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Abstract

Texture, a significant visual attribute in images, plays an important role in many pattern
recognition tasks. While Convolutional Neural Networks (CNNs) have been among the
most effective methods for texture analysis, alternative architectures such as Vision Trans-
formers (ViTs) have recently demonstrated superior performance on a range of visual
recognition problems. However, the suitability of ViTs for texture recognition remains
underexplored. In this work, we investigate the capabilities and limitations of ViTs for
texture recognition by analyzing 25 different ViT variants as feature extractors and compar-
ing them to CNN-based and hand-engineered approaches. Our evaluation encompasses
both accuracy and efficiency, aiming to assess the trade-offs involved in applying ViTs to
texture analysis. Our results indicate that ViTs generally outperform CNN-based and hand-
engineered models, particularly when using strong pre-training and in-the-wild texture
datasets. Notably, BeiTv2-B/16 achieves the highest average accuracy (85.7%), followed by
ViT-B/16-DINO (84.1%) and Swin-B (80.8%), outperforming the ResNet50 baseline (75.5%)
and the hand-engineered baseline (73.4%). As a lightweight alternative, EfficientFormer-L3
attains a competitive average accuracy of 78.9%. In terms of efficiency, although ViT-B
and BeiT(v2) have a higher number of GFLOPs and parameters, they achieve significantly
faster feature extraction on GPUs compared to ResNet50. These findings highlight the
potential of ViTs as a powerful tool for texture analysis while also pointing to areas for
future exploration, such as efficiency improvements and domain-specific adaptations.

Keywords: texture analysis; vision transformers; transfer learning; computer vision;
deep learning

1. Introduction
Computer vision (CV) has become an extensive subfield of Artificial Intelligence,

especially after the proliferation of deep learning over the past decade. One of the subfields
of CV, which dates back to the 1960s, is texture analysis. For digital images, one abstract
definition is that texture elements emerge from the local intensity constancy and/or vari-
ations of pixels producing spatial patterns roughly independently at different scales [1].
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Although general vision involves the combination of several other aspects such as shape
and depth, texture alone is a fundamental characteristic that can suffice to solve many
problems. Therefore, over the past decades several texture analysis methods have been
proposed [2,3]. These works have led to many applications in industrial inspection [4]
and medical imaging [5], to name but a few. Figure 1 illustrates the usual texture analysis
approach: a model extracts relevant information from a texture image to compose an image
representation, which is used for pattern recognition tasks that rely on these textures.

Texture samples
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Figure 1. The usual pipeline in texture analysis. Texture samples are first processed by a feature
extraction stage (texture characterization), which can use either hand-engineered methods or learning-
based techniques. These techniques produce intermediate image representations, which are then
used in pattern recognition tasks such as classification or regression. This pipeline can be employed
in a variety of domains, including industrial inspection, medical imaging, and bioimage analysis.

Deep learning-based models for general vision tasks have been advancing rapidly.
This revolution in the field started with CNNs [6–8], a powerful neural architecture that still
dominates many CV areas. However, CNNs may fail to achieve state-of-the-art (SOTA) per-
formance in texture recognition tasks in comparison to hand-engineered approaches [1,9].
More recently, ViTs have started to dominate the CV literature while challenging CNNs,
especially on image classification tasks [10,11]. Nevertheless, little is known regarding
the applicability of ViTs to texture analysis. This is a significant research gap, particularly
because ViTs do not possess the spatial inductive biases (like translation equivariance and
locality) that are fundamental to CNNs. While these biases are considered advantageous
for many vision tasks, their absence in ViTs raises critical questions about how these models
learn to represent and recognize textural patterns. Furthermore, texture datasets are often
limited in size, which represents a considerable challenge for data-hungry models such
as ViTs.

In order to overcome this gap, this paper presents a comprehensive and large-scale
study to assess the capabilities of Vision Transformers for texture analysis. Our central
objective is to systematically evaluate the potential of using pre-trained ViTs as powerful
feature extractors for a wide array of texture recognition tasks. We aim to understand how
these “foundation models”, which have proven so effective for general vision, perform
when applied to the specific domain of texture and how they compare against established
CNN and hand-engineered baselines.

To achieve this, we conduct an extensive analysis of twenty-one distinct ViT variants.
These models are carefully selected to cover a wide range of architectural designs and
pre-training strategies, including both supervised and self-supervised paradigms, on large-
scale datasets like ImageNet-1k and ImageNet-21k. Our methodology employs transfer
learning: We use the pre-trained weights of these foundation models without fine-tuning,
utilizing them as frozen feature extractors. A linear classifier is then trained on top of these
extracted features for the final texture recognition task.
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The scope of our evaluation is designed to encompass a variety of challenging scenar-
ios, like tasks that measure robustness to changes in rotation, scale, and illumination. In
addition, we evaluate the ability to discriminate between different and complex texture
categories, including color textures, material textures, and descriptive texture attributes
found in the wild. Through this investigation, we provide a clear benchmark and an
in-depth analysis of the strengths and weaknesses of ViTs for texture analysis, offering
valuable insights for future research in the field.

