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ABSTRACT
Opinion mining for app reviews aims to analyze user comments

on app stores to support software engineering activities, primarily

software maintenance and evolution. One of the main challenges

in maintaining software quality is promptly identifying emerging

issues, such as bugs. However, manually analyzing these comments

is challenging due to the large amount of textual data. Methods

based on machine learning have been employed to automate opin-

ion mining and address this issue. Gap.While recent methods have

achieved promising results in extracting and categorizing issues

from users’ opinions, existing studies mainly focus on assisting soft-

ware engineers in exploring users’ historical behavior regarding

app functionalities and do not explore mechanisms for trend detec-

tion and risk classification of emerging issues. Furthermore, these

studies do not cover the entire issue analysis process through an

unsupervised approach. Contribution. This work advances state

of the art in opinion mining for app reviews by proposing an entire

automated issue analysis approach to identify, prioritize, and moni-

tor the risk of emerging issues. Our proposal introduces a two-fold

approach that (i) identifies possible defective software requirements

and trains predictive models for anticipating requirements with a

higher probability of negative evaluation and (ii) detect issues in re-

views, classifies them in a risk matrix with prioritization levels, and

monitors their evolution over time. Additionally, we present a risk

matrix construction approach from app reviews using the recent

Large Language Models (LLMs). We introduce an analytical data

exploration tool that allows engineers to browse the risk matrix,

time series, heat map, issue tree, alerts, and notifications. Our goal

is to minimize the time between the occurrence of an issue and its

correction, enabling the quick identification of problems. Results.
We processed over 6.6 million reviews across 20 domains to evalu-

ate our proposal, identifying and ranking the risks associated with

nearly 270,000 issues. The results demonstrate the competitiveness

of our unsupervised approach compared to existing supervised

models. Conclusions. We have proven that opinions extracted

from user reviews provide crucial insights into app issues and risks

and can be identified early to mitigate their impact. Our opinion
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mining process implements an entire automated issue analysis with

risk-based prioritization and temporal monitoring.
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1 PROBLEM OUTLINE
Opinions extracted from informative end-user reviews provide a

wide range of user feedback to support software engineering activ-

ities, such as bug report classification, new feature requests, usage

experience, or enhancements (i.e., suggestions for improvements)

[33, 2, 9, 3, 32]. However, mobile application (app) developers spend

exhaustive manual efforts identifying and prioritizing informative

end-user reviews. Manually analyzing a reviews dataset to extract

helpful knowledge from the opinions is challenging because of

the large amount of data and the high frequency of new reviews

published by users [33]. Therefore, to deal with these challenges,

opinion mining has been increasingly used for computational anal-

ysis of people’s opinions from textual data [29]. Furthermore, in the

context of app reviews, opinion mining allows extracting excerpts

from comments and mapping them to emerging issues according

to the users’ experience [25].

In the context ofmobile apps, [34] has conducted research demon-

strating that the most commonly occurring update in app stores is

bug fixing, accounting for a substantial 63% of updates. As a result,

approaches that automate the analysis of concerns from app reviews

are critical for strategic updates and the prioritization and planning

of new releases [24]. Furthermore, app stores provide a more dy-

namic method of directly distributing software to customers, with

shorter release times than traditional software systems, i.e., contin-

uous update releases are performed every few weeks or even days

[38]. In this context, app reviews provide immediate crowd feed-

back about software misbehavior or bad user experience that may

not be replicated during routine development/testing processes,

https://doi.org/10.1145/3613372.3613417
https://doi.org/10.1145/3613372.3613417
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such as device combinations, screen sizes, operating systems, and

network conditions [42].

App developers can use this ongoing community feedback in

developing preventive maintenance processes. Given this, we argue

that software engineers would employ an opinion-mining approach

to investigate bugs, misbehavior, and bad user experience early

when an app receives negative reviews. Opinion mining techniques

can organize reviews based on the software features and their

associated user’s sentiment [9, 4, 25]. Consequently, developers

can investigate issues to comprehend the user’s concerns about

a faulty feature or compromised user experience and potentially

fix or improve it more quickly, i.e., before impacting many users

and negatively affecting the app’s ratings [25]. Given this dynamic

environment and a large amount of data, the problem of detecting

and prioritizing issues from reviews is crucial and remains for

practitioners and researchers [24, 32].

Different strategies have been recently proposed to support issue

detection and classification [51], such as issue categorization [21,

15, 41, 35, 23, 8, 17, 18, 30, 48, 39, 40, 4, 20, 36, 1, 16] and prioriti-

zation [24, 32]. Although previous studies are promising, they do

not cover the entire process of issue analysis from start to finish,

from the automated collection of reviews to the tasks of detection,

prioritization, and analysis using an unsupervised approach.

