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Communicated by N. Alamanos

Abstract. RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the
University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids
and uses the “in-flight method” to produce radioactive ion beams using the primary beam provided by
the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be,
8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered
the study of elastic and inelastic scattering with the objective to study the interaction potential and the
reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium
and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant
transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental
program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are
part of the near-future research program. Our recent results on elastic scattering, alpha-particle production
and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our
plans for the near future are related to the installation of a new beam line and a cave for gamma-ray
detection. We intend to place in operation a large area neutron detector available in our laboratory. The
long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC
post-accelerator (10 MeV/nucleon primary beams) still in construction in our laboratory.

1 Introduction

The atomic nucleus is a quantum many-body system gov-
erned by the strong interaction. One of the main goals
of nuclear physics is the establishment of a complete and
predictive theory of complex nuclei. An essential part of
this study is about the understanding of the collective
and single particle aspects and their correlations, to al-
low a unique microscopic description of all aspects. This
quest has led to the development of radioactive beams
since they permit an expansion from the one-dimensional
image, where only the nuclear mass is varied, to a two-
dimensional one, where the proton number Z as well as
the neutron number A-Z can vary over a wide range. The
atomic nucleus has proved to be a useful laboratory for
tests of many kinds of new phenomena: for instance, very
neutron-rich nuclei allow the study of unusual proper-
ties of weakly bound quantum systems, such as the nu-
clear halo [1, 2]. Nuclei far from the stability line also
present changes in the shell structure, with new magic
numbers [3, 4].

Great progress in our understanding of nuclear struc-
ture is due to experiments performed in many laboratories
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using radioactive ion beams (RIB). Before the use of RIB,
knowledge of nuclear structure and reactions was based on
experiments using systems of stable or very long-lived nu-
clei. However, more than 90% of all nuclei, most of them
still unknown, are located between the stability line and
the drip lines, where many new phenomena can take place.

Radioactive ion beams can be produced by several re-
action mechanisms, such as in-flight fragmentation of the
projectile, spallation or target fragmentation followed by
the isotope separation online (ISOL) method, transfer re-
actions, fusion, or even fission [5]. The first two processes
occur at intermediate and high incident energies and are
used at many large laboratories around the world. They
have the advantages of high intensity, can produce light
and heavy radioactive beams, and the possibility to move
further away from the stability valley. The use of trans-
fer reactions to produce RIB is possible at much lower
energies and, in this way, small laboratories with quite
low-energy accelerators, are also making important con-
tributions in this field. Their main advantage is that they
produce low-energy RIB. At energies near the Coulomb
barrier or above, valuable information on the structure
of exotic nuclei and on the dynamics of the nuclear re-
actions between them can be obtained. Important issues,
such as fusion below the Coulomb barrier, and the role
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of the neutron halo with respect to fusion, can be stud-
ied only with low-energy beams. Many experiments were
performed with light exotic nuclei presenting halo, such
as 6He, 8He, 11Li, or 11Be among others [6]. On the other
hand, recent experiments with radioactive ion beams have
been very successful in nuclear astrophysics investigations,
where many stellar scenarios involve short-lived nuclei [7].

In the late nineties, our laboratory decided to extend
the capabilities of the Pelletron Tandem - 8UD, installed
at the Institute of Physics of the University of São Paulo
(IFUSP), by producing secondary beams of radioactive
nuclei. The 8UD Tandem is the only particle accelerator
in Brazil contributing significantly to the development of
fundamental research in nuclear physics. The Radioactive
Ion Beams in Brazil (RIBRAS) system is the first to pro-
duce secondary beams of unstable nuclei in the Southern
Hemisphere and it is the only one in Latin America. In op-
eration since 2004, it has been working continuously since
then.

Until recently almost all experiments performed at RI-
BRAS were on elastic scattering. Elastic scattering angu-
lar distributions were measured for the available radioac-
tive beams (6He, 8Li, 7,10Be and 8B) on light, medium
mass and heavy targets at various energies, near and above
the Coulomb barrier. These measurements are important
since they allow the determination of the optical poten-
tials between the radioactive projectiles and the targets.
These can be quite different from those of stable systems
due to the halo structure or the low binding energy of the
radioactive nuclei. The elastic scattering also gives infor-
mation on the total reaction cross section and on the size
of the nuclei involved. The coupling of the elastic scatter-
ing to other important channels, as breakup or transfer,
can also be investigated through the elastic scattering ex-
periments. In the case of radioactive projectiles, these ef-
fects are strongly enhanced and their study as a function
of the target mass or the incident energy was achieved by
our measurements. This review intends to give a descrip-
tion of the experimental device, of the scientific results
achieved, and of future plans.

2 Description of the Radioactive Ion Beams
in Brazil (RIBRAS) facility and ancillary
equipments

The Radioactive Ion Beams in Brazil (RIBRAS) [8] is a
system based on superconducting solenoids to produce
secondary beams of unstable nuclei. It is installed in
the Open Laboratory of Nuclear Physics (LAFN) at the
Physics Institute of the University of São Paulo (IFUSP)
in São Paulo, Brazil. The choice for a solenoid based sys-
tem was based on the successful example of the TWINSOL
facility [9] installed at the University of Notre Dame, USA.
However, due to the future perspective of a LINAC post-
accelerator installation in our laboratory, which would
produce primary beams with E ≤ 10MeV/nucleon, the
solenoids were designed to take into account the higher-
energy beams to be delivered.

To produce the secondary radioactive beams, the RI-
BRAS system uses the “in-flight method”, where the ra-
dioactive beams are produced on-line by a nuclear reac-
tion (one or two-nucleon transfer reactions), triggered by
a stable primary beam on a stable target. The contin-
uous stable beams are accelerated by the long standing
8UD Pelletron Tandem accelerator of the LAFN [10]. The
term 8UD refers to eight electrostatic accelerating units
arranged in tandem configuration on both sides of the
high voltage terminal which can reach 8MV. Beams of
protons, deuterons, Li, Be, B, C, O, F, Si isotopes and
heavier ions up to Cu, with typical intensities around
μAe, can be delivered. The maximum energies are be-
tween 2–5MeV/nucleon. The superconducting LINAC in
installation will raise the energy of the stable beams to
10MeV/nucleon. Also, pulsed beams of Li, Be, B, C, O
isotopes, and heavier beams will be available with the
completion of the LINAC post-accelerator.

2.1 Description of the solenoids and production targets

The RIBRAS system consists of two large air-core (30 cm
clear warm bore), superconducting solenoids with 6.5T
maximum central field (5Tm axial field integral). The
system has three chambers, one before the first solenoid
(small ISO chamber) that will be called chamber-1. A cen-
tral scattering chamber (25 cm diameter ISO chamber) lo-
cated between the two solenoids will be called chamber-2.
Recently a new, large (70 cm diameter) scattering chamber
was installed after the second solenoid, that will be named
chamber-3. See fig. 1 for a schematic view of the sys-
tem. The superconducting solenoids were manufactured
by Cryomagnetics Inc. (USA). The magnet coils are im-
mersed in a liquid-helium (LHe) dewar which contains
a maximum of 250 l of LHe, with a boil-off rate of 2–
3 liters/day. The LHe vessel is surrounded by a liquid-
nitrogen vessel of 130 l and vacuum shields to minimize the
LHe consumption. This vessel configuration, associated
with the option of the persistent mode, allows an economi-
cal operation of the solenoids. The helium gas evaporating
from the dewars is recovered, compressed into cylinders,
and liquified at IFUSP. Also, the solenoids have no exter-
nal iron yoke, so there is a weak external magnetic field.
The two superconducting solenoids act as thick lenses to
collect, select, and focus the secondary beam. With the
large bore of the solenoids, it is possible to reach a large
angular acceptance, 2◦ ≤ θ ≤ 15◦, i.e., about 30msr in
solid angle, in comparison with about 5msr which can be
obtained from a dipole based system.

The production system (primary target) consists of a
gas cell, mounted in chamber-1, before the first solenoid.
The primary target can be a gas or a solid target, such as
a 9Be foil, which is mounted as the gas cell window. The
9Be foil is commercial, with a nominal thickness of 12 μm.
Before using it, we usually measure its thickness by the
energy loss of the α-particles emitted by a 241Am source.
In the case of using a solid foil target, the gas inside the
cell would have the purpose of cooling the foil heated by
the primary beam. In other situations, the gas inside the
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Fig. 1. The experimental set-up of RIBRAS: the stable beam comes from the left, the production target, located in chamber-1
is followed by the W beam stopper and the first solenoid, which is followed by the central scattering chamber-2, with the
secondary target and detectors installed in it, followed by the second solenoid and the large scattering chamber-3. Taken from
ref. [11].

cell can be used as the production target and, in this case,
the entrance and exit windows can be just thin vacuum-
tight metal foils. Tens of centimeters downstream, in the
beam line after the gas cell, there is a tungsten rod with
electron suppression and with a cylindrical hole (geomet-
rical suppression) to stop and collect the primary beam
particles (Faraday cup). The Faraday cup not only stops
the primary beam but also the secondary beams in the
angular range between zero and 2◦. A current integrator
connected to the Faraday cup measures the total incident
charge during a run.

The first solenoid makes an in-flight selection by the
magnetic rigidity of the reaction products emerging from
the primary target in the forward angle region. As the first
magnet focuses all ions with the same magnetic rigidity,
i.e., the same ME/Q2 ratio, where M , E and Q stand
for mass, energy, and charge state of the ion, the beam of
interest can be accompanied by many contaminant beams
of the same magnetic rigidity, but with different charges,
masses and energies. A collimator at the entrance of the
first solenoid limits the maximum angular acceptance to
6◦, so, in this set-up, the angular divergence of the sec-
ondary beams entering the first solenoid is 4◦, between 2◦
and 6◦. The angular divergence of the secondary beam in
chamber-2 is 3.2◦, between 1.3◦ and 4.5◦.

2.2 Production of radioactive ion beams

The production of radioactive ion beams (RIB) depends
on the combination of the nuclear reaction, which pro-
duces the radioactive nucleus of interest, and of the system

used to select and focus the secondary beam. At low ener-
gies (E ≤ 10MeV/nucleon), selective reactions have to be
chosen, such as few nucleon transfer reactions, fusion or
breakup reactions, preferably with a forward-peaked cross
section. To transfer as much as possible of the projectile
energy to the secondary beam, it is useful to use reactions
in inverse kinematics (heavy beam on a light target). Also,
the primary beam has to be intense (≥ 0.5μA) and the
production target must be robust enough to withstand it.

For primary stable beams at energies such as those de-
livered by our Pelletron accelerator, transfer reactions are
the best options to produce radioactive nuclear beams.
Cross sections for one- or two-nucleon transfer reactions
are on the order of 10-20mb. Also, transfer reactions with
large forward-peaked cross sections in the angular range
of 2◦ to 6◦, which is the angular acceptance of RIBRAS,
are required to obtain useful secondary beam intensities.
Usually, many different species are produced with similar
intensities in the production target and the beam of inter-
est has to be selected and focused by an electromagnetic
selector device, a solenoid in our case. If the production re-
action occurs in inverse kinematics with a heavier primary
beam hitting a light production target, the kinematic fo-
cusing is better.

The main advantages of this system is that it can be
used to produce very short-lived species. Depending on
the reaction and element produced, the secondary beam
can have a quite favorable intensity. The energy control
for the primary beam of the Pelletron tandem allows for
very low energy of the secondary beam, which is an advan-
tage for reactions of astrophysical interest. The disadvan-
tages are the secondary beam quality and purity, which
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Table 1. Secondary beams produced at the RIBRAS facility and the nuclear reactions used for their production. The intensities,
purities, energy resolution (FWHM) and energies obtained for the beams at the chamber-2 are also shown. The intensities are
reported in pps per 1 μA of primary beam.

Secondary beam Production reaction Q-value Intensity (pps) Energy resolution Purity

(MeV) FWHM (keV)/Energy %

6He 9Be(7Li, 6He)10B −3.390 105–106 1000/22MeV 16
7Be 3He(6Li, 7Be)d +0.112 104–105 800/18.8 MeV 2
7Be 7Li(6Li, 7Be)6He −4.369 104–105 1000/22MeV 2
8Li 9Be(7Li, 8Li)8Be +0.367 105–106 500/25.8 MeV 44
8B 3He(6Li, 8B)n −1.975 104 1000/15.6 MeV 4.4

10Be 9Be(11B, 10Be)10B −4.642 105 800/23.2 MeV 3
12B 9Be(11B, 12B)8Be +1.705 105 800/25.0 MeV

are not excellent, and the limitation to radioactive species
not very far from the stability valley. As examples, the
one-nucleon transfer reactions used for the solenoid based
system are 9Be(7Li, 8Li)8Be and 9Be(7Li, 6He)10B, which
produce reasonably intense beams of 8Li (106 pps) and 6He
(105 pps) for 1μA of primary beam. However, to produce
the radioactive proton-rich 8B beam, it is necessary to
use a two-proton transfer reaction, such as 3He(6Li, 8B)n,
where a 3He gas cell is required and a lower intensity is
obtained, 104 pps (per 1μA of the 6Li primary beam).

2.3 Secondary beams already produced (intensities,
production reactions, production rates)

The secondary radioactive ion beams already produced
with the RIBRAS system are presented in table 1, to-
gether with the nuclear reaction used for their produc-
tion. As mentioned above, the solenoid makes a magnetic
rigidity selection and nuclei with the same Bρ are trans-
mitted and focused together with the beam of interest.
Some examples of these contaminant beams are presented
in figs. 2, 3 and 4. These two-dimensional E−ΔE identifi-
cation spectra were measured in chamber-2 with a ΔE−E
Si telescope with the beams hitting a heavy (usually gold)
secondary target.

Figures 2, 3, and 4 clearly show that the main contam-
inant beams, measured in chamber-2, are the degraded
primary beam in a lower charge state and 4He, as well
as light particles, such as protons, deuterons, and tritons.
The fully stripped primary beam 7Li3+ has a smaller mag-
netic rigidity than the fully stripped 6He2+ or 8Li3+ sec-
ondary beams and consequently, its focal point is located
before the secondary beams of interest. Thus, it can be
stopped in a blocker located at its crossover point, before
the secondary target and is not observed in our spectra.
However, the degraded primary beam in the 2+ charge
state has a continuous energy distribution and can be fo-
cused with the beam of interest at any Bρ-value. The
same argument applies for the 4He contaminant beam.
The 9Be target can break into two 4He+n and these α-
particles have a continuous energy distribution, observable
at any magnetic rigidity. Light particles such as protons,
deuterons and tritons, degraded after the production tar-

Fig. 2. Two-dimensional E − ΔE identification spectrum ob-
tained using a E − ΔE Si telescope in chamber-2, with the
6He secondary beam focused on a gold target. The production
reaction was 9Be(7Li, 6He)10B and the energy of the 6He beam
was 16.2 MeV. The contaminant beams are 7Li2+, 4He, protons
and deuterons. The relative intensity of the beam of interest,
6He, was 16%. Taken from ref. [12].

