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1. GENERALIDADES

1.1. Motivação na EngenharIa de Estruturas

Na notável sintese de Crar\da11 [11 , a análise dos problemas de

engenharia por via numêrica s-e faz em dois passos :
#; - .Construção ae um modelo matemático da situação fisica;

Redução do problema matemático a dm procedimento numérico .+-•uH

j;} 1
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Esses problemas recaem, no geral, em três grupos :

a) Problemas de equIIÍbrio (estáticos) ;

b) Problemas de valores característicos;

c) Problemas de valor inicial (dinâmicos) ,

Nas três categorias se consideram tanto os sistefnas natu.ralmen-

te discretos , como os problemas continuos discretizãvels . Cor,tem-

plaIn-se ainda , nos vários casos , problemas de natureza linear e
não linear .

Reduzindo o foco à Engenharia de Estruturas , as var+ãveis bási-
eas com que se trabalha são as açÕes externas (cargas e reaçÕes) e
internas (tensÕes) , e os deslocamentos absolutos e relativos (de

formaçÕes) dos pontos dos sõlidos deformãveis que constituem as eé
t:rutura Se

Vai-se agora tratar de um sistema discreto (como as estruturas

retlculadas) ou discretizado via , p , ex . , o Método dos Elementos
Finitos ( +)

( +) Corno comentário histÓrico é interessante notar aue esse Méto-
do, contribuição original da Engenharia de Estruturas à FÍsiàa Ma--
temática , que revolucionou a análise numérica , foi Drime i_ro apre=
sentado pol Turner , Clough, Martin e 1:opp [2] em 19b6 , mesmo ano
da edição do trabalho clássico de Cranda11, já citado , que , como é
claro, não o contém explicitamente .
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Sendo € o vetor dos carregamentos nodais (i.e . , pont:os discre-.
tos da estrutura) , u o vetor dos deslocamentos nodais , e caracteri

zando por pontos superpostos suas derivadas temporais , o sistema

de equaçÕes diferenciais do movimento , na formulação de deslocamen
'eos r se escreve

Ml; + e Ü + Ku f (t) (1.1)

em que M, C e K são, respectIvamente, as matrizes de massa , amorte
cimento e rtgiaez , constantes no caso do çomportamento IInear , ou ,

no geral, função de deslocamento , comportamento- do material, histé!
rico, etc .

Trata-'se de problema encaixado no grupo dos de valor Inicial a-,

cima citado . Na integração numérica de ( 1.1) no tempo , passo a pas

so , utilizam-se algoritimos em que se adota eerta var+ação de u e
suas derivadas no intervalo Â€ e, em cada passo , resolve-se um sis&.

tema do tipo

É ut+ Atp jt ou É ut+abt., ft+At (1.2)

em que É e É dependem do especifico esquema adotado o

No caso particular de f nulo, tem'-'se. o problema de valores ca-.

faeterÍsticos da determinação das frequências e modo,s naturais de

v ibr açao

Quando a evolução no tempo das variáVeis de estado permitir des

prezar em (1.1) os esforços de inércia e- amortecimento , recai-se
nos problemas de equilibrio estátIco na forma

4

1< u = f ( 1, . 3)



que, quando não lineares , implicam no uso de algoritimos incremen-

tal$ e iterativos , resolvendo--se em cada etapa , partindo das condl

ções conhecidas no passo anterior , um sistema do tipo

3tr

).

K ÂU = Af (1.4)

Estuda-se aqui tambêm o problema da estabilidade do equilibrio
das estruturas, aue recai na categoria dos de valores caractertsticos.

Na maioria dos casos das estruturas , os sistemas ' resultantes

são simétricos definidos positivos , ALém disso , para - estruturas

discretas, como as retieuladas, ou discretizadas pelo Mãtodo dos
Elementos Finitos , os sistemas resultantes são naturalmente espar

sos , tanto mais quanto maior for a estrutura . Com uma numeração

cuidadosa dos nós pode-se eventualmente concentrar os valores não

nulos de K nas prox_imidades da diagoÀal principal e
Tais propriedades sugerem esquemas de armazenamento de coef ic i

entes do tiDO banda ou envelope, como o „skyline„ de Bathe [31 , ou

de renumerac,-ão como o dê Cut:hill--McKee [4], visando manter e ope-

rar o mais possÍvel apenas sobre os elementos não nulos .

Três exemplos de numeração variando de boa a péssima constam da

fig . 1, 1 com as respectivas 'ilarWras de meia bandal'LFIB , para uma

mesma treliça de 8 nÕs (2 graus de liberdade por nÓ) .
1

-+

]LMB = 6 LMB = 10 LMB = 16

Fig. 1.],
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(:om o crescimento cada vez maior do tamanho dos sistemas a re-,

solver e sabendo-se ser essa etapa da anãlisç a que :mais tempo con

sorne, eabe um estudo de otimIzação desses esquemas .

A motivação maior , entretanto , não ê bos problemas em que se re

solverta um sistema uma única vez , mas sim nos problanas dinâmicos

e nós de natureza não l.inear em que essa operação ie - repete em
grande nÚmero , sempre com matrizes que podem variar em eada vez ,
ou em cada certo ru;meio de vezes , no valor numérico de seus coef i-

cientes , mas não em sua estrutura de elementos nulos e não nulos .

Esta permanece a mesma jã que o sÓlido analisado ê o mesmo , com as

r;lesmas eonexÕes entre nÕs . Deve ser lerÀbrado aqui que a forma como

se com.aniea aos programas usuais de análise estrutural a ligação
entre nÓs é a clássica tabela de incidência de barras ou de elemen

tos , que nada mais é que um grafo , eu ja conceituação se :fará com
detalhe no item 2 deste trabalho ,

- 4 : i

1, 2 , Escopo e Estrutura do Trabalho

eonforme ilustrado acIma, a utilização de esquemas de armazena-

mento e rotulação dos coeficientes da matriz K pode l nf luenciar

substancialmente no tempo de processamento e utilização de memória

de computador na resolução de sistemas lineares definidos posit:i-
vos esparsos de grande porte tipo

#

+-

Ku = f ( 1_.5)
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Na seção seguinte apresenta-se a descrição de um algoritimo com

putacional visando a resolução de sistemas dessas características

pelo método de eholesky com armazenamento de coeficientes na forma

de envelope e prévia reordenação do. mesmo para otimização de memÕ-

ria e número de operaçÕes utilizando o esquema de Cut:hill-McKee .

A implementação do algoritimo fez-se em microcomputador compati
vel com o PC da IBM, através de programa computacional em lingua-

gem MS-FOR:FRAN-77 descrito na seção 3 , cuja listagem completa é

fornecida no Apêndice .

Na seção 4 apresenta--se um exemplo .voltado para a área de En'ge-
Maria de Estruturas na forma da análise estática de uma viga bal--

cão modelada como pórtico espacial bi-engastado de três barras o Em

bora se trate de um sistema de apenas 12 equações simultâneas , o

efeito do algorÍtimo de otimização é extraordinário, como lá se ve
ra

'/1-
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20 SOLUCÃO DE SISTEMAS LINEARES ESPARgOS DE GRANDE PORTE SIMÉ....

TRICOS DEFINIDOS POSITIVOS

1
1

+

!

}

!

-/ .‘
i

,. $?
:

2 ele Descrição do Problema

Nesta secção serã estudada a solução de sistémas -IIneares espar--

sos de grande porte simétricos definidos positIvos . O método utili-,

zaclo será o de eholesky e

Seja dado um sistema de equações lineares

Ku = f (2.1)

onde K é uma matriz ;ea1 NxN , simêtrica definida positiva;u e f ve---

tI:)res de RN . Aplicando o mêtcxlo de eholesky obt=em.-se ufna fatorizq#ão

triangular

LLT (2.2)

onde L é triangular inferior com elementos positivos na diagonal,

Uma matrIz L é triangular inferior ( superior} se Z 15 = 0 para 1 $ j

{1 > j} . o superescrito T indica transposta
Demonstra--se [4] que esta fatorização sempre existe quando K é

simétrica definida positiva .
Utilizando ( 2.1) e ( 2.2) obt=em--se

8

/

(2.3)

e substituindo v
r

L1 u é claro que obtem-se u resolvendo os siste–
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mas triangulares

Lv = f

e

LT u = v'

(2.4)

(2.5)gAl

F:r

Diversos exemplos de aplicações do método de Choleskv a matrizes

esparsas K mostram que a matriz sofre um "preenchimentb", isto é , L

possui elementos não nulos em posições que eram nulas na parte tri

angular inferior de K , Entretanto observa-se que em diversos proble

mas com matrizes esparsas uma reordenação de linhas e colunas da mg

t11:tZ K pode reduzir a quantidade de pteenchimentos e portanto econo

mizar tempo e memória do computador , O estudo de um algorÍtimo que

automaticamente efetua esta reordenação serã apresentado na secção
2.2 , juntamente com um esquema de armazenamento Dara a matriz L do
sistema reordenado .