2. Background
2.1. Vision Transformers

The transformer architecture [12] is an effective deep learning mechanism for machine
translation tasks with a more parallelizable architecture because it processes all input tokens
simultaneously using self-attention, unlike recurrent architectures that rely on sequential
token processing. The first architecture was designed as a stack of encoders and decoders,
containing two main structures: multi-head self-attention (MSA) and a Feed Forward
Network. First of all, consider a set of tokens and their embeddings (e.g., words and
word embeddings) combined into a matrix X. The first step is to transform these inputs
by projecting them using linear layers, obtaining a query matrix Qi = XWQi , whereWQi

represents the query weights and matrices Ki = XWKi and Vi = XWVi represent the keys
and values, respectively, and their corresponding weights. Here, the index i refers to the
i-th attention head in the MSA mechanism, which has its own learnable projection matrices
WQi ,WKi ,WVi . The self-attention mechanism for all tokens is given by

Attention(Qi,Ki,Vi) = softmax(
QKT
√
d
)V , (1)

where the softmax function is taken over the horizontal axis and d is the hidden dimension
of the model (embedding size). A single self-attention mechanism is referred to as an
attention head, and MSA is achieved by stacking s attention heads in parallel, each with
individual trainable weights:

MSA(Q,K,V) = [Attention(Q1,K1,V1); . . . ; Attention(Qs,Ks,Vs)]WO , (2)

where [; ] denotes the concatenation of the self-attentions andWO represents the weights
for a final linear projection after the concatenation. A Feed Forward Network is applied
over the output of the MSA, which is a simple MLP with two layers. Additionally, layer
normalization and residual connections are added between the layers, finally composing a
transformer block. A standard transformer network is then the combination of a series of
transformer blocks, followed by an output layer depending on the task at hand.

More recently, ViTs [10,11] have been dominating the CV literature, challenging CNNs.
They have been applied to a lot of different visual tasks, including, but not limited to,
image classification [10,11,13,14], object detection [15,16], image segmentation [17], and
super-resolution [18]. Results demonstrate that ViTs achieve SOTA performance on CV
tasks, on par with CNNs. Figure 2a shows the general structure of a ViT and some of the
main architectural choices in recent works.
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Figure 2. The general elements of a Vision Transformer (a). One of its most important modules is
the image embedding (also known as the tokenizer), which is responsible for preparing the pixels in
a way that transformer encoders (b) can learn and extract meaningful visual patterns. (a) General
structure of a Vision Transformer and some of the different options that can be selected at each stage.
(b) The most common type of transformer encoder (adapted from ref. [10]).

ViTs offer an efficient way to adapt the transformer architecture to images by rep-
resenting them as a sequence of 2D patches. Consider an RGB image I ∈ Rw×h×3, with
width w and height h, fed into a ViT backbone (as in ref. [10]) B = (T1, . . . , TL), consisting
of L sequential transformer blocks. The image I is firstly reshaped into a sequence of
flattened 2D patches Ip ∈ Rn×(3p2), where 3 represents the RGB colorspace, p× p is the
patch size, and n = wh

p2 represents the number of patches (input sequence length). Ip is

then projected using a trainable linear projection (linear layer) E ∈ R(3p2)×d, where d is the
constant hidden size of the transformer architecture. The patch embeddings Ie are obtained
by adding (element-wise sum) a positional encoding layer Epos ∈ R(n+1)×d, including
spatial inductive bias, into the transformer. Ie is then fed into a sequence of L transformer
encoders (as shown in Figure 2b), which can be trained by adding an MLP classifier at the
end. This is possible since the ViT includes a learnable class embedding (or class token),

x0l ∈ Rd, (3)

among the embeddings of each layer l, which encodes the information in a one-dimensional
vector with d features. Therefore, the class embedding at the last transformer layer, x0L,
serves as an image representation where a classification head can be attached. In this work,
we focus on this embedding as an off-the-shelf image representation for texture recognition
tasks using simpler/linear classifiers, so the common MLP head of ViTs is not considered.

2.2. Texture Analysis

Texture analysis is a subfield of CV with roots in the 1960s. Although an abstract
concept, with no widely accepted formal definition, texture refers to the perceived surface
properties or structure of objects, which may include roughness, smoothness, coarseness,
or fineness. It can also be seen as a pattern of local variations in color and brightness. The
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human visual system is adept at recognizing and distinguishing textures, allowing us to
differentiate between many things in our environment. Therefore, recognizing textures in
digital images is critical to solving many CV problems and tasks such as feature extraction,
classification, segmentation, and synthesis, among others. As a result, a variety of methods
have been developed over the past decades [2,3], paving the way for potential applications
in fields such as industrial inspection [4] and medical imaging [5], among others.

