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ABSTRACT

Killer cell immunoglobulin-like receptors (KIRs) regulate natural killer (NK) cell responses by activating or inhibiting their
functions. Genotyping KIR genes from short-read second-generation sequencing data remains challenging as cross-alignments
among genes and alignment failure arise from gene similarities and extreme polymorphism. Several bioinformatics pipelines and
programs, including PING and T1K, have been developed to analyse KIR diversity. We found discordant results among tools in
a systematic comparison using the same dataset. Additionally, they do not provide SNPs in the context of the reference genome,
making them unsuitable for whole-genome association studies. Here, we present kir-mapper, a toolkit to analyse KIR genes from
short-read sequencing, focusing on detecting KIR alleles, copy number variation, as well as SNPs and InDels in the context of
the hg38 reference genome. kir-mapper can be used with whole-genome sequencing (WGS), whole-exome sequencing (WES)
and sequencing data generated after probe-based capture methods. It presents strategies for phasing SNPs and InDels within
and among genes, reducing the number of ambiguities reported by other methods. We have applied kir-mapper and other tools to
data from various sources (WGS, WES) in worldwide samples and compared the results. Using long-read data as a truth set, we
found that WGS kir-mapper analyses provided more accurate genotype calls than PING and T1K. For WES, kir-mapper provides
more accurate genotype calls than T1K for some genes, particularly highly polymorphic ones (KIR3DL3 and KIR3DL?2). This
comparison highlights that the choice of method has to be considered as a function of the available data type and the targeted
genes. kir-mapper is available at the GitHub repository (https://github.com/erickcastelli/kir-mapper/).

1 | Introduction These receptors modulate the activity of NK cell responses by

activating or inhibiting cell effector activity. The ligand spec-
Killer cell immunoglobulin-like receptors (KIRs) are a group of  ificity and mode of function of each KIR is determined by its
immunomodulatory receptors expressed on the cell surface of  genetic sequence. NK cells can directly kill diseased cells, facil-
Natural Killer (NK) cells and subsets of T lymphocytes [1, 2]. itating and speeding up defences against pathogens or secrete
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cytokines, such as interferon-gamma (IFN), which stimulate
adaptive immune cell responses [3, 4]. KIR major ligands are the
major histocompatibility complex (MHC) class I molecules, in
humans termed HLA, expressed by somatic cells [5-7].

In humans, the KIR locus is located on chrl9 at the leukocyte
receptor complex (LRC), with 13 genes and two pseudogenes [7].
The genomic complexity of the LRC results from an evolutionary
history involving duplications, intergenic recombination, point
mutations and deletions resulting in a set of highly polymorphic
genes; they display copy number variation and show high se-
quence similarities between paralogous copies [8-11]. The KIR
genes are the most polymorphic receptors of human NX cells,
displaying high allelic diversity [7, 11]. In addition to the pres-
ence of SNPs and InDels across all KIR genes, they also show
copy number variation and can be described as absent or present
from some KIR haplotypes, although the absence of KIR3DL3
is a rare event [12]. The IPD-KIR database (version 2.13), an of-
ficial repository for known KIR alleles, currently reports 2219
alleles (i.e., distinct sequences) considering all KIR genes [13].

Because KIR genes comprise a highly polymorphic multigene
family, surveying KIR polymorphisms from short-read second-
generation sequencing (NGS) data is challenging. Similarities
between genes cause cross-alignments, with reads from one
gene aligning to multiple loci [14]. In addition, high polymor-
phism may cause alignment failure when a single reference ge-
nome is used. Cross-alignment and alignment failure can lead to
high error rates when genotyping KIR genes with conventional
short-read aligners (e.g., BWA [15] and Bowtie2 [16]) and a sin-
gle reference genome. Therefore, variant calls across KIR genes
from most genome initiatives, such as the 1000Genomes project
[17], may be biased or absent. HLA genes within the MHC at
chromosome 6, which encode the major ligands for KIR recep-
tors and present a similar organisation, face the same issue [18].
Asfor HLA, it is essential to use tools tailored to the LRC's struc-
ture and polymorphism to reliably genotype KIR genes using
NGS short reads.

Some bioinformatics pipelines and programs have been devel-
oped to survey KIR allelic diversity. These include the original
version of PING [11, 14], designed to genotype KIR from targeted
sequencing using probes to specifically amplify KIR genes;
T1K [19], compatible with RNA-seq and DNA-seq, including
whole-exome sequencing (WES) and whole-genome sequencing
(WGS); KIRCLE [20], which supports WES and uses blast to de-
tect KIR alleles; and a recent PING update that supports WGS
[21]. Currently, the most widely used KIR genotyping strategy
is a well-established biotinylated DNA probe-based capture
method coupled with PING [11, 14].

Here, we explore the performance of existing methods and
compare these to a new toolkit to survey KIR genes, presented
here for the first time. As expected for such a complex region,
we observe conflicting results when we apply distinct bioinfor-
matic tools to the same set of samples. An additional difficulty
arises as available tools detect KIR alleles and sometimes copy
numbers, but do not report SNPs and InDels in the context of
the reference genome unless additional data post-treatment
is applied. Therefore, their use for association studies is not
straightforward.

We introduce kir-mapper, a toolkit for surveying KIR genes
from short-read sequencing data. It focuses on detecting KIR
alleles, copy number variation, SNPs and InDels across all KIR
genes in the context of the hg38 reference genome. kir-mapper
differs from existing KIR typing tools because it reports SN'Vs in
the context of the hg38 reference genome and uses the inferred
phase observed among these SN'Vs to define alleles. We have ap-
plied this method to survey KIR genes from different sources
(WGS, WES and the probe-based capture method) in worldwide
samples. We also compared kir-mapper, PING and T1K geno-
type calls. The rationale is that since these methods apply differ-
ent algorithms for alignment, copy number determination and
genotyping, the overlap and comparison between them would
greatly support accurate KIR genotyping.