This work introduces an innovative two-fold approach aimed at

investigating emerging issues derived from user feedback. Firstly,

it entails identifying potential defective software requirements and

developing predictive models to anticipate issues that may lead

to negative app evaluations. Secondly, it involves detecting issues

within reviews and categorizing them using a risk matrix that as-

signs prioritization levels, thereby enabling the monitoring of their

evolution over time. We also present the construction of a risk ma-

trix from app reviews using recent Large Language Models (LLMs).

By utilizing Open Pre-trained Transformers (OPT), our approach

facilitates the use of LLMs in scenarios with limited computational

resources and data privacy constraints. Our approach enables us

to effectively address reviews on time, mitigate negative impacts

on the overall app rating, and maintain the app’s competitiveness,

ensuring timely maintenance and facilitating software evolution.

We introduce an analytical data exploration tool with an interactive

dashboard and a real-time issue monitor.

1.1 Objectives and Research Questions
Our main objective is to address the challenges faced by develop-

ers in efficiently analyzing informative end-user reviews, applying

opinion mining to automate the process of identifying and pri-

oritizing emerging app issues, and enabling proactive software

quality maintenance through timely issue fixing, user-centric im-

provements, and minimizing the time between issue occurrence

and correction. We aim to ensure prompt issue identification and

resolution by achieving these goals, facilitating timely software

maintenance and evolution.

In this sense, we raise the followings research questions:

• RQ1How do we predict initial trends on defective requirements
from users’ opinions before negatively impacting the overall
app’s evaluation?

• RQ2 How do we prioritize and address app issues from reviews
in time so that the app is competitive and guarantees the timely
maintenance and evolution of the software?

RQ1 was mainly addressed by the investigations and solutions

reported in Section 2, while RQ2 was mainly addressed in Sections

3 and 4 of this work.

To enhance understanding, we’ve organized the research time-

line to ensure a logical progression of proposals throughout the

work. The proposed methods and approaches build upon each other,

with each section presenting advancements and improvements over

the previous ones. This sequential organization strengthens the

coherence and comprehensiveness of our research. As illustrated

in Figure 1, the timeline provides an overview of the sections’ dis-

tribution and their interconnected progression.

Figure 1: Research timeline

• MApp-Reviews (Section 2): Introduces the temporal dy-

namics of requirements engineering using mobile app re-

views. Here, we describe theMApp-Reviewsmethod, present

its architecture, and discuss the key findings and results. Sec-

tion 2 describes the initial direction of our research.

• MApp-IDEA (Section 3): Introduces theMApp-IDEAmethod

and experimentally evaluates it to derive outcomes and find-

ings. In this point, the status of the research is a 2-fold ap-

proach, in which the stages of both methods can be explored

to combine a third instantiation of the opinion mining ap-

proach. However, the approach presented in Section 3 is

superior and brings more technical advancements and re-

sults. In practice, MApp-IDEA represents an evolution of

MApp-Reviews.

• Risk Matrix using LLM (Section 4): Investigates how re-

cent Large Language Models such as GPT and OPT can be

leveraged to facilitate the automatic construction of risk

matrices from app reviews. This investigation encompasses

various stages, from extracting review features to classifying

them into priority levels.

2 TEMPORAL DYNAMICS OF REQUIREMENTS
ENGINEERING FROMMOBILE APP
REVIEWS

To explore the temporal dynamics of software requirements ex-

tracted from app reviews, we present the MAPP-Reviews (Monitor-

ing App Reviews) method. First, we collect, pre-process, and extract

software requirements from large review datasets. Then, the soft-

ware requirements associated with negative reviews are organized
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into groups according to their content similarity by using a cluster-

ing technique. The temporal dynamics of each requirement group

are modeled using a time series, which indicates the time frequency

of a software requirement from negative reviews. Finally, we train

predictive models on historical time series to forecast future points.

Forecasting is interpreted as signals to identify which requirements

may negatively impact the app in the future, e.g., identify signs of

app misbehavior before impacting many users and prevent low app

ratings. Figure 2 presents the MApp-Reviews method architecture.

Figure 2: Overview of the proposed method for analyzing
temporal dynamics of requirements engineering from mo-
bile app reviews

2.1 Requirements Extraction
MAPP-Reviews uses the pre-trained RE-BERT [3] model to extract

software requirements from app reviews. The RE-BERT model was

trained using a labeled reviews dataset generated with a manual an-

notation process, as described by [9]. RE-BERT uses a cross-domain

training strategy, where the model was trained in 7 apps and tested

in one unknown app for the test step. RE-BERT software require-

ments extraction performance was compared to SAFE [22], ReUS

[14] and GuMa [19]. Since RE-BERT uses pre-trained models for

semantic representation of texts, the extraction performance is sig-

nificantly superior to the rule-based methods. Given this scenario,

we selected RE-BERT for the requirement extraction stage. Figure 3

shows an example of review and extracted software requirements.