O problema pode ser esquematizado ' em 3 etapas :

1) Encontrar uma "boa' ordenação11, ou seja, encontrar uma matriz

de permutação P para a dada matriz K, com respeito ao método de ar
mazenamento escolhido .

11) DetermInar informações necessárias sobre o fator de Cholesky
L de PKpT para fixar um esquema apropriado de armazenamento .

iii) Efetuar os cálculos numéricos, que podem ser diVididos em 2

partes :
T __Ta) Efetuar a fatorização da matriz PKp' em LL‘

b) Resolver os sistemas triangulares L v = f e LT z = Ve
pTU Z

Dai
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Estas 3 etapas podem ser feitas independentemente uma da '.outra ,

Esta independência além de possuir a vantagem de modulação nos pro-

gramas, permite a resolução de dIversos problemas com a ínatriz K

possuindo a mesma forma , resolvertdo uma $8 vez as duas primeiras e--
tapas e repetindo a 3? etapa para cada problema ,

2 , 2 , Algoritmo de ordenaçao de envelope

e

1

i
T
$

}

Úesta secção será apresentado um algoritimo de ordenação de enve

lope [4] o lnieialmente na secçêo 2o2.1 serão àpresentadas álgumas

definiçÕes e convençÕes. relativas a teoria de grafos e sua eort-es-
pondência com matrizes , Na secção 2 , 2 , 2 serão feitas algumas eonsi--

-dera<,Ões sobre o método de arma4enarnento denominado envelope e fi-

nalmente na secção 2 , 2 , 3 será d-escrito o .algoritimo de ordenação de
envelope , i 1‘
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2 , 2 , 1, NoçÕes sobre teoria de grafos aplicada às matrizes

Nesta secção serão apresentadas alwmas convençÕes e definições ,

bem eomo algumas noções sobre teoria de graf os e sua correspondên–
cIa eom as matrizes ,

Um grafo G = (U,E) constitui-se de um conjunto de nós u juntame3

te coal um conjunto de arestas E CNe' são pares não ordenadas de vêr-

tices , - Uma ordenação (rotulação) a de G = (U,E) é simplesmente uma

aplicação de {1, . . . , Nj sobre U onde N denota o nümero de nÓs de
G, À menos de menção contraria os grafos serão não ordenados ; o gr2

fÉ G ordenado por a será dehotado por Ga = (Ua,Ea) . eomo o objetivo

é- Introduzir grafos para o estudo de matrizes esparsas , esta rela-

ção será estabelecida a seguir .
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Seja K uma matriz simétrica NxN , o- grafo ordenado de K , denotado

por gk = (Uk, Ek) é um grafo no qual os N vértices de Gk são numera

dos de 1 a Ne {ui, uj } eEk se e somente se Kij = Kij / 0, 1 / j

Aqui u 1 está indicando o nÓ de Uk com rótl;lo 1. Para qualquer ma-

triz NxN de permuta<,ão , P + I , os grafos não rotulados de K e de

PKpT são os menllos rus as rotulações associadas são diferentes . O

exemplo seguinte facilita a compreensão deste fato . Considere a ma
triz K abaixo e seu grafo associado

11

trf

c)* +

x + 6) 111t +

+ +

0+

h

*01+

Matriz K Grafo Gk

o simbolo + indica os elementos não nulos de K .

Considere a seguir uma permutação- P de K . Ter–se-á

4

Q* #

+4

#X

+

X 8

Jr

+

TMatriz PKP-
T

GRAFO GP]KP
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Da:, um grafo não rotulado de K repreFenta a estrutura de K sem

sugerir qualquer ordenação particular , Ele representa a classe de
equivalencia das matrizes PKpT onde P ã qualquer matriz de permuta-

ção NxN . Encontrar uma boa permutação de. K pode ser vista como uma
boa rotulação d-e seu grafo ,

N,o que segue, referindo-se a uma matrIz correspondente ao grafo

G, ou especificar-se-á a ordenação a de G ou estará implÍcito que

alguma -ordenação foi assumida arbitrariamente .

Dois nÓs u e v de G são adjacentes se {u , v} € E . Para VCU o con
junto de ad jacencias de V, denota<ao por Ad j (V) é definido por

+

:

1

!

i ' i
i
1

.}h !

)

+

!

1

1

Ad j (v) = {u é.. U-v t { u, v} € E para algüm vC v }

Quando V possui um \lrlico nÓ v escrever-se--á simplesmente Ad j (v) .

Para vcu , o grau de v, denotado por Deg (V) é o nÚmeró i Ad j.(v) 1

Ónde ISl denota o número de elementos do conjunto S . Quando V pos-

sul um Ürrico nÓ v escrever-se-.á simplesmente Deg (v) .

Um subgrafo G ' = (U ' ,E 1 ) da G é um grafo no qual U ICU e E ’ CE .
Sejam u e v nÓs distintos em G . Um caminho de u a v de comprimen

to Z 8 1 é um conjunto ordenado de Z+1 nÓs distintos (v 1, ' ' ' , ' yz+1)

tais que vi+1 € Adj ( vi) , i = 1, ' ' ' r Z com vi = u e \’z+1 = v • Um

graf(..> é conexo se todo par de nÓs distintos é unido por pelo menos
um caminho . Caso contrário G é desconexo e consiste de duas ou mais

componentes conexas . Em termos de matrizes se G ê desconexo e cons-

titu].do de m componentes conexas , e cada componente conexa é rotulâ

da (..'.onsecutivamente , a correspondente matriz serã bloco diagonal r

cada bloco diagonal correspondendo a uma componente cohexa .c om

!

4

1 8
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Seja G = (u,E) um grafo com N nÓs .- Uma lista de adjacencias para

u € U ê uma lista contendo todos os nÓs em Ad j (u) . Uma estrutura de

ad jacenc_.ias para G é simplesmente um conjunto de listas de ad jacen-

cias para todos u €- U , Tal estrutura pode. ser implementada de modo

simples e econômico , armazenando as listas de ad jacencias sequen-

cialmente em um vetor unidimensiona1 ADJNCY juntamente com um vetor

de iraices XAD J de comprimento N+1, contendo os apontadores para o

começo de cada lista de ad jacencias em ADJNCY o

Observe-se que o armazenamento de um graf o em (XADJ,ADJNCY) implica

em uma particular rotulação do grafo . Esta ordenação será referida

como ordenação original. Quando uma subrotina encontra urna nova or-

derlação, a ordenação será armazenada num vetÓr PERM de comprimento
N , onde PERM ( i) = m significa que o nÓ original m é o i–ésimo nÓ na

nova ordenação . Associado ao vetor de permutação define-se o vetor

de permutação inversa INVP de comprimento N quç satisfaz
INVP (PERM ( 1) ) = 1 .

Finalmente, em algumas subrotinas , somente certos subgra:Eos de G

serão considerados . Para tanto define=se um vetor MASK de comprimen

to N , onde MASK ( 1) + 0 se o nÓ 1 for considerado . Além disso em cer-

tos casos , Inicialmente um só nó é rotulado , Tal nÓ setã denota<lo

por ROOT , com MASK (ROOT) + 0 e as subrotinas considerarão a componeg

te conexa do graf o que contêm o nÓ ROOT e

\j

A+r

L
ni b

;d

2.2.2 . Método do envelope

Seja K = [Kil]. urna matriz simétrica definida positiva NxN. Para a
i-ésima linha de K , 1 = 1, . . e , N , define-se
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fiCK) = min rj | Kãj / o}

e

B 1 (k) = 1 '- f 1 (K) e

-:' 1

!3

O nÚmero f + (K) indica o indice da coluna onde aparece o primeiro
elemento não nulo da i–ésima linha de K . Como todos os elemeÀtos da

diagonal de K são positivos, tem--se

f 1 (K) $ 1 e Bi(K) 3 O.