2 | Methods
2.1 | The Kir-Mapper Workflow

kir-mapper is a toolkit designed to handle Illumina short reads.
kir-mapper encompasses four primary functions embedded in a
single program: map, for read alignment against the reference
genome; ncopy, to detect copy number variation; genotype, for
genotyping SN'Vs and InDels across all genes calling KIR alleles
and haplotype, for phasing all variants, including those between
genes, and resolving ambiguities not handled by genotype
(Figure 1).

2.2 | The Kir-Mapper Map Function

In the first step, a Kmer approach is used to identify reads that
present at least 25 nucleotides matching any known KIR gene
and sorts them into gene-specific fastq files. One read or pair of
reads may be compatible with more than one gene. Then, using
a motif approach to search for non-polymorphic sequences in
each KIR gene, kir-mapper determines the presence or absence
of each KIR gene. For the genes present in the sample, a scor-
ing process calculates the distance (number of different nucle-
otides) between each read (or pair) and known KIR sequences.
The known sequence database is composed of KIR alleles avail-
able on the IPD-KIR database [13], along with sequences from
GENBANK [22] and sequences characterised in our lab from
PCR amplification and Illumina sequencing. The distances
are then compared to assign the reads to the most likely gene.
Therefore, kir-mapper performs a multi-referenced alignment.

Despite their polymorphic nature, many KIR genes share high
sequence similarities. Therefore, the software sometimes as-
signs a read to more than one gene. In these cases, kir-mapper
treats all these alignments for these reads as secondary, which
will be ignored in further steps. This occurs because some KIR
genes share identical sequences in specific regions, thus explain-
ing the presence of reads that do not provide unambiguous in-
formation about the locus they belong to. The map function also
applies an algorithm that detects two sequences for each gene
from the database of known KIR sequences that best fit the ob-
served reads. Based on these detected sequences, the program
recovers some secondary aligned reads, returning them to pri-
mary alignments when possible.
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KIR-MAPPER analysis workflow
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FIGURE1

After the scoring step, the program generates gene-specific fastq
files, which are then aligned to the hg38 reference sequence
from the gene associated with the fastq file. The alignments
are combined, and the alignment positions are adjusted based
on the hg38 reference genome. In summary, kir-mapper uses
a multi-referenced alignment to reduce cross-alignments and
alignment failures, which can occur with conventional short-
read alignment tools and a single reference genome. The read
alignment is subsequently adjusted to the coordinates of a single
reference genome, producing a BAM file with reads aligned to
the hg38 reference genome.

If a KIR gene is annotated in the primary assembly (hg38) of
chrl9, the reads mapping to this gene are aligned to chrl9.
However, if a gene is annotated in an alternative contig such as
KIR2DL5A and KIR2DL5B, the reads will be aligned to only one
of these alternative contigs. The list of genes annotated in alter-
native contigs and their positions is available at the GitHub repos-
itory (https://github.com/erickcastelli/kir-mapper). kir-mapper
treats all KIR genes separately. This means that KIR2DL2 and
KIR2DL3, KIR3DSI and KIR3DL1 and KIR2DS1 and KIR2DS4
are considered different genes with individual copy numbers and
allele calls. The only exceptions are KIR2DL5A and KIR2DL5B,
which are grouped as a single gene (KIR2DL5AB).

The map function requires raw fastq data (either paired or
single-end) or a BAM file with reads aligned to the hg38 refer-
ence genome using BWA-MEM [15]. The output is a BAM file
containing the reads aligned to the hg38 reference genome. This
final BAM file can be examined using the Integrative Genome
Viewer (IGV) and used in downstream analysis to identify SN'Vs
across chrl9 and alternative contigs.

Under the hood, the map function utilises a database of known
KIR alleles and relies on the BWA-MEM [15] algorithm to align

| The kir-mapper workflow to call KIR variants (SN'Vs and InDels), KIR alleles and haplotypes from short-read data.

and calculate the distance between each read and the sequences
from the database. Additionally, samtools is used to handle SAM
and BAM files [23], and picard tools are used to mark duplicates.
By default, the map function considers intronic sequences,
which are suitable for WGS and the probe-based capture and se-
quencing. When processing WES, the proper flag (-exome) must
be used to exclude intronic sequences from the map function.

2.3 | The Kir-Mapper Ncopy Function

The kir-mapper ncopy is a tool that can detect the number of
copies of all KIR genes. The input for ncopy is BAM files pro-
duced with the map function, and the user can process thou-
sands of BAM files simultaneously. The tool uses samtools [23]
to determine the depth of the gene regions and calculates the
ratio between the depth of the target and the reference. KIR3DL3
is the default reference since it is expected to be in two copies
for most individuals [12], one per chr19. However, since all KIR
genes may have copy number variation, as we will demonstrate
here, the user may choose other alternative references such as
HLA-G, HLA-E or a region upstream of the KIR3DL3 gene be-
tween ILT2 (LILRBI1) and KIR3DL3, which we call 5SUPKIR.
This enables the user to test whether KIR3DL3 is genuinely a
framework gene for all samples.