In the raw review “I am ordering with delivery but it is automati-
cally placing order with pick-up”, four software requirements were

extracted (“ordering”, “delivery”, “placing order”, and “pick-up”).

Note that “placing order” and “ordering” are the same requirement

in practice. In the clustering step of the MAPP-Reviews method,

these requirements are grouped in the same cluster, as they refer

to the same feature.

2.2 Requirements Clustering
After mapping the software requirements into word embeddings,

MAPP-Reviews uses a technique to obtain a clustering model of

semantically similar software requirements. For this task, we use

the K-means clustering algorithm [31]. At this point in the MAPP-

Reviews method, we have software requirements pre-processed

and represented through contextual word embeddings, as well as

an organization of software requirements into 𝑘 clusters.

Figure 3: Example of a review and extracted requirements

2.3 Time Series Generation
Time series can be described as an ordered sequence of observations

[7]. A time series of size 𝑠 is defined as 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑠 ) in which

𝑥𝑡 ∈ R represents an observation at time 𝑡 .

MAPP-Reviews generates time series for each software require-

ments cluster, where the observations represent how many times

each requirement occurred in a period. Consequently, we know

how many times a specific requirement was mentioned in the app

reviews for each period. Each series models the temporal dynamics

of a software requirement, i.e., the temporal evolution considering

occurrences in negative reviews.

2.4 Predictive Models
Predictive models for time series are very useful to support an or-

ganization in its planning and decision-making. Given a confidence

interval, such models explore past observations to estimate obser-

vations in future horizons. In our MAPP-Reviews method, we aim

to detect the negative reviews of software requirements that are

starting to happen and make a forecast to see if they will become

serious in the subsequent periods, i.e., a high frequency of negative

reviews. The general idea is to use 𝑝 points from the time series to

estimate the next 𝑝 + ℎ points, where ℎ is the prediction horizon.

MAPP-Reviews uses the Prophet ForecastingModel [47]. Prophet

is a model from Facebook researchers for forecasting time series

data considering non-linear trends at different time intervals, such

as yearly, weekly, and daily seasonality.We chose the Prophetmodel

for the MAPP-Reviews method due to the ability to incorporate

domain knowledge into the predictive model.

2.5 Results and Discussion
The experimental evaluation was carried out to verify whether it is

possible to detect emerging issues days or weeks in advance to mit-

igate the impact of negative ratings on the overall evaluation of the

app. In this sense, our experiment models the temporal dynamics of

software requirements associated with negative user reviews to pre-

dict upward complaints trends. Furthermore, we demonstrate that

it is possible to use a predictive model with satisfactory accuracy

to predict the temporal dynamics of a software requirement.

The method starts by gathering negative app reviews and ex-

tracting software requirements using the RE-BERT tool. This yields
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a time series depicting the evolution of each requirement over time.

Due to the difficulty in predicting future bug reports accurately,

predictions are made on a weekly basis instead of monthly. Models

are trained with previous points for each series and used to fore-

cast the next four weeks. Prediction errors are evaluated using the

MAPE metric, and significant increases in the time series are identi-

fied. The Prophet model is employed for forecasting, incorporating

both automatic and custom changepoints. Custom changepoints are

determined based on training set predictions exceeding the mean

plus standard deviation of all values, aiding in capturing significant

deviations and trends.

Conducted an experimental evaluation involving approximately

86,000 reviews over 2.5 years for three food delivery apps. The ex-

perimental results show that it is possible to find significant points

in the time series that can provide information about the future

behavior of the requirement through app reviews, indicating the

potential impact of incorporating changepoints into the predictive

model using the information of app developers. Furthermore, our

method can provide important information to software engineers

regarding software development and maintenance, enabling the

model to predict the peaks of negative reviews for the software

requirement one week in advance. Therefore, software engineers

can act proactively through the proposed MAPP-Reviews approach,

reducing the impacts of a defective requirement. More details are

in [25].

Our main contributions of the MApp-Reviews method are sum-

marized below:

(1) Clustering Software Requirement Variations: Although
there are promising methods for extracting candidate soft-

ware requirements from application reviews, such methods

do not consider that users describe the same software re-

quirement in different ways with non-technical and informal

language. Our MAPP-Reviews method introduces software

requirements clustering to standardize different software

requirement writing variations. In this case, we explore con-

textual word embeddings for software requirements repre-

sentation, which have recently been proposed to support

natural language processing. When considering the cluster-

ing structure, we can more accurately quantify the number

of negative user mentions of a software requirement over

time.