Fig. 3. Two-dimensional E − ΔE identification spectrum ob-
tained using a E−ΔE Si telescope in the chamber-2, with the
8Li secondary beam focused on a gold target. The production
reaction was 9Be(7Li, 8Li)8Be and the energy of the 8Li beam
was 19.0 MeV. The contaminant beams are 7Li2+ (38%), 4He
(16%), protons, deuterons, tritons and 6He, any of them less
than 1%. The relative intensity of the beam of interest, 8Li,
was about 44%. Taken from ref. [13].
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Fig. 4. Two-dimensional E − ΔE identification spectrum ob-
tained using an E − ΔE Si telescope in chamber-2, with the
7Be and 8B secondary beams focused on a gold target. The
contaminant beams are 6Li2+ and 4He.

get, are also focused at any selected magnetic rigidity and
are present in our spectra. In the case of focusing the 8Li
secondary beam, it is about 44% of the total beam inten-
sity in chamber-2. In the case of the 6He secondary beam,
it is only about 16% of the total secondary beam inten-
sity. The elastic cross sections of the beam of interest and
the different contaminants, scattered on the Au target,
were taken into account to calculate the relative purities
in the cases we used the scattered beam. In some cases,
we performed measurements of the secondary beam and
contaminant intensities by placing a detector at zero de-
grees, directly on the secondary beam, and reducing the
beam to intensities below 1 nAe. In case of the 7Be and
8B secondary beams, the primary beam is 6Li3+ which
has a magnetic rigidity higher than the secondary beams
of interest, which are proton rich and have low magnetic
rigidity due to their high charge state. As a consequence,
particles of 6Li3+, and others with degraded energy, can
fall into the band pass of the solenoid, producing more
contaminated spectra in chamber-2 (see fig. 4), than in
the case of neutron-rich beams, such as, 6He and 8Li. In
the next subsection, the purification of secondary beams
is discussed.

The energy resolution of the different secondary beams
in chamber-2 is quoted in table 1 and it is the full width
at half maximum (FWHM) of the elastic peaks on a gold
target, measured at forward angles. It varies between 500
and 1000 keV of FWHM at incident energies of about 20–
25MeV. The corresponding standard deviation σ is this
value divided by 2.35, and thus, smaller. It depends on
many factors, such as the kinematics of the production
reaction and the kinematic broadening due to the angu-
lar divergence, as well as the thickness of the production
target and the energy straggling inside it.

Fig. 5. The beam profile in the center of chamber-2 was mea-
sured using an x-y position-sensitive parallel plate avalanche
counter (PPAC) in coincidence with a Si detector located be-
hind the PPAC. We obtained a well-centered circular spot of
about 4mm of diameter indicated in this figure.

Fig. 6. The beam profile on the horizontal-axis at the center
of chamber-2 was measured using a position sensitive (PSD)
silicon detector. We obtained a perfectly centered spot of 3.5–
4 mm indicated in this figure.

The beam profile at the center of chamber-2 was
checked by different methods: i) measuring with an
x-y position-sensitive parallel plate avalanche counter
(PPAC), we obtained a well-centered circular spot of
about 4mm in diameter, shown in fig. 5; ii) using a
TIMEPIX detector [14], we obtained a similar result; how-
ever, the TIMEPIX detector was not mounted exactly at
the center of chamber-2 in the case of the measurement;
iii) more recently, by using a position-sensitive (PSD) sil-
icon detector on the horizontal axis, a perfectly centered
spot of 3.5–4mm was observed, shown in fig. 6.
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Fig. 7. The trajectories calculated by the code TwinSol, for 8Li
beam (red solid line) and the primary beam 7Li (blue dotted
line), which is stopped by a blocker positioned at its focal point.

2.4 Purification of the secondary beams (collimators,
blockers, degrader systems, timing measurements)

The purity of the secondary radioactive beam is attained
by a system of blockers and collimators strategically po-
sitioned along the RIBRAS beam line. The blockers are
circular obstacles (lollipop) and can be conveniently po-
sitioned at any point along the beam axis. The blockers
should be placed at the focus of the main contaminant
beams. The collimators limit the angular range and cut
contaminants that have angular ranges larger than the
beam of interest.

We have the option of two codes to calculate the trajec-
tory of the particles through the solenoids. The first one,
which only calculates trajectories, is a fortran-90 com-
puter code, first developed for the TwinSol system of the
University of Notre Dame, USA [15], and then adapted
for the RIBRAS magnets [16]. This program integrates
numerically the equation of movement of a particle, given
its mass, charge state, velocity and the magnetic field at
each point of the trajectory, from the primary target up
to the focusing position. An example of the trajectories
calculated for 8Li3

+
and the contaminant 7Li3

+
for the

first solenoid is shown in fig. 7.
The second code is SIM-RIBRAS [17], a ROOT-

based [18] set of Monte Carlo routines specially designed
to provide support for experiment planning and exper-
imental setup enhancing, which gives a complete sim-
ulation of the experiment. It has two main programs:
CineRIBRAS, which performs beam kinematics simula-
tions, with energy absorbers, and SolFocus, which calcu-
lates the beam selection and focusing in RIBRAS. With
a full description of RIBRAS’s geometry, magnetic field

Fig. 8. The trajectories calculated by the code SolFocus for
the two solenoids, with a degrader in chamber-2, for 8Li beam
(blue solid line in (a)), for the contaminant beam 2H (red solid
line in (b) and the primary beam 7Li (red solid line in (c)),
which is stopped by a blocker positioned at its focal point.

and secondary beam selection, it searches for the optimal
electric current in the solenoids, providing beam tracks
and beam spots at the focal planes. It also calculates the
possible contaminant beams and allows the inclusion of
collimators, blockers and degraders. An example of tra-
jectories calculated by SolFocus is presented in fig. 8.

The use of two magnets in RIBRAS is important to pu-
rify the secondary beams. With two solenoids, it is possible
to use the differential energy loss in an energy degrader
foil, located at the crossover point between the magnets,
to select the ion of interest and move the contaminant
ions out of the band pass of the second solenoid. Choos-
ing the magnetic field in the second solenoid to focus the
secondary beam of interest, the contaminant beams, which
have different magnetic rigidity after the degrader, are no
longer focused. Some collimators are mounted along the
beam line, allowing only the beam particles which hit the
degrader at the cross over point to traverse the second
solenoid. This method, however, does not provide good
separation of the isotopes.

In order to obtain the best beam purification, de-
graders of different materials, such as Al, Au, kapton and
[CH2]n polyethylene foils, were tested. Two-dimensional
spectra of a Si detector telescope, presented in fig. 9, show
that the purity of the 8Li beams in chamber-3 is about
99% when using a degrader in chamber-2. It should be
compared with a purity of 65%, obtained without the use
of a degrader. This result was obtained using a [CH2]n
polyethylene foil of convenient thickness as degrader and
the secondary beam was scattered on a gold target at the
center of chamber-3 and detected at θlab = 10◦ using a
E − ΔE Si detector telescope. If we compare fig. 3, mea-
sured in chamber-2, and fig. 9(a), measured in chamber-3,



Eur. Phys. J. A (2014) 50: 128 Page 7 of 34

Fig. 9. Two-dimensional E − ΔE identification spectra ob-
tained using a Si telescope at Θlab = 10◦, in chamber-3, with
the 8Li secondary beam focused on a gold target. Spectrum
(a) was obtained without a degrader and spectrum (b) with a
degrader in chamber-2.

both without degrader, we see that in chamber-3 the
7Li2

+
has been practically removed by collimators and

blockers placed between the two chambers and the pu-
rity of 8Li, which was 44% in chamber-2, has increased to
65% in chamber-3. The transmission from chamber-2 to
chamber-3, for the 8Li beam, using degrader, was about
50%.

For the 6He secondary beam, a purification from 16%
in chamber-2 to 92% in chamber-3 was obtained by using
a [CH2]n foil of 12μm as a degrader placed in chamber-
2 [19].

In the following sect. 4, it will be shown that even
with a cocktail of secondary beams (beam of interest plus
many contaminant beams), the elastic scattering measure-
ments in direct kinematics (target heavier than beam) can
be performed, since the elastic scattering peaks are well
separated and easily identified. This is the main reason
why we performed only elastic scattering angular distri-
bution measurement during the period when chamber-3
was not operational. For these measurements, the purifi-
cation, which reduces the beam intensity, is unnecessary.
However, for reactions, such as transfer, fusion, and even
for inverse kinematic elastic scattering (see sect. 6), where,
in the identification spectrum, the reaction products of in-

terest can be superimposed on contaminants, the purifi-
cation is essential.

An additional cleaning of the secondary beam, espe-
cially useful to separate isotopes, can be obtained by us-
ing a time-of-flight (TOF) technique, for which a pulsed
primary beam would be very useful. The TOF can also
be determined using two timing detectors some meters
apart. Recently, a timing detector, based on a micro-
channel plate detector (MCP) was developed and installed
in chamber-2. The other timing signal should be given by
the fast signal of the surface barrier Si E detector of the
telescope in chamber-3. This system was recently tested;
the efficiency of the time detector for the 5.486MeV α-
particles of a 241Am source was 85%. However, when using
a 8Li beam and degrader, the efficiency was lower, due to
the residual magnetic fields of the magnets. Due to the use
of a degrader, the magnetic fields in the two solenoids were
different and did not cancel out at the location of the MCP
detector. In the future, magnetic shielding will be placed
around the MCP detector to improve its efficiency. The
beam profile was measured with a PSD detector mounted
at the center of chamber-3 on the horizontal direction; the
diameter of the beam spot was 6.5–7mm.

The installation of a pulsed primary beam in our Pel-
letron accelerator would greatly improve the beam purity
and selection of the secondary particles produced by RI-
BRAS. A pulsed primary beam would allow the measure-
ment of the time of flight (TOF) between the primary
beam and the detectors after the secondary target and
would provide means to select different secondary parti-
cles by their different TOF. The installation of a beam
buncher with a frequency compatible with the LINAC
post-accelerator under construction is underway in our
Pelletron accelerator.

3 Elastic scattering measurements

3.1 Introduction

With this equipment in operation since 2004, we have per-
formed systematic studies of elastic scattering and reac-
tions of exotic nuclei on targets of various masses [12, 13,
20–28]. Below, we discuss some aspects of this research
based on experimental data obtained at RIBRAS. Elas-
tic scattering is the simplest process that can occur in
the collision of two nuclei. The kinetic energy and angular
momentum are conserved, as well as the identity of the
colliding nuclei. At low energies, it is the most important
process in terms of cross section and provides information
on the nuclear potential, as well as the total reaction cross
section. In addition, angular distributions of elastic scat-
tering may contain effects due to the coupling with other
reaction channels, providing indirect information about
these channels.

In the case of elastic scattering of stable projectiles,
the angular distributions show a more or less typical pat-
tern. At energies near the Coulomb barrier, the scatter-
ing is pure Rutherford in the forward angle region with
σ/σRuth ≈ 1. As the scattering angle is increased, the
short-range nuclear force begins to act, and deviations
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from the Rutherford cross section are observed [29]. These
deviations basically consist of an oscillatory diffraction
pattern, typical of a Fresnel diffraction, due to the interfer-
ence between partial waves refracted, respectively, in the
Coulomb and nuclear potentials, emerging at the same
scattering angle. This kind of Coulomb rainbow is typi-
cal of heavy and intermediate mass systems at energies
close to the Coulomb barrier. For larger angles, the ab-
sorptive component of the optical potential increases and
the ratio of the elastic scattering to Rutherford cross sec-
tion presents an exponential falloff. The angle at which the
cross section falls to σ/σRuth = 1/4 is called θ1/4, and sep-
arates the illuminated and the shadow regions [30]. This
angle is sometimes called the grazing scattering angle and
can be related to the size of the system via the deflec-
tion function, which is known analytically for the case of
pure Coulomb scattering. In a semi-classical view, the de-
flection function is a fundamental quantity, which relates
the impact parameter, or the angular momentum of the
incident particle, with the scattering angle. The grazing
angular momentum is then related to the grazing scat-
tering angle, or θ1/4 and, measurements of the differential
scattering cross section, in a region around this angle, pro-
vide important information on the size of the system and
the total reaction cross section.

As we go to lighter mass systems, the Coulomb barrier
becomes lower and the diffraction pattern changes from
the Fresnel to the Fraunhofer type with the appearance
of oscillations in the angular distributions, whose periods
are related to the grazing angular momentum of the col-
lision.

In the case of exotic projectiles, some peculiarities have
been observed. Due to the low binding energies of the pro-
jectiles compared to the stable isotopes, a strong coupling
with states in the continuum, namely the breakup and
neutron transfer, is expected. The low binding of the ex-
otic projectiles makes them prone to breakup, even in the
long-range Coulomb field of the target, which introduces a
long-range component in the absorptive potential. In ad-
dition, some projectiles, such as 11Li, 6He, 11Be, and oth-
ers, present a neutron halo which enhances the probability
of neutron transfer reactions, even at energies below the
Coulomb barrier. Those processes are, in general, strongly
coupled to the elastic scattering and introduce character-
istic dynamic polarizations in the optical potential which
are not present in the case of stable projectiles.

In the next subsections, we will present our experi-
mental method and a theoretical description of the reac-
tion models used in the analysis of our data. In sect. 4,
we present the experimental data of the collision of ex-
otic projectiles, such as 6He, 8Li, and 7,9,10Be, on tar-
gets with different masses that illustrate these phenom-
ena. 8Li and 7Be are radioactive and weakly bound nu-
clei; however, they do not present a halo structure. One of
the main motivations to perform elastic scattering exper-
iments with 8Li and 7Be beams was to observe any possi-
ble effect in the elastic data due to their different cluster
configuration as compared to the configuration of 7Li and
6Li nuclei. The cluster structures and the binding ener-
gies (BE) of these four weakly bound nuclei are the fol-

lowing: 8Li → 7Li + n; BE = 2.033MeV. 7Li → 4He + t;
BE = 2.467MeV. 6Li → 4He + d; BE = 1.474MeV.
7Be → 4He + 3He; BE = 1.586MeV. As the cluster struc-
tures are quite different, going from a valence neutron +
7Li core to two He isotopes, it would be interesting to see
how the different mechanism (transfer and breakup) would
compete with the elastic scattering on the same target due
to different configurations of the projectiles. For instance,
for nuclei with a valence neutron, such as 8Li, only the
core would be affected by the Coulomb field of the target,
while for nuclei, such as 7Be, 7Li, and 6Li, both cluster
particles would be affected by the Coulomb field. In this
case, what would be more important for the breakup; the
low binding energy or the possibility to produce dipole po-
larization? Of course, the point here is whether one could
observe these effects or not in the elastic scattering or in
some other specific reaction mechanism and, that is why
these experiments were conducted with the RIBRAS sys-
tem. Moreover, this kind of experiment, induced by only
modestly exotic beams, could be very suitable for small
laboratories as the one in São Paulo, where there is a tra-
dition of making available longer beam times for lower
count rates.

3.2 Experimental methods

Most of the elastic scattering experiments done with ra-
dioactive beams produced by RIBRAS were performed us-
ing only the first solenoid and chamber-2. In the following,
we describe the features that are common to all measure-
ments. The detection system consists of several surface
barrier ΔE − E Si telescopes, with thin (20–25μm) ΔE
detectors, followed by E detectors of 300, 500 or 1000μm.
The secondary targets vary, ranging from light targets,
such as 9Be, 12C, or 27Al, to heavier, such as 51V, 58Ni,
and 120Sn. However, in all experiments, we alternated runs
with the target of interest and a gold target to monitor
the secondary beam intensity and to provide an absolute
normalization of the cross sections. The scattering of these
radioactive projectiles on gold, at the energies and angles
we performed experiments, is pure Rutherford.

The elastic scattering cross section in the center-of-
mass frame, for the system of interest, can be determined
by the expression below:

σc.m.(θ) =
Nc

NAu
c

NAu
b

Nb

NAu
t

Nt

J

JAu
σAu

c.m.(θ), (1)

where Nc is the area of the peak of interest, J is the Jaco-
bian, a factor of transformation from the laboratory to the
center of mass system, Nb is the total number of beam par-
ticles during the run, Nt is the surface density of the target
of interest in number of atoms/cm2, NAu

c , JAu, NAu
b , NAu

t

are the corresponding numbers with the gold target. This
expression has the advantage of being independent of the
detector solid angle. The ratio NAu

b

Nb
is taken as the ratio of

the accumulated charge of the primary beam, measured
with the integrator during the runs with gold and the tar-
get of interest, and supposes that the production efficiency
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did not change with time. Usually, we perform runs with
the gold target before and after every run with the target
of interest in order to monitor the production rate during
the entire experiment.