The end products are gene-specific plots in .png and .html for-
mats, indicating the ratio observed for each sample, as illustrated
in Figure 2. The HTML version is an interactive plot. These plots
were highly inspired by PING [11, 14]. By visually examining
the plots, the user can identify the optimal thresholds, which are
the points of transition between groups of samples with similar
patterns. The user can modify these thresholds by editing a text
file and running ncopy to recalculate copy numbers of all genes
and samples (Figure 2).
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FIGURE2 | A plotgenerated by kir-mapper ncopy, reporting the ratios between KIR2DL2 depth and depth of a region between KIR3DL3 and ILT2
(here called SUPKIR) for all Finnish samples from the 1000Genomes dataset. Individuals are ordered from left to right based on the estimated ratio.
Samples can be assigned to different groups. In this case, there are three groups: Those with no KIR2DL2 (ratios around zero); samples with one copy

of KIR2DL2 (ratios around 0.5); and samples with two copies (ratios around 1.0). The translucid triangles represent the ratios observed for KIR2DL3.

Because KIR2DL3 occupies the same genomic location as KIR2DL2, the presence of one copy is expected to preclude the presence of the other, and

their occurrences should be complementary.

Determining the copy number is crucial for accurate genotyp-
ing. It is highly recommended that KIR3DL3 be evaluated as a
suitable reference. Upon examining the Finnish samples from
the 1000 Genomes dataset [17], we identified two individuals,
HG00273 and HG00378, who appear to have three copies of
KIR3DL3 when using the SUPKIR, HLA-G or HLA-E as ref-
erences. Therefore, KIR3DL3 is not a suitable reference in
Finland. We also detected one sample from the SABE/Brazil
cohort [24] with 3 copies of KIR3DL3. Figure S1 is an example
of the plot produced by ncopy for KIR3DL3 using 5SUPKIR as
a reference, with all Finnish samples from the 1000Genomes
project [17].

2.4 | The Kir-Mapper Genotype Function

Genotyping of SNVs within all KIR genes is performed using
freebayes [25] and relies on the results for copy numbers and
alignments produced using map and ncopy functions from pre-
vious steps. kir-mapper contains an algorithm that removes

artefacts and classifies the uncertain variants with low depth
or unbalanced heterozygotes as missing alleles. Next, whatshap
[26] phases sites that are heterozygous in the sample and occur
on the same read. This process is crucial in reducing the possible
allele combinations for each gene, which ultimately minimises
ambiguities. Finally, all the variants are reported in the con-
text of the hg38 reference genome, resulting in partially phased
gene-specific VCF files.

The comparison between the observed variants (SNVs and
InDels) and the phasing of these variants within each KIR locus
plus the patterns observed in known KIR alleles determines
the most likely allele combination for each sample. This com-
parison takes into account both the variants observed in known
KIR alleles and any new variants that might have been detected.
The outcome of this process is a text report for each sample that
includes the total number of tested variants, the proportion of
matches and mismatches between the sample and the tested
alleles and a list of any potential mismatches observed for the
tested alleles.
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Despite the efforts to detect the haplotypes within each KIR
gene and resolve potential ambiguities, the genotype function
may report a list of possible allele combinations that fit all the
observed SN'Vs and microhaplotypes. This can happen because,
when using short reads with whatshap [26], only variants within
the same read or pair of reads can be phased. Therefore, not
all heterozygous sites are phased, particularly when analysing
WES data, in which variants in different exons are too far apart.
The following section presents the haplotype function, which
was designed to solve such ambiguities.

2.5 | The Kir-Mapper Haplotype
Function—Solving Ambiguities

Ambiguities are common with KIR gene genotyping because
several allele combinations might present identical SNPs and
InDels. These SNPs must be phased into two or more haplotypes
per gene to solve these ambiguities. However, phasing distant
variants when dealing with short reads is sometimes impossible
for approaches aiming to extract the phasing status directly from
the sequencing reads. Ambiguities would not be an issue when
using long reads, but kir-mapper is still incompatible with long
reads. Although the list of possible allele combinations is highly
reduced by the whatshap phasing step, which can theoretically
phase all variants within an exon, ambiguities still occur when
the program does not detect the phase between variants in ad-
jacent exons.

kir-mapper has a built-in method to resolve ambiguities, but
it requires the genotyping of at least 150 samples simultane-
ously. We use statistical phasing to assemble within a single
haplotype the smaller haplotypes defined by whatshap [26].
Then, we define two haplotypes per gene. The first step is to
convert the gene-specific VCFs into a dummy diploid VCF that
includes dummy positions for all variants and genes, respect-
ing the known order of the KIR genes. This diploid VCF also
includes information on the presence or absence of each gene.
All variant genotypes are re-encoded to fit the diploid state.
This is done by adding a reference allele when there is a dele-
tion for the gene or reducing triploid and tetraploid variants to
diploid when there are only one or two possible alleles at the
site. If it is not possible to reduce the genotype to only two al-
leles, the genotype is replaced by missing alleles. Then, we use
shapeit4 [27] to phase all the variants. We run shapeit4 mul-
tiple times, and haplotypes are compared to select the haplo-
type that appears most often. This step preserves the phasing
sets detected by whatshap when applying the genotype func-
tion. The outcome is a fully phased VCF.

Then, kir-mapper creates two sequences for each sample
and each gene by using the reference genome sequence, all
the SNVs detected and the phase among these SN'Vs. It then
compares those sequences with the ones available in the IPD-
KIR database [13]. The outcomes are two alleles per gene per
sample, with no ambiguities. The absence of the gene is re-
ported as allele *null. The comparison between the calls from
the genotype and haplotype functions assists in resolving
ambiguities. For the haplotype function, users are cautioned
with a message in the final report when haplotypes indicate
the presence of three or four copies of a KIR gene because the

program will report only two alleles that might not reflect the
true genotypes. In these cases, users should consider only the
kir-mapper genotype calls.