(2) Temporal Dynamics of Software Requirements: Using
time series, we present an approach to generate the temporal

dynamics of negative ratings of a software requirements

cluster. Our method uses equal-interval segmentation to

calculate the frequency of software requirements mentioned

in each time interval. Thus, a time series is obtained and

used to analyze and visualize the temporal dynamics of the

cluster, where we are especially interested in intervals where

sudden changes happen.

(3) Incorporating Domain-specific Data into Forecasting:
Time series forecasting is useful to identify in advance an

upward trend of negative reviews for a given software re-

quirement. However, most existing forecasting models do

not consider domain-specific information that affects user be-

havior, such as holidays, new app releases and updates, mar-

keting campaigns, and other external events. In the MAPP-

Reviews method, we investigate the incorporation of soft-

ware domain-specific information through trend change-

points. We explore both automatic and manual changepoint

estimation.

3 ISSUE DETECTION AND PRIORITIZATION
BASED ON APP REVIEWS

To detect and prioritize emerging app issues, we introduce MApp-

IDEA (MonitoringApp for IssueDetection and Prioritization)method,

which explores word embedding techniques to construct acyclic

graphs performing as representations of app-related issues. This

novel method is designed to promote the timely identification

and prioritization of emergent issues and potential risks involving

app features, environment, and user experience. Furthermore, the

MApp-IDEA performs in real-time, enhancing its practical utility

and responsiveness. We have trained a multilingual BERT-based

model with more than 100.000 nodes. Our proposal is an unsuper-

vised approach, while promising methods for detecting issues from

app reviews use supervised approaches.

3.1 MApp-IDEA Method Architecture
Our method is divided into five stages, as shown in Figure 10. First,

we collect mobile app reviews from app stores via a web crawler.

Second, these reviews are processed on a multilingual network

model with over 100,000 nodes. We found the network node most

associated with each review’s snippets and searched the network

for the best label to display. Third, we prioritize reviews in a risk

matrix divided into three priority levels. Fourth, we model the risk

matrix in time series to detect issue peaks over time and trigger

alerts. Finally, we present the output of the previous stages in a

user-friendly real-time interface through an interactive dashboard.

An overview can be seen in Figure 10.

Figure 4: The architecture of the MApp-IDEA framework for
detecting and prioritizing emerging issues

3.2 Issue Detector
We explore word embeddings to build acyclic graphs for represent-

ing app issues. Word embeddings have recently been proposed to
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support NLP. They can calculate the semantic proximity between

tokens and entire sentences, and the embeddings can be used as

input to train the classifier. Additionally, graph-based methods have

been widely used in several NLP tasks, such as text classification

and summarization [37].

Our approach has a forest represented by the disconnected graph

of the disjoint union of 3-tier trees. Each tree in the forest can have

up to 3 tiers, wherein we have the best issue formations on the

first and second tiers, as shown in Figure 5. The child nodes are

connected to the parent nodes with better formations, but this is the

same or related issue in practice. Therefore, we can group related

issues and search the tree for the best node to display. We might

have structurally weak issues in the tree, but we can search the tree

and find the best good issue to display.

Figure 5: 3-tier tree dashboard

To generate the issues graph, we used a multilingual model based

on the BERT [13], called DistilBERT (a distilled version of BERT)

[46], which allows the processing of reviews in several languages for

issue detection. We collected negative user opinions from different

data sources and domains to train the model, e.g., repositories, app

stores, and social networks. We have a trained model with more

than 100.000 nodes.

BERT is a contextual NLM where we can learn a word embed-

ding representation for a token for a given sequence of tokens.

Formally, let 𝐸 = {𝑖1, 𝑖2, ..., 𝑖𝑛} be a set of 𝑛 extracted issues, where

𝑖 = (𝑡1, ..., 𝑡𝑘 ) are a sequence of 𝑘 tokens of the issue 𝑖 . BERT ex-

plores a masked language modeling procedure, i.e., the BERT model

first generates a corrupted 𝑥 version of the sequence, where ap-

proximately 15% of the words are randomly selected to be replaced

by a special token called [MASK] [3]. One of the training objectives

is the noisy reconstruction defined in Equation 1,

𝑝 (𝑖∥𝑖) =
𝑘∑︁
𝑗=1

𝑚 𝑗

𝑒𝑥𝑝 (h⊤𝑐 𝑗w𝑡 𝑗 )∑
𝑡 ′ 𝑒𝑥𝑝 (h⊤𝑐 𝑗w𝑡 ′ )

