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1. GENERALIDADES

1.1. Motivacd@o na Engenharia de Estruturas

Na notavel sintese de Crandall [ﬂ ; a analise dos problemas de

engenharia por via numerica se faz em dois passos:

- Construcao de um modelo matemdtico da situacao fisica;

- Redugao do problema matematico a um procedimento numérico.
Esses problemas recaem, no geral, em trés grupos:

a) Problemas de equilibrio (estaticos);
b) Problemas de valores caracteristicos: .

c) Problemas de valof inicial (dinémicos),

Nas tres categorias se consideram tanto os sistemas naturalmen-
te discretos, como os problemas continuos discretizaveis. Contem-
plam-se ainda, nos varios casos, problemas de natureza linear e
nao linear.

Reduzindo o foco & Engenharia de Estfuturas, as va:iéveis bagi-
cas com que se trabalha sao as agoes externas (cargas e reacgdes) e
internas (tensces), e o0& deslocamentos absolutos e relativos (de-
formagoes) dos pontos dos s6lidos deformdveis que constituem as es
truturas.

Vai-se agora tratar de um sistema discreto (como as estruturas
reticuladas) ou discretizado via, p. ex., o Metodo dos Elementos

Finitos (*).

(*) Como comentario histdrico € interessante notar gue esse Mato-
do, contribuicao original da Engenharia de Estruturas a Fisica Ma-
tematica, que revolucionou a analise numérica, foi primeiro apre-=
sentado por Turner, Clough, Martin e Topp [2] em 1956, mesmo ano
da edigcao do trabalho classico de Crandall, ja citado, que, como é
claro, nao o contem explicitamente.
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Sendo £ o vetor dos carregamentos-nodais (i.e., pontos discre-
tos da estrutura), u o vetor dos deslocamentos nodais, e caracteri
zando por pontos superpostos suas derivadas temporais, o sistema
de equacoes diferenciais do movimento, na formulacdo de deslocamen

.

tOs; se escreve
MU+ Cd+Ku-= £(t) , (1.1)

em gque M, C e K s30, respectivamente, as matrizes de massa; amorte
cimento e rigidez, constantes no caso do comportamento linear, ou,
no geral, funcao de deslocémento, comportamento-do.material, histﬁl
rico. ete.

Trata-se de problemé encaixado no grupo dos de valor inicial a-
cima citado. Na integragSOInumérica de (1.1) no tempo, passo a pas
$0, utilizam-se algoritimos em que se adota certa variacdo de u e
suag derivadas no inter&alc At e, em éadé passo, resolve-se um sis+

®

tema do tipo

[

-

K

- -

Upoae = F¢ 00 KU, 0 = St

(1.2)
em gue K e f dependem do especifico esquema adotado.

No caso particular de f nulo, tem-se o problema de valores ca-
racteristicos da determinagao das frequéncias e modos naturais de
ﬁibragao‘

Quando a evolugdo no tempo das variaveis de estado permitir des
prezar em (1.1) os esforcos de inércia e amortecimento, recai-se

nos problemas de egquilibrio estatico na forma

Ku=¢§¢ . (1.3)



que, quando nao lineares, implicam no uso de algoritimos incremen-
tais e iterativos, resolvendo-se em cada etapa, partindo das condi

¢Oes conhecidas no passo anterior, um sistema do tipo
K Au = af (1.4)

Estuda-se aqui tambem o problema da estabilidade do equilibrio
das estruturas, que recai na categoria dos de valores caracteristicos.

Na maioria dos casos das estruturas, oOs sistemas . resultantes
sao simét;icos definidos positivos. Além disso, para - estruturas
discretas, como as reticuladas, ou discretizadas pelo Metodo dos
Elementos Finitos, os sistemas resultantes sd3o naturalmente espar-
s0s,; tanto mais quanto maior for a estrutura. Com uma numeracao
cuidadosa dos nos pode-se eventualmente concentrar os valores n3o
nulos de K nas proxihidades da diagonal principal.

Tais propriedades sugerem esquemas de armazenamenéo de coefici-
entes do tipo banda ou envelcpe, como o "skyline" de Bathe [3], ou
de renumeragao como o dé Cuthill-McKee [ﬁ], visando manter e ope-
rar o mais possivel apenas sobre os elementos ndo nulos.

Trés exemplos de numeracgao variando de boa a péssima constam da

fig. 1.1 com as respectivas "larguras de meia banda’' LMB , para uma

mesma trelica de 8 nds (2 graus de liberdade por nd).




Com o crescimento cada vez maior do tamanho dos sistemas a re-
'solver e sabendo-se ser essa etapa da andlise a gue mais tempo con
some, cabe um estudo de otiﬁizagéo desses esguemas.

A motivagao maior, entretanto, ndo @ nos problemas em que se re

solveria um sistema uma lnica vez, mas sim nos problemas dindmicos

e nos de natureza nao linear em que essa operagao se  repete em

grande numero, sempre com matrizes que podem variar em cada vez;

; . - i3 3
ou em cada certo numero de vezes; no valor numerico de seus coefi-

cientes, mas nao em sua estrutura de elementos nulos e nao nulos.

Esta permanece a mesma ja que o sdlido analisado @ o mesmo, com as
mesmas conexoes entre nds. Deve ser lembrado aqui que a forma como
se comunica aos programas usuais de andlise estrutural a ligacao

entre nos € a classica tabela de incidéncia de barras ou de elemen

tos; que nada mais e que um grafo, cuja conceituacao se fara com

detalhe no item 2 deste trabalho.

l.2. Escopo e Estrutura do Trabalho’

Conforme ilustrado acima, a utilizagdo de esquemas de armazena-
mento e rotulacao dos coeficientes da matriz K pode influenciar
substancialmente no tempo de processamento e utilizacao de memdria
de computador na resolugao de sistemas lineares definidos positi-

vos esparsos de grande porte tipo

Ru=¢£ (1.5)

e mecte emeney Wt

Y
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Na segao seguinte apresenta-se a descricao de um algorifimo com
putacional visando a resolugao de sistemas dessas caracteristicas
pelo metodo de Cholesky com armazenamento de coeficientes na forma
de envelope e prévia reordenagdao do mesmo para otimizagdo de memd-
ria e numero de operagOes utilizando o eéquema de Cuthill-McKee.

A implementagcao do algoritimo fez-se em microcomputador compati
vel com o PC da IBM, através de programa computacional em iingua-
gem MS-FORTRAN-77 descrito na segéb 3, cuja listagem completa é
fornecida no Apeéndice.

Na secao 4 apresenta-se um exemplo voltado para a drea de Enge-
nharia de'Estruturas na forma da andlise estdtica de uma viga bal-
cao modelada como pdrtico espacial bi-engastado de trés barras. Em
bora se trate de um sistema de apenas 12 equagles simultdneas, (o
efeito do algoritimo de otimizagdo & extraordindrio, como 13 se ve

ra.



2. SOLUCAO DE SISTEMAS LINEARES ESPARSOS DE GRANDE PORTE SIME-

TRICOS DEFINIDOS POSITIVOS
2.1. Descricao do Problema

Nesta secgdo serd estudada a solucgdo de sistemas lineares espar-
sos ‘de grande porte simétricos definidos positivosa 0 metodo utili-
zado sera o de Cholesky-.

Seja dado um sistema de equagles lineares
Ku=¢f | | {213

onde K & uma matriz real NxN, simétrica definida positiva,u e £ ve-
tores de RV . Aplicando o método de Cholesky obtem-se uma fatorizagdo

triangular
K = LL (2-2)

onde L e triangular inferior com elementos positivos na diagonal.
Uma matriz L & triangular inferior {superior} se zij = 0 para i < j
{i » j}: 0 superescrito T indica transposta.