Define-.se o tamanho da banda de K Dor

8 (K) = max {Bj (K) | 161 ( N}

e o nÚmero 61 (K) serã denominado o tamanho da -bánda dá i-ãsima li-
nha de K ,

O envelope de K , derrotado por E:nv (K) é definIdo por

E="'(K) = f fi, j} 5 € Bi(K)o < 1

A quantidade | E:nv (K) | é dénominada tamanho do envelope de K e
é dada Dor

1 Snv (K) 1
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Exemplo

KKK 11 12 14

KK 2221

0 KK K33 35 36

0 0 K KK 44 4541

KK K
1<53 54 5755

0 0 K KK 6663 67

KK 75 76

14

a

Verifica-se que E:nv (K) = En„ (L + LT) ,

= (UKrEK) o grafo associado a K, onde o conjunto de nÓs

é rotu:Lado de acordo com a definição dada pela matriz K :

uK = Í 111, / uN }

P a r a i < 3 r ( 1 r i } € E r : v ( K ) 4=) u 1 1€ Ad 1 ( ( U 1 r o e o fUi }

O grafo associado ao exemplo anterior. é dado por

\

84,
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2.2.3 . Ordenação de envelope

2 , 2 , 3 , 1, AlgorÍtimo reverso de Cuthill-MCKee

O algorItmo reverso de Cuthi11-McKee .(RCM) é um algoritmo que re

duz o tamanho dá banda de uma matriz via minimização local dos 61,

Isto sugere que este método pode reduzir o envelopeE Bl de uma ma-
tr 1 z

A descrição do algoritmo RCM serã feita para um grafo conexo . No

caso de grafos desconexos pode-se aplIcar este algorItmo para cada
componente conexa do graf o

4 J

1 _1

Passo 1 Determine um nã inicial r e atribua ulk r ( + )

Passo 2 - Para 1 = 1, . . . , N encontre todos os nÓs vizinhos do nÓ

u 1 não rotulados e numere"-os em ordem crescente dos graus .

Bsso 3 - À ordenação reversa de Cuthill-McKee é dada por vl, . . . ,vN

onde vi = uN_i+1 para i = 1 ,

A implementação do algoritmo acima será efetuada nas subrotinas

FiC:M, GENRCM, DEGREE descritas na secção 3 .

262.3 , 2 , Determinaç5ó de um nó inicial

Passemos ã análise do problema de determinação de um nó inicial pa-

ra o algoritmo RCM . O objetivo é encontrar um par de nós que pos-

suam máxima ou prÓxima da máxima distância (definida abajxo) . Dive:
sas experiencias mostram que tais nós são convenientes como nós ini

eiais para o algoritmo RCM.

A distância d (u ,v) entre os nós u e v de um arafo conexo G é o

comprimento do menor caminho ligando u a v , A excentricidade do nÓ

( +) A tarefa de determinar um nó inicial será considerada logo após
a descrição do algoritmo .

J

'h
+ 1
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u é definida por Z(u) = max { d(u, v) ! v eu } . O algorItmo que será
descrito é baseado na construção de uma estrutura de níveis rotula-

da que passamos a descrever ,

Dado um nÓ u eu a estrutura de niveis rotulados em u é uma par-

tição L (u) de a satisfazendo
'é

J

L(u) = {LO(u) , Ll(u) f , LZ(u) tu);

onde

LO (u)

LI (u)
e

Í-)
= Ad j (1,o (u) )

Adj (Li_1 (u) ) - L;-2 fui ’ i = 1’ 1 E (u )

utilizando a notação acima , o algorÍtmo é o seguinte

Passo 1 - Escolha um nÓ arbitrário r em U .

Passo 2 - Construa uma estrutura de

L(r) = ÍLO(r) , Lkr) , . . . , LZ(r) (r)?

Pas,o 3 - F,colha um nã u em LZ (r) (r) de grau mÍnimo.

a) Construa uma estrutura de niveis rotulada em u

n ive i s ro tu lada ein :r :

L

Passo 4

L(u) = { LO(u) , LI(u) , . . . , LZ(u) (u)}

b) Se Z (u) > Z (r) , coloque r ç--u e vá ão passo 3 .

Passo 5 - O nó u é o desejado ,

A implementação do algoritmo acima será efetuado nas
FNROOT e ROOTLS descritas na secção 3 .

subrotinas
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2 , 2 , 3 , 3 , Esquema de armazenamento de envelope

O esquema de armazenamento de envelope é feito de modo que para
cada linha todas as entradas a partir do primeiro elemento não nulo

até a diagonal são armazenados . Estas porções são armazenadas de mo
do sequencial em um vetor unidimensiona1 E:NV. MaIs especificadamen-
te o vetor E:NV contém o envelope da matriz K . A diagonal será arma–

senada num vetor separado DIAG , Um vetor de indices auxiliar XEW

de comprimento N será utilizado para apontar o inicio de cada por–
ção da linha . Desta forma o vetor XENV permite. localizar qualquer

componente não bula convenientemente . A subrotina FNENV. descrita na

secção 3 , determinarã os vetores ENV e XE:NV

,4 r

1 „

2.3 . Comentãrios fInais

Antes de concluir está secção , será ef et:u.ado um- esquema' das eta-

pas computacionais que serão descritas na secção 3 e

conforme já mencionado, o problema pode ser esquematizado em 3
etaDas :

1) Encontrar uma boa ordenação , utilizando as subró Finas RCM,

DEGREE1 , FNROOT , ROC)TI,S e GENRCM;
J

)

'1. ii) Fixar um esquema apropriado de armazenamento ut+lizando a subr9
tina FNENV;

iii) Efetuar cálculos numéricos :
T __T

a) Fatorização da matriz PKp' em LL' utilizando as subrotinas PAPT,
ESFCT ;

b) Resolução de Lv = f utilizando a subrotina ELSLV;

c} Resolução de Ltz = v utilizando a subrotina EUSLV .



. 17 .

3. DESCRiçÃO DO PROGRaMA COMPUTACIONAL

Nesta secção descrever-se-á o programa PARENV (escrIto em lingua

gem FORTRAN--77 e implementado num microcomputador compatÍvel com

PC-XT (IBM) ) que resolve um sistema linear de ecNaçÕes pelo método

descrito na secção 2 . Algumas subrotinas aqui descritas . foram

extra idas de [ 4] .

>)

+1

3.1. Utilização do programa PARE:NV

O programa PARENV para resolução de sistemas de equações 11=

neares simultâneas definidos positivos esparbos de grande porte com

aplicação de um esquema de otimização de memória e tempo de proces-
, + , a , + q q esamento , ê constituido das etapas :

1) comandos de 1éitura e impressão de dados .

2) Resolução do problema pela chamada das subrotinas adequadas .

A seguir se descreve a forma de se utilizar o programa .

3.1.1, Leitura de dados

b

pq,

1) Com um microcomputador compativel com o PC–XT (IBM) acoplado a

uma impressora , ligados e sob comando de seu sistema operacional,

introduz-se o disquete contendo o programa PARE:NV .EXE e digita-se o

cÓdigo PARENV

2) Após a tela de apresentação , a mensagem

– INDIQUE O NUMERO DE EQUAÇOES

solicitarã a digitação desse parâmetro .
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3) O programa colocará a sewir a mensagem

- E!>T'PRADA DO VETOR DE ÀDJACENCIAS=ADJNCY

E DE SEUS INDICADORES=XADJ. OPÇOES:

A) GERA''-'LOS A PARTIR DO GRAFO ASSOC.IADO (DIGITE g)

B) FORNECE'-LOS DIRETAMENTE (DIGITE 1)

Se digitado o cÓdigo g , o programa solicita
ENTRE NUMERO DE ARESTAS DO GRAFO

com o que deve-se éntrar esse valor que ê o nÜmero de segmentos ,_'o-
nectando nÓs do qrafo associado à matriz de coe:E icientes do sistema

segundo definição da seçãó 2 deste trabalho , A seguir a mensagem

-- PARA CADA ARESTA ENTRE NO INICIAL, NO FINÁL

solicitarã a entrada da tabela de incidência de arestas ,

auxiliada pela repetida impressão na tela de

-- ARESTA i (1=1, 2 , , , , , número de arestas)

operaçao

Se digitado o cÓdigo 7 , surgirá a mensagem

ENTRE O VETOR INDICADOR DE AD JÀCENCIASpXAD J

solicitando a entrada um a um dos nÜmeros que apontarão no vetor de

ad jacências ADJNCY o endereço inicial da lista de nós conectados a

cada nümero de equação , conforme definição dada na seção 2 deste
trabalho . A seguir a mensagem

ENTRE O VETOR DE ADJACENCIAS=ADJNCY

Solicitarã a entrada , um a um, dos elementos desse vetor , que na

da mais é que uma sequência- de listas de nós conectados a cada namE

ro de equação , conforme seção 2

4) A partir dos dados fornecidos em 3) o programa Drocessa o tama-

nho do envelope da matriz original e de sua largura de banda soltan

do na impressora acoplada as mensagens

\,
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-' TAMANHO DO ENVELOPE DA MATRI.Z ORIGINAL E --–--

n LARGURA DE BANDA ORIGINAL E ===

5) A seguir surge a mensagem

-' INDIQUE O VETOR ENVELOPE DA MAT'RIZ ORIGINAL

solicita a digitação seguida , um a um, da esquerda para : a direita
em cada linha , dos cc>eficientes da matriz original a partir do pri-

metro elemento não nulo até a diagonal, não incluida , em fórmato li

\4

J

vr e e

Os elementos da diagonal serão a seguir fornecidos um a um, pela

ordem das equações , após a solicitação .
- INDIQUE A DIAGONAL DO SISTE BIA ORIGINAL

6) Segue--se a mensagem

-- INDIQUE O VETOR SEGUNDO IWMBRO DO SISTEMA

após a qual digita-se. os elementos desse vetor um a um .