For many years, the predominant approach to texture recognition was based on
hand-engineered models or features to describe textures. Mathematical methods for the
description of textural patterns usually consider properties such as statistics [19], frequency
[20], complexity/fractality [1,21], and others [22]. Statistical methods investigate local mea-
sures based on grayscale co-occurrences, the most widely used being local binary patterns
(LBPs) [19], which have influenced various subsequent techniques. Another approach
to texture analysis involves transforming the image into the frequency domain, where
various methods such as Gabor filters [20] have been proposed. Complexity approaches
fall within the model-based paradigm, such as methods based on fractal dimension [21] or
network science [1,23].

After the popularization of learning-based models for object recognition, many such
methods were also specifically designed for tackling texture. For instance, there have been
various studies involving deep CNNs for texture recognition by using transfer learning.
The most common approach for the transfer learning of foundation vision models is to
fine-tune a pre-trained network for the desired task. However, even if these modes are pre-
trained, it is impossible to predict howmuch fine-tuning data would be necessary to achieve
satisfactory performance. In the case of texture analysis, previous works have shown [9] that
fine-tuning or training these models from scratch may result in poor performance in texture
recognition, particularly due to overfitting caused by a lack of large-scale texture datasets.

Some studies explore the transfer learning of deep CNNs by using convolutional layers
only for extraction of texture features, freezing their parameters, and using a dedicated
classifier trained separately. This approach is also known as “features-off-the-shelf”, or
deep convolutional activation features [24], and is a simple and fast way to transfer learning
from foundation vision models. Cimpoi et al. [25] proposed one of the first contributions on
the subject, comparing the efficiency of different deep CNN architectures and approaches
for feature extraction. Subsequently, many works have been proposed following these
principles. One of the latest techniques, named Random encoding of Aggregated Deep
Activation Maps (RADAM) [26], performs multi-depth deep feature aggregation and trains
randomized auto-encoders for each image to produce an encoded representation. This
method does not fine-tune the CNN backbone, and results demonstrate that these locally
learned representations provide SOTA performance in texture recognition.

Another approach consists of end-to-end architectures that enable the training of
new texture-specific modules/layers along with the fine-tuning of pre-trained CNN back-
bones. Zhang et al. [27] proposed an orderless encoding layer on top of a deep CNN,
called Deep Texture Encoding Network (Deep-TEN), which allows for images of arbitrary
size. Yang et al. [28] proposed DFAEN (Double-order Knowledge Fusion and Attentional
Encoding Network), which aggregates first- and second-order information for encoding
texture features. Fine-tuning is needed in these methods to adapt the backbone to the
new architecture along with a new classification layer since they contain new randomly
initialized parameters.

As discussed above, SOTA texture recognition models [26,28] adopt pre-trained CNN
backbones for texture feature extraction, aggregation, and encoding, achieving promis-
ing results. However, the fixed/limited size of a CNN’s receptive field may struggle
to model the correlations among global features and long-distance pixel relationships,
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which are critical for many tasks involving textures. On the other hand, the transformer
architecture excels at capturing these patterns, which suggests they could be valuable
alternatives [10,29,30]. Nevertheless, since ViT architectures are quite recent, only a few
studies have specifically focused on texture aspects. For instance, some works explore
textures in transformers for image super-resolution [31,32] and remote sensing [33]. For
texture recognition, our focus in this work, a couple of works have analyzed ViTs in specific
cases. In ref. [34], the authors used ViTs for the recognition of steel texture blocks, showing
that a custom transformer architecture can obtain a higher accuracy than a standard CNN
and machine learning models. Another study analyzed the ViT architecture in the field
of building and construction material recognition [35], demonstrating the capability to
deal with imbalanced datasets, achieving a higher accuracy compared to classical CNNs.
A more recent work [36] introduces a hybrid transformer model for the localization of
anomalies on industrial textured surfaces.

Despite some efforts to adopt ViT models for texture analysis, there is a lack of
understanding of how or why this architecture works for different types of textures and
the impacts and differences of the several ViT variants quickly emerging in the literature.
No study has analyzed ViTs for texture recognition in general, considering well-known
benchmarks, robustness issues, the impacts of different architectural choices, pre-trainings,
and so on. Prior research has focused on specific problems related to texture analysis, which
is not sufficient to promote ViTs as the next SOTA in this area. Therefore, we focus on these
aspects by proposing a comprehensive evaluation of a variety of known ViTs when applied
to a wide range of texture recognition tasks.

2.3. Selected ViTs

The literature on ViTs has been quickly advancing in the past three years due to
the success of one of their first implementations for image recognition [10]. It would be
impossible to cover here all the models proposed under the ViT umbrella in this period.
For this purpose, we select a set of different ViT variants, considering the most prominent
differences in their architecture, pre-training, and computational budget. Table 1 shows the
main properties of the selected variants. Additionally, we give a more detailed description
of each ViT below.

• ViT-B/16 [10]: This was one of the first successful computer vision variants of the
transformer model, proposed by Dosovitskiy et al. The model employed in this work,
ViT-B/16, has a base size “B” encompassing 12 layers, a hidden dimension of size 768,
and 12 attention heads. This configuration processes input images by dividing them
into non-overlapping patches of 16× 16 pixels, hence the B/16 designation. Each
patch is then linearly embedded into a flat vector and passed through the transformer
layers for further processing.