2.6 | Testing Kir-Mapper With Sequencing Data
From Multiple Sources

We tested kir-mapper in five different ways. First, we simulated
Illumina HIseq 2500 sequencing data for 25 samples, with a 2
X 150bp reads, a fragment size of 450+ 150 and a target depth
of 60X, by using art_illumina [28]. Each virtual sample pre-
sented two copies for each KIR gene, with a known allele for
each of these copies. We acknowledge this is unrealistic, but
this configuration creates the most difficult scenario for KIR
genes alignment. We aligned reads using BWA-MEM [15] and
hg38 as reference (with alternative contigs and HLA alleles; the
same used by the 1000 Genomes project [17]) and with the kir-
mapper map function. We then tracked the gene where the read
originated and where it aligned. We produced plots tracking the
alignments by using R and ggplot2.

Second, we applied kir-mapper to 172 samples with KIR al-
leles called using the latest version of PING and the probe cap-
ture and sequencing method [11], from a study addressing KIR
alleles and susceptibility to COVID-19 [29]. PING and this se-
quencing method are widely used in multiple studies of KIR
diversity.

Third, we tested kir-mapper in 34 samples with long-read
phased assemblies from the Human Pangenome Reference
Consortium (HPRC) [30, 31], in which Illumina short-read
data is also available [17], comparing the KIR allele calls re-
ported for the long reads and obtained with kir-mapper and
short reads.

Fourth, we applied kir-mapper to survey the KIR alleles
in samples from the 1000 Genomes project [17], all with
Illumina short reads and depth around 30X. For this, we se-
lected one population with major ancestry from each biogeo-
graphic region: YRI (Yoruba in Ibadan, Nigeria), GBR (British
from England and Scotland), CLM (Colombian in Medellin,
Colombia), JPT (Japanese in Tokyo, Japan) and ITU (Indian
Telugu in the UK). We genotyped KIR genes by using PING,
T1K and kir-mapper, comparing the results. We downloaded
the BAM files with reads aligned to the hg38 reference ge-
nome, which were used as input for kir-mapper. We also con-
verted this data to fastq to be used with T1K and PING. For
kir-mapper, we ran the map step for each sample from a spe-
cific population, using the name of the population as the out-
put folder. This creates a kir-mapper output structure with all
samples within the same population. Then, we ran the ncopy
function for each population separately to determine copy
numbers. Afterwards, we combined all samples (and popula-
tions) in a single folder using the kir-mapper function called
“group” Finally, we ran the genotype and haplotype step, con-
sidering all samples simultaneously.

Fifth, we applied kir-mapper in the exome mode to evaluate
the WES data for samples from the 1000 Genomes Project that
presented the same genotype by PING, T1K and kir-mapper
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when evaluating the WGS data. The rationale of this analysis
is to generate a truth set with well-documented KIR alleles
and evaluate kir-mapper and T1K performances when evalu-
ating WES data.

3 | Results and Discussion

3.1 | Alignment and SNP Genotyping Performance
Using Simulated Sequencing Data

We simulated NGS short reads for 25 samples (see methods).
For each pair of reads, we tracked which KIR gene originated
the read and where it aligned under two protocols: using BWA-
MEM and a single reference genome and with kir-mapper.

When using BWA-MEM, there is a high degree of cross-
alignment, with reads from one locus aligning to another. These
cross-alignments occur because of the sequence similarities
among KIR genes and also because some of the KIR genes are
not present on the chrl9 reference genome. Consequently, reads
from genes not represented at the main chrl9 sequence still
align with the main chrl19 sequence (Figure 3, left panel). For
instance, sequences from the KIR2DS5 gene, which is not pres-
ent in the main chrl19 sequence from hg38, align with KIR2DL1,
KIR2DL3 and KIR2DS4. Likewise, sequences from KIR3DSI
align with KIR3DLI. Sequence similarity also leads to cross-
alignments between genes that are present in the main chrl9
sequence from hg38, such as KIR2DLI and KIR2DL3. Because
of this, read depth is much higher than the number of simulated
reads in some regions and lower in others.

For KIR2DL4 and KIR3DL3, we observe a different scenario.
Many reads are aligned elsewhere or not aligned at all, reduc-
ing depth throughout the genes. Some samples presented a read
depth as low as 40% of that expected by the simulation in specific
regions. In addition, there are cross-alignments in some regions,
particularly between KIR3DL3 and KIR3DSI. This pattern of
cross-alignment is different from that observed elsewhere, with
reads from KIR3DL3 mostly cross-aligning with KIR3DP]I [14].

Using kir-mapper for these same simulated reads, read depth
is homogeneous across the locus and close to the expected
value for most genes (red line), and cross-alignments are rare
(Figure 3, right panel). However, some reads still align to more
than one gene because the alleles in the sample present the same
sequence in some regions for two different genes. Therefore, all
the alignments regarding these reads are marked as secondary
and disregarded by the genotyping algorithm, reducing depth in
some regions.

The map function from kir-mapper significantly improves align-
ment accuracy in all KIR genes, although some misalignments
still occur, particularly for KIR2DLI. Figure S2 illustrates the
alignment pattern for KIR genes not present at the main chr19
sequence from the hg38 reference genome. These optimised
alignments from the function map significantly impact copy
number determination for all KIR genes and the accuracy of
detecting specific InDels and SNPs across each gene (Figure 4).
For instance, copy number determination based on depth would
be significantly impaired if depth were calculated based on

the BWA -M EM alignments. In such a case, genes with cross-
alignments (KIR2DL3, for instance), genotyping would be bi-
ased with many false-positive and false-negative variants.