The elastic scattering experiments described in detail
in the following sect. 4 were performed using only the first
solenoid. In chamber-2, we have many contaminant beams
accompanying the beam of interest. However, elastic scat-
tering is by far the most probable process and it can be
identified easily and measured even in the presence of con-
taminant beams. Moreover, in some experiments, we are
able to use the contaminant beams to measure their elastic
scattering cross sections also.

To compensate the low intensity of the radioactive
beams, we use quite large (10–20msr) solid angle Si tele-
scopes. In this case, the geometrical mean detection angle
is not a good representation in the forward angle region,
since the Rutherford cross section on the gold target, for
instance, has a very rapid variation with angle, and the
effective mean angle has to be weighted by the cross sec-
tion. The effective detection solid angles and the mean
detection angles are obtained from a Monte Carlo simula-
tion [31], which takes into account the collimator in front
of the detectors, the secondary beam spot size, the an-
gular divergence of the secondary beam, and the angular
distribution at forward angles in the detector, which mod-
ifies the average detection angles. The angular resolution
(standard deviation) is between 2 and 2.7◦, depending on
the energy and the colliding system. This error is usually
small compared to our angular step and was not indicated
in the figures, where we present the angular distributions
of the elastic scattering differential cross sections.

A similar effect occurs for the energy loss in the target.
Due to the low secondary beam intensity, we normally use
thick targets, of the order of a few mg/cm2 and as a con-
sequence, the energy loss in the target can reach several
MeV. Then, the measured cross section is, in fact, the re-
sult of an average in energy of the cross sections at each
point along the trajectory of the particles inside the target.
We have shown in [32] that for the case of pure Rutherford
scattering in a thick target, there is an effective energy,
which exactly reproduces the average cross section, and
corresponds to the geometric mean of the energies before
(E0) and after (E1) the target, given by: Eeq =

√
E0E1.

In many applications, where the target is not too thick
and the energy loss in the target is relatively small (≤ 5%
of the average energy) this value is very close to the en-
ergy in the center of the target, the difference between
them being ≤ 0.05%. We have calculated the difference
for thicker targets [33]; it is, respectively, about 0.6 and
2.5% when the energy losses are about 20 and 40% of the
average energy. In these cases (fig. 18) the geometric mean
has to be used. The uncertainty of the effective energy can
be assumed to be very similar to the uncertainty of the
incident energy of the secondary beam, presented in ta-
ble 1, which already takes into account the energy loss in
a gold target.

With the present intensities of our secondary beams,
measurements of excitation functions with small energy
steps would be very time consuming. However, in the

“thick-target method”, one can obtain the entire exci-
tation function in one measurement, using a thick sec-
ondary target. This method is currently used mainly in in-
verse kinematics, with reactions between heavier radioac-
tive beams on light proton (p), deuteron (d), or 4He(α)
targets. The light targets can be gaseous, liquid, or even
solid, refrigerated by cryogenic means, to increase their
thickness. In our experiments, we used solid plastic tar-
gets of polyethylene foils, [CH2]n, which are rich in pro-
tons.

If the composite system, projectile + target, formed
during the collision, presents resonances, they should be
populated, from the beam energy down to zero energy,
while the radioactive projectile is slowing down in the
thick [CH2]n polyethylene target. Whenever a resonance
is populated, a larger number of ejectiles (p, d, or α) are
produced and detected in the Si telescopes located at for-
ward angles, producing a peak in the ejectile (p, d, or α)
spectrum. Thus, the energy spectrum of the ejectiles rep-
resents the excitation function of the reaction, and peaks
in the energy spectrum correspond to resonances in the
excitation function.

The main advantage of this method, in the case of
light ejectiles (p, d, or α), is the good energy resolution of
the excitation function. The energy uncertainty is much
smaller than, and practically does not depend on, the en-
ergy resolution of the incident beam. This is due to the
fact that beam particles with slightly different energies can
populate the same resonance at slightly different locations
in the target, but the ejectiles emitted arrive at the de-
tector with practically the same energy, due to their small
energy loss in the target.

The measurement of the elastic scattering on a pro-
ton target in inverse kinematics is more difficult than
elastic scattering on a heavier target in normal kinemat-
ics (sect. 4), for several reasons: i) in inverse kinematics
the recoiling protons are detected and they have lower
energy than the contaminant proton beam; ii) the pro-
tons lose less energy in the detectors and are more dif-
ficult to be detected with good energy resolution than
the scattered radioactive nuclei; iii) the low-energy pro-
tons stop in the ΔE Si detector and cannot be detected
in the telescope, limiting the excitation function at low
energies. Thus, measurements of proton elastic scattering
in inverse kinematics has to be performed with pure ra-
dioactive ion beams. As described in sect. 2.4, the purifi-
cation of the secondary beam can be achieved using the
two solenoids and a degrader foil at the crossover point
between them. Recently, a large scattering chamber-3 was
installed after the second solenoid and it is in use since
2011.

In the case of the “thick-target method”, the cross sec-
tion calculation has to take into account the energy vari-
ation of the projectile in the thick target. The Jacobian
is energy dependent in the case of reactions with Q �= 0.
The number of target nuclei per unit area, interacting with
the projectile during its slowing down is not constant but
varies with the projectile energy due to the fact that the
energy loss per unit distance varies with the energy. Thus,
the differential cross section in the center-of-mass frame is



Page 10 of 34 Eur. Phys. J. A (2014) 50: 128

calculated using

dσ

dΩ
(E, θ)c.m. =

NJ dE
dx

ΔΩNincΔE(8Li)
, (2)

where N is the total number of ejectiles detected with en-
ergy corresponding to the interval E and E + ΔE, ΔΩ
is the solid angle of the detector considered, Ninc is the
number of radioactive secondary ions incident on the sec-
ondary target, J is the Jacobian, and dE

dx is energy loss
per unit distance, also called stopping power [33], of the
projectile in the thick [CH2]n target.

3.3 Theoretical models

3.3.1 Optical model calculations using the São Paulo
Optical Potential (SPP)

The elastic scattering angular distributions are usually
analyzed and described by optical model calculations.
The Woods-Saxon–type complex nuclear potential is well
known and has been largely used for many decades. How-
ever, the ambiguities in the potential parameters hinder
the access to their physics content and relation with the
structure of the nuclei. The idea of folding potentials,
which take into account the nucleon distribution in the
interacting nuclei was introduced by Feshbach [34]. Their
application in data analysis has increased in importance
to describe reactions between heavy ions with the con-
tributions of Satchler and Love [35]. More recently, the
so-called São Paulo Potential (SPP) [36,37] was proposed
by a group of researchers at IFUSP. It is a double-folding
nuclear potential which includes the Pauli principle be-
tween nucleons by a non-local term and uses densities from
experiment (electron scattering) or from Dirac-Hartree-
Bogoliubov (HDB) model [38] theoretical calculations.
The imaginary part and the real part of this nuclear po-
tential have the same form factor and, for stable systems,
it does not have any free parameters. However, for exotic
nuclei with anomalies in their geometry, the SPP allows
the variation of the normalization of the real and imagi-
nary parts, respectively, NR and NI and the diffuseness
a of the nuclear density of the projectile. At energies well
above the Coulomb barrier the typical values of NR, NI

and a, which give a good description of most stable nuclear
systems are, respectively, 1.0, 0.78 and 0.56 fm [36–38].

3.3.2 Continuum Discretized Coupled Channels (CDCC)
calculations

The description of scattering induced by exotic weakly
bound nuclei can be improved by the explicit inclusion of
the effect of coupling to the continuum. In most cases, the
coupling between the elastic and the projectile breakup
channel is very important and has to be explicitly taken
into account to describe the experimental elastic scatter-
ing angular distributions. The effect of the coupling to
the breakup states can be described within the framework

of the Continuum Discretized Coupled Channels calcula-
tions (CDCC) [39]. CDCC has been applied to a num-
ber of cases in recent years, first for the three-body prob-
lem [40–44] where the projectile is considered as a core
plus a valence particle, and more recently, to the four-
body problem [45–47].

In a simplified notation, the problem can be reduced
to a set of coupled equations:

[
d2

dr2
− l(l + 1)

r2
− 2μ

h̄2 Uα,α + k2
α

]
χα =

2μ

h̄2

∑
α�=α′

Uα,α′χα′ ,

(3)
where α represents the elastic incoming channel and α′ the
breakup channels; χ is the wave function of the relative
motion between projectile and target. The coupling inter-
action U is written as the sum of the interaction between
each fragment of the projectile with the target, folded with
the internal projectile wave function: in the case of a 6He
projectile, it can be written as

Uα,α′ = 〈φα′(6He)|Un−T + Un−T + U4He−T |φα(6He)〉,
(4)

where φα are the internal 6He wave functions and Un−T

and U4He−T represent the total potential (Coulomb +
complex nuclear) for neutron-target and 4He- target re-
spectively. It is to be noted that, in this description, the
forces between the target and different particles of the
projectile provide a mechanism to excite the projectile
from the ground state to continuum states. In addition,
the interactions Un−T and U4He−T are empirical optical
potentials which should contain the effect of all couplings
between the projectile fragments and the target. In gen-
eral, they are fitted on elastic scattering data between a
neutron and the target (n− T ) and 4He particles and the
target (4He − T ).

A difficulty arises from the fact that the exact con-
tinuum wave functions (φα′(6He)), calculated at a single
energy, are not square normalizable. One way to overcome
this problem is to replace the continuum by a finite set of
normalizable states, each one obtained as an average in en-
ergy of the wave functions within a certain energy range
which is called a “bin”. The continuum is then substituted
by a set of discrete states, each one normalizable, trun-
cated at a maximum excitation energy. The “bin” width
and the maximum excitation energy are empirically deter-
mined by imposing the convergence of the cross sections.
The coupling interaction inside eq. (4) is expanded in mul-
tipoles and the inclusion of internal states with different
orbital angular momenta is necessary to describe the pro-
jectile excitations. A truncation in the angular momentum
space is also required but, in most cases, a few states of
low angular momenta l = 0 − 4 are sufficient to obtain
convergence of the cross sections.

In the three-body model, the 6He structure is sim-
plified to an alpha-particle core plus a di-neutron, which
means that the neutron pair is treated as a single particle
bound to the alpha core by 0.973MeV. In an application of
the three-body model to 6He + 209Bi scattering [42], it was
found that 3b-CDCC was unable to reproduce the angular
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distributions between 50 and 100◦. More recently, an im-
proved 3b-CDCC model was proposed by A.M. Moro [48]
which greatly improved the situation. Moro et al. demon-
strated that the use of a different separation energy for
6He, 1.6MeV instead of 0.973MeV, provided results closer
to the four-body calculations. Several applications pre-
sented in the next sections will make use of this modified
three-body model as well as the full four-body calcula-
tions [49].

The CDCC framework, described above, takes into ac-
count only the breakup of the weakly bound projectile,
not of the target. The same formula could be applied to
the breakup of the target since, in the center-of-mass sys-
tem, there is no distinction between projectile and target.
However, a simultaneous description of both, projectile
and target breakup is not available yet.

4 Scattering on targets with A between 9
and 120

4.1 Elastic scattering of 6He on a 120Sn target

Angular distributions of 6He + 120Sn elastic scattering
were measured at four energies, Elab = 17.4, 18.0, 19.8,
and 20.5MeV [23]. These were the beam energies in the
center of the 3.8mg/cm2 enriched 120Sn (98.3%) tar-
get. The energy loss in the target was about 0.8MeV,
and the effective energies calculated as geometric mean
(see sect. 3.2) were, respectively, 17.39, 17.99, 19.78 and
20.48MeV, thus very close to the energies in the center of
the target. The uncertainty of the energies is about 4%,
mainly due to the uncertainty in the incident 6He energy
(see table 1). The Coulomb barrier, VCB(lab) = 13.4MeV,
was calculated using the São Paulo Potential (SPP). The
104–105 pps 6He secondary beam was produced in the
RIBRAS system via the 9Be(7Li, 6He)10B production re-
action. The 7Li primary beam with intensity of about
300 nAe was delivered at laboratory energies between 24–
26MeV. Four E(1000μm)−ΔE(20μm) telescopes formed
by surface barrier silicon detectors were used to detect and
identify the particles emerging from the reaction target.
The experiment was performed in chamber-2.

In this experiment, the 6He secondary beam was se-
lected by the first solenoid only. In fig. 10, we present two-
dimensional identification spectra obtained with 120Sn
and 197Au targets. The spectrum with the gold target (of
3.0mg/cm2 thickness) shows the main beam contaminants
at this location, 7Li2

+
, α-particles, and lighter particles

such as tritons, deuterons, and protons, that were pro-
duced in reactions between the primary beam and the pri-
mary target. In fact, at backward angles, a few counts have
been observed in the α-particle line at energies slightly be-
low the energy of the 6He elastic scattering peak. Those
counts, as will be discussed later, probably come from the
Coulomb breakup of 6He in the Coulomb field of the gold
target and, despite their very low intensity, they were in-
cluded in the area of the 6He elastic peak before using it
for normalization.

Fig. 10. E−ΔE identification spectra of the secondary beams
scattered on 120Sn and 197Au targets. Taken from ref. [23].

The angular distributions correspond to the angular
dependence of the ratio of the elastic scattering differen-
tial cross section at a certain angle θ by the Rutherford
differential cross section at the same angle, represented
by σ/σR. They are presented in fig. 11 together with op-
tical model, 3-body (3b), and 4-body (4b) Continuum
Discretized Coupled Channels (CDCC) calculations [49],
which reproduce the data at the four energies [23]. All
three calculations give similar results and the details are
discussed below.

We performed optical model fits of the data using a
Woods-Saxon shape complex potential. Initially, the four
angular distributions were analyzed simultaneously using
a single set of potential parameters. This procedure can be
justified by the relatively small energy interval of the mea-
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Fig. 11. Angular distributions of the 6He +120 Sn elastic scat-
tering. The dashed line is the result of optical model calcu-
lations The dotted line is a 3b-CDCC calculation and the
solid line is the result of a 4b-CDCC calculation. Taken from
ref. [23].

surements and the small number of points in each angu-
lar distribution. The global Woods-Saxon parameters ob-
tained are: V0 = 216.3MeV, r0r = 0.90 fm, ar = 0.90 fm,
W = 12.42MeV, r0i

= 1.42 fm, ai = 0.75 fm, where R =
r0(A

1/3
p + A

1/3
t ). In a second step, we started the search

from the above parameters and let V , r0r, and the imagi-
nary strength W vary freely for each energy. The fits are
shown in fig. 11 by dashed lines. Details of these calcula-
tions can be found in reference [23]. The large imaginary
radius and diffuseness indicate the need for a long-range
absorptive term in the interaction potential. A remarkable
feature of the best optical potentials [23] is that the imag-
inary part (W ) decreases with increasing energy while the
real part (V ) increases. This behaviour is still in agreement
with the dispersion relation [50, 51], since the increase of
V is related to an opposite effect (decrease) in W . A sim-
ilar behaviour has been previously reported [52,53] in the
analysis of weakly bound systems, and is known as the
breakup threshold anomaly (BTA). This kind of phenom-
ena will be discussed in more detail in sect. 5.1.

As a complementary approach, we performed three-
body and four-body CDCC calculations [49]. The results
are presented in fig. 11 as the dotted (3b) and solid (4b)
lines. The effect of the coupling with the projectile break-
up channel can be better observed in fig. 12 where we
compare the no-coupling with the full 4b-CDCC calcula-
tion [23]. The no-coupling curve (blue dotted line) corre-
sponds to a calculation using only the ground state part
of the coupling potential, see eqs. (3) and (4). This can be
considered as an optical model calculation using the bare
potential of the CDCC Uα,α with α = gs. The effect of
the breakup is displayed in red dashed (nuclear only) and
black solid (nuclear + Coulomb) curves. The red dashed
line corresponds to a CDCC calculation considering only
the effect of nuclear breakup. The Coulomb potential is
removed from the off-diagonal coupling potentials and,
consequently no Coulomb breakup is taken into account.
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Fig. 12. Comparison between 4b-CDCC and the no-coupling
calculations [49]. Blue dotted line is the result of calculations
without any coupling to the continuum, red dashed line is 4b-
CDCC calculation without Coulomb breakup and the black
solid line is the 4b-CDCC with Nuclear + Coulomb breakup.
Taken from ref. [23].