• CoaT [37]: Co-scale conv-attentional image Transformers (CoaTs) contain two mecha-
nisms to improve ViTs in image classification: (i) The co-scale mechanism, maintaining
separate encoder branches at different scales while allowing for attention across these
scales. A serial and a parallel block were created to perform fine-to-coarse, coarse-to-
fine, and cross-scale image modeling. (ii) A conv-attention module that incorporates
convolutions in the factorized attention module for relative position embeddings,
resulting in a considerably improved computational cost compared to traditional self-
attention layers in transformers. The authors introduced two architectures: CoaT-Lite,
which exclusively uses serial blocks to sequentially process down-sampled image
features, and CoaT, which incorporates both serial and parallel blocks with the co-scale
mechanism. Additionally, the authors test CoaT and CoaT-Lite across various model
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sizes: Tiny, Mini, Small, and Medium. Consequently, CoaT-Li-Mi and CoaT-Mi refer
to the CoaT-Lite Mini and CoaT Mini variants, respectively.

• MobileViT-S [38]: The design of this architecture targets mobile vision applications,
focusing on compactness, general purpose, and minimal latency. For this purpose,
the network integrates key characteristics from CNNs, such as spatial inductive bi-
ases and reduced sensitivity to data augmentation, with those from ViTS, including
input-adaptive weighting and global processing capabilities [38]. By incorporating
properties from both CNNs and ViTs, MobileViT achieves a discriminative representa-
tion using a low number of parameters and simple training approaches, such as basic
augmentation techniques. The MobileViT model has three size variations typically
used in mobile applications: small, extra small, and extra extra small. In this work, we
used the small version, which has 5.6 million parameters.

• MobileViTv2 [39]: Although MobileViT models exhibit high performance and have
few parameters compared to light-weight CNNs, they still face the issue of high
latency, primarily due to the multi-headed self-attention. To overcome this limita-
tion, MobileViTv2, an enhanced version of MobileViT, introduces a separable self-
attention mechanism with linear complexity that calculates context scores relative to a
latent token.

• EfficientFormer [40]: The EfficientFormer, a family of models, introduces a new
dimension-consistent design paradigm for Vision Transformers, incorporating a sim-
ple but efficient latency-driven slimming technique [40]. Instead of reducing the
number of parameters or computations, EfficientFormer networks are designed to
optimize inference speed. Within this family, the EfficientFormer–L1 is the fastest
model, whereas the EfficientFormer–L3 and EfficientFormer–L7 are the largest models,
offering better performances.

• ViT-B/16-DINO [41]: DIstillation with NO labels (DINO) is a self-supervised learning
approach for training vision models, such as ViTs, without the need for labeled data.
It relies on a teacher–student framework with a distillation loss and noisy labels to
guide the student model. In this work, we consider the ViT-B/16-DINO variant, which
corresponds to the DINO approach applied to the ViT-B/16 model using IN-1k.

• ViT-B/16-SAM [42]: The incorporation of the Sharpness-Aware Minimizer (SAM)
into the ViT-B/16 model is an approach that explicitly smooths the loss geometry
during training, leading to improved generalization capabilities. By utilizing SAM, the
enhanced ViT-B/16 model not only achieved better accuracy and robustness compared
to ResNets with similar and larger sizes, but also demonstrated effective training with
(momentum) SGD.

• DeiT-B/16 [43]: Standing for Data-efficient image Transformers (DeiT), this method
improves the data efficiency of ViTs by employing knowledge distillation, a technique
that transfers knowledge from a larger pre-trained teacher model to a smaller student
model. DeiT-B/16 is a specific configuration of the DeiT model that adopts the same
16× 16 patch size, 12 layers, and 768 hidden dimension size as its counterpart in the
ViT family.

• DeiT3-B/16 [11]: The DeiT3 method introduces a new training procedure for ViT
architectures and is an upgrade of the previous DeiT. Key experiments conducted
by the author involve the following: adopting a binary cross-entropy loss for IN-1k
training; comparing simple random cropping to random resize cropping when pre-
training on larger datasets such as IN-21k; and training models at lower resolutions
to reduce the train–test discrepancy. DeiT3-B/16 refers to a ViT-B/16 model trained
using the DeiT3 methodology. Here, we employ two variants of this model: with
IN-1k pre-training or using IN-21k then fine-tuning on IN-1k.
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• CrossViT-B [44]: The Cross-Attention Multi-Scale Vision Transformer (CrossViT)
introduces a dual-branch transformer architecture. In one branch, the model processes
fine-grained small patches from the image, while the other branch focuses on coarse-
grained large patches. This design aims to generate more significant features by
incorporating information from different scales. Also, the work proposes a token
fusion mechanism with linear complexity, which combines the class token from one
branch with the other patches and vice versa. The architecture is trained based on the
approach outlined in DeiT [11].