Demonstra-se [4] que esta fatorizagdo sempre existe guando K &

simétrica definida positiva.

Utilizando (2.1) e (2.2) obtem-se

il
“h

LL™ u t2+39

T

e substituindo v = L~ u & claro que obtem-se u resolvendo os siste-



mas triangulares

L o= £ ' (2.4)

e .
tfu=v (2.5)

Diversos exemplos de aplicagOes do metodo de Cholesky a matrizes
esﬁarsas K mostram que a matriz sofre um “preenchimentb“, isto é, L
possui elementos n3do nulos em posigcOes que eram nulas na parte tri-
angular inferior de K. Entretanto observa-se que em diversos proble
mas com matrizes esparsas uma reordenagao de linhas e colunas da ma
triz K pode reduzir a gquantidade de preenchimentos e_portanto econo
mizar tempo e memdria do computador. O estudo de um algoritimo que
automaticamente efetua esta reordenacdo serd apresentado na secgao
2.2, juntamente com um esquema de armazenamento para a matriz L do
sistema reordenadc.

O problema pode ser esquematizado em 3 etapas:

i) Encontrar uma "boa'ordenacao", ou seja, encontrar uma matriz
de permutacao P para a dada matriz K, com respeito ao método de ar-
mazenamento escolhido.

ii) Determinar informagdes necessdrias sobre o fator de Cholesky
L de PKPT para fixar um esquema apropriado de armazenamento.

iii) Efetuar os cdlculos numéricos, que podem ser divididos em 2
partes:

a) Efetuar a fatorizagao da matriz PKPT em i

b) Resolver os sistemas triangulares L v = f e L. 2 = V. Dai

u = PT 2



Estas 3 etapas podem ser feitas 1ndependentemente uma da -outra.
Esta independéncia além de pOssuir a vantagem de modulagdo nos pro-
gramas, permite a resolugdo de diversos problemas com a matriz K
possuindo a mesma forma, resolvendo uma s6 vez as duas primeiras e-

tapas e repetindo a 3% etapa para cada problema.

2.2. Algoritmo de ordenacdo de envelope

Nesta seccdo serd apresentado um algoritimo de ordenagao de enve

lope [4] . Inicialmente na secgdio 2.2.1 serdo apresentadas algumas
definicoes e convengaes'relativas a teoria de grafosle sua corres-
pondéncia com matrizes. Na secgdo 2.2.2 serdo feitas algumas consi-
deragdes sobre o método de armazenamento denominado envelope e fi-
nalmente na secgdo 2.2.3 serd descrito o algoritimo de ordenagdoc de
envelope. Ll

®

2.2.1. NogOes sobre teoria de grafos aplicada ds matrizes

1
a

Nesta secgao serao apresentadas algumas convengdes e definigoes,
bem como algumas nogdes sobre teoria de grafos e sua correspondén-
cia com as matrizes. |

Um grafo G = (U,E) constitui-se de um conjunto de nbs U juntamen
te com um conjunto de arestas E que sdo pareé ndo ordenadas de vér-
tices. Uma ordenagao (rotulagdo)eg de G = (U,E) & simplesmente uma
aplicacao de {1, e N} sobre U onde N denota o nimero de nds de
G. A menos de mengao contraria os grafos serao nao ordenados, o gra
fo G ordenado por g serid denotado por e =" ,E ) . Como o objetivo
& introduzir grafos para o estudo de matrizes esparsas, esta rela-

¢do serd estabelecida a seguir.

e o I R T

b




Seja K uma matriz simétrica NxN. O grafo ordenado de K, denotado

por ¢¥ = (uk

, EX) & um grafo no gual os N vértices de GX sdo numera
dos de l aN e {ui, uj} € gk Se e sOmente se Kij = Kij # 0, i # j.
IAqui u, esti indicando o nd de UX com rétélo i. Para qualquer ma-
triz NxN de'permutagao, P # I, os grafos n3ao rotulados de K e de
PKPT S30 Os mesmos mas as rotulagdes associadas s3o diferentes. 0

exemplo sequinte facilita a compreensao deste fato. Considere a ma-

triz K abaixo e seu grafo associado

o, @—d

Matriz K : Grafo Gk

O simbolo * indica os elementos nio nulos de K.

Considere a seguir uma permutacdo P de K. Ter-se-a

T
Matriz PKDT GRAFO GERP
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Dai, um grafo ndo rotulado de K representa a estrutura de K sem
sugerir qualquer ordenagao particular. Ele representa a élasse de
equivalencia das matrizes PKPT onde P e qualéuer matriz de permuta-
¢ao NxN. Encontrar uma boa permutacgao de.K pode ser vista como uma
boa rotulagao de seu grafo.

No qﬁe segue, referihdo—se a uma matriz correspondente ao grafo
G, ou especificar-se-d a ordenagao & de G ou estard implicito que
alguma ordenacgao foi assumida arbitrariamente.

Dois nbs u e v de G sio adjacentes se {u,v} € E. Para VCU o con-

junto de adjacencias de V, denotado por Adj (V) & definido por
ad3(v) = {u € u-v| { u,v} € E para algum v €evy.

Quando V possui um Gnico nd v escfever—se—é simplesmente Adj (v).

Para VCU, o grau de V, denotado por Deg(V) e o numero |Adj{V}|
onde ISI denota o numero de elementos do conjunto S. Quando V pos-
sui um Gnico nd v escrever-se-3 simplesmente Deg (V) .

Um subgrafo G' = (U',E') de G @ um grafo no qual U'CU e E'CE.

Sejam u e v nds distintos em G. Um caminho de u a v de comprimen
to £ 3 1 e um conjunto ordenado de £+1 nds distintos (Vis e

Vo)

i : ] i = Ty o vV, = u e = v. Um
tais que Ui+l€ Adj(ui), i 1, ; £ com 5

v£+l
grafo @ conexo se todo par de nos distintos e unido por pelo menos
um caminho. Caso contrario G & desconexo e consiste de duas ou mais
componentes conexas. Em termos de matrizes se G & desconexo e cons-
tituido de m componentes conexas, e cada componente conexa é rotula

da consecutivamente, a correspondente matriz sera bloco diagonal,

com cada bloco diagonal correspondendo a uma componente conexa.

———

i
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Seja G = (U,E) um grafo com N nds. Uma lista de adjacencias para
u€ U e uma lista contendo todos os nds em Adj(u). Uma estrutura de
adjacencias para G e simplesmente um conjunto de listas de adjacen-
cias para todos u € U. Tal estrutura pode ser implementada de modo
simples e éconémico, armazenando as listas de adjacencias sequen-
cialmente em um vetor unidimensional ADJNCY juntamente com um vetor
de indices XADJ de comprimento N+1, contendo os apontadores para o
comego de cada lista de adjacencias em ADJNCY.

Observe-se que o armazenamento de um grafo em (XADJ,ADJNCY) implica
em uma particular rotulagao do grafo. Esté ordenagdo sera referida
como ordenagdo original. Quando uma subrotina encontra uma nova or-
denagao, a ordenacao serid armazenada num vetor PERM de comprimento
N, onde PERM(i) = m significa que o nd original m é o i-eésimo nd na
nova ordenacao. Associado ao vetor de permutagao define-se o vetor
de permutacdao inversa INVP de comprimento N que satisfaz

INVP (PERM(1)) = i. |

Finalmente, em algumas subrotinas, somente certos subgrafos de G
serao considerados. Para &anto define-se um vetor MASK de comprimen-
to N, onde MASK(i) # 0 se o nd i for considerado. Além disso em cer-
tos casos, inicialmente um sb nd & rotulado. Tal nd serd denotado
por ROOT, com MASK(ROOT) # 0 e as subrotinas considerarao a componen

te conexa do grafo que contem o nd ROOT.
2.2.2. Método do envelope

Seja K = Kij].uma matriz simétrica definida positiva NxN. Para a

i-esima linha de X, i = 1, «.. , N, define-se
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il

£, = min {3 | Ryy # Of

O namero fi(K) indica o indice da coluna onde aparece o primeiro
elemento ndo nulo da i-eésima linha de K. Como todos os elementos da

diagonal de K s3o positivos, tem-se
fi(K) z 1 e Bi(K) 5 0.
Define-se o tamanho da banda de K por
g (K) = max [Bi(K) | 1 ¢ i ¢ N}

e o numero g, (K) sera denominado o tamanho da banda da i-ésima 1li-
l .

nha de K.