The black solid curve corresponds to the full calculation
(Coulomb + nuclear). One sees that the effect of the
Coulomb breakup is to remove flux from the forward an-
gles region where the Fresnel peak appears and also from
the intermediate angles region. This effect is similar to
that observed in the past for heavy stable nuclei in systems
where the target Coulomb excitation is a reaction channel
strongly coupled to the elastic scattering [54]. Coulomb
excitation is a process that has a long-range form factor,
which also affects mainly the large partial waves, introduc-
ing a long-range absorptive component in the polarization
potential in a way very similar to Coulomb breakup.

4.2 Elastic scattering of 6He, 8Li and 4He on a 51V
target

The first experiment, realized at RIBRAS in February
2004 [55], consisted in the elastic scattering angular dis-
tribution measurement of 23.0 and 15.4MeV 6He and
26.0MeV 8Li on a 1.9mg/cm2 51V target. These were
beam energies in the center of the target and were very
close to the effective energies, calculated by the geomet-
ric mean, 22.98, 15.39, and 25.99MeV, respectively. The
energy uncertainties are about 4% for the 6He beam and
2% for the 8Li beams, mainly due to the uncertainty in
the incident energy of the secondary beams (see table 1).
The Coulomb barriers, respectively, VCB(lab) = 7.4MeV,
for the 6He beam, 11.5MeV for 8Li, and 8.1MeV for
4He secondary beams on 51V, were calculated using the
São Paulo potential (SPP). Thus, the energies were 2 to
3 times the Coulomb barrier. The 8Li secondary beam
was produced by the 9Be(7Li, 8Li)8Be reaction and was
accompanied by a strong contaminant 4He beam, of the
same magnetic rigidity which was also focused by the first
solenoid at the center of the chamber-2. The detection
system consisted of a ΔE(22μm)-E1(150μm)-E2(150μm)
telescope, formed by three surface barrier silicon detectors.
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Fig. 13. Angular distributions of the elastic scattering of 6He,
8Li and 4He on 51V target. The solid lines are optical model
calculations using the SPP potential [55]. For details about the
potential parameters NI and a, see text.

The secondary beam intensities were measured by using
the known Rutherford scattering of the secondary beams
on a gold target of 5.1mg/cm2 thickness.

The angular distributions are shown in fig. 13 and they
are compared with optical model calculations using the
São Paulo Potential (SPP) [36, 37], where the normaliza-
tion of the imaginary part NI and the diffuseness, a, of
the projectile were adjusted to reproduce the data [55].
The best fit values are NI = 1.4(4) and a = 0.67(3) fm
for 6He + 51V at 23.0 and 15.4MeV, to be compared to
0.78 and 0.56 fm, respectively, for typical, strongly bound,
stable nuclei. As the energies are well above the Coulomb
barrier, the disagreement with typical, high energy values
of NI and a, is probably not due to the dispersion relation
effects, such as the threshold anomaly [50], described in
more detail in sect. 5. To better describe the data, the dif-
fuseness of the density of the two-neutron halo projectile
6He had to be increased from 0.56 to 0.67 fm. Moreover,
the normalization of the imaginary part, which describes
the absorption, taking away flux from the elastic chan-
nel into reaction channels, had to be increased from 0.78
to 1.4, which means that the potential with 6He is more
absorptive, than with tightly bound, stable projectiles.

On the other hand, for 8Li + 51V at 26.0MeV, the best
fit values are NI = 1.7(7) and a = 0.49(4) fm. The value of
the diffuseness was even smaller, but still close to the “nor-
mal” value of 0.56 fm, indicating agreement with the fact
that 8Li has no neutron halo, but it is weakly bound and,
thus, has a larger absorption, yielding a large value for NI .

Due to the presence of a strong contaminant beam of
4He with 23.2MeV energy in the center of the 51V target,
the elastic scattering of 4He + 51V was also measured and
analyzed. For the tightly bound 4He projectile we used its
well-known density distribution, determined by electron
scattering on 4He [56]. The density distribution of 4He
has a much smaller diffuseness, a = 0.3 fm, than the value
adopted for most stable nuclear systems, a = 0.56 fm.
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Fig. 14. Angular distribution of 6He + 58Ni elastic scattering.
The experimental angular distribution is compared to calcula-
tions: red dotted curve is without coupling to the continuum,
blue dashed curve is 3b-CDCC calculation and the black solid
line is the 4b-CDCC. Taken from ref. [20].

For the 51V target, its diffuseness was determined by the
best fit, to be a = 0.59(5) fm, close to the usual value
for stable nuclei. However, the NI parameter presented
a much lower best fit value of 0.45(15), instead of 0.78,
indicating that the potential for 4He is less absorptive
than for other stable nuclei.

Figure 13 (lower right) also displays the differences be-
tween the two systems 4He + 51V and 6He + 51V at com-
parable energies. It is clear that the exotic 6He + 51V sys-
tem presents a much steeper angular distribution in com-
parison with the stable 4He + 51V, due to the stronger
absorption in the former.

4.3 Elastic scattering of 6He on a 58Ni target

Elastic scattering angular distributions for the intermedi-
ate mass 6He + 58Ni system have been measured at three
energies Elab(6He) = 12.2, 16.5, and 21.7MeV. These are
beam energies in the center of the 2.2mg/cm2 thick, en-
riched 58Ni target and are very close to the effective en-
ergies calculated as the geometric mean (12.192, 16.496,
21.698MeV). The energy losses in the target were be-
tween 0.5 and 0.8MeV. The uncertainty in the energies is
about 4%. The Coulomb barrier in the laboratory frame,
calculated for this system by the SPP, is 8.8MeV. Four
E(1000μm) − ΔE(20μm) telescopes formed by surface
barrier silicon detectors were used to detect and identify
the particles emerging from the reaction target. The ex-
periment was performed in chamber-2. [20].

In fig. 14, we present the 16.5MeV angular distri-
bution compared with no-continuum CDCC, three, and
four-body CDCC calculations [49] considering projectile
breakup [20].
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The agreement between the four-body CDCC and the
experimental data is remarkable. The no-continuum cal-
culation (red dotted line) corresponds to a CDCC cal-
culation without taking into account the coupling to the
breakup states as described in more detail in sect. 4.1
and clearly does not reproduce the features of the ex-
perimental angular distribution. It predicts a pronounced
Fresnel diffraction peak at forward angles and, in addi-
tion, underestimates the cross sections at backward an-
gles. The three-body CDCC calculation (blue dashed line)
improves the situation by reproducing the behaviour at
forward angles. However, it is the four-body calculation
which really reproduces the data in the entire angular
range of the measurements. It is important to mention
that there are no adjustable parameters in these cal-
culations. All of the optical potentials have been ob-
tained from known potentials from the literature for
the α + 58Ni and n + 58Ni systems at the appropri-
ate energies. Consequently, these calculations are predic-
tions [20].

In general, CDCC is a very complex calculation which
does not give much room for physical insights. The bare
potential is the part of the optical potential, that con-
tains the effects of all couplings, except for the projec-
tile breakup channel. The effect of the projectile breakup
on the elastic scattering should be described either by a
complete CDCC calculation or by a polarization potential
which, once added to the bare potential, should exactly
reproduce the results of the complete CDCC calculation.
However, the exact polarization potential is, in general,
a very complicated, non-local quantity and cannot be ob-
tained without approximations. Nevertheless, since we are
able to perform such a CDCC calculation, it is possible
to define a local equivalent polarization potential Vpol(r)
from the inversion of eq. (3) [49]. This local equivalent po-
larization potential will be obtained numerically from the
CDCC results, and will be energy and angular momentum
dependent. The trivially local equivalent polarization po-
tential is the local equivalent polarization potential aver-
aged over the angular momenta. This trivially equivalent
local polarization potential, once added to the bare poten-
tial, should reproduce, approximately, the exact CDCC
calculation and would display the main effects due to the
coupling to the breakup channel.

In fig. 15, we present the trivially equivalent local po-
larization potential (Vpol) obtained from the CDCC calcu-
lations for 6He + 58Ni at 16.5MeV. We note the presence
of the long-range absorptive imaginary component and a
repulsive real polarization potential centered near the sur-
face of the nucleus. These characteristics seem to be gen-
eral for the polarization potentials from the 6He breakup
and have been observed in 6He + 120Sn and in the lighter
system 6He + 9Be [12]. In fig. 15, we plot also the bare po-
tential (Vbare), which is given by Uα,α′ from eq. (4), with
α = α′ = ground state, and the Vbare + Vpol. We see that
the effect of the coupling is to enhance the absorption and,
at the same time, to increase the repulsion in the region of
the Coulomb barrier due to the repulsive real component.
This kind of effect on the Coulomb barrier would reduce
the fusion cross section at these energies.
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Fig. 15. Polarization potentials for the projectile breakup pro-
cess in the 6He + 58Ni elastic scattering at 16.5 MeV. The dot-
ted line is the bare potential in the 4-body calculation, the
blue dashed and the black solid lines are, respectively, the po-
larization potentials in the 3b-CDCC and 4b-CDCC. The dash-
dotted line is the sum of the bare potential and the 4b-CDCC
polarization potential.

4.4 The 6He + 27Al and 6He + 9Be systems

From the studies of 6He scattering on heavy (A = 120)
and intermediate mass (A = 51 and 58) targets presented
above, one concludes that the projectile breakup is a very
important process to be considered if one wishes to re-
produce all of the features of the experimental data. For
such systems and energies, the breakup process can occur
either in the long range Coulomb or in the short range
nuclear field and seems to be strongly coupled to the elas-
tic channel. The extension of the measurements to light
targets is interesting since it could, in principle, provide
information on the interplay between Coulomb and nu-
clear breakup [44].

For light targets, the relative importance of the Cou-
lomb field decreases considerably and, the nuclear breakup
turns out to be the most important process. Using the
6He secondary beam produced by the RIBRAS system,
we have investigated the elastic scattering for two light
systems 6He + 27Al [28] and 6He + 9Be [12]. In fig. 16, we
present four angular distributions of the 6He + 27Al scat-
tering at 9.5, 11.0, 12.0, and 13.4MeV laboratory energies,
which were the energies in the center of the 7.2mg/cm2

thick 27Al target. The energy loss in the target is about
3MeV. The effective energies, respectively 9.31, 10.87,
11.89 and 13.32MeV, were calculated by the geometric
mean. The energy uncertainty is about 400 keV and it is
larger than the differences between the effective energies
and the energies used in the calculations. The Coulomb
barrier, VCB(lab) = 4.9MeV, was calculated using the
SPP.

The experimental angular distributions are compared
with the results of optical model calculations using the São
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Fig. 16. The elastic scattering angular distributions measured
for the 6He + 27Al system together with best fits obtained with
the São Paulo potential (SPP). Taken from ref. [28].

Paulo Potential (SPP) [36,37], where the normalization of
the imaginary part NI and the diffuseness, a, of the pro-
jectile are adjusted to reproduce the data [28]. The best
fit values are NI = 0.8(5), 0.8(4), 0.6(4) and 0.7(5) for the
energies of 9.5, 11, 12 and 13.4MeV, respectively. All val-
ues are in agreement with the typical value of NI = 0.78
within the uncertainty. The same holds for the diffuse-
ness, with a best fit value of 0.56(2) fm for all energies.
When this projectile diffuseness is deconvoluted from the
intrinsic matter distribution of the nucleon, one obtains
the diffuseness of the point nucleon matter distribution
for 6He of 0.52(2) fm. This value is much larger than the
similar diffuseness of 4He, which is 0.3 fm, deduced in a
similar manner [58, 59]. This value is in agreement with
other experimental evidence [58–60]. However, this diffuse-
ness, measured in the elastic scattering on a light target
(A = 27), is smaller than that obtained with a heavier
target (A = 51).

In fig. 17, we present experimental data for the elas-
tic scattering of 6He + 9Be at two energies, 16.2 and
21.3MeV. These were beam energies in the center of the
1.9mg/cm2 9Be target. The energy losses in the target
were respectively 0.8 and 0.65MeV and thus the effec-
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Fig. 17. Angular distributions of the 6He + 9Be elastic scat-
tering. The black dots are experimental results measured at
RIBRAS and the circles are data obtained at 16.8 MeV at
the Cyclotron Resource Center of Louvain-la-Neuve (CRC-
LLN) [57]. The black dotted line is the result of a calculation
with no-coupling to the continuum, the red dashed line is the
3b-CDCC calculation, and the blue solid line is the 4b-CDCC
result. Taken from ref. [12].

tive energies (geometric mean) (see sect. 3.2) were very
close to the energies in the center of the target, simi-
larly to that verified in the previous systems. The uncer-
tainty of the energies was about 4%. The Coulomb bar-
rier, VCB(lab) = 2.2MeV, was calculated using the São
Paulo potential (SPP). Here we see, for the first time,
strong oscillations in the experimental angular distribu-
tions. Such oscillations are of a different nature than those
observed in heavy and intermediate mass systems. For the
6He + 9Be data, the energies are well above the Coulomb
barrier, about 6-8 times. It means that, for those data,
the Coulomb interaction is not important and we ob-
serve a diffraction pattern of Fraunhofer type rather than
the Fresnel type observed so far for heavier systems. The
data are compared with the result of three and four-body
CDCC calculations. The agreement is reasonable. Effects
of the angular resolution of the detectors and of the an-
gular divergence of the beam are important in this al-
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most symmetric system, due to the kinematic transfor-
mations between c.m and laboratory angles. To take into
account these effects, all the calculations have been aver-
aged over the angular aperture of the data. It has a con-
siderable effect on the amplitude of the oscillations, which
are damped.

4.5 Elastic scattering of 7Be on 51V and 27Al targets

Some beams other than 6He and 8Li were also produced
by the RIBRAS system. Among them, 7Be and 10Be
were also used for elastic scattering measurements. 7Be is
an unstable, proton-rich nucleus with a half-life of 53.24
days, decaying to its mirror nucleus 7Li by electron cap-
ture. Its separation energy to α+3He is 1.58MeV, which
characterizes it as a weakly bound nucleus. Despite its
low separation energy when compared to the mirror 7Li
(Esep = 2.46MeV for α + t), it is not sufficiently small
to allow the formation of a proton halo, as presumably
occurs in the case of 8B (Esep = 0.137MeV).

We measured the elastic scattering of 7Be on an inter-
mediate mass target, 7Be + 51V [26, 62] and on a lighter
target, 7Be + 27Al [32,61]. In the 7Be + 51V case, one an-
gular distribution was measured at Elab = 26.0MeV and
this was the beam energy in the middle of the target, but
since the 51V target was not too thick (1.9mg/cm2), this
value is close to the effective energy. The Coulomb bar-
rier, VCB(lab) = 15.66MeV, is lower than the energy used
in this experiment. The angular distribution was fitted
by optical model calculation with the São Paulo Poten-
tial [36]. In this analysis, the diffuseness of the projectile
mass distribution, a, and the normalization of the imagi-
nary part of the potential, NI , were varied to obtain the
best fit to the data [26,62]. The best fit diffuseness of 7Be
was 0.55 fm, which is very close to the typical result used
for stable nuclei, 0.56 fm. It should be mentioned that the
density radius, obtained from electron scattering measure-
ments of stable neighbour isotopes, or from HDB calcu-
lations, is not varied in these OM fits. The best fit nor-
malization factor was NI = 1.4, with a large uncertainty,
since equivalent fits yielded NI ranging between 1 and 2.
Again, the diffuseness close to the usual value is compati-
ble with the fact that 7Be has no halo (as we observed also
for 8Li), but the high NI value indicates that the poten-
tial describing the system’s interaction is more absorptive,
due to the weak binding energy of 7Be.