• ConViT [45]: The ConViT architecture tries to mimic the convolutional inductive
bias, introducing a new attention scheme, Gated Positional Self-Attention (GPSA).
This mechanism forces the attention to initialize following an almost convolutional
configuration, adding parameters related to the attention center and attention locality
and then adapting the parameters during the training step. This work shows almost
the same accuracy on ImageNet-1k as DeiT [11] using only 50% of the dataset, demon-
strating the benefits of trying to mimic the inductive bias from CNNs. The architecture
is trained based on the approach from DeiT [11] and ConViT-B has almost the same
number of parameters in comparison to ViT-B.

• GC ViT-B [46]: This variant proposes a method to combine both the standard local
context in self-attention with a global context, alternating both blocks to capture fine-
and coarse-grained features. The global self-attention makes it possible to query image
regions instead of patches (overlapping patches) by applying a convolutional layer.
This work shows a greater accuracy on ImageNet-1k compared to ViT-B [10] with
almost the same number of parameters.

• MViTv2-B [47]: The improved Multiscale Vision Transformers (MViTv2) architecture
was proposed to work on both image and video domains. This architecture encodes
relative position information in the self-attention and uses a pooling operation after
the linear projection on both Q, K, and V inside the transformer block.

• CaiT-S24 [48]: This work proposed a method to make deeper ViT possible without
saturating the accuracy. The proposed method divides the architecture into two stages,
the self-attention and the class attention, where the first is identical to ViT, except that
it has no class token, and the second integrates the patches into the class embedding
and extracts more fine-grained patches for the class token, increasing the accuracy and
making the training of deeper architectures viable. The CaiT-S24 architecture shows a
greater accuracy on ImageNet-1k than ViT-B [10] with almost half of the parameters.
Also, the training schedule was based on DeiT [11].

• XCiT-M24/16 [49]: This variant proposes a new self-attention mechanism that de-
creases the quadratic cost of the original approach. This is achieved by Cross-
Covariance Attention, which operates across feature channels rather than tokens,
resulting in a linear complexity in the number of tokens. This architecture is more
efficient for processing high-resolution images and has a better scalability than the
original ViT. The XCiT-M24/16 architecture used here was pre-trained using the
DINO [41] self-supervised approach.

• BeiT-B/16 [13]: The Bidirectional Encoder representation from Image Transformers
(BeiT) is a self-supervised approach that proposes masked image modeling to pre-
train Vision Transformers, according to previous findings with the BERT architecture
on large language models. It consists of learning to reconstruct image patches by
randomly corrupting some original patches, and it can be applied to previous ViT
variants. The B/16 variant corresponds to applying the BeiT self-supervised training
framework to the ViT-B/16 architecture.
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• BeiTv2-B/16 [14]: This variant improves the previous BeiT self-supervised pre-training
by using a semantic-rich visual tokenizer, achieved by vector-quantized knowledge
distillation. This technique promotes masked image modeling from the pixel level to
the semantic level, outperforming the previous approach on image classification and
semantic segmentation tasks. The model used in this work was firstly pre-trained on
ImageNet-1k using BeiT self-supervised training and then fine-tuned on ImageNet-21k
using a supervised approach.

• Swin-B [50]: This variant introduces shifted windows between consecutive self-
attention layers. This is achieved by a hierarchical/multi-stage architecture, where the
input is firstly split into a common patch embedding (stage 1), and then patch merging
layers are used as the depth is increased. For instance, the first patch merging layer
(stage 2) concatenates the features of each group of 2× 2 neighboring patches from
the original patch embedding. The procedure is then repeated for the following stages
using similar window merging approaches, decreasing the output resolution and
resulting in a hierarchical representation structure. This approach also incurs linear
computational complexity concerning image size, allowing the Swin architecture to
show better compatibility with a broad range of vision tasks. The Swin-B model used
in our experiments is pre-trained on the ImageNet-21k dataset in a supervised fashion.

• Next-ViT-L [51]: Next-ViT introduces a hybrid CNN–transformer backbone with
deployment-friendly design blocks (the Next Convolution Block (NCB) and Next
Transformer Block (NTB)) and a new stacking strategy (NHS) to balance efficiency
and accuracy. The Large variant, pre-trained on ImageNet-1k, uses a hierarchical
embedding dimension of 1024 and operates at 224 × 224 resolution with 10.7GFLOPs
and 57.9M parameters.

• SHViT-S4 [52]: The Single-Head Vision Transformer (SHViT) introduces a novel
macro design that improves memory and computational efficiency. It replaces the
standard multi-head attention mechanism with Single-Head Self-Attention (SHSA),
which removes redundancy while maintaining accuracy. The architecture is composed
of a hierarchical three-stage design using a patchify stem with 16× 16 stride and
combines depthwise convolutions and SHSA blocks. This configuration enables a
reduction in latency compared to MobileViTv2.