(1)

where 𝑖 is a corrupted token sequence of issue 𝑖 , 𝑖 is the masked

tokens,𝑚𝑡 is equal to 1 when 𝑡 𝑗 is masked and 0 otherwise. The 𝑐𝑡
represents context information for the 𝑡 𝑗 token, usually the neigh-

boring tokens. The token embeddings are extracted from the pre-

trained BERT model, where h𝑐 𝑗 is a context embedding, and w𝑡 𝑗

is a word embedding of the token 𝑡 𝑗 . The term
∑
𝑡 ′ 𝑒𝑥𝑝 (h⊤𝑐 w𝑡 ′ ) is

a normalization factor using all tokens 𝑡 ′ from a context 𝑐 . BERT

uses the Transformer deep neural network to solve 𝑝 (𝑖∥𝑖) of the

Equation 1. For example, the vector space of embeddings preserves

the proximity of similar issues but written in different ways by

users such as “problem with the payment”, “i can’t pay”, “ i can’t
complete the payment” and “payment error”.

Summarly, we found the graph node most associated with each

review’s snippets and searched the 3-tier tree for the best label to

display. From this, we can prioritize the most critical issues through

sentiment analysis and particulars of the issues graph.

3.3 Issue Prioritization
After identifying issues, app developers must prioritize and address

the most critical issues and ensure timely software maintenance and

evolution. We propose prioritizing issues through an automatically

generated risk matrix combining sentiment analysis, clustering,

and graph techniques. Therefore, given an app and its reviews, we

summarize reviews with one or more issues into a risk matrix, as

shown in Figure 6.

Figure 6: Navigable risk matrix. By clicking on the cell, it is
possible to browse the time series of each cell

We introduce the automatic generation of a risk matrix to pre-

dict issues with the most significant potential negative impact and

probability of occurring. First, we assume that the likelihood of

an issue 𝑖 occurring is related to the similarity distance 𝑑𝑖 of the

issue 𝑖 in relation to other nodes in the graph. We also assume that

the issue’s negative impact is related to how negative the issue’s

sentiment score is. Therefore, for each detected issue, we need a

measure to calculate how many nodes are associated with the issue

in the graph and the issue’s sentiment score.

3.4 Temporal Dynamic
Considering that the issue time series is a set of observations ob-

tained sequentially over time, we canmodel the occurrence of issues

over time in a time series to detect upward trends in their frequency.

Formally, an issue time series 𝐼 of size 𝑠 can be represented as an or-

dered sequence of observations denoted as 𝐼 = (𝑖1, 𝑖2, ..., 𝑖𝑠 ), where
each observation 𝑖𝑡 at time 𝑡 belongs to the set of real numbers

(R) and represents the number of issues observed at that particular

time point [6].
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Table 1: Summary of results by window.

Window (days) Release Related Peak (%) Before After

7 82.63 ± 18.85 60.61 ± 21.37 67.26 ± 19.92

6 80.24 ± 19.80 57.74 ± 21.05 65.31 ± 19.58

5 74.67 ± 21.18 53.66 ± 22.36 62.44 ± 20.22

4 68.14 ± 21.49 47.78 ± 22.44 58.35 ± 21.53

3 59.49 ± 22.46 39.19 ± 21.95 50.88 ± 22.59

2 48.58 ± 20.66 30.32 ± 19.66 44.23 ± 22.44

1 35.34 ± 19.89 16.13 ± 14.82 33.78 ± 21.54

In addition to capturing the temporal dynamics of issues, we also

explore the temporal dynamics of the risk matrix. Once we have

constructed the risk matrix, we examine its temporal behavior for

each cell and prioritize level.

3.5 Results and Discussion
Regarding the issue detector classifier, our proposal had the fourth-

best performance in the overall evaluation compared to supervised

classifiers. The best results were obtained by supervised classifiers

SVC, Random Forest, and MLP, as shown in Figure 7.

Figure 7: Comparison chart of our approach with supervised
approaches

The results show that our unsupervised strategy, without data

annotation, obtained a promising result compared to supervised

strategies since obtaining annotated data is extremely costly or

even impossible.

Regarding our approach for prioritizing issues, we analyzed Table

1 statistically for 3 populations (All, Before, and After). This was

accomplished by examining 7 paired samples, each representing a

distinct interval of time denoted in days as a window.

Our statistical analysis reveals a strong correlation between

peaks and upward trends in the time series and app release dates.

However, our approach demonstrates the capability to detect as-

cending patterns of issues within the temporal sequence leading

up to their culmination. This empowers software professionals to

proactively anticipate the release of corrective solutions, thereby

mitigating potential issues before they escalate.