For 7Be + 27Al [32,61], four angular distributions were
measured at 10.0, 13.8, 15.2 and 15.4MeV. These ener-
gies are effective energies, calculated as geometric mean,
between the incident and outgoing energies (see sect. 3.2).
The Coulomb barrier, VCB(lab) = 10.5MeV, is close to
the energies used in this experiment. The angular distribu-
tions are presented in fig. 18 and refer to quasi-elastic data
since the energy resolution is not sufficient to separate the
7Be first excited state at 0.43MeV. They have been ana-
lyzed by the optical model using the São Paulo Potential
(SPP), whose normalizations of the real and imaginary
potentials were varied to obtain the best fit to the data.
Again the uncertainties of NI and NR were very large,

Fig. 18. Quasi-elastic angular distributions of 7Be + 27Al [61].
The solid lines are optical model calculations, using the SP
potential. Taken from ref. [32].

with an average value of ≈ 1. The total reaction cross
sections, however, could be determined with a quite good
precision, and their discussion is given in sect. 7.1.4.

4.6 The elastic scattering of 7Be, 9Be, and 10Be on
the natC target

Another series of elastic scattering measurements have
been performed with radioactive projectiles, 7Be and 10Be,
on a target of natural carbon (natC) [21]. The carbon tar-
get has been chosen to investigate possible nuclear effects,
which are expected to be more important for a lower Z
target, rather than the Coulomb effects expected to be
dominant for higher Z (heavier-mass) targets.

Elastic scattering angular distributions of beryllium
isotopes, 7Be, 9Be, and 10Be, on a natural carbon target of
1mg/cm2 were measured at Elab = 18.8MeV, 26.0MeV,
and 23.2MeV, respectively [21]. These are beam energies
in the center of the target and were very close to the effec-
tive energies, given by the geometric mean (18.78, 25.98
and 23.18MeV). The energy uncertainties are about 4%.
The Coulomb barriers, respectively, VCB(lab) = 6.5MeV,
for the 7Be beam, 6.9MeV for 9Be, and 7.2MeV for 10Be
secondary beams on carbon, were calculated using the
São Paulo potential (SPP). These angular distributions
are displayed in figs. 19, 20 and 21. The angular distri-
butions for the 7Be + natC were measured in part at the
Nuclear Structure Laboratory of the University of Notre
Dame with the TwinSol device [9] by Barioni et al. [63]
and in part at São Paulo with RIBRAS [21] (see fig. 19).
Also, angular distributions were measured for the 10Be
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RIBRAS [21] and those by dots at Notre Dame by Barioni
2011 [63]. The curves are optical-model calculations. Taken
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10-2

10-1

100

 10  20  30  40  50  60  70  80  90

dσ
/d
σ R

ut
h.

θc.m. (deg)

12C(9Be,9Be)12C
Elab = 26.0 MeV

Data from present work
Data from Ref.[13]

WS-3
WS-4

SPP (NI = 0.78)

Fig. 20. The differential cross sections for the elastic scatter-
ing natC(9Be, 9Be)natC at 18.8 MeV incident laboratory energy.
The curves are optical-model calculations. Taken from ref. [21].

radioactive ion beam together with the contaminant 9Be
ions, which was simultaneously produced by the RIBRAS
system.

These angular distributions were analyzed with a con-
ventional optical model (OM) in terms of both the vol-
ume type Woods-Saxon (WS) and the São Paulo double-
folding (SPP) potentials [36, 37]. We applied the normal-
ization factor NI = 0.78 for the imaginary part of the
double-folding São Paulo Potential. The WS optical po-
tentials used in our calculations were obtained from other
work with projectiles of similar mass on a carbon tar-
get. The parameters of all potentials are listed in table 2.
The results of this optical-model analysis can be seen in
figs. 19, 20 and 21. As can be observed, the WS poten-
tials considered here give a good description of the data
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Fig. 21. The differential cross sections for the elastic scattering
natC(10Be, 10Be)natC at 12.3 MeV incident laboratory energy.
The curves are optical-model calculations. Taken from ref. [21].

at forward angles. The SPP, which can be considered as
a bare potential, also reproduces quite well the absolute
normalization for the forward angle cross sections, which
is of some interest considering that this folding-model po-
tential has no free parameters. The São Paulo Potential,
however, fails to reproduce the backward angle range of
the angular distribution. An improvement of the descrip-
tion of the data could be obtained by adjusting the nor-
malizations of the real and imaginary part of the potential,
NR and NI , respectively, and this is a clear indication of
the importance of other reaction channels.

We have also performed a detailed analysis with
coupled-channel calculations for each of the present sys-
tems and the details of these calculations can be found
in ref. [21]. We have performed CDCC calculations [49]
for elastic scattering induced by the weakly bound 7Be
and 9Be isotopes. From this analysis, we concluded that
the Coulomb and nuclear breakup effects are not rele-
vant for these light projectiles on light target systems. For
10Be, which is a tightly bound nucleus, we performed a
coupled channel calculation coupling the first two bound
states, which involve quadrupole transitions. By only in-
cluding a short-range imaginary bare potential (to account
for the fusion channel) and the coupling to the bound
states, it was possible to describe the cross sections for
the 10Be + 12C angular distribution.

4.7 The 8Li + 12C experiment: Elastic and transfer
reactions

The low-energy RIBs produced by the RIBRAS system
are very reliable for investigating not only elastic scatter-
ing but also transfer reactions. We have measured angular
distributions for both elastic and proton transfer reactions
for the 8Li + 12C system at 23.9MeV laboratory energy,
which was the energy in the center of the natural carbon
target [25]. The effective energy, 23.89MeV, was very close
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Table 2. Optical potential parameters used in the calculations of the elastic scattering of 7,9,10Be + natC. Radii are given by

Rx = rx×(A
1/3
P +A

1/3
T ). The total reaction cross section is σR and its units are mb. The depths are in MeV, radii and diffuseness

in fm.

Potential V rV aV W rW aW rC σR Reference

WS-1 33.69 1.00 0.92 6.53 1.56 0.49 0.65 1278 from 9Be + 12C [64]

WS-2 94.18 1.26 0.60 59.84 1.48 0.20 1.48 1224 (fitting)

WS-3 60.00 1.18 0.60 32.60 1.18 0.60 0.63 1428 from 9Be + 12C [65]

WS-4 100.00 1.23 0.48 17.00 1.30 0.26 1.45 1327 from 11B + 12C [66]

WS-5 100.00 1.15 0.50 10.00 1.30 0.22 1.40 1182 from 10B + 12C [66]

WS-6 32.35 0.89 0.85 5.77 1.37 0.36 0.62 1004 (fitting)

to the energy in the center of the target. The energy uncer-
tainty was about 2%. The scattered and reaction product
particles 8Li and 9Be were easily separated by the ΔE−E
silicon detector telescopes.

The Coulomb barrier for this system is 4.9MeV calcu-
lated with the São Paulo Potential (SPP). The measured
angular distribution for the elastic scattering was analyzed
with the standard procedure of optical-model (OM) calcu-
lations using volume-type Woods-Saxon (WS) and double-
folding nuclear potentials (plus Coulomb potentials due to
uniformly charged spheres). The results of this calculation
can be seen in more detail in ref. [25]. Although CDCC
calculations have been performed for this system [49], no
significant influence of the breakup channel on the elastic
scattering was observed.

In addition to the elastic scattering, we have also mea-
sured the angular distribution for the proton transfer re-
action, 12C(8Li, 9Be)11B, which has a positive Qgg value
= 0.931MeV. The differential cross sections for this trans-
fer process are very small (in the range of 0.1 to 1.0mb/sr),
which made the measurements and analysis difficult due to
the limited secondary beam intensity. Cross sections were
obtained only for the most forward angles between 20 to
35◦. This proton transfer angular distribution has been
analyzed in terms of a FR-DWBA (finite-range distorted-
wave Born approximation) calculation. For the entrance
(8Li + 12C) and exit (9Be + 11B) channels, we used the
double-folding São Paulo potential. The bound-state wave
functions were generated with Woods-Saxon potentials
and geometric parameters r = 1.25 fm and a = 0.65 fm,
with the depths of the potentials adjusted to give the
correct separation energies. By comparing this calcula-
tion with the experimental angular distribution, we could
extract the spectroscopic factor for the bound system
〈9Begs|8Ligs + p〉. More details about this analysis can
be obtained in ref. [25].

The spectroscopic factor obtained for the 〈9Begs|
8Ligs + p〉 bound system from the present analysis is
compared with other experimental values in table 3.
Our result agrees within the experimental error with the
values obtained from the (d,3He) [67], (t, α) [68], and
9Be(8Li, 9Be)8Li reactions [69], but it is twice that ob-
tained from the (d,n) reaction [70]. This difference could
be, in part, due to the use of different potential models.

Table 3. Spectroscopic factors C2S of 〈9Begs|8Ligs + p〉.

SM calc. Other This work

(p3/2 + p1/2) exp. values (p3/2 + p1/2)

Jπ = 3/2− 1.00(a), 0.64(c) 1.22(28)

0.87(b) 1.00(d)

1.059(e)

1.67(31)(f)

(a)
SM calculation from Cohen and Kurath [72].

(b)
SM calculation with WBT interaction (OXBASH) [73].

(c)
d(8Li, n)9Be reaction at 40 MeV [70].

(d) 9Be(d, 3He)8Li reaction at 52 MeV [67].
(e) 9Be(t, α)8Li reaction at 15 MeV [68].
(f) 9Be(8Li, 9Be)8Li reaction at 27 MeV [69].

A consistent systematic investigation on neutron spec-
troscopic factors has been performed by M.B. Tsang et
al. [71] and a similar systematic investigation for proton
spectroscopic factors would be most welcome. We also
compared our results with the value predicted by the shell-
model (SM) calculation by Cohen and Kurath [72] and,
also, a new calculation using the WBT interaction with
code OXBASH [73]. Our values agree better with the SM
calculation by Cohen and Kurath, C2Scalc(9Begs) = 1.00,
than with the new one, C2Scalc(9Begs) = 0.87.

5 Threshold Anomaly (TA) and Breakup
Threshold Anomaly (BTA)

In addition to the elastic scattering angular distributions,
the analysis of the energy dependence of the experimental
data is also very important and can provide information on
the dynamics of the couplings. The classical example is the
well-known threshold anomaly (TA), which occurs in the
scattering of stable heavy systems, such as 16O + 208Pb, at
energies in the vicinity of the Coulomb barrier [50]. In this
case, the number of open reaction channels is large at ener-
gies above the Coulomb barrier and decreases strongly for
energies below the barrier. As a consequence, the imagi-
nary part of the optical potential is strongly reduced when
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the incident energies decrease below the Coulomb barrier.
This sharp reduction in the imaginary potential induces,
via the dispersion relation, an enhancement in the real
part of the optical potential, which becomes more attrac-
tive at the top of the Coulomb barrier.

More recently, an interesting phenomenon has been re-
ported, related to the behaviour of the energy dependence
of the optical potential for weakly bound systems, such as
6,7Li on medium mass targets, at energies around and be-
low the Coulomb barrier [52,53]. Instead of a decrease, an
increase in the imaginary potential has been observed for
energies lower than the Coulomb barrier. Consequently,
the effect on the real part of the potential is the appear-
ance of a repulsive component, in opposition to the be-
haviour of the usual threshold anomaly. The explanation
for this behaviour comes from the fact that, for weakly
bound systems, the number of open reaction channels,
such as breakup and neutron transfers, could be still large,
even at very low energies. Due to the low binding energies
in these systems, the coupling to reaction channels in the
continuum would lead to the appearance of repulsive real
polarization potentials that could explain the behaviour
observed in the real potential. This new kind of anomaly
was called the breakup threshold anomaly (BTA) and has
been reported in several systems since then.

5.1 An optical model analysis of the 6He + 120Sn data

Here we present an optical model analysis performed for
the 6He + 120Sn data of sect. 4.1 which seems to give an
alternative explanation for the BTA phenomena. As we
pointed out (see sect. 4.1), the effective energies are prac-
tically the same as the energies in the center of the target
that were used in the calculations. The energy uncertain-
ties (standard deviation σ) are ∼ 300 keV, thus smaller
than the energy steps between the data. In this optical
model analysis [74], a double folding potential, using a
density-dependent nucleon-nucleon interaction, was used
for the real potential, V (r) = λVF (r/w). Two parame-
ters λ ≈ 1.1–1.4 and w ≈ 1.00(5) were adjusted to fit the
experimental data. λ is a normalization and w modifies
slightly the slope of the potential. The nuclear densities of
120Sn and 4He, used in the double folding calculation, have
been derived from experimental measurements of charge-
density distributions [56].

The imaginary potential was parametrized by a
Woods-Saxon volume shape plus a surface (derivative of
Woods-Saxon) term,

W = Wv × fv(r) + Ws × fs(r), (5)

where
fv(r) =

1
1 + exp( r−R

a )
, (6)

and fs(r) = −4adfv(r)/dr with RS = rs(A
1/3
1 + A

1/3
2 )

and a = 0.7 fm is the diffuseness, which was fixed dur-
ing the analysis. The volume term should describe fusion
and was, in fact, neglected in the analysis, Wv = 0. The
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Fig. 22. 6He + 120Sn optical model analysis. Details of the
energy-dependent potentials are in the text. The black solid
line is the result of calculations using the optical potentials
referred in sect. 4.1. Taken from ref. [74].

surface term describes the effect of the peripheral, direct
reactions. The remaining parameters Ws and rs were ad-
justed to reproduce the data. For a reduction in the num-
ber of parameters, a systematic investigation of the vol-
ume integral of the potentials from a previous analysis was
used [75,76], which imposes relations between the param-
eters Ws and rs in order to reproduce the systematic be-
haviour of the volume integrals. The results are presented
in fig. 22 for the 6He + 120Sn system and the parameters
are in table 4. The volume integrals JR,I of the potentials
are also presented in table 4.

The agreement with the data is excellent. We also plot
in the figure the results that would be obtained, for each
energy, using the potential of the other three energies to
display the relevance of the energy dependence. An in-
teresting effect was observed (fig. 23) in the energy de-
pendence of the position of the imaginary surface term
rs for the 6He + 120Sn system. The parameter rs moves
outwards for decreasing energies. This indicates that the
direct processes are becoming more and more peripheral
as the energy decreases as if they were expelled by the re-
pulsive effective barrier. However, the total reaction cross
section and the volume integral of the imaginary poten-
tial decrease for lower energies, as expected for the usual
threshold anomaly. Then, we find from this analysis, that
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Table 4. Parameters of the potentials of 6He + 120Sn elastic scattering in fig. 22. JR and JI are the volume integral, respectively,
of the real and imaginary potentials.

Elab λ w JR RR,rms JI RI,rms WS rs a σreac

(MeV) (MeV fm3) (fm) (MeV fm3) (fm) (MeV) (fm) (fm) (mb)

17.4 1.207 0.95 339.0 5.477 75.6 9.320 19.2 1.315 0.7 1479

18.0 1.210 0.95 339.9 5.477 78.0 9.074 21.0 1.277 0.7 1503

19.8 1.219 0.95 342.4 5.477 83.8 8.415 26.6 1.174 0.7 1538

20.5 1.222 0.95 343.2 5.477 85.9 8.153 29.3 1.133 0.7 1546
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Fig. 23. Evolution of the position of the imaginary surface
term as a function of the energy (top). The same for the volume
integral of the imaginary potential (botom) [74].

the introduction of a surface component in the imaginary
potential, whose position (RS) and intensity (WS) is left
free to vary, accounts for the energy dependence of the
data without the need for an increase in the imaginary
potential for lower energies.