7) Embora a intenção do programa PARE:NV . seja Ótimizar ' memÓria e tem

po de processamento , é fornecida a possibilidade de se resolver o

problema de forma não auFomãtica, fornecendo-se uma permutação dire

tamente , para , por exemplo, possibilitar comparaçÕes de performance.

A opção é exercida digitando o cÓdigo correspondente após a mensa

pr p

gera

- INDIQUE SE A OTIMIZAÇÃO DEVERA SER EFETUADA

CASO AFiR_ii_aTivo DiGiTE ZERO ; CASO NEGATiVO DiGiTE 1

Na hipótese afirmativa os elementos do vetor de permutaçãÓ esco-

lhido pelo usuário deverão ser digitados após a mensagem

.-. iNDiOUE O VETOR DE PERMUTACOES
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3.1, 2 . Saída de resultados

1) Segue-se a saida de resultados através da impressora , começando

pelo fornecimento da extensão do vetor envelope e largura de banda
do sistema após a otimização na forma

TA}IANHO 'DO ENVELOPE APOS PERMUTAÇAO

LARGURA D:E BANDA APOS PERMUTAÇ AO E: n

E

seguido- da impressão do vetor de resultados do sistema na ordem ori

ginal, já que o programa se encarrega de fazer a permutação inver--

sa . A impressão , nesta versão , é feita em formato livre , com preci
são dupla .

IA

2) Surge a seguir na tela a mensagem

QUER ENTRAR OUTRO VETOR RHS? (1=NAO , g=SIM)

para possIbilitar a solução de um novo problema com a mesma matriz

K de coeficientes , cuja decomposição já foi feita e está armazenada,
e um outro vetor segundo membro . Tal operação poderia ser necessá-

ria , por exemplo , para analisar uma mesma estrutura sob efeito de

diversos carregamentos

1
1

1

i
#P

q:

1

}

. 1 i

3 , 2 . Descrição das subrotinas

1) Subrotina ROOTLS

Objetivo : gerar uma estrutura de níveis rotulada no nÓ inicial cha-
ma(lo ROOT e

Utilizacão : CALL ROO'FLS (ROOT , XADJ , ADJNCY , MASK , Nl,VL , XLS , LS) .

Argumentos : ROOT = variável inteira de entrada contendo o nó a paT-
tir do qual a estrutura de nívêis serã rotulada .

!
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(XADJ , ADJNCY) = par de vetores inteiros dê entrada contendo a

estrutura de ad jacência do grafo .

MASK = vetor inteiro de entrada especiE icando o subgraf o a
util i zado .

NLVL = Variável inteira de saÍda contendo o nÚmero de nÍveis na
estrutura .

(XLS , LS) = par de vetores inteirob de saÍda contendo a estrutu
ra de nÍveis rotulados .

s er

Subrotinas requeridas : nenhuma .

2) Subrotlina FNROOT

Objetivo : Encontrar um nÓ inicial para o algorItmo RCM.

Utilização : CALL FNROOT (ROOT , XADJ , ADJNCY , MASK , NLVL , XLS , LS) .

Argumentos : (XADJ, ADJNCY) = par de vetores inteiros de entrada con

tendo a estrutura de ad jacências do grafo ,

MASK = vetor inteiro de entrada especificando o subgrafo Ja ser

utilizado

ROOT = variável inteira que na entrada (juntamdnte com MASK) de

fine a componente CQnexa na qual o nÓ inicial para RCM deverá ser

procurado ; na saída conterá o nó desejado .

NLVL = variável inteira de saÍda contendo o nÚmero de niveis na

estrutura .

(XLS , LS) = par de vetores inteiros de saÍda contendo a estrutu
ra de nÍveis rotulados .

pr '.

Subrotinas requeridas : ROOTLS .



3 ) Su brotina DEGREE

Objetivo: Calcular o grau
por MASK e ROOT .

dos da componente espec if ic adanos conexa

gtilizaçâ9: CALL. DEGREE (ROOT , XADJ, ADJNCY, MASK, DEG , c:(:SIZE , LS)

&=umento qs : ROOT = variável inteira que na- entrada define a compo

nente conexa .

(XADJ-, ÀDJNCY) = par de vetores inteiros de entrada conténdo a

estrutura de ad jacênc-ias do grafo .

MASK = vetor inteIro de entrada especificandõ_ o subgrafo

u t"illzad o ,

DEG = vetor inteiro de saida éontendo os araus .

a ser

CCSIZE = parâmetro inteiro de saida especificando o tamanho da

componente conexa .

LS = vetor temporário usado para armazenar os nÓs das , ,co

tes niveIs por niveis .

Subrotinas requeridas : nenhuma

4) Su}>rotina RCM

MASK = vetor inteiro de entrada especificando o subgrafQ - a ser

PERM = vetor inteiro de saída contendo a ordenação

mE)orlen

pbjetivo : RCM ordena os nós da componente conexa do gra€o especif i

cada por MASK e ROOT, utilizando o algoritmo RCM .

ptilização : CALL RCM (ROOT , XADJ, ADJNCY , MASK, PERM, CCSIZE , - DEG)

Argumentos: ROOT = variável inteira ’de entrada define o nó inicial
a ser considerado .

(XADJ, ADJNCY) = par de vetores inteiros de entrada contendo a

estrutura de ad jacências do grafo ,

utilizado .

:
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CCS:[ZE = parâmetro inteiro de saida especificando o tamanho da
componente conexa utilizada ,

DEG = vetor temporário usado para armazenar os graus dos nÓs do
subgrafo utilizado ,

',[

d/-

Subrotinas requeridas : DEGREE

5) Subrotina GE:NR(:M

ç)bjetivo : Encaminhar a ordenação pelo algoritmo revers-o de cuth iII-
McKee para um grafo geral

gti:L iza(,ão : CALL GENRCM (NEQNS , XADJ , ADJNCy , PERM, MASK , XLS)-

ArWmentos : NEQNS = variável inteira de entrada espeçi:Ficando o nã-.
mero de equaçÕes .

(XADJ, ADJNCY) = par de vetores inteiros de entrada contendo

estrutura de ad jacênc ias do grafo .

PERM = vetor inteiro de saida contendo a ordenação pelo algorítnn

a

RC M +

MASK = vetor inteiro de entrada de trabalho , utilizado para mar.

car as variáveis que já foram numeradas . É inicializado em 1 e de-

pois atribuindo valor nulo quando o nÓ já foi rotulado .

XLS = vetor inteiro de trabalho, contendo os indices para a es-
trutura de niveis

ip . , SubIrotinas requeridas : FNROOT , RCM .

6 } Subrotina FNENV

Objetiv9 : Encontrar a estrutura de envelope de uma matriz permuta(la ,

Utilização : CALL FNENV (NEQNS , XADJ , ADJNCY ,

ENVSZE , BANDW)

PE RM , INVP , XENV ,

Argumentos : NEQNS = variável inteira de entrada espeçificando o númg
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ro de equaçÕes e
(XADJ, ADJNCY) = par de vetores inteiros de entrada contendo a

estrutura de ad jacências do grafo .

(PERM, INVP) = par de vetores inteiros de entrada , contendo in-

formaçÕes sobre a ordenação da matriz .

XE:NV = vetor inteiro de saida contendo os indices para a estrutu

ra de niveis a ser utilizada no armazenamento do envelope inferior

(ou superior) da matriz reordenada ,
ENVSZE = variável inteira de saida , contendo o tamanho do envelo

pe .

B_ANDW variável inteIra de saída , contendo o tamanho da banda .

Sul)rotinas reaueridas : nenhuma .

7) Subrotina ELSLV

Objetivo : Resolução do sistema triangular inferior LX
tor L deverá ser armazenado no formato envelooe .

RHS . O fa-

Utillzaçã9: CALL ELSLV (NEQNS , XE:NV , E:NV, DIA(; , RHS) .

Argumentos : NEQNS

mero de equaçÕes

XENV = vetor inteiro de entrada contendo os indices para a estrg
tura de niveis utilizada no armazenamento do envelope .

ENV = vetor real de entrada contendo o envelope de Le

DIÀG = vetor real de entrada contendo a diagonal de L .