We also tested genotyping accuracy using freebayes. To establish
the ground truth, we used simulations to force the alignment of
simulated short reads from a specific gene to the reference of that
specific gene. Therefore, there were no alignment errors such as
misalignments or cross-alignments. After that, we genotyped
the simulated samples with freebayes to obtain the expected
genotype, thus defining the ground truth for SNPs in an error-
free environment when there was no alignment error. Then, we
used freebayes to genotype SNPs and InDels after aligning the
same reads using two different methods: BWA-MEM and the
reference genome, and with kir-mapper, comparing the results
with the previous ground truth. Therefore, the only modification
is the alignment method, while the genotyping strategy (free-
bayes) was the same (Figure 4). While genotyping is extremely
biased when using BWA-MEM and the hg38 reference genome
(Figure 4, top panel), after using kir-mapper, the majority of the
genotypes are identical to the truth set (Figure 4, bottom panel),
with errors mostly in intronic regions from KIR2DLI (Figure 3).
The genotyping errors observed when using BWA-MEM are
mostly related to misaligned reads leading to the detection of
false heterozygous sites (Figure 4, red positions). Therefore, this
simulation indicates that genotyping data from chrl9 within
KIR genes should be considered with caution unless some KIR-
specific method was applied to detect such genotypes.

3.2 | Calling KIR Alleles When Capturing KIR
With Probes

We applied kir-mapper to 172 samples with KIR alleles geno-
typed by the latest version of PING and the probe-capture and
sequencing method to enrich KIR [11] from a study address-
ing KIR polymorphism and susceptibility to COVID-19 [29].
Ambiguities reported by PING were solved with the PHASE
program [32]. We compared the final calls (with no ambiguities)
between methods. The only exception was KIR3DP]I, for which
we compared the raw calls (with ambiguities) between the two
methods.

There is an important overlap in results obtained by kir-mapper
and PING, with both methods detecting the same alleles and
copy numbers (Figure 5). Despite the high overall overlap of re-
sults between methods, depending on the gene, between 2% and
10% of the samples presented different calls (light grey, light blue
and black). In addition, both methods failed to genotype some
samples and genes (shades of grey). The differences between
methods mostly relate to differences in calls for copy numbers
between methods or differing phasing of SNPs when making al-
lele calls. The relatively low sample size (N=172) might explain
different results when solving ambiguities using probabilistic
models such as PHASE and Shapeit4, particularly for the most
polymorphic genes, KIR3DL2 and KIR3DL3. Evaluating which
method is correct is only possible if we apply other techniques,
such as long-read sequencing. Therefore, it is essential to use
multiple methods to evaluate KIR copy numbers and alleles and
manually check possible inconsistencies. This manual check
might be a visual inspection of the BAM file (reads aligned to
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FIGURE3 | The pattern of read alignment across seven KIR genes when using BWA-MEM and the reference genome hg38 (left panel) and when
using kir-mapper (right panel). Different colours represent different origins for the reads. The gene structure is indicated below the x-axis, with boxes
representing the exons. The horizontal red line represents the expected read depth (60X).
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the hg38 reference genome) using IGV, for instance, which is
only possible by using kir-mapper.

3.3 | Calling KIR Alleles From Whole-Genome
Sequencing Data

Obtaining KIR genotypes from whole-genome sequencing of-
fers a valuable source of data for studies of KIR diversity, evo-
lution and genome structure across populations. Many publicly
available whole-genome sequencing (WGS), including the 1000
Genomes Project [17], HGDP and SABE [24], can potentially be
used to obtain well-curated and reliable KIR data. WGS also has
advantages over WES data by avoiding probe bias and charac-
terising intronic, regulatory and intergenic regions. However, as
we will demonstrate, surveying KIR data from WGS is not easy,
and available tools report different results for many samples.

Genotyping accuracy using BWA-MEM + hg38

We compared the allele calls from kir-mapper, PING-WGS and
T1K with the ones reported for 34 long-read phased assemblies
from the Human Pangenome Reference Consortium (HPRC)
[30, 31], for which Illumina short-read data is also available from
the 1000 Genomes project [17] (Figure 6). In our analyses, we
treated the HPRC long-read calls as a truth set, and we compared
the results of the analyses based on short-read data. kir-mapper
performed better for all genes, followed by PING. The calls in
which kir-mapper reported the same alleles as the long reads are
marked in shades of blue, with accuracy varying from 89.2% for
KIR3DPI to 100% for KIR2DL2, KIR2DL4, KIR2DP1, KIR2DSI,
KIR2DS3, KIR2DS5, KIR3DL2, KIR3DL3 and KIR3DS1. PING
accuracy varied from 51.3% for KIR2DPI to 100% for KIR2DS]I,
KIR2DS2 and KIR2DS5. T1K accuracy varied from 10% for
KIR3DL3 to 97.3% for KIR2DSI. kir-mapper accuracy overcame
PING and TIK for the most polymorphic genes, KIR3DL2 and
KIR3DL3.
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read depth of 60x and 2584 SNPs or InDels.
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Kir-mapper vs PING comparison for KIR genotyping
using probe-enriched lllumina sequencing
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‘Partial overlap’ when one allele is identical and the other is different, ‘Same SNPs, different haplotype/alleles’ when both methods detected the

same SNPs but the phasing process determined different alleles, ‘Different call’ when none of the alleles is the same by both methods, ‘Unresolved

by kir-mapper’ when kir-mapper failed to report an allele combination, and ‘Unresolved by PING’ when PING failed to report an allele combination.
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FIGURE 6 | Compatibility between KIR allele calls from kir-mapper, PING, and T1K using short reads and the alleles reported by phased assem-

blies from the Human Pangenome Reference Consortium (HPRC).