The findings revealed that approximately 64% of the releases are

associated with issue peaks in the analyzed time series. Upon iden-

tification of a peak in the time series, merely half (50%) of the app

releases are performed within three days or less, and approximately

two-thirds (66%) within seven days. Our findings indicate that issues

detected early by our approach are associated with later fix releases

by developers, and issues caused by app releases can take more days

to increase the volume of reported issues significantly. Nonethe-

less, by utilizing a risk matrix and temporal modeling, MApp-IDEA

can effectively establish priorities and detect an ascending trend of

potential issues before their culmination. The expeditious resolu-

tion of prioritized issues in a fiercely competitive environment is

imperative in preventing unfavorable app evaluations. The MApp-

IDEA promotes the anticipation of issue-fix releases by software

engineers.

We have shown that opinions extracted from app reviews provide

essential information about the app’s issues and risks. We experi-

mentally evaluated our unsupervised issue detection approach with

state-of-the-art supervised methods, and the findings indicate that

our approach is competitive.

Regarding the issue prioritization approach, we empirically eval-

uated a sample of 50 apps to validate our proposal. We process over

6.6 million reviews in 20 domains to evaluate our proposal, iden-

tifying and ranking the risk associated with nearly 270,000 issues.

The findings show that issues detected and prioritized early with

our approach are associated with later fix releases by developers.

Finally, we introduce an analytical data exploration tool that

allows you to interactively browse the risk matrix, time series, heat

map, and issue tree. The tool dashboard generates a complete real-

time report of the relationship between releases and issue peaks,

reports on average updates, average issues detected per day, and

the average interval between releases. Additionally, our analytic

system triggers alerts and notifications. More details are in [28]

[27] [11].

Our main contributions of the MApp-IDEA method are briefly

summarized below:

(1) Automated Risk Matrix Generation: We introduce the

prioritizing issues approach that automatically generates a

risk matrix, combining sentiment analysis, clustering, and

graph theory.

(2) Time Series-based Risk Dynamics: We present a method

to generate the temporal dynamics of issues and the risk

matrix using time series. Our method uses interval segmen-

tation to calculate the frequency of problems in each time in-

terval, where we are especially interested in intervals where

abrupt changes occur.

(3) Interactive Risk Analysis Tool: Finally, we introduce an
analytical data exploration tool that allows you to interac-

tively browse the risk matrix, time series, heat map, and

issue tree. Additionally, our analytic system triggers alerts

and notifications.

4 LEARNING RISK FACTORS FROM APP
REVIEWS: A LARGE LANGUAGE MODEL
APPROACH FOR RISK MATRIX
CONSTRUCTION

A simple and intuitive way to organize and prioritize actions for

software maintenance, aiming to reduce negative ratings, is through

a risk matrix [49, 44]. This matrix consists of a graphical representa-

tion where risks are positioned on a Cartesian plane based on their
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probability of occurrence and impact/severity. Risks are classified

according to their importance and potential to harm app quality,

as shown in Figure 8. Thus, it assists software engineering profes-

sionals in identifying the most critical areas that require prioritized

attention. However, manual construction of a risk matrix often

consumes a significant amount of time as stakeholders [43], such as

project managers and product owners, need help understanding the

context of risks recorded by the development team. For example,

using different descriptions to report the same risk and the large

volume of reviews make risk assessment challenging. Therefore,

there is a need for automatic machine learning-based methods to

extract risks from reviews and classify their priority.

Figure 8: Risk matrix

This section presents a novel approach for generating RiskMatrix

from App Reviews using Large Language Models, specifically the

OPT model (Open Pre-trained Transformer Language Models) [50].

While large-scale language models like GPT [5] are widely used,

we opted for OPT, an open-access language model. By providing

specific instructions to the model through prompt engineering, it

is possible to direct its attention to particular aspects of reviews,

such as app features mentioned by users and the evaluation of risks’

impact/severity associated with the apps.

4.1 Dynamic Prompt Construction for Feature
Extraction

The first step of the proposed method involves the dynamic con-

struction of prompts from a knowledge base of reviews from other

apps, different from the target app, thereby avoiding the need for

labeled data from the target application to be analyzed.

The knowledge base is represented through embeddings of re-

views, which are numerical vectors that capture the semantics and

context of words and phrases. These embeddings are obtained using

deep learning algorithms, such as Sentence-BERT [45], which map

texts into vector representations in latent spaces. Formally, given a

set of software reviews in the knowledge base, we can represent

them as 𝑅1, 𝑅2, ..., 𝑅𝑛 , where 𝑅𝑖 represents a specific review.

Each review 𝑅𝑖 is converted into a vector representation using

a pre-trained embedding model. This representation is denoted as

𝑒 (𝑅𝑖 ), where 𝑒 () represents the embedding function. In this way,

we have a set of vectors representing the reviews in the knowledge

base: 𝑒 (𝑅1), 𝑒 (𝑅2), ..., 𝑒 (𝑅𝑛).