6 Scattering on hydrogen target

6.1 The 6He(p, p)6He elastic scattering excitation
function at energies E∗(7Li) = 10.4–11.7MeV

The excitation function measurements of the 6He + p elas-
tic scattering can provide information about states of the
compound nucleus 7Li in a region of excitation energies
above the proton threshold (9.975MeV). The first reso-
nance above the threshold is located at 11.24MeV excita-
tion energy, total width Γ = 265 keV, and Jπ = 3/2− and
T = 3/2 [77]. This state, which corresponds to the Isobaric
Analog State (IAS) of the 7He ground state, was studied
recently by the 6He(p,n)6Li reaction [78]. The observation
of this state in the elastic scattering is of great interest
due to theoretical studies, since an unusual behaviour is
expected, with the reduced neutron decay width γn larger
than the γp with γn/γp = 1.4. In this case, the elastic
scattering should be weaker than the neutron decay.

Fig. 24. Two-dimensional identification spectra of particles
from the 6He + [CH2]n collision. The contours on the figure
are indicating the detected protons. Taken from ref. [79].

Preliminary measurements of the elastic scattering ex-
citation function of 6He(p,p)6He [19] were performed in
the range E∗(7Li) = 10.4–11.7MeV with the 6He beam
produced by RIBRAS. This measurement was performed
using chamber-3, a degrader in chamber-2, and a puri-
fied 6He beam (92%) (instead of 16%, without degrader).
The previously described “thick-target method” was used,
with a 12mg/cm2 [CH2]n secondary target, which was
thick enough to fully stop the 6He beam of 11.5MeV en-
ergy. Three ΔE − E Si telescopes were placed at very
forward angles (one of them at 0◦). In fig. 24 we show bidi-
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mensional (ΔE−E) identification spectra of the particles
coming from the thick [CH2]n target, obtained at 0◦, 20◦,
and 25◦. Those angles correspond, respectively, to 180◦,
140◦, and 130◦ in the center of mass of the 6He(p,p)6He
scattering. We observe the presence of alphas, tritons,
deuterons, and protons. The most intense alpha, triton,
and deuteron peaks seen in the spectrum at zero degrees
are remnant contaminants of the secondary beam. The
spectra at 20◦ and 25◦ are much cleaner and the region
of interest, corresponding to the 11.24MeV resonance in
the proton line, is indicated. A clear peak is observed in
the energy spectra at the three angles, corresponding to
the correct position and total width of the 11.24MeV res-
onance [19,79]. However, R-matrix calculations, consider-
ing the two-channels (p,p) and (p,n), do not reproduce
the shape and the angular distribution of the peak. The
analysis is in progress.

6.2 The 8Li(p, p)8Li elastic scattering excitation
function measured between E∗(9Be) = 17.5 and
19.0 MeV

The main purpose of this work was to obtain new infor-
mation on the 9Be structure near the proton threshold
(16.888MeV) through 8Li(p,p)8Li elastic scattering. The
9Be level scheme is well known at low excitation ener-
gies [80,81], but the high-energy region still has many un-
certainties. The 8Li(p,p)8Li elastic scattering allows the
precise determination of several resonance parameters: en-
ergies, spins, parities, and proton widths.

The 8Li(p,p)8Li measurement was performed in cham-
ber-3 with the nearly pure (95–99%) 8Li beam on the sec-
ondary targets. They were, respectively, a [CH2]n polyeth-
ylene foil of 7.7mg/cm2 thickness and a gold target of
5mg/cm2 thickness. The identification spectra measured
by the ΔE − E Si telescope had very good energy res-
olution and the protons resulting from the 8Li(p,p)8Li
reaction were well separated from other light particles. In
fig. 25, we can see the two-dimensional identification spec-
tra obtained using the thick [CH2]n target.

The presence of contaminant α-particles, as well as
deuterons and tritons can also be observed in the iden-
tification spectra of fig. 25 despite the purification of the
secondary beam. These contaminations did not depend on
the target and they could be measured in the runs with the
gold target. As a matter of fact, some contaminant pro-
tons were also observed in the runs with the gold target
and they were subtracted from the spectra measured with
the [CH2]n target. Measurements with a natural carbon
target of 15mg/cm2 were also realized and the same back-
ground was observed as with the gold target, indicating
no contribution due to the carbon content of the polyethy-
lene. The precise normalization of the spectra obtained
with different targets is essential before the background
subtraction; however, it is not straightforward, since the
secondary beam 8Li stops in the thick [CH2]n target and it
is not detected. These subtractions are responsible mainly
for the large error bars of the final excitation function pre-
sented in fig. 26.

Fig. 25. Two-dimensional identification spectra obtained us-
ing a E −ΔE Si detector telescope at Θlab = 10◦, in the large
chamber-3, with the purified 8Li secondary beam focused on a
[CH2]n target. Spectrum on the top is a zoom of the spectrum
on the bottom.

Fig. 26. Elastic scattering excitation function of the 8Li + p
system measured at Θlab = 10◦.

The 8Li(p,d)7Li and 8Li(p, α)5He reactions could also
be observed in this experiment. The preliminary result
of the elastic scattering excitation function of the 8Li + p
system is shown in fig. 26. All data are being analyzed and
the excitation functions are going to be fitted by R-matrix
calculations [82,83].
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6.3 The excitation function of the 8Li(p, α)5He
reaction

For some reactions with high positive Q-value, the cross
section can be measured even in the presence of contam-
inant beams. One example is the 1H(8Li, α)5He reaction,
with Q = +14.42MeV. We have measured the cross sec-
tion of this reaction at low energies [13]. This measure-
ment was performed using only the first solenoid of the
RIBRAS system.

The main purpose of this work was to combine the
information from the 8Li(p, α)5He and 8Li(p,p)8Li reac-
tions. Both reactions populate the same high lying reso-
nances in 9Be, with the same entrance channel and dif-
ferent decay channels. In the phenomenological R-matrix
theory [82,83], the inputs for each resonance are the spin
and parity (Jπ), the angular momenta (l), the resonance
energy (E◦), and the partial widths of the incoming chan-
nel (γp) and the outgoing channel (γα). However, in the
description of the 8Li(p,p)8Li and 8Li(p, α)5He reactions
by the same model, some parameters, such as the spin and
parity of the resonance, its energy, and the incoming pro-
ton partial width γp are the same, thus the measurement
of both channels can constrain the parameters strongly.
Moreover, a transfer reaction has several advantages: in
particular, the isospin of the exit channel limits the pop-
ulation to T = 1/2 states in 9Be, and interference with
the Coulomb interaction, which is dominant in elastic-
scattering experiments, is absent in a transfer reaction.

Some reactions involving 8Li can also play a role in nu-
clear astrophysics [84]. Specifically, in the inhomogeneous
Big-Bang nucleosynthesis, the 8Li(α,n)11B reaction (see
ref. [85] and references therein) could be a path to cross
the A = 8 gap and was investigated by various groups
(see, for example, ref. [86] and references therein). More
recently, this reaction was quoted as a possible seed for
the r-process nucleosynthesis [87] and, for this reason, the
role of other reactions involving 8Li could be an impor-
tant issue. In particular, the 8Li(p, α)5He is important be-
cause it not only depletes the 8Li, but it feeds back to low
masses, avoiding the production of higher Z nuclei. The
8Li(p, α)5He reaction was previously measured at a sin-
gle energy Ec.m. = 1.5MeV [88]. We have performed this
measurement to provide experimental cross sections over a
wide range of energy (from Ec.m. = 0.2MeV to 2.1MeV).

In fig. 27, we present the two-dimensional identification
spectrum of the scattered 8Li and contaminant beams,
measured with a ΔE − E telescope at 13.5◦ on a [CH2]n
reaction target. The spectrum of the measurement with
the gold target is presented in fig. 3 in sect. 2.3 and it
clearly shows all of the contaminant beams scattered on
gold, with 4He being the second most intense (∼ 31%)
after the beam of interest 8Li (∼ 66%). Figure 27 shows
that, due to its large positive Q-value, the reaction of in-
terest can be clearly observed, with no interference from
the contaminants.

In order to obtain a complete excitation function,
even in the presence of contaminant peaks, we have
made measurements at four incident energies of 13.2(3),
14.5(3), 17.0(4), 19.0(4)MeV. The secondary targets were

1 8 4H( Li He)5He

E (MeV)TOTAL

E
(M
eV
)

4He from

Fig. 27. Two-dimensional identification spectrum obtained in
a E−ΔE Si telescope at θlab = 13.5◦ with 8Li secondary beam
at Elab(8Li) = 19.0 MeV focused by the first solenoid, on the
[CH2]n secondary target. Taken from ref. [13].

a [CH2]n polyethylene foil 6.8mg/cm2 thick and a gold
target 5mg/cm2 thick used for normalization purposes.
Due to the positive Q-value of the reaction (+14.42MeV),
the α particles had high kinetic energy and were detected
at forward angles using four ΔE(20μm) − E(1000μm)
Si telescopes positioned at four angles. The maximum
incident energy in the laboratory frame corresponds
to Ec.m. = 2.11MeV for the p+ 8Li system, thus all
resonances in 9Be below Ec.m. = 2.11MeV could be
populated while the 8Li projectiles are slowing down in
the thick target.

In the 8Li(p, α)5He reaction, the recoiling 5He is un-
bound and disintegrates into an α-particle and a neutron.
Similarly, in the 8Li(p,n)8Be reaction, the 8Be is unbound,
breaking into two α-particles. The contribution of these
α-particles, as well as the continuous energy distribution
of α-particles resulting from the 3-body breakup, were cal-
culated and subtracted from the energy spectra. All details
of these calculations can be obtained in the reference of
Mendes et al. [13].

The results of this experiment [13] are presented in
fig. 28 which contains two excitation functions. The one
on top represents the measured excitation function of the
reaction 8Li(p, α)5He with the R-matrix fit. In the spec-
trum located on the bottom, we present this same spec-
trum, with a zoom of the low-energy resonances and their
R-matrix fit. These data show evidence of a broad peak
near Ec.m. ≈ 1.7MeV, which can be fitted only by as-
suming two overlapping resonances at energies 1.69 and
1.76MeV, which are consistent with known spectroscopic
properties of 9Be [77]. The existence of a broad struc-
ture near Ec.m. ≈ 1.76MeV (Ex = 18.6MeV in 9Be) has
already been suggested by a previous 7Li(d, α)5He exper-
iment [89], and is consistent with the overlapping states
observed in the present experiment.

The astrophysical S-factor and the reaction rate for
the 8Li(p, α)5He reaction was calculated from the an-
gle integrated cross section obtained from the R-matrix
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Fig. 28. Top: The 8Li(p, α)5He differential cross sections at
θlab = 13.5◦, with the R-matrix fit (solid line.) Bottom: The
same reaction, with a zoom on the low-energy resonances and
their R-matrix-fit. Taken from ref. [13].

calculation. In fig. 29, we present the 8Li(p, α)5He and
8Li(α,n)11B reaction rates multiplied by the proton Xp

and α mass fractions, Xp and Xα, where we take the stan-
dard values of Big Bang, i.e., Xp = 0.75 and Xα = 0.25.
This comparison shows that the reaction rate of the (p, α)
reaction, which yields the depletion of 8Li, is faster than
the (α,n) reaction, which could bridge the A = 8 gap.

7 Reaction and breakup cross sections

7.1 Total reaction cross sections comparisons

7.1.1 Comparison of total reaction cross sections of
different systems: scaling procedures

The experimental determination of the total reaction cross
section is quite cumbersome, since all reaction channels
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Fig. 29. Left: The 8Li(p, α)5He and 8Li(α, n)11B reaction rates
multiplied by the proton and α mass fractions, Xp = 0.75 and
Xα = 0.25. Taken from ref. [13].

and the fusion cross section should be measured and
summed up to yield this quantity. The total reaction cross
section can be also deduced from elastic scattering angu-
lar distributions, using the well-known sum-of-differences
method:

σreac = 2π

∫ 180

θ0

[σRuth(θ) − σ(θ)] sin θ dθ. (7)

This expression is simply the difference between the
Rutherford and the experimental elastic differential cross
sections, integrated over the whole angular range, except
for a small cone around zero degrees, where the Ruther-
ford cross section diverges. θ0 can be chosen in such way
that, for θ < θ0, the difference in the argument of the
integral is null. However, in practical applications of the
above formula, the experimental angular distributions are
usually not sufficiently complete and, in order to evalu-
ate the integral, σ(θ) is replaced by a model calculation
which should reproduce the data. In this sense, the re-
sult is model dependent since the differential cross sections
σ(θ) have been obtained from optical model or CDCC cal-
culations and not directly from measurements. Moreover,
the experimental angular distributions are, in many cases,
not sufficiently precise and complete to decide between dif-
ferent models and provide a precise determination of the
total cross section. The use of the parameter-free, double-
folding potentials, such as the São Paulo potential, can
reduce considerably the ambiguities. Comparing total re-
action cross sections for different systems can be an inter-
esting way to investigate the influence or competition of
reaction mechanisms, such as breakup, transfer, and fu-
sion. This can be particularly revealing, if these systems
have weakly bound or exotic projectiles.

In order to compare total reaction cross sections for
systems of different masses and charges at different ener-
gies, it is necessary to use a scaling procedure to remove
trivial effects due to different sizes and energies with re-
spect to the Coulomb barriers. The interest in the com-
parison of many systems, after eliminating the above cited
trivial features, is to see more subtle differences due to the
intrinsic structure of the nuclei (i.e. static effects, such as
halo structure) or dynamic effects due to couplings be-
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tween various reaction channels and the elastic scattering.
According to refs. [90] and [91], dynamic effects would be
more important in the region near and below the reduced
barrier, and static effects would be relevant for all energies.

There are two procedures proposed by [92–95] that
have been used in recent years. Here we use both. In the
first scaling procedure [92, 93] the reduced reaction cross
section σred and the reduced energy Ered are defined, re-
spectively, in eqs. (8) and (9), below:

σred = σreac/(Ap
1/3 + At

1/3)2, (8)

and
Ered = Ec.m.(Ap

1/3 + At
1/3)/ZpZt, (9)

where Zp (Zt) and Ap (At) are, respectively, the charge
and the mass numbers of the projectile (target) and σreac

is the total reaction cross section measured for the sys-
tem. This procedure accounts for the geometrical effects
in the cross section due to the size of the system and a
part due to the effect of the Coulomb barrier. It is impor-
tant to understand how this scaling behaves in the case
of weakly bound projectiles. The increase of the reaction
cross sections of weakly bound projectiles, due either to
a fit of the elastic scattering angular distributions or by
explicit consideration of the projectile breakup process in
the case of a CDCC calculation, is expressed in σreac and
σred and is not removed by the scaling. On the other hand,
the possible lowering of the Coulomb barrier due to the
increase in the radius of weakly bound projectiles is not
washed out by this scaling. However, this scaling does not
consider the change in the curvature of the barrier, which
certainly affects the fusion cross sections. The role of the
barrier curvature on the total reaction cross section is still
an open question.

To include the barrier curvature also into the geomet-
rical description, Canto and collaborators introduced the
concept of the fusion functions for the systematic study
of fusion processes in recent work [94,96]. Inspired by the
tunneling concept of the Wong model [97], the dimension-
less “fusion function” FF (χ) is defined as

FF (χ) =
2E

h̄ωR2
B

σF . (10)

It is proportional to the fusion cross section σF , and de-
pends on a dimensionless variable χ defined as

χ =
E − VB

h̄ω
, (11)

where RB, VB , and h̄ω are, respectively, the radius, height,
and curvature of the Coulomb barrier. They were obtained
from a parabolic fit to the barrier, calculated using the
SPP + Coulomb potential. When the Wong model [97],
which describes fusion as a tunneling process through the
Coulomb barrier, is valid, the fusion functions can be de-
scribed by a “Universal Fusion Function” (UFF), which
does not depend on the system and is defined as

F0(χ) = ln[1 + e2πχ]. (12)

This procedure allows the elimination of all static effects
and has been used to compare fusion cross sections of dif-
ferent systems, transforming σF into the fusion function
FF (χ).