O envelope de K, denotado por Env(K) & definido por
Env (K) = [ {i,j} | 0 <i=3 ¢ Bi(K)}

A guantidade |Env(K)| & denominada tamanho do envelope de K e

& dada por

N

2 ai{K)

i=1

|Env (K) |

It
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Exemplo

By Fyg K14 =

Ko1 K22

K33 0- Egg Egg
K41 0
LK75

verifica-se que Env(K) = Env(L + LT).
Seja GK = (UK,EK) o grafo associado a K, onde o conjunto de nds

2 rotulado de acordo com a definigdo dada pela matriz K:

g% = fugy aee u }

para i < 3, {1,3}€ Ev(K) & u, € Adi({uy, oo s uyf)

0 grafo associado ao exemplo anterior & dado por
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2.2.3. Ordenagao de envelope

2.2.3.1. Algoritmo reverso de Cuthill-McKee

O algoritmo reverso de Cuthill-McKee (RCM) & um algoritmo que re
duz o tamanho da banda de uma matriz via minimizacao local dos By -
Isto sugere que este método pode reduzir o envelopeE:TBi de uma ma-
triz,

A descrigdo do algoritmo RCM serd feita para um grafo conexo. No
caso de grafos desconexos pode-se éplicar este algoritmo para cada

componente conexa do grafo.
Passo 1 - Determine um nd inicial r e atribua uf&—-r(*)

Passo 2 - Para i = 1, ... , N encontre todos os nds vizinhos do nd

ui nao rotulados e numere-os em ordem crescente dos graus.

Passo 3 - A ordenacao reversa de Cuthill-McKee & dada por Vireess vy
onde Vi S Ug_44p PA¥a i =1, ..., N.

A implementacao do algoritmo acima serd efetuada nas subrotinas

RCM, GENRCM, DEGREE descritas na seccdo 3.
2.2.3.2. Determinacd@o de um nd inicial

Passemos & andlise do problema de determinacdo de um nd inicial pa-
ra o algeritmo RCM. O objetivo & encontrar um par de nds due pos-
suam maxima ou proxima da mixima distincia (definida abaixo) . Diver
sas experiéncias mostram que tais nds sao convenientes como nds ini
ciais para o algoritmo RCM.

A distancia d(u,v) entre os nds u e v de um aqrafo conexo G e o

comprimento do menor caminho ligando u a v. A excentricidade do nd

(*) A tarefa de determinar um né inicial sera considerada logo apds
a descricao do algoritmo.
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u e definida por £(u) = max { d(u,v)] v €.U}'. O algoritmo que sera
descrito @ baseado na construcdo de uma estrutura de niveis rotula-
da que passamos a descrever.

Dado um nd u € U a estrutura de niveis rotulados em u e uma par-

ticao L (u) de U satisfazendo

Lw = {Dy), Ly, <o . Ly ) W}

onde

Ly(w) = fu}
Ll(u) = Adj(LO(u)}
e
Ly(w) = adj(L; ;W) - Ly, {uf, £ =2 wov s 2m)

Utilizando a notacdo acima, o algoritmo &€ o seguinte
g

Passo 1 - Escolha um nd arbitrdrio r em U.

Passo 2 - Construa uma estrutura de . niveis rotulada em IT:
L(x) = {1y(x), Ly e Ly gy (B} -

Passo 3 - Escolha um nd u em thr)(r) de grau minimo.

Passo 4 - a) Construa uma estrutura de niveis rotulada em u

L (u)

{Lo@, L@, oen Lz(u)(u)} .

b) Se £(u) > £(r), coloque r&—u e va ao passo 3.
Passo 5 - O nd u e o desejado.

A implementacao do algoritmo acima serd efetuado nas subrotinas

FNROOT e ROOTLS descritas na secgao 3.



016‘

2.2.3.3. Esquema de armazenamento de envelope

O esquema de armazenamento de envelope & feito de modo que para
cada linha todas as entradas a partir do primeiro elemento nio nulo
até a diagonal s3oc armazenados. Estas pofgaes sdo armazenadas de mo
do sequencial em um vetor unidimensional ENV. Mais especificadamen-
te o vetor ENV contem o envelope.da matriz K. A diagonal sera arma-
senada num vetor separado DIAG. Um vetor de Iindices auxiliar XENV
de comprimento N serd utilizado para apontar o inicio de cada por-
¢ao da linha. Desta forma o vetor XENV permite. localizar gualquer
componente nao nula convenientemente. A subfotina FNENV descrita na

secgao 3, determinard os vetores ENV e XENV.
2.3. Comentarios finais

Antes de concluir esta secgdo, serd efetuado um esquema das eta-
pas computacionais que serao descritas na secgdo 3.
Conforme ja mencionado, O problema pode ser esquematizado em 3

etapas:

i) Encontrar uma boa ordenagao, utilizando as subrotinas RCM,

DEGREE, FNROOT, ROOTLS e GENRCM;

ii) Fixar um esquema apropriado de armazenamento utilizando a subro

tina FNENV;:

iii) Efetuar calculos numéricos:

a) Fatorizagdo da matriz PKPT em LLT utilizando as subrotinas paAPT,
ESFCT;

b) Resolucao de Lv = f utilizando a subrotina ELSLV;

¢) Resolucao de Ltz = v utilizando a subrotina EUSLV.
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3. DESCRICAO DO PROGRAMA COMPUTACIONAL

Nesta secgao descrever-se-a O programa PARENV (escrito em lingua
gem FORTRAN-77 e implementado num microco@putador compativel com
PC—XT(IBM)Y que resolve um sistema linear de equagoes pelo metodo
descrito na secgcao 2. Algumas subrotinas aqui  descritas . foram

extrajdas de [47].

3.1. Utilizagdoc do programa PARENV

-

O programa PARENV para resolugao de sistemas de egquagoes LE+
neares simultdneas definidos positivos esparsos de grande porte com
aplicacao de um esquema de otimizagd@o de memdria e tempo de proces-

samento, & constituldo das etapas:
1) comandos de leitura e impressao de dados.
2) Resolucao do problema pela chamada das subrotinas adequadas.

A seguir se descreve a forma de se utilizar o programa.
3.1.1. Leitura de dados

1) Com um microcomputador compativel com o PC-XT (IBM) acoplado a
uma impressora, ligados e sob comando de seu sistema operacional,
introduz-se o disquete contendo o programa PARENV.EXE e digita-se ©O

codigo PARENV.

2) Apds a tela de apresentagao, a mensagem

- INDIQUE O NUMERO DE EQUACOES

solicitarada a digitacao desse parametro.