RHS = vetor real que na entrada contém o segundo membro da equa-

ção , e na saida , contém o vetor solução .

variável inteira de enttada especi:ficando o nÚ-'

qI{

LÕ

, ' t

}

--}
.Subrotinas requeridas : nenhuma . 1

}

1
}

i

!
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Subrotinas requeridas : ELSLV .

10) Subrotina PAPT

Objetivo : Subrotina para efetuar permutação PAPT dos coeficientes

não diagonais de uma matriz original A- fornecida sob forma de enve-
lope .

'./

#4

Utilização : CALL PAPT (NEQNS , INVP , ORIENV, XORENV , XE:NV, E:NV) .

Argumentos : NEQNS = variável inteira de entrada contendo o ntimero

de equaçÕes do sistema .

INVP = variável inteira unidimensiona:L de êntrada, contendo o Ve

tor de permutação inversa ao PERM.

XENV = variável inteira unidimensional- contendo o vetor de apon

tadores do envelope .da matriz permuta(la .
ENV = variável real unidimensional de saÍda contendo os coe:E ict-

entes não diagonais de cada linha da matriz permuta(la a partir do

'primeiro não nulo , da esquerda para a qireita , erc sequência +
ORIENV = variável real unidimensional de entrada contendo os coe

ficientes não diagonais de cada linha da matriz original a partir

do primeiro não nulo , da esquerdá para a dIreita , em sequêncIa .
XORENV = variável inteira unidimensiona1 de entrada contendo

vetor indicador do envelope original.

1

!

l

{

1

In
4

1

\

1

:

i

i
!

!

1

1

!

1

0

1

F/ +

Sul)rotinas requeridas : nenhuma

11) Subrot ina PERMW

Objetivo : Efetuar permuta(,ão dos elementos de um vetor segundo um

vetor de permut:ação dado .

utilização: CALL PERMVT (NEQNS , PERM, vr) .

Argumentos : NEQNS = variável iriteira de entrada contendo o nÜmero

1

._ _J
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8 ) Subrotina EUSLV

Objetivo : Resolução do sistema triangular superior UX = RHS . O fa-
tor U deverá ser armazenadQ no formato envelope .

Utilização : CALL EUSLV (NEQNS , XE:NV, E:NV, D:IAG , RHS) +

Argumentos : NEONS = variável interior de entrada especificando o nÚ

mero de equaçÕes .

XENV = vetor inteiro de entrada contendo os Índices para a estru

tura de nÍveis utilizada no armazenamento do envelope .

ENV = vetor real de entrada contendo o enveloDe de U .

DIAG = vetor real de entrada contendo a diagonal de U .

RHS = vetor real que na entrada contém o segundo membro da ego-a

ção , e na saída , contém o vetor solução

; 'N

Subrotlillas requeridas : nenhuma

9) Subrotina ESFCIT

Objetivo : Efetuar a fatorização de uma matriz definida positiva R
em LtLT . A matriz R deverá ser armazenada no formato envelope .

utilização : CALL ESFCT (NEQNS , XENV, ENV, DIAG , IFLAG) e

Argumentos : NEQNS = variável inteira de entrada especificando o nÚ-

rrlero de equaçÕes .

XENV = vetor inteiro de entrada contendo os indices para a estru

tura de niveis utilizada no armazenamento do envelope o

EN / = vetor real que na entrada contém o envelope de L e na sai-

da contém o envelope de L .

DIA(, = vet,or real que na entrada contém a diagonal de R e na sai

da contém o envelope de L .

IPL 7\(J = variável real de saida na qual é atribuÍdo valor 1 se R

não é simétrica definida positiva
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de equaçÕes do sistema .
PErM = variável inteira unidimensiona1 de entrada contendo o ve-

tor de permuta<,ão .

VT = variável real unidirnensional, contendo na entrada os elemen-

tos do vetor que sofrerá a permutação indiçada por PERM e na saida

o vetor permuta(lo .

b;

/’

Subrotinas requeridas : nenhuma .

12 ) SuE)rotina GERADJ

Objetivo : Gerar automaticamente o vetor de ad jacência AD JNCY e seu
correspondente vetor de indicadores MDJ a partir do grafo. assocja-

do à matriz de coeficientes , fornecido na forma de uma tabela de in

cidência de conecçÕes entre nós .

Utilização: CALL GERADJ (NMI, NI, NF, }UDJ, ADJNCY) .

Argumentos : NMI = variável inteira de entrada com o valor do nÚmero

de equações do sistema mais um, ou seja , o número de élementos do

vetor XAD J .

NI = variável inteira de enttada com o nümero do nó escolhido cg

mo inIcial de uma dada aresta do grafo .

NF = variável inteira de entrada com o nümero do nó escolhido cg

mo final de urna dada aresta do grafo .

XM)J = variável inteira unidimensiona:L de saÍda contendo o vetor

de apontadores da posição da lista de ad jacências de cada equação

no vetor ADJNCY .

ADJNCY = variável inteira unidimensional de saÍda contendo em se

quência as listas de adjacências de cada equação do sistema .

Subrotinas requeridas : nenhuma .

43-
q'
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4 . EXEMPLO NA ENGENHARIA DE ESTRUTURAS

Como demonstração da aplIcação do programa PARE:NV para solução

de sistemas de equaçÕes lineares simultârieas definidos positivos es
parsos de grande porte na engenharia de estruturas , apresenta-se a

análise estática de uma viga balcão mode:Lada como pórtico espacial

conforme Brasil [51 ,
Na Fig . 4.1 apresenta-se a geometria e caracteristicas fÍsicas

da viga balcão em questão, de dimensÕes bem usuais da prática da en
gel lhart-a civil. Na Fig . 4.2 é indicada a numeração dos 12 graus de

IIberdade originalmente .adotados , para a viga modela<la como pórtico

espacial, também a que usualMente se faria nos programas convencio-
nais de análise estrutural.

A matriz de rigidez original da estrutura (12x12) 8 apresentada

na figura 4.3 , com os coeficientes calculados manualmente até uma

precisão tipica de trabalho efetuado com auxílio de calculadoras de
bolso

O vetor de carregamento f que a seguir é listado corresponde a-

proximadamente a uma carga uniformemente distribuÍda de 1 (uma) to-

ne:Lada-força por metro linear de viga de cima para baIxo , ou seja ,

no sentido da gravidade .

).:
)

>h

•

./ :J

'!1

ft = (O.O,–4.O,O.O,-.75,O.O,-2.O,O.O,-4.O,O.O ,-.75,O.O, 2.O)

Os resultados obtidos , a pesar das dimensÕes ainda modestas da

estrutura analisada , são simplesmente dramáticos : o envelope , que
na matriz original continha 52 elementos passou para apenas 20 , e a

largura de banda diminuiu de 10 para somente 3 .
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Cabe frisar a precisão dos deslocamentos re-sultantes da análise

não afetada pelo fato de se tratar de um sistema muIto mal condicio

nado , com o nÚmero de condição espectral (razão entre o maior e me-

nor valor próprio da matriz de rigidez) igual a 2074 , conforme

Brasil [5] . Este problema seria melhor resolvido mcnelando a viga
balcão do exemolo como grelha e não como pórtico espacial, em que

comparecem modos de deslocamento muito "rígidos " (deformação axIal
das barras) coexistlindo com outros muIto ’'flexÍveis ’' (flexão e tor-

Ção)

'/'

4'

5m

E = 2.000.000 tf/m
A = 0 , 06 m2

Imãx = 0,00125 mq
4

lmÍn = 0-,000072 m ‘
4

ltor = 0~, 000244 m ‘

G = O , 4 E

IPr

Fig . 4 + 1 Viga. Balcão : Geometria
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;{

j
T

1

Fig , 4 , 2 - Graus de Liberdade da Viga Balcão considerada como
PÓrtico Espacial
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40013 , 824
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0
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'39 , 04

0

0

0

1666,6667

0

3372 , 3733

Fig , 4 , 3 .- Matriz de RIgidez
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WRITE (+. +) ’ ENTRE O VETOR DE ÔDJÔCENCIAS=âDJNCY’
READ (+! +> (ÔDJNCY { 1 ) ) 1=1 pM}