Inspired by this new scaling, Shorto et al. [95] applied
the same concept to total reaction cross sections, defining
a total reaction function FTR(χ), as

FTR(χ) =
2E

h̄ωR2
B

σreac. (13)

The quantity FTR(χ) is the scaled or reduced total reac-
tion cross section. This second procedure, based on the
UFF, works very well for the scaling and comparison of
fusion cross sections, since it is based on the concept of
tunneling through the fusion barrier. However, an impor-
tant fraction of the reaction cross section does not come
from tunneling but from peripheral, direct processes, such
as the inelastic excitations and transfer reactions. Due to
this fact, the concept of UFF can be inappropriate for the
reaction cross sections and this is still an open debate:
which is the best reduction method to apply to total re-
action cross sections. In order to contribute to this open
question, we applied both procedures to some of our re-
sults and, in the following, we compare and discuss the
similarities and differences.

7.1.2 Total reaction cross sections on targets with mass
number A ≈ 120

The total reaction cross sections of the 6He + 120Sn sys-
tem, obtained from the 3b-CDCC, 4b-CDCC, and optical
model calculations [23], have been averaged and are pre-
sented in table 5. The dispersion between them increases
with energy, attaining ∼ 15–20% at the highest energy.
They are also presented in fig. 30 together with the cross
sections for other systems with tightly and weakly bound
projectiles on targets with mass number around 120. In
the upper part of fig. 30, the first scaling described above
by eqs. (8) and (9) was used for several projectiles, among
tightly and weakly bound nuclei and including the halo
nucleus 6He on heavy targets with mass number A ∼ 120.
In the lower part of fig. 30, the other scaling, based on the
total reaction function FTR(χ) (see eq. (13)) derived from
a parabolic Coulomb barrier, was used.

With both procedures, we see that the reduced cross
sections follow three trends with increasing magnitude,
from tightly bound to weakly bound and exotic projectiles.
It can be noted that the reduction based on the “reaction
function” does not bring the tightly bound and weakly
bound systems together, as was observed in the case of
fusion cross sections [94, 96]. We interpret this result as
a manifestation of the fact that, for systems with dou-
bly magic tightly bound projectiles, such as α-particles or
16O, there are very few reaction channels open. In fact, the
Q-values for proton or neutron transfer reactions are very
negative in the 4He + 120Sn case. As a consequence, fusion
must be the most important reaction channel contributing
to the total reaction cross section, with some possible weak
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Table 5. Total reaction cross sections for the 6He + 120Sn [23] system obtained from the Optical Model and CDCC calculations.
The fourth column is the average between the second and third columns. (See text for more details).

E (MeV) σOM
reac (mb) σCDCC

reac (mb) σav
reac (mb) σhalo (mb) σfus = σav

reac − σhalo (mb) σBass
fus (mb)

17.40 1451 1491 1471 768 703 618

18.05 1445 1592 1519 763 756 703

19.80 1475 1834 1655 739 916 900

20.50 1579 1916 1748 762 986 1065
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Fig. 30. Top: reduced total reaction cross sections for several
systems with target mass numbers around 120 [23]: (a) from
ref. [23], (b) from ref. [98], (c) from refs. [99, 100]. The units
of σred and Ered are, respectively, mb and MeV. Bottom: The
total reaction function FTR for the same systems. The solid
line is the prediction of UFF, calculated from eq. (12). Taken
from ref. [23].

contributions from inelastic excitations of the target. As
we go to systems with weakly bound projectiles, such as
6,7Li and 9Be, the situation changes. The binding energies
of these projectiles are much smaller, ranging from 1.45 to
2.46MeV and their cluster structure favors the occurrence
of transfer reactions. Finally, for the exotic 6He projec-
tile, the two-neutron separation energy (6He → α + 2n) is
even smaller (0.973MeV) and, its two-neutron halo favors
the occurrence of breakup and neutron transfer reactions,
which increase even more the total reaction cross section.

From this picture, we may define the halo cross section
as

σhalo =
[
σ

6He+120Sn
red − σ

4He+120Sn
red

]
× (61/3 + 1201/3)2.

(14)
This quantity is the difference between the total reac-
tion (6He breakup + neutron transfers + incomplete fu-
sion + complete fusion) and the complete fusion process
(4He + 120Sn) and would be a measurement of the contri-
bution of the direct reaction processes to the total reaction
in the case of the exotic 6He projectile.

In table 5, we present the results of the total reac-
tion cross section, and the halo cross section for the four
energies. In addition, we compare their difference, iden-
tified as fusion cross section with calculations using the
Bass potential penetration [101]. We see that the “halo”
cross section is quite large, of the order of one-half of the
total reaction cross section. This is in contrast with the be-
haviour of stable systems at low energies, where the direct
contribution to the total reaction cross section is usually
much smaller.

7.1.3 Total reaction cross sections on targets with mass
number A ≈ 60

The total reaction cross sections of the 6He + 58Ni sys-
tem obtained from the four-body CDCC calculations have
been reduced and are presented in fig. 31, compared with
the results for other stable and exotic systems. The first
reduction, based on eqs. (8) and (9), was used in this com-
parison. We see again three bands, the one with lowest re-
duced reaction cross section corresponds to tightly bound,
α-cluster (16O and 4He) projectiles on 64Zn and 58Ni tar-
gets, respectively. The one with the highest reduced reac-
tion cross section corresponds to exotic halo nuclei, 6He
and 8B, on 64Zn, 51V, and 58Ni targets. The band between
both corresponds to reactions of weakly bound, stable (6Li
and 9Be) and radioactive (8Li and 7Be) projectiles. A
strong enhancement is observed in the total reaction cross
section of the exotic 6He projectile compared with tightly
bound and weakly bound stable systems. The difference in
scale between fig. 30 (logarithmic scale) and fig. 31 (linear
scale) could give the wrong impression, that the enhance-
ment is larger for medium targets than for heavy targets,
between reaction cross sections of radioactive, halo projec-
tiles, when compared to stable, weakly bound projetiles. If
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Fig. 31. Reduced reaction cross sections for different pro-
jectiles on intermediate mass (A ≈ 60) targets: (a) from
ref. [20, 59, 102], (b) from [55], (c) from [103], (d) from [104]
and (e) from [52, 92, 105]. The units of σred and Ered are, re-
spectively, mb and MeV. The lines are to guide the eye. Taken
from ref. [20].
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Fig. 32. Reduced reaction cross section for different projectiles
on 27Al target [28]: (a) from ref. [106], (b) from [107, 108],
(c) from [109], (d) from [110], (e) from [61], (f) from [28] and
(g) from [111]. The units of σred and Ered are, respectively, mb
and MeV. Taken from ref. [32].

one takes the numbers, one sees that the enhancement is
about 50% for heavy targets at Ered = 1.2MeV, and about
45–50% for the medium mass nuclei at the same reduced
energy. Thus the enhancement, mainly due to the coupling
to Coulomb break up, is about the same for medium mass
and for heavy targets.

7.1.4 Total reaction cross sections with lighter targets:
A = 27 and A = 9

In fig. 32, we present the results of the reduced reaction
cross sections obtained from the optical model calculations
for 6He and other stable projectiles on an 27Al target. We

Fig. 33. Total reaction function [28] for different projectiles
on 27Al target: (a) from ref. [106], (b) from [107, 108], (c)
from [109], (d) from [110], (e) from [61], (f) from [28] and (g)
from [111]. Taken from ref. [32].

see that no important enhancement is seen with respect
to the weakly bound 6,7Li and 9Be systems; however, all
weakly bound (stable or radioactive-halo nuclei) projec-
tiles present a larger reduced reaction cross section than
those for the tightly bound 16O projectile. For all systems,
the total reaction cross sections have been obtained from
optical model calculations using the São Paulo potential.
Probably, CDCC calculations should be more adequate for
the 6He + 27Al system, since it is known that the coupling
to the breakup is very important and should be taken into
account. On the other hand, the Coulomb breakup should
be less important in the case of the 27Al (Z = 13) tar-
get than for the systems previously discussed of A ≈ 60
(Z ≈ 30) or A ≈ 120 (Z ≈ 50), respectively, where the
presence of the halo increased considerably the reaction
cross section.

In fig. 33, we present the results of the total reaction
functions FTR(χ) (see eq. (13)) derived from a parabolic
Coulomb barrier, using the SPP + Coulomb potential for
the 6He + 27Al system, compared with other similar stable
systems, with weakly bound and tightly bound projectiles.
The data are from the same references as in fig. 32. With
this reduction, not only the neutron-halo, exotic 6He and
the stable, weakly bound projectiles have a very similar
reaction function, but even the tightly bound 16O projec-
tile has a similar behaviour. This result is quite surprising
and very different from what was observed for the systems
with a heavy A ∼ 120 target.

For the lighter 6He + 9Be system, we are still analyzing
the situation but, using the results of the CDCC calcula-
tions of sect. 4.4 for the total reaction cross section we ob-
served an enhancement of about 25%, with respect to the
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Fig. 34. The reduced reaction cross sections given by eqs. (8)
and (9) for the beryllium isotopes and other weakly bound and
tightly bound projectiles on 12C. The units of σred and Ered

are, respectively, mb and MeV. The dashed line is a guide over
most of the 11B data points.

cross section for the weakly bound projectile 6Li. We re-
mark that, in this case, both projectile 6He and target 9Be
are weakly bound and that could have an effect, enhanc-
ing the total reaction cross section, since the projectile and
target can easily break up. Although only the projectile
breakup is explicitly taken into account in the CDCC cal-
culations, the empirical optical potentials used to describe
the α + 9Be scattering and to build the 6He + 9Be poten-
tial used in the CDCC calculations, already contain effects
of the target breakup, which could account for a part of
the observed enhancement.

For the case of the 7Be projectile on intermediate mass
(A ∼ 60) (see fig. 31) and lighter mass (A = 27) (see
fig. 32) targets, the total reaction cross sections do not
seem to be affected greatly by the lower separation energy
of 7Be with respect to other weakly bound nuclei and no
significant enhancement has been observed in the reduced
reaction cross section with respect to the weakly bound
6,7Li and 9Be.

7.1.5 Total reaction cross sections on carbon targets

For comparison, we have applied both reduction proce-
dures to the total reaction cross sections obtained for sev-
eral light projectiles, with different binding energies, on a
natC target.

The reaction cross sections of these many systems
come from the following references: for the weakly
bound stable projectiles 6Li [112–114], 7Li [112,113], and
9Be [65]; for the no-halo radioactive projectile 8Li [25],
for the two-neutron halo 6He [90, 115, 116], and for the
proton-halo 8B [63]. The tightly bound, stable projectile
11B + 12C was measured by [117,118]. The reaction cross
section for the nuclei with nα structure 4He [119] and
12C [120] on carbon target is also included in fig. 34 and
fig. 35.
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Fig. 35. The total reaction functions considering the univer-
sal function F (χ) for the beryllium isotopes and other weakly
bound and tightly bound projectiles on 12C. The solid line is
the Universal Fusion Function (UFF) F0(χ) = ln[1 + e2πχ],
explained in the text. Taken from ref. [21].

The results using the first reduction are shown in
fig. 34. In fig. 34, a clear separation can be observed be-
tween the reduced cross sections of the tightly bound, nα
structured projectiles 4He and 12C and the other systems.
The tightly bound 11B and 10Be projectiles belong to a dif-
ferent band, with somewhat higher reduced reaction cross
section (σred) values and the weakly bound, stable, and
radioactive, or even, halo projectiles, such as 6He or 8B
are situated in still another band of higher reduced reac-
tion cross sections. For Ered ≥ 2.0 even a separation can
be observed, between radioactive 6He and 8Li projectiles
and the other weakly bound ones. The linear scale of the
σred helps to observe these subtle differences, which are
not obvious in a logarithmic scale. The trend of tightly
bound, non-nα structured projectiles (11B and 10Be) in
fig. 34 is guided by the dashed line.

It is interesting to observe that, while for the 27Al tar-
get, the neutron halo 6He projectile had similar reduced
reaction cross section with the stable or radioactive non-
halo projectiles (see figs. 32, 33), for the even lighter 12C
and 9Be targets this behaviour is changed and the halo
projectile seems to present higher reduced reaction cross
sections. We can conjecture about the relative contribu-
tions of the Coulomb and nuclear breakup: in the interme-
diate mass (A ∼ 60) or heavy (A ∼ 120) targets, the long
range Coulomb interaction is dominant for the breakup
process. In the higher-energy region (Ered ≥ 2.0) for the
lightest targets (A = 9 or 12), the nuclear breakup domi-
nates, and maybe for the A = 27 target, there is a destruc-
tive interference between both processes, reducing the im-
portance of the breakup process. This hypothesis should
be further verified with targets of similar mass.

The parameters VB, RB, and ω, necessary for the
second reduction procedure, were determined from a
parabolic fit of the real optical potentials (see table 2). The
values of these parameters are listed in tables II and III
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of ref. [21]. Using these parameters, the universal func-
tion for the reaction cross section FTR(χ) was obtained
as a function of the reduced energy parameter, χ, for all
systems. The results of this reduction for the light projec-
tiles on the 12C target can be seen in fig. 35. This second
reduction procedure, by considering the change in the cur-
vature of the barrier, would eliminate the geometric and
static effects, with only the dynamic ones remaining, if fu-
sion were the most important contribution to the reaction
cross section.

For the second reduction procedure, all systems, with
the exception of the tightly bound, nα structured pro-
jectiles 4He and 12C, but including projectiles that are
weakly bound, stable, or halo nuclei and, even, tightly
bound 11B, have similar behaviour and follow the same
trend. The evidence that the halo nucleus 6He and the
stable and tightly bound 10Be, or 11B present very similar
reaction functions on a carbon target is a surprising result.
The solid line in fig. 35 corresponds to the so-called uni-
versal fusion function (UFF), F0(χ). However, the tightly
bound, nα structured projectiles 4He and 12C have a dif-
ferent behaviour, with systematically lower reaction cross
sections and total reaction function FTR(χ), being well
reproduced by 60% of F0(χ).

The difference between the results of both reduction
procedures, observed for the light, nα structured carbon
target, was not observed for heavy targets (A ∼ 120) in
fig. 30. The decision about which is the best reduction
method is still an open debate and we hope that our data
and analysis can contribute to elucidate this question.

7.1.6 Comparison of total reaction cross sections of
different systems and of different scaling procedures

We have shown experimental evidences that using the first
scaling and light mass, low Z (carbon and 9Be), or heavy
mass, A ≥ 50–138, and Z ≥ 30–50 targets, the reduced
reaction cross sections of systems with projectiles of differ-
ent nature, such as radioactive halo, weakly bound stable
or tightly bound stable nuclei, are quite different. If the
scaling does not eliminate the differences between the re-
duced reaction cross sections, this means that there are
important reaction mechanisms or processes, which are
not described in the scaling. The breakup cross sections
of the halo nuclei can be larger than those of the weakly
bound stable projectiles, in the long range Coulomb field
of the higher Z target nuclei, or in the short range nuclear
field of low Z targets at higher energies.

However for targets with Z = 13 (27Al) the reduced re-
action cross sections of radioactive halo (6He) and weakly
bound stable (6,7Li,9Be) projectiles are very similar, but
they are larger than those of the tightly bound nα struc-
tured 16O projectile. We can imagine a situation where
the Coulomb and nuclear break up processes interfere de-
structively and no enhancement, due to the nuclear halo,
is observed.