To retrieve the most similar reviews to a target review of interest,

we employ the k-nearest neighbors technique. In this approach,

we calculate the similarity between the embedding vector of the

target review and the embedding vectors of all the reviews in the

knowledge base. The k-nearest neighbors are then used to generate

prompts related to the extraction of text snippets that describe

software features. This nearest neighbors search approach allows

the method to leverage the existing knowledge base and learn from

similar examples, becoming a type of few-shot learning for the task

of feature extraction from software reviews.

4.2 Estimating Review Impact
Building upon the previous step, we have a list of features extracted

from software reviews. Thus, the second step of the method utilizes

each extracted feature from the previous step into a prompt to

instruct the LLM to identify the severity or impact on five levels:

negligible, minor, moderate, major, and critical.

This zero-shot learning process enables the model to identify the

severity of features even without receiving specific prior examples

for each feature. Although the model has not been explicitly trained

on specific examples of severity classification in software reviews,

it is capable of inferring patterns and generalizing based on the

information captured during model pre-training.

4.3 Estimating Occurrence Likelihood
While the first two steps allow mapping reviews onto the ”impact”

dimension of the risk matrix, the third step is responsible for map-

ping reviews onto the ”occurrence likelihood” dimension. In this

step, a graph-based strategy is employed.

The reviews and extracted features from the previous step are

represented as textual expressions of interest and treated as vertices

in a graph. Similar pairs of vertices are connected through edges.

The similarity between the expressions is measured using embed-

dings and cosine similarity. In this case, consider a set of expressions

extracted from software reviews, represented as 𝐸 = {𝑡1, 𝑡2, ..., 𝑡𝑚},
where each 𝑡𝑖 is an expression from the review containing the

extracted feature. Similar to the first step, these expressions are con-

verted into embeddings, which maps each expression to a feature

vector. The similarity between two embedding vectors is calculated

using a metric such as cosine similarity.

The degrees of the graph’s vertices identify expressions that

have a higher likelihood of occurrence. The degree values are dis-

cretized into five levels representing different levels of occurrence

likelihood. For this purpose, the discretization also considers the

average degree of the graph, using this value for normalization fol-

lowing a normal distribution. This normalization allows mapping

the node degree values onto a standardized scale. Using the mean

and standard deviation of the degree values, the normal distribu-

tion function is applied, where values close to the mean have a

higher probability and values farther from the mean have a lower

probability.

4.4 Results and Discussion
The experimental results are analyzed considering two main as-

pects: (1) the performance of the F1 score in the matching of feature

extraction from app reviews, and (2) the error (MAPE and MAE)
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in constructing the risk matrix, particularly in the impact dimen-

sion. The likelihood dimension in the reference risk matrices was

obtained in the same way as the proposed method. Hence there are

no significant variations for comparison.

Regarding the first aspect, we analyze the proposed dynamic

prompt generation for OPT and the few-shot prompt learning,

compared to a supervised reference approach based on RE-BERT

and classical rule-based methods. The aim is to demonstrate the

performance of OPT models in the absence of labeled data and the

generalization capability of LLMs for new tasks and domains.

We observed that the proposed approach achieves superior re-

sults compared to rule-based methods but inferior results to the

supervised RE-BERT model. However, it is important to note that

supervised models require a significant amount of annotated data,

necessitating the annotation of all features in each review of the

training set for a model generation — a very time-consuming task.

Although this strategy shows promising results, it may not be fea-

sible in scenarios with a lack of domain experts or in dynamic

settings with frequent review updates, which is common in mobile

application quality monitoring and maintenance through reviews.

Our approach yielded promising results compared to the propri-

etary GPT model with zero-shot learning. In addition to requiring

less labeled data than fully supervised models, our few-shot prompt

learning strategy is based on open models, without restrictions on

proprietary APIs or limitations on processing private or sensitive

data.

Concerning the second aspect of evaluation, we compared the

proposed approach with GPT. In this scenario, both models operate

in the zero-shot learning format. However, it should be noted that

we used OPT-IML (instruction meta-learning), which is fine-tuned

with hundreds of instructions but with a smaller number of pa-

rameters. In this case, the utilized OPT-IML model has 1.3 billion

parameters, and we analyzed the risk matrices generated with the

features extracted from the previous step.

In summary, the experimental results suggest that open and

accessible Large Language Models (LLMs) can play an important

role in developing automated tools for analyzing mobile applica-

tion reviews, facilitating risk identification, as well as contributing

to monitoring and prioritizing software maintenance tasks. More

details are in [26].

Our contributions to risk matrix construction using LLMs are

three-fold:

(1) Dynamic and automatic prompt generation:We intro-

duce an approach that enables the creation of customized

instructions for each review to be analyzed, allowing the

OPT model to extract app features as described by users

in natural language. This enables more accurate and auto-

mated review analysis through few-shot learning, resulting

in feature extraction with limited labeled data.