€180I

3) O programa colocarid a sequir a mensagem
= ENTRADA DO VETOR DE ADJACENCIAS=ADJNCY
E DE SEUS INDICADORES=XADJ. OPCOES :
A) GERA-LOS A PARTIR DO GRAFO ASSOCIADO (DIGITE @)

B) FORNECE-LOS DIRETAMENTE _ (DIGI?E 1)

Se digitado o cddigo #, o programa solicita

- ENTRE NUMERO DE ARESTAS DO GRAFO
com o que deve-se entrar esse valor que & O nUmero de segmentos co-
nectando nds do qrafo associado d matriz de coeficientes do sistema
sequndo definigado da segdo 2 deste trabalho. A-seguir a mensagen

— PARA CADA ARESTA ENTRE NO INICIAL, NO FINAL
solicitara a entrada da tabela de incidéncia de arestas, operagao
auxiliada pela repetida impress3o na tela de |

- ARESTA i (i=1,2,...,nGmero de arestas)

Se digitado o cddigo 1, surgiri a mensagem

= ENTRE O VETOR INDICADOR ﬁE ADJACENCIAS=XADJ
solicitando a entrada um a um dos niimeros que apontarao no vetor de
adjacencias ADJINCY o enderego inicial da lista de nds conectados a
cada numero de equagao, conforme definicao dada na secao 2 deste
Itrabalho, A seguir a mensagem

= ENTRE O VETOR DE ADJACENCIAS=ADJINCY

Solicitard a entrada, um a um, dos elementos desse vetor, que na
da mais & gue uma sequéncia de listas de nds conectados a cada nime

ro de equagao, conforme secao 2.

4) A partir dos dados fornecidos em 3) o programa processa o tama-
nho do envelope da matriz original e de sua largura de banda soltan

do na impressora acoplada as mensagens

.l.‘..‘:ﬂ

' e s e
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TAMANHO DO ENVELOPE DA MATRIZ ORIGINAL E —=—-="

i

— LARGCURA DE BANDA ORIGINAL E —-—-—-=

5) A seguir surge a mensagem

- INDIQUE O VETOR ENVELOPE DA MATRIZ OﬁIGINAL
solicita a-digitagéo seguida, um a um, da esquerda para 'a direita
em cada linha, dos coeficientes da matriz original a partir do pri-
meiro elemento nao nulo até a diagonal, nao incluida, em formato 1li
vre.

Os elementos da diagonal serao a seguir fornecidos um a um, pela

ordem das equagbes, apds a solicitagao

- INDIQUE A DIAGONAL DO SISTEMA ORIGINAL

6) Segue-se a mensagemn
~ INDIQUE O VETOR SEGUNDO MEMBRO DO SISTEMA

apos a qual digita-se Os elementos desse vetor um a um.

7) Embora a inteﬁgaoldo programa PARENV seja otimizar memdria e tem
po de processamento,lé fornecida a possibilidade de se resolver o
problema de forma nao automdtica, fornecendo-se uma permutagao dire
tamente, para, por exemplo, possibilitar comparacoes de performance.
A opcao & exercida digitando o cddigo correspondente apos a mensa-
gem

- INDIQUE SE A OTIMIZACAO DEVERA SER EFETUADA

CASO AFIRMATIVO DIGITE ZERO; CASO NEGATIVO DIGITE 1

Na hipdtese afirmativa os elementos do vetor de permutagao esco-

lhido pelo usuadrio deverdo ser digitados apds a mensagem

- INDIQUE O VETOR DE PERMUTACOES
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3.1.2. saida de resultados

1) Segue-se a saida de resultados através da impressora, come¢ando
pelo fornecimento da extensio do vetor enfelope e largura de banda
do sistema apés a otimizagao na forma

- TAMANHO DO ENVELOPE APQOS PERMUTACAQ E ===

- LARGURA DE BANDA APOS PERMUTACAO E =———-
segﬁido~da impressao do vetor de resultados do sistema na ordem -ori
ginal, ja que o pPrograma se encarrega de fazer a permutacao inver-
sa. A impressdo, nesta vers3o, & feita em formato livre, com preci-

sao dupla.

2) Surge a seguir na tela a mensagem

- QUER ENTRAR OUTRO VETOR RHS? (1=NAO, #=SIM)
para possibilitar a solugdo de um novo problema com a mesma matriz
K de coeficientes, cuja decomposigdo ja foi feita e est3 armazenada,
é um outro vetor segundo membro. Tal operagao poderia ser necessi-
ria, por exemplo, para analisar uma mesma estrutura sob efeito de

diversos carregamentos.
3.2. Descrigao das subrotinas

1) Subrotina ROOTLS

Objetivo: gerar uma estrutura de niveis rotulada no nd inicial cha-

mado ROOT.

Utilizacao: CALL ROOTLS (ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS).

Argumentos: ROOT = varidvel inteira de entrada contendo o ndé a par-

tir do qual a estrutura de niveis seri rotulada.

l_-_.%
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(XADJ, ADJNCY) = par de vetores inteiros de entrada 'contendo a
estrutura de adjacéncia do grafo. |

MASK = vetor inteiro de entrada especificando o subgrafo a ser
utilizado.

NLVL = variavel inteira de saida contendo © niimero de niveis na
estrutura.

(XLS, LS) = par de vetores inteiros de saida contendo a estrutu-

ra de niveis rotulados.

subrotinas requeridas: nenhuma.

2) Subrotina FNROOT

Objetivo: Encontrar um nd inicial para o algoritmo RCM.

ytilizagao: CALL FNROOT (ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS) -

Argumentos: (XADJ, ADJINCY) = par de vetores inteircs de entrada con

tendo a estrutura de adjacencias do grafo.

MASK = vetor inteiro de entrada esbecificando o subérafo ‘a ser
utilizado.

ROOT = variavel inteira que na entraéa (juntamente com MASK) de-
fine a componente conexa na qual o no inicial para RCM devera ser
procurado; - na salda contera o nd desejado.

NLVL = variavel inteira de saida contendo o nimero de niveis na
estrutura.

- (XLS, LS) = par de vetores inteiros de saida contendo a estrutu-

ra de niveis rotulados.

Subrotinas requeridas: ROOTLS.
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3) Subrotina DEGREE

‘Objetivo: calcular o grau dos nds da componente conexa especificada

por MASK e ROOQT.
Utilizacdao: CALL.DEGREE (ROOT, XADJ, ADJﬁCY; MASK, DEG, CCSIZE, LS)

Argumentos: ROOT = variivel inteira que na entrada define a compo

nmmgcmmmh

. (XADJ, ADJINCY) = par de vetores inteiros de entrada conténdo  a
estrutura de adjacencias do grafo. -

MASK = vetor inteiro de_entrada especificando o subgrafo a ser
utilizado,

DEG = vetor inteiro de saida contendo os agraus.

CCSIZE = parametro inteiro de saida especificando o tamanho da
componente conexa.

LS = vetor temporario usado para armazenar os nds das: .componen-

tes niveis por niveis.

Subrotinas requeridas: nenhuma.

4) Subrotina RCM

Objetivo: RCM orderna os nds da componente conexa do grafo especifi-
cada por MASK e ROOT, utilizando o algoritmo RCM.

Utilizagdo: CALL RCM (ROOT, XADJ, ADJNCY, MASK, PERM, CCSIZE, DEG)

Argumentos: ROOT = variivel inteira de entrada define o nd inicial

a ser considerado.

(XADJ, ADJINCY) = par de vetores inteiros de entrada contendo a
estrutura de adjacencias do grafo.

MASK = vetor inteiro de entrada especificando o subgrafo a ser
utilizado. |

PERM = vetor inteiro de saida contendo a ordenacdo.

P ————
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CCSIZE = parametro inteiro de salda especificando o tamanho da

componente conexa utilizada.

DEG = vetor temporirio usado para armazenar os graus dos nds do

subgrafo utilizado.

subrotinas requeridas: DEGREE

5) Subrotina GENRCM

Objetivo: Encaminhar a ordenacdo pelo algoritmo reverso de Cuthill-

McKee para um grafo geral.

