y K K +1 

H ) (182) 

eading to: 

in θ sin ϕ C KI 
sca,H = 2 

Re (b K b 
∗
K+1 ) 

Re (b K ) 
sin θ sin ϕ C KINS2 

ext,H (183) 

hich confirms that sin θ sin ϕ C KI 
sca,E 

(to be renamed 

in θ sin ϕ C KINS 
sca,E 

) is indeed a non-standard force. We then have 

he case of a recoil non-standard magnetic force which may be 

xpressed in terms of a mixing non-standard magnetic force. 

nother variant for K = 2 is available from Eq. (206) in Gouesbet 

t al. [1] . 

Also, instead of Eqs. (176) and (177) , we obtain: 

in θ sin ϕ C KRα
sca,H = 2 Im (b K b 

∗
K+1 ) 

K ∑ 

j=1 

sin θ sin ϕ C jR 
ext,H 

Im (b j ) 
(184) 

in θ sin ϕ C 
KRβ
sca,H 

= Im (b K b 
∗
K+1 ) 

K ∑ 

j=1 

sin θ sin ϕ C jR 
sca,EH 

Im (a j b 
∗
j 
) 

(185) 

Eq. (184) shows that sin θ sin ϕ C KRα
sca,H 

(to be renamed 

in θ sin ϕ C KRG 
sca,H 

) is a recoil gradient magnetic force which may 

e expressed in terms of mixing gradient magnetic forces, while 

in θ sin ϕ C 
KRβ
sca,H 

(to be renamed sin θ sin ϕ C KRNS 
sca,H 

) is a recoil non- 

tandard magnetic force which may be expressed in terms of recoil 

on-standard magnetoelectric forces. For K = 2 , Eq. (184) reduces 

o Eq. (193) of [1] while Eq. (185) is found to be equivalent to 

q. (194) of [1] . 

. Summary of results and classifications 

We now conveniently summarize the classification of K-forces 

 K > 1 ) developed in the present paper, based on a three-level cat-

gorization and a two-level decomposition. The classifications and 

omments are listed starting from the z-components which are 

he easiest to evaluate, followed by the x - and y -components. We 

ave tried to discuss the various components following the order 

n which they occurred in the paper, excepted for some cases mo- 

ivated by symmetry, aesthetic and convenience considerations. We 

hall consider (i) mixing forces, (ii) type-1 recoil forces which are 

ot expressed in terms of mixing forces (recoil forces in their own 

ight) and (iii) type-2 recoil forces which are expressed in terms 

f mixing forces (recoil forces mixing-force dependent). This clas- 

ification is displayed at the best of our present knowledge and 

nderstanding, although it might have possibly to be modified by 

urther investigations. 

.1. Mixing forces 

The classification of mixing forces has been obtained as follows. 
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(i) Mixing gradient electric forces cos θC KIG 
ext,E 

, sin θ cos ϕ C KIG 
ext,E 

, 

sin θ sin ϕ C KRG 
ext,E 

, see Eqs. (49) , (63), (70) . 

(ii) Mixing gradient magnetic forces cos θC KIG 
ext,H 

, sin θ cos ϕ C KIG 
ext,H 

, 

sin θ sin ϕ C KRG 
ext,H 

, see Eqs. (56) , (67), (74) . 

(iii) Mixing scattering electric forces cos θC KRS 
ext,E 

, sin θ cos ϕ C KRS 
ext,E 

, 

sin θ sin ϕ C KIS 
ext,E 

, see Eqs. (51) , (64), (72) . 

(iv) Mixing non-standard electric forces cos θC KRNS 
ext,E 

, 

sin θ cos ϕ C KRNS 
ext,E 

, sin θ sin ϕ C KINS 
ext,E 

, see Eqs. (52) , (65), (73) . 

(v) Mixing scattering magnetic forces cos θC KRS 
ext,H 

, 

sin θ cos ϕ C KRS 
ext,H 

, sin θ sin ϕ C KIS 
ext,H 

, see Eqs. (58) , (68), (76) . 

(vi) Mixing non-standard magnetic forces cos θC KRNS 
ext,H 

, 

sin θ cos ϕ C KRNS 
ext,H 

, sin θ sin ϕ C KINS 
ext,H 

, see Eqs. (59) , (69), (77) . 

.2. Type-1 recoil forces 

(vii) Recoil non-standard magnetoelectric forces cos θC KINS 
sca,EH 

, 

sin θ cos ϕ C KINS 
sca,EH 

, sin θ sin ϕ C KRNS 
sca,EH 

, see Eqs. (80) , (124), (165) . 