• ViT-SO400M/16-SigLIP2 [53,54]: This model combines the shape-optimized SoViT-
400M [54] architecture with the SigLIP 2 contrastive vision–language training frame-
work. The SoViT-400M backbone was obtained by scaling width, depth, and MLP
dimensions to improve efficiency while maintaining performance, resulting in a
configuration with approximately 400 million parameters, 27 layers, an embedding
dimension of 1152, and an MLP dimension of 4304. In turn, SigLIP 2 enhances train-
ing by integrating contrastive learning with additional objectives such as captioning
supervision, masked image modeling, and self-distillation, applied to the multilingual
WebLI dataset. The ViT-SO400M/16-SigLIP2 model processes images of size 384× 384
using a patch size of 16× 16.

• NaFlexViT-B [53]: NaFlexViT is a shape-flexible Vision Transformer architecture
introduced in the SigLIP 2 framework to support inference on images with arbitrary
resolutions and aspect ratios. The key architectural innovation lies in the ability to
process non-uniform image shapes by avoiding fixed-size resizing or cropping while
preserving model generalization and accuracy. It uses a 16× 16 patch embedding stem
and employs global average pooling (GAP) instead of a class token for final feature
aggregation, making it resolution-agnostic. This model is trained on ImageNet-1k at a
resolution of 384× 384, with approximately 86.6 million parameters and a compute
cost of 55.9 GFLOPs.
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Table 1. Taxonomy of the ViT variants used in this work and the baselines considered for comparison.
We indicate the pre-training that was used by the variants employed in this work (we used ResNet50
and DeiT3 with both IN-1k and IN-21k versions), where a ⇒ b means that the model was pre-
trained on dataset a, fine-tuned on dataset b, and then used for feature extraction. The feature
extraction costs consider a 224 × 224 RGB input, and the size d indicates the dimensionality of the
feature vector. For ViTs and ResNet50, the GFLOPs and the number of parameters refer only to
the model backbone used for feature extraction, i.e., after removing the classification head. Models
with * indicate 384 × 384 RGB input.

Pre-Training Feature Extraction Cost
Model Embedding Dataset Paradigm d GFLOPs Param. (m)

hand-eng. baseline (LBP) N.A. N.A. N.A. ≈256 ≈0.05 0
CNN baseline (ResNet50) convolutional ImageNet-1k and 21k supervised 2048 4.1 25.5

CoaT-Li-Mi convolutional ImageNet-1k supervised 512 2.0 10.5
CoaT-Mi convolutional ImageNet-1k supervised 216 7.2 10.1

MobileViT-S convolutional ImageNet-1k supervised 640 1.4 4.9
MobileViTv2 convolutional ImageNet-1k supervised 512 1.4 4.4

EfficientFormer-L1 patches ImageNet-1k supervised 448 1.3 11.4

EfficientFormer-L3 patches ImageNet-1k supervised 512 3.9 30.4
ViT-B/16 patches ImageNet-21k supervised 768 16.9 85.8

ViT-B/16-DINO patches ImageNet-1k self-supervised 768 16.9 85.8
ViT-B/16-SAM patches ImageNet-1k supervised 768 16.9 85.8

DeiT-B/16 patches ImageNet-1k supervised 768 16.9 85.8
DeiT3-B/16 patches ImageNet-1k and 21k supervised 768 16.9 85.8
CrossViT-B patches ImageNet-1k supervised 1152 20.1 103.9
ConViT convolutional ImageNet-1k supervised 768 16.8 85.8
GC ViT-B convolutional ImageNet-1k supervised 1024 13.9 89.3
MViTv2-B patches ImageNet-1k supervised 768 8.9 50.7
CaiT-S24 patches ImageNet-1k supervised 384 8.6 46.5

XCiT-M24/16 patches ImageNet-1k self-supervised 512 15.8 83.9
BeiT-B/16 patches ImageNet-21k self-supervised 768 12.7 85.8

BeiTv2-B/16 patches ImageNet-1k ⇒ 21k self-sup. ⇒ sup. 768 12.7 85.8
Swin-B patches ImageNet-21k supervised 1024 15.1 86.7

ViT-SO400M/16-SigLIP2 * patches WebLI self-supervised 1152 ~35.0 428
SHViT-S4 convolutional ImageNet-1k supervised 768 6.5 28.2
Next-ViT-L convolutional ImageNet-1k supervised 1024 10.7 57.9

NaFlexViT-B * patches ImageNet-1k supervised 768 55.9 86.6

3. Methodology
3.1. Vision Transformer’s Features Off the Shelf

A common approach to employ foundation models for a novel task, especially in
data-scarce scenarios, is to remove the classification head, freeze the pre-trained backbone,
and then train only a linear classifier over their “features off the shelf”. In CNNs, this can be
achieved by applying global average pooling after convolutional layers or considering the
output of fully connected layers. The features of the latter approach, however, are known
to be highly correlated with the spatial order of the pixels [25].