Utilizacao: CALL GENRCM (NEQNS, XADJ, ADJNCY, PERM, MASK, XLS)

Argumentos: NEQNS variavel inteira de entrada especificando o ni-

mero de equagoes.

par de vetores inteiros de entrada contendo a

1l

(XADJ, ADJINCY)

estrutura de adjacencias do grafo.

PERM vetor inteiro de saida contendo a ordenacao pelo algoritmo

RCM.

MASK vetor inteiro de entrada de trabalho, utilizado para mar-

car as variaveis que ja foram numeradas. £ inicializado em 1 e de-
pois atribuindo valor nulo guando o no ja foi rotulado.

XIS = vetor inteiro de trabalho, contendo os indices para a es-

trutura de niveis.

subrotinas requeridas: FNROOT, RCM.

6) Subrotina FNENV

Objetivo: Encontrar a estrutura de envelope de uma matriz permutada.

Utilizacao: CALL FNENV (NEQNS, XADJ, ADJNCY, PERM, INVP, XENV,

ENVSZE, BANDW) .

Argumentos: NEQNS = variavel inteira de entrada especificando o nume
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ro de equacgdes.

(XADJ, ADJINCY) = par de vetores inteiros de entrada contendo a
estrutura de adjacéncias do grafo.

(PERM, INVP) = par de vetores inteiros de entrada, contendo in-
formagoes sobre a ordenagdo da matriz.

XENV = vetor inteiro de saida contendo os indices para a estrutu
ra de niveis a ser utilizada no armazenaménto do envelope inferior
(ou superior) da matriz reordenada.

ENVSZE = variavel inteira de saida, contendo o tamanho do envelo
pe. |

BANDW = variavel inteira de saida, contendo o tamanho da banda.

Subrotinas regqueridas: nenhuma.

7) Subrotina ELSLV

Objetivo: Resolugao do sistema triangular inferior LX = RHS. 0 fa-

tor L dever& ser armazenado no formato envelope.
Utilizagao: CALL ELSLV (NEQNS, XENV, ENV, DIAG, RHS).

Argumentos: NEQNS = variavel inteira de entrada especificando o nia-

mero de equacdes.

XENV = vetor inteiro.de entrada contendo os indiceé para a estru
tura de niveis utilizada no armazenamento do envelope.

ENV = vetor real de entrada contendo o eﬁvelope de L.

DIAG = vetor real de entrada contendo a diagonal de L.

RHS = vetor real que na entrada contém o segundo membro da equa-

gao, e na salda, contém o vetor solucdo.

Subrotinas requeridas: nenhuma.
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Subrotinas requeridas: ELSLV.

10) Subrotina PAPT

Objetivo: Subrotina para efetuar permutacdo PAPT dos coeficientes
nao diagonais de uma matriz original A fornecida sob forma de enve-

lope.

Utilizagac: CALL PAPT (NEQNS, INVP, ORIENV, XORENV, XENV, ENV).

Argumentos: NEQNS = variavel inteira de entrada contendo © numero

de equagoes do sistema.

INVP = variavel inteira unidimensional de entrada, contendo o ve
tor de permutacao inversa ao PERM.

XENV = variavel inteira unidimensional contendo o vetor de apon-
tadores do envelope da matriz permutada.

ENV = variavel real unidimensional de saida contendo os coefici-
entes nao diagonais de cada linha da matriz permutada a partir do
primeiro ndo nulo, da esquerda para a direita, em sequéncia.

ORIENV = variavel real unidimensional de entrada contendo os coe
ficientes ndo diagonais de cada linha da matriz original a partir
do primeiro nao nulo, da esquerda para a direita, em sequéncia.

XORENV = variavel inteira unidimensional de entrada contendo o

vetor indicador do envelope original.

Subrotinas requeridas: nenhuma

11) Subrotina PERMVT

Objetivo: Efetuar permutagao dos elementos de um vetor sequndo um

vetor de permutacao dado.

Utilizagao: CALL PERMVT (NEQNS, PERM, VT).

Argumentos: NEQNS = variavel inteira de entrada contendo o niimero
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8) Subrotina EUSLV

Objetivo: Resolugao do sistema triangular superior UX = RHS. O fa-

tor U devera ser armazenado no formato envelope.

Utilizagao: CALL EUSLV (NEQNS, XENV, ENV, DIAG, RHS).

Argumentos: NEQNS = variavel interior de entrada especificando o na
mero de equagoes. |

XENV = vetor inteiro de entrada contendo os Indices para a estru
tura de niveis utilizada no armazenamento do envelope.

ENV = vetor real de entrada contendo o envelope de U.

DIAG = Qetor real de entrada contendo a diagonal de U.

RHS = vetor real que na entrada contém o segundo membro da equa-

¢ao, e na saida, contém o vetor solucgao.

Subrotinas requeridas: nenhuma

9) Subrotina ESFCT

Objetivo: Efetuar a fatorizagao de uma matriz definida positiva R

e e st .

Utilizagao: CALL ESFCT (NEQNS, XENV, ENV, DIAG, IFLAG).

Argumentos: NEQNS = variavel inteira de entrada especificando o ni-

mero de equagoes.

XENV = vetor inteiro de entrada contendo os indices para a estru
tura de niveis utilizada no armazenamento do enﬁelope.

ENV = vetor real que na entrada contém o envelope de L e na sai-
da contém o envelope de L.

DIAG = vetor real que na entrada contém a diagonal de R e na sal
da contém o envelope de L.

IFLAG = variavel real de saida na qual € atribuido valor 1 se R

nao e simétrica definida positiva.
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de equagoes do sistema.

PERM = varidvel inteira unidimensional de entrada.contendo o ve-
tor de permutacdo.

VT = variavel real ﬁnidimensional contendo na entrada os elemen-
tos do vetor que sofrer3 a permutagao indicada por PERM e na saida

'O vetor permutado.

" Subrotinas requeridas: nenhuma.

12) Subrotina GERADJ

Objetivo: Gerar automaticamente o vetor de adjaceéncia ADJINCY e seu
correspondente vetor de indicadores XADJ a partir do grafo associa-
do a3 matriz de coeficientes, fornecido na forma de uma tabela de in

cidencia de conecgdes entre nds.

Utilizagao: CALL GERADJ (NMl, NI, NF, XADJ, ADJNCY).

Argumentos: NMl = variavel inteira de entrada com o valor do nimero

de equagoes do sistema mais um, ou ‘seja, o nimero de elementos do
vetor XADJ.

NI = variavel inteira.de entrada com o nimero do nd escolhido co
mo inicial de uma dada aresta do grafo.

NF = varidvel inteira de entrada com o nfimero do nd escolhido co
mo final de uma dada aresta do grafo.

XADJ = variavel inteira unidimensional de saida contendo o vetor
de apontadores da posicdo da lista de adjacéncias de cada equacdo
no vetor ADJNCY.

ADJNCY = variavel inteira unidimensional de salda contendo em se

quencia as listas de adjacéncias de cada equacao do sistema.

Subrotinas requeridas: nenhuma.
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4. EXEMPLO NA ENGENHARIA DE ESTRUTURAS

como demonstragao da aplicagao do programa PARENV para solugao
de sistemas de equag¢Oes lineares simultareas definidos positivos es
parsos de grandé porte na engenharia de estruturas, apresenta-se a
analise estatica de uma viga balcdo modelada como pOrtico espacial
conforme Brasil [5].

Na Fig. 4.1 apresenta-se a geomgtria e caracteristicas fisicas
da viga balcdo em questdo, de dimensOes bem usuais da pratica da en
genharia civil. Na Fig. 4.2 & indicada a numerag¢ao dos 12 graus de
liberdade originalmente adotados, para a viga modelada como portico
espacial, também a que usualmente se faria nos programas convencio-
nais de analise estrutural.