(viii) Recoil non-standard electric force cos θC KINS 
sca,E 

, sin θ cos ϕ C KINS 
sca,E 

, 

sin θ sin ϕ C KRNS 
sca,E 

, see Eqs. (110) , (152) (expressed in terms 

of recoil non-standard magnetoelectric forces), (177) (ex- 

pressed as well in terms of recoil non-standard magneto- 

electric forces). 

(ix) Recoil non-standard magnetic forces cos θC KINS 
sca,H 

, 

sin θ cos ϕ C KINS 
sca,H 

, sin θ sin ϕ C KRNS 
sca,H 

, see Eqs. (121) , (163) (ex- 

pressed as well in terms of recoil non-standard magneto- 

electric forces), (185) (expressed as well in terms of recoil 

non-standard magnetoelectric forces). 

.3. Type-2 recoil forces 

(x) Recoil scattering magnetoelectric forces cos θC KRS 
sca,EH 

, 

sin θ cos ϕ C KRS 
sca,EH 

, sin θ sin ϕ C KIS 
sca,EH 

. These forces may be 

expressed in terms of mixing scattering pure electric and 

magnetic forces, see Eqs. (81) , (127), (167) . 

(xi) Recoil non-standard electric forces cos θC KRNS 
sca,E 

, 

sin θ cos ϕ C KRNS 
sca,E 

, sin θ sin ϕ C KINS 
sca,E 

. These forces may be 

expressed in terms of mixing non-standard electric forces, 

see Eqs. (89) , (135), (173) . 

(xii) Recoil gradient electric forces cos θC KIG 
sca,E 

, sin θ cos ϕ C KIG 
sca,E 

, 

sin θ sin ϕ C KRG 
sca,E 

. These forces may be expressed in terms of 

mixing gradient electric forces, see Eqs. (109) , (151), (176) . 

(xiii) Recoil non-standard magnetic force cos θC KRNS 
sca,H 

, 

sin θ cos ϕ C KRNS 
sca,H 

, sin θ sin ϕ C KINS 
sca,H 

. These forces may be 

expressed in terms of mixing non-standard magnetic forces, 

see Eqs. (115) , (159), (183) . 

(xiv) Recoil gradient magnetic forces cos θC KIG 
sca,H 

, sin θ cos ϕ C KIG 
sca,H 

, 

sin θ sin ϕ C KRG 
sca,H 

. These forces may be expressed in terms of 

mixing gradient magnetic forces, see Eqs. (120) , (162), (184) . 

et us remark, if applicable, that non-standard forces are expressed 

n terms of non-standard forces, that scattering forces are ex- 

ressed in terms of scattering forces, and that gradient forces are 

xpressed in terms of gradient forces. These features confirm by 

heir coherency the interest of the categorization in terms of gra- 

ient, scattering and non-standard forces. Another remarkable fea- 

ure is that recoil gradient forces may be expressed in terms of 

ixing gradient force. 

Another presentation of these results (not present in our pre- 

ious paper [1] ), distinguishing between gradient, scattering and 

on-standard forces, may be more appealing to the reader. We 

hen obtain the following partition: 
12 
.4. Gradient forces 

(i) Mixing electric forces cos θC KIG 
ext,E 

, sin θ cos ϕ C KIG 
ext,E 

, 

sin θ sin ϕ C KRG 
ext,E 

, see Eqs. (49) , (63), (70) which are expressed 

using electric Mie coefficients a K . 

(ii) Mixing magnetic forces cos θC KIG 
ext,H 

, sin θ cos ϕ C KIG 
ext,H 

, 

sin θ sin ϕ C KRG 
ext,H 

, see Eqs. (56) , (67), (74) which are expressed 

using magnetic Mie coefficients b K . 

(iii) Recoil electric forces cos θC KIG 
sca,E 

, sin θ cos ϕ C KIG 
sca,E 

, 

sin θ sin ϕ C KRG 
sca,E 

. These forces may be expressed in terms 

of mixing gradient electric forces, see Eqs. (109) , (151), 

(176) , and involve a coupling between electric Mie coeffi- 

cients a K and a ∗
K+1 

. 

(iv) Recoil magnetic forces cos θC KIG 
sca,H 

, sin θ cos ϕ C KIG 
sca,H 

, 

sin θ sin ϕ C KRG 
sca,H 

. These forces may be expressed in terms of 

mixing gradient magnetic forces, see Eqs. (120) , (162), (184) , 

and involve a coupling between magnetic Mie coefficients 

b K and b ∗K+1 . 