Next, we compared the final calls from kir-mapper (no ambi-
guities) with PING-WGS [14, 21] and from T1K [19] (Figure 7)
for five populations from the 1000 Genomes, sampled from dif-
ferent continents. There was no truth set in this case, and our
analyses focused on the degree of overlap across methods. Allele

calls from each method are available in Table S1. We found that
the proportion of samples with the same call by all methods
(dark blue) varies depending on the gene, ranging from 28.4%
for KIR3DL3 to 94% for KIR2DS]I. There is also a high propor-
tion of samples with different calls by all methods (median of
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Comparison of PING, T1K, and kir-mapper allele calls for WGS short-read lllumina data
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Compatibility between kir-mapper, T1K and PING (the whole-genome version) allele calls for KIR genes when processing 30X whole-

genome sequencing data for five populations from the 1000 genomes dataset. The comparison involved the categories: ‘Same call by all methods’

when the reported alleles are the same by all methods, ‘Different call among all methods’ when none of the alleles is the same by all the methods,

‘New or unresolved alleles by all methods’ when all methods agree that there is a new allele, ‘Same call by T1K and kir-mapper’ when the T1K and

kir-mapper calls are compatible and PING reported a different one and ‘Same call by kir-mapper and T1K’, ‘Same call by PING and T1K’, ‘Same call

by kir-mapper and PING’.

6%, black). For KIR3DL3 and KIR3DL2, two of the most poly-
morphic KIR genes, PING and kir-mapper agree for most sam-
ples. However, T1K reported a different allele combination for
almost half the samples. There is a higher compatibility between
the calls from kir-mapper and PING and for most genes, except
for KIR3DPI1. We observed similar patterns when each popula-
tion was evaluated separately but with a high proportion of sam-
ples with a different call by T1K as compared to kir-mapper and
PING among African samples (Figure S3). The high proportion
of samples with different genotypes by different methods high-
lights the difficulty of getting reliable genotypes for KIR genes. It
became clear that each method's performance varies according
to the KIR gene and the type of data being processed. While the
high proportion of differences between methods is a cause for
concern, the possibility of comparing short-read inferences to
long-read results provides a criterion for establishing accuracy.
As such, it indicates that the kir-mapper outperforms the other
tested methods.

We monitored the frequencies of the alleles reported for all
KIR genes and populations. In this case, we considered the kir-
mapper genotypes, even when this genotype is different from
the ones reported by PING and T1K. We also removed samples
with three or more gene copies to plot the allele frequencies (as
shown in Figure 8 and Supporting Information). If a gene was
absent on one chromosome, it was represented as allele *null.
Thus, an individual lacking KIR2DL1, for instance, has two cop-
ies of KIR2DL1*null.

Figure 8 demonstrates the frequencies observed for all KIR2DLI
alleles detected among the five population samples. The oc-
currence of haplotypes without KIR2DLI (the KIR2DL1*null
allele) is common in all populations but more prevalent among
Europeans and populations with a significant European

ancestry, such as Colombians. The frequencies observed for
KIR2DL1 are compatible with those reported for other samples
from the same biogeographic regions (www.allele-frequencies.
net) [33]. For instance, the most prevalent KIR2DL1 allele in East
Asia is *00302 (around 74%), as observed in the JPT group from
the 1000 Genomes dataset. This same allele has a frequency of
36% in Ghana [34] and 40% in the YRI group, both from West
Africa.

kir-mapper may report unresolved alleles when there are missing
SNPs and Indels, leading to a long list of possible allele combi-
nations. Unresolved alleles might occur due to low read depth
or misalignments. kir-mapper also reports possible new alleles
when none of the known alleles [13] match the observed geno-
types. The proportion of new and unresolved alleles varies among
KIR genes. The high proportion of new alleles in some KIR genes
and populations, particularly in Africa, might reflect the under-
representation of alleles from these populations in the IPD-KIR
database [13] since their presence in the database depends on an
accurate characterisation with a combination of long and short-
read sequencing by NGS. We provide the allele frequencies of
all KIR genes in Figure S4. The similarities observed among the
frequencies reported for other populations from the same bio-
geographic region and those detected here are an encouraging
indication that NGS analysis using kir-mapper provides results
consistent with well-tested approaches of KIR typing.

3.4 | Calling KIR Alleles From Exomes

Exome data brings an additional challenge to KIR analysis. In
addition to the cross-alignments and alignment failures, there
is also probe bias, with one chromosome less captured than
the other or not captured at all. kir-mapper was designed to
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http://www.allele-frequencies.net
http://www.allele-frequencies.net

KIR2DLA1
KIR2DL1*00101 4.8 4.0 25 0.0 0.0
KIR2DL1*00201 10.2 273 14.7 11.8 1.0
KIR2DL1*00302 47.3 33.0 40.2 395
KIR2DL1*00303 0.0 0.0 0.0 0.0 48
KIR2DL1*00306 0.0 0.0 0.0 0.0 05
KIR2DL1*00401 7.0 2.3 10.3 0.0 6.7
KIR2DL1*00601 0.0 0.0 0.0 0.0 4.8
KIR2DL1*007 05 0.0 0.0 0.0 4.3 Frequency (%)
KIR2DL1*008 0.0 06 0.0 0.0 0.0 D 0
KIR2DL1%010 1.6 23 25 0.0 1.4 D 0
KIR2DL1*01102 0.0 0.0 0.0 0.0 3.3
KIR2DL1*01201 1.1 0.0 0.0 0.5 2.9 D 20
KIR2DL1*01202 05 0.0 0.0 0.0 4.8 D 30
@ KIR2DL1*014 0.0 0.0 0.0 0.0 24 D 40
© KIR2DL1*020 0.0 1.1 0.0 0.0 0.0 ,
< KIR2DL1*025 0.0 0.0 0.0 0.0 05 -
KIR2DL1*03201 0.0 1.1 0.0 0.0 0.0 . 60
KIR2DL1*034 0.5 0.6 0.5 1.5 0.0 . 70
KIR2DL1%035 05 0.6 05 0.0 0.0 . =
KIR2DL1*03701 0.0 0.6 0.0 0.0 0.0
KIR2DL1*05101 32 4.0 25 0.0 10 B -
KIR2DL1*05401 05 1.1 0.0 0.0 1.0 . 100
KIR2DL1*063 0.0 0.0 0.5 0.0 0.0
KIR2DL1*069 0.0 0.0 0.0 1.5 0.0
KIR2DL1*070 05 0.0 0.0 0.0 0.0
KIR2DL1*073 0.0 0.0 0.0 0.5 0.0
KIR2DL1*new 1.6 o 7.8 5.9 7.6
KIR2DL1*null 19.4 19.3 17.6 4.9 8.6
KIR2DL1*unresolved 0.5 0.0 0.5 0.0 5.2
CLM GBR ITU JPT YRI
Population