In most of the ViT architectures, the output of the penultimate layer, i.e., the class
token, or x0L (see Equation (3)), is already suited as an image representation without any
additional transformation, since it is a 1-dimensional embedding vector. Moreover, the
relation of this embedding with the spatial order of the pixels is not direct as in CNNs.
In some cases, such as for the Swin architecture [50], a global average pooling operator
is applied over the output feature map of the last transformer layer to obtain the image
representation instead of using the class token. In any case, our goal is to analyze how these
representations behave for texture analysis. In this context, the ViT itself is not fine-tuned,
and the base architecture (backbone) is not modified (except for removing the original
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output head). This allows us to analyze the potential of existing foundation models when
directly applied to texture recognition tasks.

3.2. Linear Classiers

The image representations obtained with ViT backbones are used to train three clas-
sifiers, including linear ones such as LDA and SVM, as well as the non-linear but simple
KNN classifier. We focus on classifiers that can be trained with less data compared to
deep learning models and that have been studied and used for several decades. Their
hyperparameters are also not tuned, as the focus of this work is on evaluating the quality of
the features extracted by ViTs. The following supervised classifiers from the Scikit-learn [55]
(version 1.6.0) Python library are considered:

• KNN: k-Nearest Neighbors [56] using k = 1;
• LDA: Linear Discriminant Analysis [57], with the least-squares solver and automatic

shrinkage using the Ledoit–Wolf lemma;
• SVM: Support Vector Machine [58], with a linear kernel and C = 1.

After fitting each classifier, individually, over the features extracted with a ViT back-
bone using the image training set, we evaluate the performance on the corresponding test
set. It is important to note that the training and test split protocols follow the standard
procedures recommended in the reference papers for each dataset and are described in
detail in Section 4.1.2. The classification accuracy for each classifier is computed as the ratio
of correct predictions to the total number of test samples. We then report the average of
the three accuracy values (one per classifier) as the final result. This average classification
accuracy provides a single performance metric that reflects the mean accuracy across the
three classifiers. This approach is employed to minimize the variance caused by the differ-
ent classification paradigms; e.g., the features of some ViTs may be better coupled with a
specific classifier. For instance, in our experiments, while LDA and SVM performed better
in general, the KNN classifier surpassed them in some cases. Therefore, we believe that the
average results of the three different classifiers should provide a better overall estimate of
the quality of the ViT features in different scenarios.

4. Experiments and Results
4.1. Experimental Setup

Following the methodology described above, we evaluate the ViT variants using an
Ubuntu server with two Nvidia GeForce GTX 1080ti graphic cards (11 GB of VRAM each),
an Intel Core i7-7820X processor, and 64 GB of RAM. The scripts are implemented using
PyTorch [59] (version 2.1.0). We employ the PyTorch Image Models library [60] (also known
as timm, using Version 0.6.7) to obtain both the model implementation and pre-trained
weights, since this is a widely used library in the computer vision community. The ViT
feature vectors obtained with timm are then employed for the classification step using the
supervised classifiers. We evaluate the performance in terms of the average classification
accuracy among the three aforementioned linear classifiers (KNN, LDA, and SVM).

4.1.1. Baselines for Comparison

Aside from the ViTs, two additional approaches are used in our experiments as a
baseline for comparison. Following the developments in the texture analysis field, we
consider the classic LBP [19] method, which was the predominant approach in many
computer vision applications before the proliferation of deep learning. While most of the
hand-engineered baseline results in this paper refer to LBP, we also include some results
using Gabor filters [20], 3-D RGB histograms, and Improved Fisher Vectors (IFVs) [61].
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An important difference between hand-engineered and deep learning approaches is
their computational cost. For instance, the original implementation of the LBP method has
an O(rn) time complexity, where n is the number of grayscale pixels in an image and r is
the size of the analyzed neighborhood. In our case, n = 150,528 for a 224 × 224 RGB image,
and r is usually between 8 and 24, which yields around 1.2 to 3.6 million operations (around
0.001 to 0.004 GFLOPs). A common approach to achieving multi-resolution grayscale and
rotation-invariant LBP descriptors, as in ref.[19], is to combine different neighborhood sizes
(e.g., 8, 16, and 23), and bin sizes for computing the local binary pattern histogram. We
will assume that the cost of LBP is ≈0.05 GFLOPs (and ≈256 features, since this number
may vary depending on the parameters), i.e., higher than combining 10 neighborhoods of
size 23, which is an overestimate to account for its many possible use cases. Nevertheless,
this cost consists of only a fraction of that of deep learning-based models. Hand-engineered
techniques may also benefit from current hardware; e.g., the LBP method may reach a θ(1)
time complexity with recent parallel implementations for GPUs [62].

We also consider the ResNet50 architecture [63] as a CNN baseline, which is one of the
most frequently used convolutional models. This CNN is pre-trained on IN-1k according
to the original source. Additionally, we consider another version of ResNet50 that uses
knowledge distillation and IN-21k pre-training [64]. In terms of cost, compared to the
base versions of most ViTs, ResNet50 has a lower computational budget but higher feature
dimensionality (see Table 1). Further on, we address different aspects of the computational
cost in our efficiency analysis (see Section 4.3).