END IF
DO 11iii:1 . :1 = 1,, NEaNS

PERM ( 1 > = 1
i Nvr ( i ) =i

IPJÉj CONTINUE
Cê\LL FIUENV <NEQNS ! X êDJ 3 íàDJ NC:Y 1 F'EFiFI :1 :1 NVF' ! XORENV q EN\,/ SiZE i BANDW }
WHITE <5,#>’TAFlâNHO DO ENVELCIF'E DA MATRIZ ORIGINAL E ’,,ENVSZE
WF< 1 TE<3,#)PLâRGUF<ê DE nANI)â ORIGINAL E p:BANDH
WRITE < # , # > ’ INDI OLJE D VETOR ENVELOPE DA MATRIZ ORIGINAL ’
REêl) {#. +) (ORIENt,./ ( 1 ) , 1=1, ENVSZE}
ldR 1 TEC + 9 # > ’ :t NI) 1 QUE Pl O IÔGtlNAL DO S :1 STEPtí\ [3F< :1 G 1 NÔl F

REâD (#$ +) (niÊG ( 1 ) . i=i . NEUNS}
URI-FE <+ . # > ’ IND IC;IUE O VETOR SEGUNDO FIEPiBF<O .DO S:tSTEPlÔ P
READ ( x , # ) ( NHS < 1 > , 1 = :L , MEaNS >

' WHITE ( # , + > ’ iND 1 QUE SE A CIT IH :1 ZÔCAO DEVERA SER EFETUât>Ê p
WRiTE <+, #> ’ CASO AFIRi’IATiVO DiGITE ZERO; CF\SO NE6üTIÇ'CI DiGITE 1 ’
REÊD (+. +) OF'CI
IF (OF’CI ) :Lar , 1132, la:l

:1 a2 C:FILL GENF<CM (NEaNS , Xê13J 3 AD'J NC:Y 1 F'EF:M $ NlqSF::: ! XLS >
13CI TO IE$4

1 a :L NR 1 TE ( + ! # ) FIND lãuE o VETOR DE PERHUTAC:aES -
FIEí\l) { + ,, + ) (F'Eb:M < 1 ) 1 1 = 1 ! NECIN3 >

:1 Êí4 DO i !3:5 1 = i. NEeiNS
1 #:3 l MVP <F'EF<H ( :E > > = 1

C: ALL FNENIV {NEOf~13 . XF:\DJ , é\DJ NC:Y , F'ER:H . iNVF' 3 XEFllv' 3 ENVSZE :1 E ANBU >
HR iTE{3)#}’TâíiANHG DB Ei'qVEL[3F'E {qF'a:; F'ERP’iUTíàC=AO E’iENVSZE
WF{ 1 TE(5,#>-Lüh:GURF\ DE Eüi'qDÊ APOS F'ERMUTAC=FIO E3)BANbtd
DO 1 1 $:i 1 = 1 1 Ei'avs ZE

EN'V € 1 ) =!!j . !iiI>ES
11 iii E:Cli*dT 1 hiDE

C;FiLL F'AF'T (NEOl'*JS , 1 NIVF’ , CIF: IENV , XORENI'7 , XENV , EF\IV )
CF\LL F'EKHl*,,IT ( NE[;11'iS , F'ERFI , Di AG )
CFiL_L ESFCT ( mEaNS q x EMU q ENa q DI AG q I FLAG )

ias cfàLL F'Eh:NUT < i’JEaNS , PERM, RHB >
CALL ELSLV < MEaNS , XENV , Ei\JV , Di às , NHS )•
CÜLL EUSL\’1 {NEaNS q XEN'\’t ! ENV ! n :1 FIG 3 F<HS >
CÊLL PERHVT (f\!EONS . 1 NUP , RI-IS )
WRITE C 3 , + > ’SCILUtIAD DCI SiSTEMF\ ’
WRITE < 5 , 3+ ) { NHS < :1 ) , 1 = 1, NEDNS )
WF( 1 TE ( 5 q + ) 9 + Vr+#+++++iç+iç+#le+++#+#++#++++ 3+++## 3
kIRI TE C + , # ) ’ QUER ENTRAR OU-FF{CI VETOR RHS 13 < 1 =NAO , 115=S :EM ) -
REF\D < # , + > 1 RH$3
IF < iR:HS) 11:57,la6,líli7

1 lijó WRITE ( # , x > ’ INDIQUE NOVO VETOR SEGUNDO. MEMBRO DO SiSTEMA
READ (+. +> {RHS < 1 ) 3 1=1 . MEaNS)
[sci TC] i as

1137 CC]NT 1 blUE
C=LCISE < 5 )
END

C:'-––'-–FNEhilV––--ENC:üFJTFlí4FR EiyVELC]PE DA MATH: 1 Z REF<MUTé\Dê
SUBRÜUT INE FNENV ( MEaNS 3 XÊDJ :1 ÊDJ NC\r/ ! F'EFiFt 1 1 N!?F’ ! XENV 1 ENVSZE 1 BANt>W>
INTEGER PIDJNC=Y ( + ) , INVF' < + } , XADJ ( # ) , XENV C + > ! F'EF<M ( + )
:ENTE:GEN BlqNt)A 3EN'?SZE
BâNDW=ii$
ENVSZ t:= 1
DO 2íiii:5 I=1.,NEONS
XENV ( 1 ) =ENV3ZE
iF'ERr'i==F'ERM ( i )
JSTF{T=XfàDJ C 1 PERM )
J93TOF'=XADJ < 1 1='EFqFl+ 1 > – 1

e

P

}! - - [
1

L



i
IFCJSTC3P , i_T,JSTF<T>t3CI TEI 2iãg
I FIRST= 1
DO 111iH J=JSTFIT,JSTOF'
NÉ\BÜFi=At) J í"JCY < J >
NFIB[IR= 1 NVP < NÊBt3FI >
iF(NriBaR. LT. iFiRST) iFiRST=NÔBaR

IÊjÉ} CONTINUE
1 BF\ND= 1– iF IRST
ENVSZE=ENVSZE+ IBlqFqD

iF(BÔNDt4. LT. iBAr\ iD) BAriDw=iBAr'iD
21iii:J CONT 1 blUE

XENV (NEQhJS+ :1 ) =ENVS ZE
ENVF3ZE=EF'JlvíS ZE– 1
RETLJRr'J
END

(;––ELSLV–FiESÜL.VER 5 :1 STEFlfq TFllôl'JGULAFI :1 NFER: lüFI LX=FtHS
C D FAT[IFI L DEVE SEF( É\F{FlôZENâE)C3 FIO FC]RFIAI'O DE ENVELOPE

SUBR[IUTI NE ELS!_V ( NECINS . XENl'71 E:NV , D•lAtS ) F<HS >
t;CIFIFqCIN / SF't:::[]F':3 / tlF'5
REé\L#8 DI PIG ( + ) , Et'gV cx ) ! nHS < # > ! COUNT 3 C3F'S ys
:INTE(IER XENV ( + )
]: F :1 R ST = E!

1 !:iII1 l F I RS T= 1 F 1 FIST+ 1
IF ( RH: 3 ( 1 FIRST ) , NEH gB f:iEÍii 3 GO TC] :í2jfii
IF ( 1 FIRST ,LT,NEaNS > GC3 -T[1 11:fa
RETURN

2 fijili L AS T = íií
DO 51211:j : = 1 Fi FIST , NEt;!FJS
:[ BfbND=XEfql\,'1 ( 1 + 1 > –XEFqV < 1 >
iF<:tBÔFqD , GE , i ) :i nANI)= i-- i
s=nHS c i >
L= 1 – lt+êiF-ID
F:HS ( 1 } =Ej , lliDflj
IF(IBé\F-'ID , EC;! , !:i , CIR „ LAST , LT , L > GO TD 4f:IEI
H.STFtT=XEF'iV ( 1 + 1 > – 1 BF\ND
HSTCIF'= XEF\!V < 1 + 1 > -- 1
DtI 3íiiiii H:=H:STRT, F:STOP
S=S'-EFqV < F: ) #RHB < L >
L=L+ 1

Zfjffii C:CIN T :INIJE
COUNT=IHâFqD
CJP5=OF:'S+COUNT

4ílif$ 1 F ( s , EO , fil , aDf:J } GEI TC3 SEi!:i
FillS ( :1 > =3/ Di FiG < 1 >
OPS=C]PS+ 1 , fljt>fil
Lf:bST= :1-

:rialif C:gNT I HUE
RETURN
ENI)

C–-'EUSL_V–RESOLVER s ISTEHÔ TFiiâNGULâF€ SUPER ic3F= ux=nHS
C ' O FÔTC>FI U DEVE SER áRMAZENADO NFt FORMâ DE ENVELOPE

SUBFIC]UT INE EUSLV <í''IEaNS $ XENVl3 CRV ! DI PIG 11 RHB )
CCIPIMCIN / SPF: O PS / CIP S
REé\L#8 DIF\G < + > 9 ENIV c # ) ! RHS < # ) ! COUNT selF’59 s
INTEGER XEr..IV (#)
:E =NEON S+ 1