.5. Scattering forces 

(v) Mixing electric forces cos θC KRS 
ext,E 

, sin θ cos ϕ C KRS 
ext,E 

, 

sin θ sin ϕ C KIS 
ext,E 

, see Eqs. (51) , (64), (72) which are expressed 

using electric Mie coefficients a K . 

(vi) Mixing magnetic forces cos θC KRS 
ext,H 

, sin θ cos ϕ C KRS 
ext,H 

, 

sin θ sin ϕ C KIS 
ext,H 

, see Eqs. (58) , (68), (76) which are ex- 

pressed using magnetic Mie coefficients b K . 

(vii) Recoil magnetoelectric forces cos θC KRS 
sca,EH 

, sin θ cos ϕ C KRS 
sca,EH 

, 

sin θ sin ϕ C KIS 
sca,EH 

. These forces may be expressed in terms 

of mixing scattering pure electric and magnetic forces, see 

Eqs. (81) , (127), (167) , and involve a coupling between elec- 

tric Mie coefficients a K and a ∗
K+1 

. 

.6. Non-standard forces 

(viii) Mixing electric forces cos θC KRNS 
ext,E 

, sin θ cos ϕ C KRNS 
ext,E 

, 

sin θ sin ϕ C KINS 
ext,E 

, see Eqs. (52) , (65), (73) which are expressed 

using electric Mie coefficients a K . 

(ix) Mixing magnetic forces cos θC KRNS 
ext,H 

, sin θ cos ϕ C KRNS 
ext,H 

, 

sin θ sin ϕ C KINS 
ext,H 

, see Eqs. (59) , (69), (77) which are ex- 

pressed using magnetic Mie coefficients b K . 

(x) Recoil electric forces cos θC KRNS 
sca,E 

, sin θ cos ϕ C KRNS 
sca,E 

, 

sin θ sin ϕ C KINS 
sca,E 

. These forces may be expressed in terms 

of mixing non-standard electric forces, see Eqs. (89) , (135), 

(173) (Type-2 recoil forces) and cos θC KINS 
sca,E 

, sin θ cos ϕ C KINS 
sca,E 

, 

sin θ sin ϕ C KRNS 
sca,E 

, see Eqs. (110) , (152), (177) (Type-1 recoil 

forces expressed in terms of recoil non-standard magneto- 

electric forces, i.e. not expressed in terms of mixing forces). 

They involve a coupling between electric Mie coefficients a K 
and a ∗

K+1 
. 

(xi) Recoil magnetic forces cos θC KRNS 
sca,H 

, sin θ cos ϕ C KRNS 
sca,H 

, 

sin θ sin ϕ C KINS 
sca,H 

. These forces may be expressed in terms of 

mixing non-standard magnetic forces, see Eqs. (115) , (159), 

(183) (Type-2 recoil forces) and cos θC KINS 
sca,H 

, sin θ cos ϕ C KINS 
sca,H 

, 

sin θ sin ϕ C KRNS 
sca,H 

, see Eqs. (121) , (163), (185) (Type-1 recoil 

forces expressed in terms of recoil non-standard magneto- 

electric forces, i.e. not expressed in terms of mixing forces). 

They involve a coupling between magnetic Mie coefficients 

b K and b ∗
K+1 

. 

(xii) Recoil magnetoelectric forces cos θC KINS 
sca,EH 

, sin θ cos ϕ C KINS 
sca,EH 

, 

sin θ sin ϕ C KRNS 
sca,EH 

, see Eqs. (80) , (124), (165) which involve 
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a coupling a K b 
∗
K between electric and magnetic Mie coeffi- 

cients of the same order. 

. Conclusion 

The present paper discussed the partition of optical forces ex- 

rted by EM arbitrary shaped beams on arbitrary sized particles in 

he framework of GLMT. It complements and concludes a series of 

apers which previously considered successively the case of elec- 

ric dipoles (in particular Rayleigh particles), of magnetoelectric 

ipoles and of quadrupoles. The partition first relies on a first-level 

ategorization between mixing and recoil forces already published 

early four decades ago in early works devoted to GLMT. A second- 

evel categorization distinguishes gradient forces and non-gradient 

orces. Although non-gradient forces are usually named scattering 

orces, we rely on the existence of non-standard forces uncovered 

n Gouesbet [28] (where they were called axicon forces in an in- 

ppropriate way) to introduce a third-level categorization in terms 

f scattering and non-standard forces. A parallel two-level decom- 

osition distinguishes between (i) K -forces, K from 1 to ∞ and (ii) 

lectric, magnetic and magnetoelectric forces. All the forces in the 

ifferent partitions are expressed in terms of BSCs which encode 

he description of the illuminating beam and of Mie coefficients 

hich encode the properties of the scatterer. One of the most ap- 

ealing results is that most of the recoil forces may be expressed 

n terms of mixing forces. In particular, all recoil gradient forces 

ay be expressed in terms of mixing gradient forces. Furthermore, 

he reader which would be content with a decomposition between 

onservative (gradient) forces and non-conservative forces would 

imply obtain these non-conservative forces by summing up the 

cattering and the non-standard forces. 
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ppendix A. Translation between PWECs and BSCs 