A matriz de rigidez original da estrutura (12x12) & apresentada
na figura 4.3, com os coeficientes calculados manualmente até uma
precisdo tipica de trabalho efetuado com auxilio de calculadoras de
bolso. |

0 vetor de carregamento £ éue a seqguir & listado corresponde a-
proximadamente a uma carga uniformemente distribuida de 1 (uma) to-
nelada-forga por metro linear de viga de cima para baixo, ou seja,
no sentido da gravidade.

ft = (0.0,-4.0,0.0,-.75;0.0,-2.0,0.0,-4.0,0.0,-475,0.0;2.0)

Os resultados obtidos, a pesar das dimensoOes ainda modestas da
estrutura analisada, s3o simplesmente dramaticos: o envelope, que
na matriz original continha 52 elementos passou para apenas 20, e a

largura de banda diminuiu de 10 para somente 3.
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Cabe frisar a precisao dos deslocamentos reSultantes‘da analise
nao afetada pelo fato de se tratar de um sistema muito mal condicio
nado, com o nimero de condigao espectral (razdo entre O maior e me-
nor valor proprio da matriz de rigidgz).igual a 2074, conforme
Brasil [S]. Este problema seria melhor resolvido modelando a viga
balcdo do exemplo como grelha e nio como pOrtico espacial, em que
Comparecem modos de deslocamento muito "rigidos™" (deformagdo axial
das barras) coexistindo com outros muito "flexiveis" (flex3o e tor-

gao) .

—_—

—

i
Il

2.000.000 tf/m
A = 0,06 m2
4

‘ 4
0,000072 m

= 0,000244 m®

=
il

H
i

G=20,4E

Fig. 4.1 - Viga Balcdo: Geometria

T ———
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Fig. 4.2 - Graus de Liberdade da Viga Balcao considerada como

POrtico Espacial

24064 0 ] 0 -96 - ] -24000 ] 0 ] 0 0
1351,1111 0 1666, 6667 0 600 0 -240 o .0 0 €00
40013,824 0 -34,56 0 0 0 © -13,824 0 -34,56 0

3372,3733 0 0 0 0o - 0 -39,04 0 0

307,20 0 0 0 34,56 0 57,6 0

2065,0666 0 -600 0 0 0 1000

24064 0 0 0 -96 0

1351,111 0 1666,6667 0 -600

40013,824 0 | 34,56 0

3372,3733 0 0

307,2 o0

2065,0666

Fig. 4.3 - Matriz de Rigidez

TAMANHD DO ENVELOFE DA MATRIZ ORIGINAL E 50

LARGURA DE BANDA ORIGINAL E 1 )
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LARGURA DE BANDA AF0S FERMUTACAD E 3
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WRITE (5, %)
WRITE (%, %
FEAD (o, %) NED
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MM 1 =NEONG+ 1
WRITE (%, #) "ENTRADA DO VETOR DE ADJACENCIAS=4DJINCY

WRITE(=,%)"E DE SEUS INDICADODRES=XADJ. OFCOES
WHITE (#,%) " A) GERA-LOS A FARTIR DO GRAFD ASS0CIADD (DIGITE @) -

WRITE (%, %) "E) FORMECE-LUOS DIRETAMENTE o ARIGITE 137
READ (5, #) ITADJ ' i
IF (IADJ JER. &)
+THEN
DO B I=1, MMl
AADI T =1
(] CONT ITMNLE
WiTTE (3, %)
REGD(#, %) M
WRTTE G m) ™
DO 98 D=1, NAR
BRTTE (g 3 " GREDTA" , T
FEal i, %) NI, NF

ENTRE NUMERD DE ARESTAS DO BRAFDT

CADA ARESTA ENTRE NO INICIAL, NO FIMAL®
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WRITE (%, %) *ENTRE O VETOR DE ADJACENCIAS=ADJNCY®

READ (%, %) (ADIJNCY (1), I=1,M)
ENDIF
DO 1@ I=1,NEGNS

FERM(I) =1

INVF (1) =1
CONT INUE
CALL FNENV (NEGNS, XADJ, ADINCY, FERM, INVF, XORENY , ENVSZE ; EANDW)
WRITE (5, %) * TAMANHO DO ENVELOFE DA MATRIZ DRIGINAL E *  ENVSZE
WRITE (5, %) "LARGURA DE EANDA ORIGINAL E °, RBANDW
WRITE (#,%) " INDIOUE O VETOR ENVELOFE DA MATRIZ ORIGINAL®
READ (%, %) (ORIENV (1), I=1, ENVSZE)
WRITE (%,%) " INDIGQUE A DIAGONAL DO SISTEMA ORIGINAL®
READ (%, %) (DIAG(I), I=1, NEGNS)
WRITE (%, %) " INDIGUE O vETDH SEGUNDO MEMERD DO SISTEMA®
READ (%, %) (RHS (1) , I=1, NEQONS

'NRIT&(* *)’INDIDUE SE A DTIMIZQCQD DEVERA SER EFETUADA®

NRIFE(*_*)'C S0 AFIRMATIVO DIGITE ZERD:iCAS0 NEGATIVO DIGITE i°

. READ (%, #*)OFC1

a2
1@1

1¢i4

l!_c ¥

118

164

1@7

IF(OFC1) 191, 182, 161
Call GENRCHM (NEGNS, XADJ, ADJINCY , FERM, MASE ; XLLE)
GO TO 144
WRITE (#,%) " INDIGUE 0O VETOR DE FERMUTACOES®
READ (%, %) (FERM{I) , I=1, NECNES) .
DO 163 I=1,NEQONS : : '
INVF (FERFM(I))=1 .
CALL FNENV (NEQNS, XADJ . ADJINCY, FERM, TNVF, XENYV, ENVSZE , BANDW)
WRITE(S,*)"TA MANHO DO ENVELOFE AFDS FERMUTACAD E° ,ENVSZE
WRITE (5,%) " LARGURA DE BANDA AFOS FERMUTACAOD E° , BANDW
RO 114 Ixi,ENVSZE
ENV (1) =@, @hd
CONTINUE
CaAaLL FAPT(NEGNS, INVF, ORIENV, XORENY, XENV, ENV)
CAlLL FERFVT (NERNS, FERM, DIAG) _
CALL ESFCT (NEGMS, RENV,ENV,DIAG, IFLAG)
CaLlL FERMVT (MEGNS, FERM, RH5)
CAl.L ELSLY (NEGNS, XENV,ENV,DIAG, RHS)
CaALL EUSLV (NEGNS, XENV, ENV,DIAG, RHS)
CALL FERMVT(MEONS, INVF,RHS)
WRITE (S, #) "S0LUCAD DO SISTEMA®
NRITE(q,%)(RHP(I),IHI,NEGNS)
WHITE (S, #) 7 # %% @S2 B8R dF iR AR A LRI XL X I ERERT
WRITE (%, %) "QUER ENTRAR OUTRO VETOR RHS7?(1=NAQ,#=5IM)"
READ (%, %) IRHS
IF (IRHS) 167,106,167
WRITE (#, %) * INDIQUE NOVO VETOR SEGUNDO MEMHRD DO SISTEMAT
READ (#, %)(RHD(I) I=1,NEGNS?
G0 T0O 1U -
CONTINUE
CLOSE (&)
END
FNENY—-—-—-ENCONTRAR ENVELOFE D& MATRIZ FERMUTADA
SUBROUTIKE FNEMV (MEGNS, XADJ, ADJINCY, FERM, INVF, XENV, ENVSZE, BANDW)
INTEGER ADJINCY (#) ., INvF<*) XADJ(*) XENV(¥J o FPERM (3#)
INTEGER EHNDN_ENVQZE
BANDW={
ENVGZE=1
DO Z@d I=1,NEGNS
XENV(I)=ENVSIE
IFERM=FERM{TI)
JSTRT=XADJ (IFERM)
JETOF=XADJ (IFERM+1) —1
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IF(JSTOF.LT.JSTRT)GO TO 204