FIGURE 8 | KIR2DLI allele frequencies in five populations from the 1000 genomes dataset. KIR2DLI was genotyped using kir-mapper. YRI
(Yoruba in Ibadan, Nigeria, N=105), GBR (British from England and Scotland, N=88), CLM (Colombian in Medellin, Colombia, N=102), JPT
(Japanese in Tokyo, Japan, N=102) and ITU (Indian Telugu in the UK, N=102). *new alleles represent possible new alleles that are not in the IPD-

KIR database.

determine copy numbers and genotypes from WGS and WES,
using slightly different algorithms in each case.

Because we do not have samples with WES data and KIR genes
validated by other methods to evaluate the kir-mapper (and T1K
[19]) performance for WES, we opted for a different strategy to
create a truth seq. We downloaded from the 1000 Genomes data-
set the exome data from samples in which PING, T1K and kir-
mapper called the same alleles when evaluating WGS (Figure 7,
in dark blue) to be used as a truth set. Then, we applied T1K and
kir-mapper to call KIR alleles, focusing only on the genes with
100% concordance between methods when evaluating the WGS
data. Therefore, the sample size is different for each KIR gene.
Afterwards, we compared the outputs obtained from the WES
with those from the WGS (Figure 9).

The comparison demonstrated that the compatibility be-
tween the outputs when evaluating WGS or WES depends
on the gene and the method. For most genes, the majority of
the samples gave the same alleles using each method when
evaluating WES, and these alleles were compatible with the

WGS data. The only exception was KIR2DL5A/B, in which
T1K failed to detect the correct allele combination from the
WES data in most samples. In addition, while both methods
are equally efficient for some genes (KIR2DS4), kir-mapper or
T1K performed better for others. T1K better detected alleles
from WES data for KIR2DL1, KIR2DL2, KIR2DS1, KIR2DS2,
KIR2DS5 and KIR3DLI. kir-mapper had a better performance
for KIR2DL3, KIR2DL4, KIR2DL5A/B, KIR2DP1, KIR2DS3,
KIR3DL2, KIR3DL3, KIR3DPI and KIR3DSI. Regarding the
two most polymorphic KIR genes, kir-mapper is more accu-
rate for KIR3DL2, particularly among Europeans, Colombians,
Japanese and Indian Telugu (Figure S5). For KIR3DL3, kir-
mapper performed better for Colombians and Indian Telugu,
and T1K was better among Africans and Europeans. However,
these results might be biased since the number of samples in-
cluded for KIR2DL1, KIR2DL3, KIR2DL4, KIR2DP1, KIR2DS1,
KIR3DL2, KIR3DL3 and KIR3DPI is low because only a few
samples had the same call by T1K, PING and kir-mapper in
the WGS data (Figure 7). It should be noted that kir-mapper
outperformed T1K for all genes when calling alleles in WGS
data (Figure 6).
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Compatibility among the T1K and kir-mapper calls from Exomes as compared to the WGS data
The truth set includes all samples with the same call from T1K, kir-mapper, and PING from WGS data

N

o

)

0.00

N=290 N=363 N=363 N=379 N=394 N=322 N=453 N=437
- ~ ) < o - = o
o ] i < o 7] %]
8 3 g g 2 g g g
g > g > a & g g
X x 4 x g x X x

g

Legend . Correct call by both methods

Correct call only by kir-mapper

1.00
0.75
0.50
0.25

N=413 N=372 N=413 N=387 N=235 N=136 N=34 N=387
? A @} a1 3 3 o )
g g g 3 3 3 3 g
4 4 & x (4 x -4 x
X x X x x x 4 x

Correct call only by T1K . Different call by both methods

FIGURE9 | Compatibility between the KIR genotypes detected by T1K and kir-mapper in whole-exome (WES) data with the ones reported when
analysing whole-genome (WGS) data. WGS results were validated by three methods, T1K, PING-WGS and kir-mapper (Figure 7). Our comparison
involved the categories: ‘same call by both methods’ when the alleles reported at the WES and WGS data are the same for both methods, ‘different

call by both methods’ when the reported alleles are different from the WGS data and ‘same call only by kir-mapper’ when kir-mapper reported the

same alleles when analysing WGS or WES data, but not T1K, and ‘Same call only by T1K’ when T1K reported the same alleles when analysing WGS

or WES data, but not kir-mapper.