The relationships between expansion coefficients used in Zheng 

t al. [32] , denoted PWECs, and the traditional BSCs of the GLMT 

re established in Appendix A of [1] . We then obtained: 

 mn = i (−1) n + m +1 (−1) (m −| m | ) / 2 √ 

2 n + 1 

n (n + 1) 

√ 

(n − m )!(n + m )! 

(n − | m | )! 
g m 

n,T E (186) 

p mn = (−1) n + m (−1) (m −| m | ) / 2 
√ 

2 n + 1 

n ( n + 1) 

√ 

( n − m )!(n + m )! 

( n − | m | )! 
g m 

n,T M 

(187) 

It may be interesting to separate the cases m ≥ 0 and m < 0 .

e then obtain: 

 mn = i (−1) n + m +1 

√ 

2 n + 1 

n ( n + 1) 

√ 

( n + m )! 

( n − m )! 
g m 

n,T E for m ≥ 0 (188) 
13
 mn = i (−1) n +1 

√ 

2 n + 1 

n ( n + 1) 

√ 

( n − m )! 

( n + m )! 
g m 

n,T E for m < 0 (189) 

p mn = (−1) n + m 

√ 

2 n + 1 

n ( n + 1) 

√ 

( n + m )! 

( n − m )! 
g m 

n,T M 

for m ≥ 0 (190) 

p mn = (−1) n 

√ 

2 n + 1 

n ( n + 1) 

√ 

( n − m )! 

( n + m )! 
g m 

n,T M 

for m < 0 (191) 

ppendix B. Comparing mixing gradient forces 

According to Eq. (24) in Zheng et al. [32] , the mixing gradient 

lectric force reads as: 

 

K,mix,G 
E 

= −2 πε 
| E 0 | 2 

k 2 
[ Im (a 2 ) Im (A 

∗
K + A K−1 + U K ) ] (192) 

The longitudinal component then becomes: 

 

K,mix,G 
E,z 

= −2 πε 
| E 0 | 2 

k 2 
[ Im (a K ) Im ( A 

∗
Kz + A K−1 z + U Kz ) ] (193) 

From Eqs. (9) , (10) in Zheng et al. [32] , we may evaluate A 

∗
Kz 

,

 K−1 z , and U Kz in terms of Zheng’s expansion coefficients, and 

hereafter use Appendix A to express the results in terms of BSCs. 

fter a bit of straightforward (but tedious) calculations, we then 

btain: 

 

∗
Kz + A K−1 z + U Kz = −Z K E (194) 

Therefore, Eq. (193) leads to: 

 

2 ,mix,G 
E,z 

= +2 πε 
| E 0 | 2 

k 2 
Im (a 2 ) Im (Z K E ) (195) 

o be compared to Eq. (49) which is conveniently repeated below: 

os θC KI 
ext,E = 

−λ2 

π
Im (a K ) Im (Z K E ) (196) 

This comparison is sufficient to demonstrate that cos θC KI 
ext,E 

is 

ndeed a mixing gradient force. For a better agreement, we con- 

ert cross-sections (forces expressed in square meters) to genuine 

orces in newtons, relying on Eq. (4) to obtain: 

 

KI 
ext,E = −2 πε 

| E 0 | 2 
k 2 

Im (a 2 ) Im (Z 2 E ) (197) 

hich differs from Eq. (195) by a sign difference. This sign differ- 

nce is due to the fact that the time-harmonic convention used 

y Zheng et al. [32] is of the form exp (−iωt) in contrast with the 

ime convention in GLMT which is of the form exp (iωt) , implying 

hat we have to change a 2 to a ∗
2 
, i.e. Im (a 2 ) to −Im (a 2 ) . 

We may similarly deal with the transverse electric components 

in θ cos ϕ C KI 
ext,E 

and sin θ sin ϕ C KR 
ext,E 

, and with the magnetic com- 

onents cos θC KI 
ext,H , sin θ cos ϕ C KI 

ext,H , sin θ sin ϕ C KR 
ext,H (although it is 

ore expedient to invoke a duality between electric and mag- 

etic components, as already discussed in Gouesbet et al. [30] ), to 

emonstrate that these forces are mixing gradient forces as well. 
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