(2) Prompt instructions to identify risk impact:We develop

suitable instructions to automatically identify the severity or

impact of risks mentioned in the reviews, classifying them

into five levels: negligible, minor, moderate, major, and crit-

ical. In this case, we employ zero-shot learning, meaning

there is no need to provide examples to the model.

(3) Evaluation of Open Pre-trained Large Language Mod-
els: We evaluate how prompt engineering for OPT-based

models compares to large proprietary language models such

as GPT. By adopting OPT, we enable the use of large language

models in scenarios with limited computational resources

and constraints involving sensitive and private user data.

This democratizes access to the usage of LLMs in more re-

stricted contexts.

5 MAPP-IDEA TOOL
The tool is designed to provide a user-friendly real-time interface

for monitoring and maintaining mobile apps, as illustrated in Figure

9. An overview can be seen in Figure 10. The front-end (interface

and data exploration) was developed in PHP using the Laminas

Framework
1
, and the back-end (detection and prioritization al-

gorithms) was developed using Python. Asynchronous tasks and

front-end and back-end integration are performed by RESTful Bus.

An overview of the tool’s Model-View-Controller (MVC) architec-

ture is illustrated in Figure 10.

Figure 9: Dashboard with daily performance information for
each app on the star rating and number of reviews

Figure 10: MVC architecture of the MApp-IDEA tool

1
https://getlaminas.org
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6 CONCLUSIONS
We introduce a two-fold approach, calledMApp-Reviews andMApp-

IDEA, to explore emerging issues from user feedback to proactively

detect, predict, prioritize, and monitor issues and risks over time.

We also introduce an approach using the recent LLM for the risk ma-

trix construction, incorporating a dynamic and automatic prompt

generation technique for classifying. These approaches enable us

to effectively address reviews on time, mitigate negative impacts

on the overall app rating, and maintain the app’s competitiveness,

ensuring timely maintenance and facilitating software evolution.

This work contributes to the field of software maintenance and

evolution by providing a novel approach for detecting and predict-

ing emerging software requirements issues based on user reviews.

It offers valuable insights into the temporal dynamics of issues

and associated risks and emphasizes the importance of proactive

maintenance to ensure software quality and user satisfaction.

Our research results show new promising prospects for the fu-

ture, and new possibilities for innovation research in this area have

emerged with our results so far.

SCIENTIFIC IMPACT AND OUTCOMES
The research has significantly advanced the field of software quality

within software engineering through the development of innovative

tools and methodologies. Notably, the MApp-IDEA tool has gar-

nered recognition for its ability to systematically collect and analyze

millions of app reviews, thus enhancing the processes of monitor-

ing, issue detection, and prioritization. Additionally, MApp-Reviews

introduces a method for clustering software requirements to model

their temporal dynamics, utilizing contextual word embeddings to

quantify negative user mentions over time. This approach helps

predict software requirements associated with negative reviews and

improves forecasting accuracy by incorporating domain-specific in-

formation. Furthermore, the research has pioneered using LLMs for

the dynamic generation of the risk matrix, automating identifying

and classifying risks in user reviews.

As a result of this research, recent works such as iRisk [10] and

MApp-TIME [12] have been proposed to enable a microservices-

oriented architecture, scaling the approaches presented in this arti-

cle. The introduction of MApp-TIME and iRisk further underscores

the impact of this work. MApp-TIME employs a microservices ar-

chitecture to monitor the temporal dynamics of issues and app

releases, reducing the time between issue detection and resolution.

iRisk leverages Large LanguageModels (LLMs) to construct scalable

risk matrices from large datasets, offering automated dashboards

and visualizations for effective decision-making and risk mitigation.

These advancements collectively elevate software quality standards,

influence industry best practices, and contribute to more efficient

software maintenance and evolution.

Highlighted Publications
(1) Temporal dynamics of requirements engineering from mo-

bile app reviews. 2022 [25].

(2) MApp-IDEA: Monitoring App for Issue Detection and Prior-

itization. 2023 [28].

(3) Monitoring Temporal Dynamics of Issues in Crowdsourced

User Reviews and their Impact on Mobile App Updates. 2024

[12].

(4) iRisk: A Scalable Microservice for Classifying Issue Risks

Based on Crowdsourced App Reviews. 2024 [10].

Public Domain Softwares
MApp-IDEA (Monitoring App for Issue Detection and Prioritiza-

tion)
2
is available online at https://mappidea.com. A detailed video

demonstrating its functionalities can be found in this video
3
. The

tool is available for use in the industry, assisting software engineers

in the evolution and maintenance of applications.

Repositories
• MApp-Reviews

• MApp-IDEA

• Risk Matrix

• MApp-Time

• Illama-Client

• iRisk
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