3.5 | Pros and Cons of PING, T1K and Kir-Mapper

T1K [19] is an easy-to-use and install tool, with some necessary
customisation regarding the resolution level to be reported. It
is a high-speed tool and demands minimal resources, and it
is compatible with Linux and macOS. T1K processes individ-
ual samples, and it is not easy to evaluate different ploidies.
For instance, if the output indicates just one allele for a KIR
gene, users must decide based on the observed depth if they
have one or more than one copy of that allele. Likewise, if the
output indicates two different alleles for a KIR gene, users
must decide based on the observed depths if both alleles are
truly present (one might be an error, with very low depths) and
the number of copies of each allele. Therefore, getting ploidy
using T1K is not straightforward. We also noticed a poor per-
formance of T1K for KIR3DL2, KIR3DL3 and KIR2DL5A/B
when analysing WGS or WES data (Figures 6 and 9). Although
T1K reports new SNPs on a VCF file, these reports are not in
the context of the hg38 reference genome, and known SNPs
are not reported automatically.

The PING version for WGS [14, 21] is slower than T1K and kir-
mapper and demands higher memory and processing power
resources. It runs under R and RStudio and is dependent on spe-
cific program versions (likewise kir-mapper). It is designed to
be run using a Linux server, and we were unable to install and
run it on macOS. Once installed, it runs smoothly with samples
from one population (about 100) in a 64Gb RAM machine, but it
has crashed when running all the samples included in this study
simultaneously due to lack of memory. PING outputs are easy
to interpret. Unlike T1K, PING allows the analyses of several
samples simultaneously and uses all the samples to determine
copy numbers, influencing the genotyping process. Therefore,
determining copy numbers with PING is an easy task. PING

reports all the variants observed across each KIR gene, but post-
processing is needed to place the SNPs in a VCF-like format,
and these variants are not in the context of the hg38 reference
genome. Compared to kir-mapper and T1K, PING reports more
unresolved alleles. PING currently has no built-in tool to solve
ambiguities for final allele calls, and most studies rely on in-
ferring haplotypes with PHASE [32]. PING reports the allele
combinations based on the copy numbers. Therefore, different
from T1K, PING does not demand the manual evaluation of
whether an allele with low read depth is in the sample. However,
the current version of PING demands a large number of sam-
ples to accurately determine the copy numbers and genotypes
of the samples, while T1K runs a single sample. PING and kir-
mapper results overlap better than T1K and PING or T1K and
kir-mapper. PING is not compatible with WES data, or it was not
tested in this manner.

kir-mapper is faster than PING but slower than T1K. Installation
is easy and can be done directly on the system or using virtual
environments. kir-mapper does not demand high processing
power or large memory. It is possible to evaluate hundreds of
samples simultaneously using a personal laptop with 16 Gb of
memory. Like PING, kir-mapper supports analysing thousands
of samples simultaneously and demands large sample sizes to
define copy numbers accurately. However, for some genes, such
as KIR2DL1, copy number definition is easier with PING than
with kir-mapper. The genotyping tool of kir-mapper outputs all
observed SNPs and InDels (known and new) for all samples in a
VCF file using the hg38 genome as a reference, which can be em-
bedded with the genotypes of the rest of the genome for WGAs.
Unlike other methods, kir-mapper allows a manual inspection
of the BAM files and the alignments for each gene. Therefore,
when applying multiple software programs to detect KIR alleles
(as we recommend), the user can inspect these BAM files in case
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of inconsistent calls. Besides the BAM file, kir-mapper also pro-
duces text reports that allow the user to check the total count
of tested and validated variants, the percentage of matches be-
tween the sample and tested alleles and a catalogue with the po-
sition of potential incompatibilities in the hg38 genome context.
kir-mapper has a built-in method to solve ambiguities by using
Shapeit4, which can be applied without any post-processing of
the typing results. However, solving ambiguities works only
when there are many samples. Therefore, like PING, kir-mapper
is unsuitable for analysing a single sample or a small number
of samples unless the user assumes that there are two copies of
each KIR gene.

3.6 | Kir-Mapper Compatibility and Demands
for Memory and Processing Power

We designed the kir-mapper to be compatible with personal com-
puters, low-power workstations or high-power servers. It was writ-
ten in C++, and it is compatible with Linux, macOS and Windows
Subsystem for Linux (WSL). The minimum configuration depends
on the number of samples to be processed simultaneously.

The exomes were processed using a late 2013 iMac with an i7 pro-
cessor, 32Gb of RAM and an HD of 3Tb. WGS data was processed
with an Ubuntu 22 workstation with a 12th-generation i9, 128 GB
of RAM and 4TB of SSD. We also genotyped the samples with KIR
genes sequenced by the probe-capture method using a Windows
laptop with a 12th-generation i7 processor, 16 Gb of RAM, 1Tb of
SSD and WSL2. The run time highly depends on the machine and
the available processors, the amount of data to process and how fast
the device can read and write data. kir-mapper is multithreaded
and stores intermediate data in the disk to minimise memory use.

For instance, on the i7 iMac and the WES data, it realigned the
reads in about 5min per sample (the map function), called copy
numbers for all samples in 4min (the ncopy function), called
SNPs and alleles for all KIR genes and samples in about 90min
(the genotype function) and the haplotypes to solve ambiguities
in 2min. The map function for WGS processed by the Ubuntu
workstation took about 3min per sample. The algorithm that is
more demanding in terms of memory is the genotype (calling
SNPs and InDels), and the amount of memory needed highly
depends on the number of samples genotyped simultaneously
and the number of threads used.

3.6.1 | Dependencies

kir-mapper depends on a series of third-party programs called
by the main program when necessary. These include samtools,
beftools, BWA, freebayes, whatshap, shapeit4, picard tools, R
and some R libraries to create the plots. The tested versions are
listed on the program website. Installation with all dependen-
cies can be done by using Conda/miniconda.
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