IFIRST=I

DO 1@@ J=JSTRT,JSTOF

NABOR=ADJINCY (J)

NAEBOR=INVF (NARBOR)

IF (NABOR.LT.IFIRST) IFIRST=NABOR
1@@  CONTINUE

IBAND=I-IFIRGT

ENVSZE=ENVSZE+IEAND

IF (BANDW.LT. IBAND) BANDW=IBAND

203 CONTINUE

XENY (NEGNS+1) =ENVEZE

ENVEZE=ENVEZE-1

RETURR -
END
C-—-ELSI.V-RESOLVER SISTEMA TRIANGULAR INFERIOR LX=RHS
C 0 FATOR L DEVE SBER HRMA;ENADD KO FORMATO DE ENVELDPE

SUBROUTINE ELSLV\NFDNQ.XENV ENV, DIAG, RES)
COMMON/SFEOFS/0FS '
REAL*8 DIAG (%) (ENV (%) ,RHS (%) ,COUNT,OF5,5
INTEGER XENV (%) .
IFIRET=6@
163  IFIRST=IFIRST+1
IF(RHSC(IFIRST) CNE, @.0E@G) GO TO 2@ .
IF(IFIRET.LT.NEGNS) GO T4 1&d
RETURN
20 LABT=@
DO Sddg I= IFLRST NEELINS
IBAND=XENY (I+1) —XENV (1)
IF(IBAND.GE. I) IBAND=I-1
S=RHS (1) (s
L=I-IBAND
RHS (L) =@, @DE :
IF(IBAND.EG. . OR.LAST.LT.L)Y GO TD 4#d@
ESTRT=XENV(I+1) -IBAND " .
ESTOF=XENV (I+1) -1
DD EgEE H=RETRT, ESTOF
B=5--ENV (k) #RHS (L)
L=L+1
C3EE CONTINUE
COUMT=IRA&ND
DFS=0FS+COUNT
4@ IF(S.ER.@E.@DE) GO TO SEg
RHS(I)=8/DIAG(I}
OFS=0FS+1 .E0E

LAST=1
S@E  CONT INUE
RETURN
END .
C--EUSLV-RESOLVER SISTEMA TRIANGULAR SUFERIOR UX=RHS
c - O FATOR U DEVE SER ARMAZENADO NA FORMA DE ENVELOFE

SUBRDUTINE EUSLV(NEGNS, XENV,ENV,DIAG, RHS)
COMMON/SFEOFS/0FS
REAL*8 DIAG (%) ,ENV (%)  RHE (%), COUNT,BOF5,5
INTEGER XEMV(*)
I=NEGNE+1
1g@  I=I-1
IF(I.EC. &) RETURN
IF(RHS(I) .EQ.#.9D@) GO TO 1&@
S=RH5(I) /DIAG(I)
RHS (1) =5
OFS=0FS5+1 . @D
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TBAND=XENV (I+1)-XENV(I)
IF(IBAND.GE. I) IBAND=I~1
IF(IBAND.ER.®) BD TO 1@@
ESTRT=I-IEAND

ESTOP=I-1
L=XENV(I+1)~IRBAND

DO 2#¢ K=KS5TRT, KSTOF
RHS (K) =RHS () —S®#ENV (L)
L=L+1

CONT INUE

COUNT=IEAND

T OFS=0FS+COUNT

GO TO 1@ !
END :

FCT———=FATORAR MATRIZ DEFINIDA FOSITIVA EM L*L (TRANSFOSTA).

MATRIZ DEVE SER ARMAZENADA NA FORMA DE ENVELOFE
0 ALGORITMO UTILIZADO FOIDE EORDEAMENTO STANDAR

SUBROUTINE ESFCT (NEGNS, XENV, ENV, DIAG, IFLAG)

REAL#B DIAG (%) ,ENV (%) ,COUNT, OFS, TEMF, S

INTEGER XERNV (%)

IF(DIAG(1) .LE.@.¥E®) GO TO 468

DIAG (1) =DSERT (DIAG (1))

IF (NEGNS. EC. 1) RETURN

DO 338 I=2, NEGONS 3

I XENV=XENY (1) - ' -

IEAND=XENV (I+1) —IXENV

TEMF=DIAG(I)

IF(IRBAND.EG.E) GO TO 2@

IFIRET=I--1BAND

CaLl. ELSLVIIBAND, XENV (IFIRST) , ENV,DIAG(IFIRST) ,ENYV (I XENY))
JETOP=XENV (I+1)—1

DO 189 J=1XENV,JSTOF

S=ENV (J)

TEMF=TEMF—-5%*5

CONT INUE ; :

IF(TEMF. LE. @. @D@) GO TO 4643

RDIAG (1) =DHERT (TEMF)
COUMT=IRANID
OFS=0F5+COUNT
CONTINUE

RETURN

IFLAG=1

RETURN

END

SUBROUTINE ROOTLS (ROOT, XADJ, ADJINCY, MASKE , NLVL, XLS, LS)
INTEGER CCSIZE,ROOT ‘

INTEGER ADJNCY (%) ,L.5 (%), MASK (%) , XLE (%) , XADJ (%)
MASE (ROOT) =@ ;

L8 (1) =R0O0OT

NLYL =g

LVLEND=

CCSIZE=1

LEEGIN=LVLEND+1 : - ,
LVLEND=CCSTZE

NLVL=NLVL+1

XLS (NLVL) =LEEGIN

DO 4¢3 I=LBEGIN,LVLEND

NODE=LS (1)

JSTRT=XADJ (NODE)

JSTOF=XADJ (NODE+1)—1

IF(JSTOF.LT.JSTRT) GO TO 4@

: ’3.-*5
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DO Z@@ J=JSTRT, JSTOF
NER=ADJINCY (J)

IF (MASE (NER) .EQ. @G0 TO Zd@
CCSIZE=CCSIZE+1

LS (CCSIZE) =NER

MASE (NER) =@

CONT INUE

CONTINUE
LVSIZE=CCSIZE-LVLEND
IF(LVSIZE.GT.#) GO TO 2@

- XLS (NLVL+1)=LVLEMD+1 "

DO S#@ 1=1,CCSIZE
NODE=LS (1)

MASE (NODE) =1

CONT INUE

"END

S S,

FNROOT—--ENCONTRAR NO FSEUDO FEhIFERICD e
SUBROUTINE FNROOT(ROOT, XADJ, QDJNE1,HQS?,NLJL XL5,LS)
INTEGER CCSIZE,ROQT

INTEGER QDJNCY(*),L (%) . MASHK (%) , XL.8 () , XADJ (%)

" CALL ROOTLS (ROOT, XADJ , ADINCY , MASH , NLYL , XLS, L&)

166

2656

A1)
Lule]

1@

CCSIZE=XLS (NLVL+1)—1

IF(MLVL.ER. 1. ORCNLVL.EQ.CCSIZE) RETURN

JETRT=XLS (NLVL.)