The results with the second scaling are, surprisingly,
not the same. For heavy targets the total reaction func-
tions FTR are quite different for projectiles of different na-
ture (as radioactive halo, weakly bound stable or tightly

bound stable nuclei). But for light targets (carbon) the dif-
ference between radioactive halo (6He) and weakly bound,
stable (6,7Li, 9Be) and tightly bound non-nα structured
projectiles (11B, 10Be) disappears with the second scal-
ing. It is hard to understand, how the scaling based on
the tunneling concept eliminates the differences between
a halo, and a tightly bound projectile. For the 27Al target
the second scaling washes out the difference even between
the halo (6He), weakly bound, stable (6,7Li, 9Be) and the
tightly bound nα structured 16O projectiles. If the main
difference between these systems are the facility to break
up, or to transfer nucleons, which are both reactions not
proceeding by tunneling through the Coulomb barrier, it
is hard to understand how the second scaling eliminates
the differences between the reaction functions.

All these results indicate the necessity for more mea-
surements but also for more theoretical effort to describe
in a consistent way the reaction cross sections between
different systems.

7.2 Breakup and alpha-production measurements

7.2.1 Production of α-particles in the 6He + 120Sn collision

In addition to the elastic scattering, a large production
of α-particles has been observed in the collision of 6He
with several targets in several experiments [22, 121–125].
These α-particles present broad energy distributions, with
widths of a few MeV, centered around the velocity of the
6He projectile. In the spectrum of fig. 10, the region where
the α-particles appear is indicated (see also ref. [125]). The
α-particles can, in principle, be produced in a number of
reactions involving the 6He beam. The projectile breakup,
one- and two-neutron transfer reactions are possible mech-
anisms but also complete and incomplete fusion reactions
could produce α-particles. For a complete identification
of the reaction mechanism, it would be necessary to per-
form complete coincidence measurements of the neutrons,
γ-rays, and α-particles [124]. However, it is still possible to
obtain useful information directly from the analysis of the
energy and angular distributions of the single α-particles.

In fig. 36, we present the energy distribution (left)
and the angular distribution (right) of the α-particles pro-
duced in the 6He + 120Sn collision. The cross sections have
been calculated in the laboratory system, thus no assump-
tion has been made about any particular reaction mecha-
nism.

In order to improve the statistics, we added the α-yield
measured at neighboring angles (55◦ to 70◦). We compare
the measured energy distributions with the predictions of
the two-neutron transfer to the continuum, breakup, and
fusion-evaporation calculations. All calculations have been
transformed to the laboratory system, using appropriate
Jacobian transformations.

We see that our experimental results agree better with
the predictions of two-neutron transfer reactions (solid
blue line) rather than the breakup and fusion reactions
(dashed and dash-dotted black lines). Transfer reactions
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Fig. 37. Scheme of the optimum Q-window for neutron trans-
fer reactions. Ebi stands for the binding energy of the 6He
nucleus.

are, in general, very selective in terms of the excitation en-
ergy of the residual nuclei. The Q-window is determined
by the optimum Qopt condition [126] and, for the case of
neutron transfers, Qopt = 0, which implies that states in
the final nucleus around the same binding energy of the
projectile will be populated.

In fig. 37, we illustrate the Q-window for the two-
neutron transfer reaction 120Sn(6He, α)122Sn. It is cen-
tered at an excitation energy of 14.98MeV in 122Sn, just
0.973MeV below the two-neutron threshold, but above
the one-neutron threshold located at 6.17MeV excitation
energy. This means that the two-neutron transfer reac-
tion will populate mainly states in the continuum of the
residual 122Sn nucleus.

The DWBA calculation of the two-neutron transfer to
the continuum (TC) is presented in fig. 36 as the solid
blue line [22] and it reproduces fairly well the experimen-
tal behaviour. In this calculation [127], the continuum of
the 122Sn nucleus has been discretized in bins of 1MeV
width up to 9MeV above the 2n threshold. For states be-

low the 2n threshold, we used a set of representative states
distributed in intervals of 1MeV following the procedure
of Escrig et al. [125]. The 6He wave function was calcu-
lated in a di-neutron single particle model. The results
are compared with the data without any normalization.
We see that the agreement is good either from the point
of view of the energy distributions or of the shape and
magnitude of the angular distributions.

The angle integrated TC cross sections give a value of
≈ 650mb, approximately constant for the four energies
analysed. This value is of the order of σhalo, presented in
table 5 and, this is an indication that the α-particles ob-
served around the elastic scattering peak (fig. 10) could
account for the enhancement observed in the total reac-
tion cross section for the 6He + 120Sn system, the latter
obtained from the elastic scattering angular distribution
analysis.

8 Upgrades of the facility

8.1 Large array of neutron detectors

We have available in our laboratory a large-area, position-
sensitive neutron detector with neutron/γ-ray discrimina-
tion capabilities. This neutron wall was designed to de-
tect intermediate energy neutrons, with kinetic energy
of 1MeV to 100MeV. It is, then, very useful to per-
form breakup measurements of neutron-rich nuclei, where
the neutrons would be detected in coincidence with the
charged particles. This neutron wall is based on the de-
sign of the neutron wall of NSCL-Michigan State Univer-
sity [128].

The neutron wall available in the laboratory consists
of 25 cylindrical Pyrex cells, filled with an organic-liquid
scintillator, NE-213 (Xylene), sealed at both ends, and
with a square section of 8 cm2. The total area is 2× 2m2,
with an inactive area of less than 12%. For a neutron flight
distance of 5m, the wall subtends a solid angle of approx-
imately 20msr. Detection efficiency of this wall is deter-
mined by the areal density of nuclei in the detector and
the solid angle coverage, where the thickness of the cell in
the beam direction limits the energy resolution. A balance
was found between a thick detector, with higher detection
efficiency but not so good time resolution, and a distant
detector which sacrifices coverage for energy resolution.
Photomultipliers (PMTs) are coupled to each end of the
cell to detect the scintillated light. The time of an event
is determined by the average of the times from the two
PMTs, and the position of the neutron incidence is deter-
mined by the difference in PMT times. The nominal time
resolution is 1 ns, and with a ∼ 7.7 cm/ns position to time
relation, this leads to a horizontal position resolution sim-
ilar to the vertical resolution determined by the each cell
height (about 7 cm).

To determine the neutron energy, we have to measure
the time the neutron takes to travel from the target to
the detector. If the length of the flight path is known, we
can determine the neutron velocity and energy, regardless
of the energy deposited in the detector. However, when
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the TOF method is used to determine energy, γ-rays in-
troduce a continuous background in the neutron energy
spectrum. To remove the undesired γ-rays, this neutron
wall has the capability to perform pulse-shape discrimi-
nation (PSD), since the time shape of the pulse for neu-
trons is different from those for the γ-ray background.
This detector will be very useful to use in conjunction
with neutron-rich radioactive beams of the RIBRAS sys-
tem.

8.2 Gamma-ray cave

The detection of gammas in coincidence with particles
emitted from reactions is an important step to enhance
our capability to separate different reaction channels.
However, as the solenoids of RIBRAS have no magnetic
shielding, the residual field in the region of the scattering
chambers-2 or -3, where the detectors could be mounted,
can be as high as tens or even hundreds of Gauss. Magnetic
fields of such intensities prevent the use of detectors that
depend on electron collection such as ionization chambers,
proportional counters, micro-channel plates, and photo-
multiplier tubes. Only silicon detectors and fast avalanche
detectors like parallel plate avalanche counters (PPAC)
work in such magnetic fields. Then, in order to operate
with the usual gamma detectors, a new scattering cham-
ber will be necessary, distant from the solenoids, in a
region where the magnetic field is sufficiently small to
not affect photo-multiplier operation. We are planning
to make an extension of the RIBRAS beam line to in-
stall a gamma cave. In addition, a shield for the neu-
trons will be necessary since the secondary neutron beam
of RIBRAS is intense and could damage the Ge detec-
tors.

9 Conclusions and future perspectives

The research developed in RIBRAS at the present con-
sists mainly of low-energy elastic scattering of light exotic
projectiles such as 6He, 8Li, 7Be, 8B, and 10Be on targets
of different masses. Elastic scattering at low energies pro-
vides information on the interaction potential in these ex-
otic systems, as well as on the total reaction cross section.

For heavy and intermediate mass targets, the Coulomb
interaction is very important and long range effects have
been observed in the optical potentials derived from the
analysis of the elastic scattering of 6He + target. The
coupling to the projectile breakup channel was included
via continuuum discretized coupled channel calculations
(CDCC) and provided a very good description of the ex-
perimental data, practically without any parameter ad-
justment. This indicates that this process is very impor-
tant and strongly coupled to the elastic channel. The opti-
cal potentials derived from the analysis of the 6He scatter-
ing and also from CDCC polarization potentials, present a
long range tail and the real polarization potential, on the
other hand, presents a repulsive component in the region
of the surface of the system. These seem to be general

characteristics of the optical potentials that describe the
scattering data with the 6He projectile and are probably
a consequence of the effect of the neutron halo and its low
binding energy.

The total reaction cross sections for 6He on heavy and
intermediate mass targets, on the other hand, present a
clear enhancement compared to the cross section of sta-
ble systems (see figs. 30 and 31). The comparison between
different systems has to be performed with the reduced re-
action cross sections, which take into account the different
sizes and different energies with respect to the Coulomb
barriers (see eqs. (8) and (9)). When we compare the re-
duced reaction cross sections from reactions induced by
6He with doubly magic projectiles, such as 4He and 16O,
the enhancement is quite large and, even with respect to
the weakly bound projectiles 6,7Li and 9Be, enhancements
of the order of 50% have been observed. With the reduc-
tion based in reaction functions (see eqs. (13) and (11))
the enhancement is still present (see fig. 30), indicating
that an important part of the cross section is due to
direct, peripheral processes that are not washed out by
the reduction based on tunneling through the Coulomb
barrier.

For lighter systems, such as 6He + 12C and 6He + 9Be,
and at energies well above the Coulomb barrier, the nu-
clear field dominates and the Coulomb effects may be
negligible. The enhancements with respect to the weakly
bound systems are reduced but are still of the order of
15–25% of the total reaction cross section, when the first
reduction, based on size, charge, and energy differences,
is used. Using the second reduction, based on the UFF,
the difference between weakly bound and nα structured
projectiles can be observed, again indicating the presence
of direct processes, contributing to the reaction cross sec-
tion.

For the 27Al target, the neutron-halo 6He projectile
had a reduced reaction cross section similar to the sta-
ble, weakly bound or radioactive non-halo projectiles (see
figs. 32 and 33), using both reduction methods. Surpris-
ingly, the difference between weakly bound (stable or ra-
dioactive, even halo projectiles) and nα structured pro-
jectiles (16O) is washed out with this second reduction,
based on the UFF concept.

Comparing our results on heavy, intermediate-mass,
and light targets, we can conjecture about the relative
contributions of the Coulomb and nuclear breakup: in the
intermediate mass (A ∼ 60) or heavy (A ∼ 120) targets,
the long range Coulomb interaction is dominant for the
breakup process. In the higher-energy region (Ered ≥ 2.0)
for the lightest targets (A = 9 or 12), the nuclear breakup
dominates and, maybe for the A = 27 target, there
is a destructive interference between both processes, re-
ducing the importance of the breakup process. This hy-
pothesis should be further verified with targets of similar
mass.

These enhancements in the reaction cross section seem
to be related to the presence of a high yield of alpha parti-
cles produced in the reactions induced by 6He. Such alpha
particles have been observed in the 6He + 120Sn scattering,
with an energy distribution that indicates that they were
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produced in direct processes such as projectile breakup
or neutron transfer reactions. The magnitude of the cross
sections for the alpha production process seems to account
for the observed enhancement in the total reaction cross
section of 6He + 120Sn.

The elastic scattering measurements and the deduced
total reaction cross sections, obtained with 8Li and 7Be
beams, did not present noticeable difference on medium
mass target (see 8Li + 51V and 7Be + 58Ni in fig. 31).
The difference in their cluster structures did not show
up in these systems. However, on lighter target, as 12C,
a small enhancement can be observed in the reaction
cross section of 8Li and 7Be, when compared to weakly
bound, stable projectiles, as 6,7Li (see fig. 34). More data,
with better statistics, can shed more light on this prob-
lem.

Our most striking results are related to the systematic
of the total reaction cross sections on targets of different
masses and the good agreement between our elastic scat-
tering data and CDCC calculations. Our recent data on
6He + 58Ni even show a sensitivity to the four-body char-
acter of the collision, demanding the exact description of
6He as a core and two correlated neutrons. It is inter-
esting to note that the CDCC calculations, which take
only the breakup into account, are able to reproduce the
elastic data even in the presence of strong alpha yield,
which seems to be more related to transfer reactions than
to breakup. These different aspects of the whole complex
picture show, that there is still a lot to learn, and the
elastic scattering can give many important information.

RIBRAS is now entering in a second phase where we
intend to sophisticate our detection system in order to se-
lect reaction channels other than elastic scattering. That
will require a pulsed primary beam, for time-of-flight mea-
surements, as well as gamma and large area neutron detec-
tors to identify and separate different reaction channels.
Recently, we introduced several new improvements in the
detection systems of RIBRAS. With the large scattering
chamber-3 that entered in operation in 2011, and sev-
eral new double-sided strip detectors (DSSD), we are able
to measure reaction angular distributions with much bet-
ter angular resolution and higher statistics. The gamma
and neutron detectors will become operational in the near
future, permitting contributions with new reaction mea-
surements to the field of low-energy, radioactive ion beam
science.
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P. Fröbrich, W. Schäfer, Phys. Rev. C 22, 1790 (1980).

55. V. Morcelle, Master’s thesis, IFUSP (2007).

56. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl.
Data Tables 36, 495 (1987).

57. M. Majer, R. Raabe, M. Milin, C. Angulo, J. Cabrera,
E. Casarejos, J.L. Charvet, D. Escrig, A. Gillibert, T.
Keutgen et al., Eur. Phys. J. A 43, 153 (2010).

58. L.R. Gasques, L.C. Chamon, D. Pereira, V. Guimarães,
A. Lépine-Szily, M.A.G. Alvarez, E.S. Rossi, C.P. Silva,
B.V. Carlson, J.J. Kolata et al., Phys. Rev. C 67, 024602
(2003).

59. L.R. Gasques, L.C. Chamon, D. Pereira, M.A.G. Alvarez,
E.S. Rossi, C.P. Silva, G.P.A. Nobre, B.V. Carlson, Phys.
Rev. C 67, 067603 (2003).

60. G.D. Alkhazov, M.N. Andronenko, A.V. Dobrovolsky, P.
Egelhof, G.E. Gavrilov, H. Geissel, H. Irnich, A.V. Khan-
zadeev, G.A. Korolev, A.A. Lobodenko et al., Phys. Rev.
Lett. 78, 2313 (1997).

61. V. Morcelle, PhD thesis, IFUSP (2012).
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V. Guimarães, A. Lépine-Szily, D.R. Mendes, A. Arazi,
A. Barioni, V. Morcelle et al., Phys. Rev. C 82, 044606
(2010).

75. U. Atzrott, P. Mohr, H. Abele, C. Hillenmayer, G. Staudt,
Phys. Rev. C 53, 1336 (1996).

76. P. Mohr, Phys. Rev. C 62, 061601 (2000).

77. D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E.
Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A 745, 155
(2004).

78. G.V. Rogachev, P. Boutachkov, A. Aprahamian, F.D.
Becchetti, J.P. Bychowski, Y. Chen, G. Chubarian, P.A.
DeYoung, V.Z. Goldberg, J.J. Kolata et al., Phys. Rev.
Lett. 92, 232502 (2004).

79. R.P. Condori, R. Lichtenthäler, P.N. de Faria, A. Lépine-
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