IÊilij 1 = 1 – :1
IF ( l n EQ. a) RETURN
iF <NHS ci>..Eci., Ej. iiiD 13> GO Tci iai:j
S=RHS ( 1 ) /DlôG ( 1 )
RHS ( 1 ) =S
C3F'S=c3F’s+ 1 , eiDia

>'

dr

y-»

+

4

PT



jI
AIIHÔND,XENV ( 1+1 ) -XENIV ( 1 )

IF(:IBé\l'qD , GE , 1 ) 1 BAND= 1 -- 1
IF(:[BÔND. Ea. !ii> GD TO liz11ii

H:E3TFqT= 1 – l E{rAND
}::S TOP = 1 1
L='xEbiv ( i+i)–iBôrqD
DCI 21:sei t:==1::.STi-:T , H:STC]F'
F{F'{S < F: ) =F<F„ iS < [::: ) –S#-ENV < L >
L;:L+ 1
cor\iT i NUE
COUNT=IBÔND

' [IF:'S=[]F'S+COUNT
GtI TC] liiiI ii
END

c:'-–ESP[:i-–––-FR-roRíàii MATRiZ DE:F :iN i Dê F'EiS ITI Vã EM L+L<TRíàNSF’C3STíà > n
C 6 HATF= :[ Z DEVE SER ÔRi'4íàZENÔDÊ Nã FCIFIHPl DE EF*JVELCIF'E
c o ALGCiR :[ THE3 UT iLiZÊiiCI Fcil DE HCiKDEAPiENTCI STêNi>AnD

SUBFi:ttUTI NE ESFCT ( NEEINS , XENV , E:NV 1 D IAG 1 1 FLp\6 >
HEr\L#8 l)IÉ\C3 ( + } 4 ENV ( x > 4 COUNT ,, OPS 3 TCP'IF-' 3 5
IN-FEt3EF( X ENlvl<x' >

]: F: (DIP,6 ( 1 ) . LE. a . aEa ) GO to 4aüs
D :[ 66 ( i > =i)saR:T CD :tAG < :L '> >
:[ F ( i'JEaNS , EU , i ) R:E-Fun:Fq
i) CJ 31 ii iii i==i,,NEnNS
:1 X E{’IV=XENI'71 ( :E )
IEAND=XENV Cl+ :1 ) – IX gNV
1'EFIF'=DI AG 1: :t >
1 F: (IBâFql) , CBn iii > GO TCI :ilifZf
:1 F 1 EST= 1 --- 1 BÜFql)

CALL EL_Sl_V ( 1 BaNDs XEt\IV < 1 FIRST ) 5 ENIV 5E31íàG ( 1 FiRST > 3 ENV < IX E:HV >
J STC]F'=XEFqlv1 < 1 + 1 > – 1
DO 11:ia J= :E REF\IV :,JSTÜF'
S=E:NV CJ )
TErlf='=TEt4F'–S+5

IEila CC3F'!T 1 HUE
2Êiili :l F<-FEllP , LF: , fil n !:iDe; > GO TO 4fjJfii

D:[ât3 ( :1 ) =DSCIRT <TEHF' >
cc)u[-.]T=iBràr'ID
OF'S=L]F' Ej + C C3UNT
CONTINUE
RE TURN

41:1 :!$ :1 FLAG= 1
RETURN
E:ND

Cv&––––-FCC)O-FLS–––––ESTRUTURA RC3'FULPICAC3––––––––––––––––––––:––––––––––––––
SUE:RC]UT IHE ROOTLS ( ROOT . X AIJJ 1 é\DJ NC:Y 3 MASH: ! NLVL ! XLS ! LS >
:[ 1\ITECER: CCS 1 ZE , ROOT
INTEGER ADJNCY ( + ) 3 LS ( + ) 3 MASk: ( + ) ? XLS < + > 3 XF\DJ < + >
MF\SE: ( FiC3CiT) =a
L_8 ( 1 > =R[]OI'
NLVL=a
LVLENI)=iZÍ
CC;SIZE:=1
LE€Et3:IN=LVLEF\!D+ 1
LVLEND=CCS l ZE
NLVt_=NL_VL"[ ],
XLS (NLVL ) =LBE6 IN
DO 411ja I=LnEGINPLVLEND
NODE=LS ( :1 >
J STF(I'm Xâl) J ( NC] DE )
J ST[]F'= XÔD J ( NonE+ i > – i
i F: (JSTOF' , LT ,JSTR-F ) GO Tei 4igiii

221 !!j

&1

+

2 Iii 111
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DCI SIga J=JSTFtT,JSTOF'
N[{R=âDJNCY { J )
IF < FIASH: ( NBR > A Eae !:i > GO TC3 311jig

CCS 1 ZE=CCS 1 ZE+ 1
LS:; ( CE:617 E > =NBR
FiA:; 1':: ( bIEIFI > = !:J

:311111j C:C3NTIMUE
41:ji11 C:CINTINUE

LVS 1 Z E=CCS 1 ZE'-LVLENE>
:[ F{LVS 1 ZE: , t3T , lli > GO TO 2 iBEI
XLS ( NL'VL+ 1 ) =LVL_END+ 1
DEI 311irIS :1 = :L . CCS 1 ZE
NODE=LS ( 1 >
FtfàSt:: ( NCIDE ) = 1

seja COF'iT i HUE
END

[:--P–––FNFi[](]-r––Er\:c=c]NTFiPIR N[3 F'sF:UI)íl F'ER IFE:FII CCJ–:––--––––––--–––––––––--––––––
SUBFIOUT INE: FNrIOOT { ROOT ! XFà1)rJ 1 ADJ NE;Y ! FIASH: 9 F-!LVL_ 9 XLS ! LS >
INTEGER CC:SIZE , ROOT
iNTEiGEn FIt)J NCY < # > q LS < + ) q pqpISE: € # ) q XLS ( # > q XADJ < + >

CALL_ ROOTLS < ROOT , X é\DJ , AD JNC=Y , FIASH: ! NL 17L, XLS, LS )
Ct:5 :1 ZE=XLS CFILtvçL+ 1. > – 1
:[ F ( NLi.,'’L_ , F:a , i', OR , i'qLVL , EO , c;csi ZE > RETURN

1. !a Ei J STR:T= XLS < NL VL >
MiNI)EG=CCSI ZE
ROOT=LS {JSTRT }
iF € CC:SiZE , EE].JSTFiT ) GB Tt3 4121a

DO sflia J=JSTRT , Cc:sizE
NODE=L_S ( J )
NDEí3= 121

H.STFIT=Xéql) J CblCII)E )
H:S-FCIF'=Xôi) J €í\10IJE+ 13 – 1
DO 21:JUI 1::=1'::STFCT , H:STOP
NFlnoEl=€=\DJ FiC;V ( E: >
IF € PIPISE: ( NF\BOFI ) , tIT , fil > 'FÜDEC3=NI)EtS+ 1

2iiJ fg CEI NT :E NU E
IF<NIJEG.6E,HINI)EG> GÜ Tc] 31:lia
R[]CJ-F=NC]DE
Fl]:FqDEG=NDEt3

:312iE; c:aNT 1 i\iuc
41:ja cf\LL ROD-FLS < ROD-Fp xôl) J 3 AD,-íNcy $ Pt-ASH p NUFqLVL , XLS , LS )

IF<NUl\JLVL B L_E , NLVL > FIETUÍIbi
NLVL_=NiJrüLVL
IF<FdLVL , LT„C:C;S:l'ZE ) GO TO 1 f:ji:f
RETURN
END

C––––––l)EGFiEE-–--–––DETEFIFIIFiôCÜC] DE GFIÊU' DOS NOS [SP[CIF 1 CABOS
5UB6:OUT IHE DEGREE ( ROOT ! X-üDJ. 3 QI)J MCV 5 NASH: 3 DEG 8 [:CS 1 ZE q i_S >
:E tqTEt3EH é\DJ HC:V < # > 9 DEG < # ) 5 MASH ( # ) 3 XÜDJ ( # ) q LS < # >

INTEGER CCS 1 ZE , ROOT
LS € 1 > =FICIC3T
XF\13J ( R:OO-1- > =–XÜE)J ( FiC]fIT )
LVLEFqI)=121
CCS 1 ZE= 1
LBEGIN=LVLEND+ 1
LVLENt)=CC:S :1 ZE
Dci 41:ja I=LBEG:[N.,LVLEND
NODE=LS ( 1 )
JSTFIT=- X AD\1 <bJCll)E )
JSTOP=IâEiS ( XÔDJ (NODE+1 ) ) –1

:l DEG=iii
1 FC J STOP , LT,JSTFIT } GO TO :31ZJra

if

Jf

tI

1 1 4

1

11

J lígia
/

1

1

1

1/a



DCI 21:sei J=JSTFiT,JSTOF'
NBR=ÊDJNCY ( J )
IF ( MÊS F: < N nFI ) 8 E a 8 iii > GO Tti 211i ej
:1 DEG= II)EG+ 1