MINDEG=CCSIZE

ROOT=LS(J5TRT)

IF(CCSIZE.ER.ISTRT) GO TO 4UU

DO Z@d J=J8TRT,CCSIZE

NODE=LS(J)

NDEG=

ESTRT=XADJ (NDDE}

ESTOF=XADJ (NODE+1) -1

DO 2@@ E=RSTRT,ESTOF

NABOR=ADJINCY (ED

IF (MASE (NABOR) . GT.6) NDELG=NDEG+1

CONTINUE

IF(MDEG. GE.MINDEG) GO TO Zd@

RODT=NODE

MINDEG=NDEG

CONT INUE

CALL ROOTLS(ROOT, XQDJ QDJNLY MASE . NUNLVL, XL5, LLS)

IF (NUNLVL. LE. NLVL) RE?UR&

NLVL =NUNL.VL

IF(NLVL.LT.CCSIZE) GO TO 1¢@

RETURKN :

END :

—DEGREE~~—==~—— DETERMINACAD DE GBRAU DOS NDS ESFECIFICADOS

SUEBROUTINE DEGREE(ROOT, RADJ, ADINCY, MASK , DEG, CCS5IZE, LS)

INTEGER ADJINCY (%) ,DEG (#) , MASE (%) , XADJ (#*) , L5 (%)
INTEGER CCSIZE,ROQT ’

LS{1)=RO0OT

XADJ (ROOT) =—-XADJ (ROOT)

LVLEND=

CCSIZE=1

LEEGIN=LVLEND+1

LVLEND=LCSIZE

DO 4@ I=LBEGIN,LVLEND

NODE=LS(I)

JSTRT=—XADJ (NODE)

JETOF= IABS{XADJ(NDDE+1))—1
IDEG=4l

IF(ISTOF.LT.JISTRT) GO TD S
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DO 2@@ J=JSTRT,JSTOF

NER=ADJINCY (J)

IF (MASE (NBR) .ER. &) G0 TO 2@

IDEG=IDEG+1

IF(XADJ (NER) .LT.®) GO TO 2@

XADJ (NER) =—XADJ (NER)

CCSIZE=COSIZE+1

LS (CCSIZE) =NER

CONT INUE

DEG (NODE) =IDEG

CONTINUE

LVSIZE=CCEIZE~-LVLEND

IF(LVBIZE.GT.#) GO TO 1@d

DO S@@ I=1,CCSIZE

NODE=L.S (1)

XADJ (NODE) =—~XADJ (NODE)

CONTINUE

RETURN

END -

RCHM REVERSE CUTHILL-MCEEE ORDENACAD e e e o e e
SUBROUTINE RCM(ROOT, XADJ, ADJINCY, MASK, FERM, CCS1ZE, DEG)

INTEGER ADJRCY (%), DEG (%) , MASE (%) , FERM (%) , XADJ (%)

INTEGER FNER,ROO0T,CCSIZE

CALL DEGREE (ROOT, XADJ, ADJINCY, MASK , DEG, CCS1.ZE, FERM)

MASE (ROOT) =@ .

IF(CCSIZE.LE. 1)) RETURN

LVLEND=

LNER=1

LEEGIN=LYLEND+1

LVLEND=LNER

DO &8E I=L.BEGIN, LVLEND

NODE=FERM(I)

JSTRT=XADJ (NODE)

JESTOF=XaDJI (NODE+1) —1

FNBR=LNER+1

DO 288 J=JSTRT,JSTOF

NER=ADJINCY (J)

IF (MASK (NER) LEQ. &) GO TO =2@d

LNER=LNER+1
MESE (NER) =@
FERM (LNEFR) =NER
CONTINUE
IF(FNER.GE.LNER) GO TO &@@

E=FNER

L=K

K=k+1 _

NER=FERM (k)

IF(L.LT.FNER) BO TO S

LFPERM=FERM (L) i :
IF(DEG(LFERM) .LE.DEG(NER)) GO TD Sg@
FERM(L+1) =LFERM

Ll —1

GO TO 4@@

FERM (L+1)=NER i 3
IF(K.LT.LNER) GO TO Z@@ '
CONTINUE

IF(LNER.GT.LVLEND) GO TO 1@
K=CCSIZE/Z2 )

L=CCSIZE

DO 7@ I=1,H

LFERM=FERM (L)

FERM (L) =FERM(I)

73




FERM (I)=LFERM
L=L-1
79@ CONTINUE
RETURN
: END
Cmmmme BENRCM--—-ALGORITMO GERAL CUTHILL MCKEE REVERSO
SUBROUTINE GENRCM (NEGNS, XADJ, ADINCY, FERM, MASK,, XLS)
INTEGER ADJINCY (%), XADJ (%) , FERM (%) , XLS (%) , MASE (%) ,
*ROOT, CCSIZE :
DO 16¢ I=1,NEONS
MASHK (1) =1
198  CONTINUE
NUM=1 :
DO 286 I=1,NEONS
IF (MASK (D) .EQ. &) GO TO 268
ROOT=1
CALL FNROOT (RODT, XADJ, ADINCY , MASK,, NLVL, XLS, FERM (NUM) )
CALL RCM(ROOT, XADJ , ADINCY , MASK , FERM (NUM) , CCS1ZE, XLS)
NUM=NUM+CCS I ZE
IF (NUM.GT.NEGONS) RETURN
266 CONTINUE

RETURN

END
Co---PAFT--—-SUBROTINA FARA EFETUAR AS FERMUTSCOES NOU ENVELGFE
C-—--DA MATRIZ & ORIGINAL ’

SUBROUTINE PQPT(NEQNS,INVPRDRIENV,XDRENV,XENV,ENV)

REAL*8 ENV (%), ORIENY (%)

INTEGER INVF ()  XORENY (%) , XENV (%)

DO 2@ IANT=1,NEGNS
JIﬂIQNT—(XDHENV(IQNT+1)—XDRENV(IQNT))

JF=IANT-1
IF (JF .GE. Jl)
+  THEN

NTEND=X0ORENV (TANT) -1
DO 1¢ JANT=JI1,JF
NTEND=NTEND+1
INOVO=INVFE (IANT)
JNOVO=INVF {JANT)
IF (JINOVO .GT. INOVO)
+ THEN :
IAUX=INDVOD
INOVO=JNOVO
JNOVO=1AUX
ENDIF
: IF (ORIENV (NTEND) .NE. #.@)
+4- THEN ’
NOVEND=XENVY ( INOVO+1 } - INOVO+JNOVO
ENV (NOVEND ) =DRIENY (NTEND)

ENDIF
1@ ~ CONTINUE
ENDIF
208 CONTINUE
RETURN
END ’
Cm===FERMVT-———SUBRDTINA FARA FERMUTACAD DE VETOR (DIAG OU RHS)

SUBROUTINE FERMYT (NEGONS, FERM, YT)
REAL*8 VT (%)
INTEGER FERM (%)
J=1
VT1=VT (1) :
14 CONTINUE
VT (J) =VT (FERM(J) )




VUT(FERM (J) ) =VMT1
J=FERM(T)
IF ( .NOT. FERM(J) .EQ. 1) GOTO 14

RETURN

END : - «
C---—GERADJ-—-—~SUBROTINA PARA GERACAO DO VETOR DE ADJACENCIAS
C—--—(ADJNCY) E DO VETOR DE INDICADORES (XADJ)

SUBROUTINE GERADJ (NM1,NI,NF,XADJ, ADINCY)
INTEGER XADJ (%) , ADINCY (%)
DO 3% J=1,2

IF (J

+  THEN

EGL 2D

AUX=NI
NI=NF
NF=AUX

ENDIF

HI=XADJ (NM1) -1
FF=XADJ (NF)

IF (kI

+  THEN

CNE. @)

DO 1@ K=KIKF,-1
ADJINCY (K+1) =ADINCY (k)
1 CONTINUE :

ENDIF

ADJINCY (XADJ (NF) ) =NI .
. DO 28 E=NF-+1,NNM1
KADT () =XaDd (i) +1

26 COMT INUE
1) CONTINUE
RETLRN
ERD
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