IF < XPIDJ < NBR > , LT , 13 ) GEI TC] 213121

XâDJ ( NBR: > =–XQDJ C NBR )
CCS 1 ZE=CCS 1 ZE+ 1
LS ( CC:SIZE > =NBR

212ia c:cIN-F 1 NtJE
:3ÉI Iii DEG < NODE > = :1 DEG
412$ 11i C:CINTll'QUE

LVS :E ZE=CC:3 :1 ZE–LVLEND
:IF CL.vs :i ZE , GT , ili > GEI TO ii:ja
DO SkIifii 1 = 1. ,„ C:CS :1 ZE:
NODE=LS ( 1 )
XÔDJ (NODE) =–XÔDJ (NODE)

=ralf?1 CONT 1 NiUE
FiETUF<N
END

C:-––––RCF’1 FIEVEF=SE C:UTI-11 LL–FIC:EEE QRDENÉ\CÔCj–––––––––--–--––––––––––-'–––––––––
SLiBROUT IHE F(CM ( ROOT 3 X PIE)J 9 AI)J NC\r/ ! FIASH: ! PERM ! CCS 1 ZE R DEG >
INTEGER é\DJf\-tCV ( # ) , DEG < # > ! Plé\SE G# > 3 F'EF<i''1 < + ) $ X ADd < + >
INTEGER FNBFI , $100T , CCS :1 ZE
cr\LL DEGREE ( R[] CIT , x A 1)J ! AD JN[:Y 3 MÔSF::: 3 DE:G ! ccs 1.ZE 3 PERM )
pln:;};:: ( F<clclT > =lil
1 F ( CC:5 :1 ZE , LE , 1 > FIETURN
L..VLE Nl) = 111

LrgBR:= i
]. fijI!$ L E: EG IF'J = LV !_EF"i D+ 1

LVLENL)=LNB R
DC) 61 iii:i :1 =1.._E'IEG IN q LVLF=ND
NicInE=PERi*i ( 1 )
J STFt-F= x fai)J < NODE >
J€;TLIF’= X FIl:>J < NEII)E:+ 1 ) – 1
FFq13Fx=LNBF:+ 1
1)[3 ::Éif ii J = J SINT sJ t3TOF'
[\IBF:=ôl)JFlíJV ( J >
:iF (HASt::: (NBR> . Ea. a> GO
1_NE:F<=LNBF{+ 1
MPISK < NBR ) =iiI
PERM ( LF\iBR > =NBR

21iiI3 CONT 1 NiUE

TO

IF { FN EIR , GE , LNnR ) CCJ TO 612111i

F:::= FN BR
3 iZI iii

1<=}:::+ 1
NBR=PERM € F;:: >

41:iI ii :[ F ( L , LT , FNBí< > GO TO 31:112j

LF'EF<FI=F'ERPI CL )
1 F ( 1)EG (LF'EFIH > , LE , DEG ( NBR > ) GO TO silla
F'EF<H < L+ 1 > =LF'ERM
LÊ:L– 1

GEI TC] 4131:j
51Zjiit F'EFtPI CL+1 ) =NBR

i F ( H: , LT , LtiBR > GO TO saa
6ÍZIPI C:CINT :E NLJE

IF (LNBFI.GT.LVLENri> GO TO lí:jlii
K =CC SI ZE / =
L,,CCS 1 ZE
DC] 7í:ií ii 1=1, E
LF'E[<M=PERM < L >
PERM (L) =PERI'1 ( 1 )

21

rI

28 !
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PERM ( 1 ) =LF’ERM
LDL– 1

711fill C:CIN-F l HUE
RETURN
END

C-.-––GE.NF{CM–––ôLGORITMC GERAL CUT FIIL,L MCH:EE REVERSO
SUEIF(OUT INE [3ENF(CM ( NECaNS , x PIDJ ! ADJNCY ! F't:RMs MâSF::: ! XLS >
INTEbEFI êDJNt=Y ( + > 1 xr\DJ ( + ) 5 PERM ( + > ! XLS < + ) sMASH: < + ) !

+F{OÜT . CCS 1 ZE
DCI i aH :E =i.,NEQNS
F1 ASH: ( 1 ) = 1
CONT 1 NUE
NUM= 1
D[] 2É11it 1=:1,NEONS
1 F ( FIASH: ( :1 > , EO , O > GO TB 2181ii
Rc]o-r= i
CràLL Fl-]iRrICIT ( FIOOT , xaF)J q aD JNC\T/ q Mí4SF:: q i\!LVL , XLS . PERM <NUM> >
CALL_ RGH ( HO[]T , x AI)J , ÊnJNC'-,' $ FIASH:p PERM <NUM> , Çcs;:1 ;:Ep XLS>
NUF’I=NUM+CCS 1 ZE
:[ F ( NUM , GT , NEOFJS > FIETURf'l
CONT 1 blUE
FIETUH:N
END

c'-––-.F'r,PT–-–suBRDTiNn PARQ EFETUAR ns F'ERFtUTÊCC3ES Fia Ei\ivELÜPE
C:-–-'-'DÔ PlíqTFIIZ A OFll Gi NÉ\l

suBRc3u-r If\!E PÊF'T { NEtaNS 3 ll'qVF’ „ CIF< 1 FMV 3 XDRENV 3 XEHivI 3 EF\IV >
REé\L#8 ENlv1 < + > , OR 1 EMU < + >

) . XENV {#)1 NVF’ { # > , XDR:EF„iV (iNTEGER

1 1:IEI

Ir
r'
A

l)O :f15 1 ÉINT= 1 4 NEQF-JS
JI = if\hIT– ( XOF{EI'\IV ( IANT+ 1 ) –XCIF:EFqV<líqFqT > >
JF= IANT– 1
IF < JF , GE , JI >
THEN

F\iTEr-üi)=xDHEr'iv ( FüriT ) – 1
1)o 1 ijI JFàNT=J :[, JF

NTEí\ID=NTENI)-F 1
1 NOVO= :INl','IF' C 1 f4NT >

J NflVD= 1 NVR <JPIFül' >
iF {JF*jOV ti . GT. iNOva)
THEN

lôlJX=INDy(t
i Nova=Jr-iouD
JF]OVD=IÔUX

END I F
:IF <OFllEFIV(NTEND>
THEN

NQVENI)= XENV ( : hiCJVC3+ :1 } – :1 NCIVO+JNC]VCI
ENV < llC] V FiND > =OR IE NV ( F'ITEilD >

END IF
CONT l NUE

END 1 F
CONT 1 blUE

1

+

1

RETURN
END

C:––––F'EF<PIVT––––SUBF<DT 1 NA PaRA PEFiFtuTiac;fIEI DE VETOR ( D 1 AG ou RMS >
SUBROUT INE F'ERMVT (NEON=, F'ERPI, VT )
REâL#8 v-r (+ )
INTEGER PERM € + >

1

+\’ \

4

ul
+ ' 1

a . i13 >

1 111

VT 1 =VT ( 1 )
i ei CONT i biUE

VT { J ) =VT (F'EF<M CJ ) >

3g'



VT (PERM ( J) ) =UTI
J=F'E:RM ( J >

1 F ( n N CIT 8 Fi E R M < J )

RETURN
END

C:-–-'–GEFIADJ –-––SUFIFCE]T:INâ F'é\RÉ\ 6ERêCÔC3 DCI VETOR
c-––– ( É\DJ Nc:Y > E DO VETOR DE INDicaDORES <XADJ )

SUBFROUT :iNE GERADa < NHI ,iN :i ,i NF , xôi)J . ÊiiJNCY }
:INTEGER XÜDJ ( + > , ADJ NL:Y C + )
DO Ja J = 1 qJ

IF (J . Ea.
+ THEN

F\UX =N :[
N 1 ==NF
NF=r\tJ x

END IF
' b:::l=XÔDJ CF\iPi:L > –1

F.F=XPID CJ ( NF >
1 F ( E :1 & HE n Ei >

THEN+

BEt;18 1) GCJ'[O 113

DE AD Jô[:ENC:IêS

DO li:1 E=F:::1, HF, --1
êE) J NC:Y < F:::+' 1 ) =AD JNC:Y < t::: >

CONT 1 NtJE:
END 1 F
ônJb](:y < x FIDJ < hlF > ) =N 1
E)O ;:iii [:::=NF+1, NP11

X IqD J ( 1ç:: > = X AD 3 < }::: ) -F 1

CORt T 1 11UE
c:oi*iT 1 r'quF=

RETUR:FI
Er'11)

1 Iii
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