4.1.2. Texture Recognition Tasks

Eight texture datasets are considered in this work in order to analyze a variety of
scenarios. They cover several texture recognition tasks such as the classification of ma-
terials and texture instances, as well as related properties such as robustness to image
transformations. The task difficulty ranges from homogeneous texture images acquired
under controlled settings to datasets with a variety of textures taken from the Internet. The
evaluation policy (training/test splits) also varies among them. We describe each dataset
below (Figure 3 shows some samples for each one):

• Outex10 [65]: This dataset consists of 4320 grayscale images belonging to 24 different
textures classes, where the train split contains 480 images and the test split contains
3840 images. The same textures are rotated at nine different angles (0, 5, 10, 15, 30, 45,
60, 75, and 90).

• Outex11 [65]: This dataset consists of 960 grayscale images representing 24 different
texture classes, where the train split is composed of 480 images and the test split
contains 480 images. This dataset represents textures under different scales.

• Outex12 [65]: This version is composed of 9120 grayscale images representing
24 different textures, which is split into two folds, where each fold has the same
480 images in the train split and 4320 test images (two test folds). This dataset repre-
sents textures under nine different rotation angles and different illumination.

• Outex13 [65]: This dataset is composed of 1360 RGB images of 68 texture classes and
evaluates color texture recognition. The samples are split into 680 images for training
and 680 images for testing.

• Outex14 [65]: This dataset contains 4080 RGB images corresponding to 68 texture
classes and evaluates color texture recognition under different illumination. The train
split contains 680 images, while the test split contains 1360 images.

• Describable Texture Dataset (DTD) [25]: This dataset is composed of 5640 images
belonging to 47 texture classes, with images taken from the Internet with minimal
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control (textures in the wild). It is evaluated on the 10 provided splits for training,
validation, and test.

• Flickr Material Dataset (FMD) [66]: This dataset holds 1000 images representing
10 material categories, also obtained from the Internet. The validation is conducted
through 10 repetitions of 10-fold cross-validation.

• KTH-TIPS2-b [67]: This dataset contains 4752 images of 11 different materials, which
are split according to a fixed four-fold cross-validation. The images have nine different
scales equally spaced logarithmically per sample, three camera poses (frontal, 22.5º
left, and 22.5º right), and four illumination conditions (front, from the side at roughly
45º, from the top at roughly 45º, and using ambient lighting).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Texture samples from the eight image datasets used in this work. For each dataset, each
column represents a different texture class, while each row represent different samples from that class.
(a) Outex10. (b) Outex11. (c) Outex12. (d) Outex13. (e) Outex14. (f) DTD. (g) FMD. (h) KTH-2-b.

4.2. Performance Comparison

Our first analysis deals with a general comparison of performance across different
texture recognition tasks. These metrics directly reflect the quality of the feature vectors,
or image representations, that can be obtained with pre-trained foundation ViTs with
open-source code and weights. We divide the texture recognition tasks into two groups:
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(a) theoretical robustness analyses and (b) more complex and realistic tasks. We present the
results and corresponding discussion for each group in the following.

4.2.1. Robustness to Geometric Transformations and Illumination

We select the Outex10, Outex11, and Outex12 datasets for evaluating the robustness of
ViTs. As previously described, these datasets are designed to evaluate the performance of
texture recognition models under rotation, scale, and illumination changes. The results for
the hand-engineered and CNN baselines and all ViTs are shown in Table 2. It represents
the average classification accuracy of the three linear classifiers after being independently
trained and validated according to each dataset cross-validation split. The results are
highlighted compared with the baselines and the best results obtained on each dataset. The
table is also divided into blocks of rows according to the different approaches for feature
extraction: baselines, mobile ViTs, and base ViT models with IN-1k or IN-21k pre-training.

Table 2. Average classification accuracy of three linear classifiers (KNN, LDA, and SVM) learned
over the output features of each ViT backbone. We also list CNN baselines with ResNet50 (with
IN-1k and IN-21k pre-training) and the hand-engineered baseline results from the Outex (2002) [65]
paper, based on LBP and Gabor descriptors using the best among a variety of classifiers. Bold type
indicates results above the hand-engineered baseline results, and blue indicates results above the
CNN baseline results (according to pre-training).

Model Outex10 Outex11 Outex12

hand-engineered (LBP) 97.9 99.2 87.2
CNN baseline (ResNet50) 85.1±1.5 99.8±0.2 87.7±1.4

CoaT-Li-Mi 82.6±0.7 99.4±0.2 84.4±0.6
CoaT-Mi 85.1±0.9 99.3±0.2 88.1±0.9

MobileViT-S 70.1±0.4 87.4±3.7 62.0±3.0
MobileViTv2 69.3±0.9 95.8±2.2 69.5±0.8

EfficientFormer-L1 86.0±0.1 99.8±0.3 86.4±0.4

EfficientFormer-L3 91.3±0.7 100±0.0 92.1±0.7
ViT-B/16-DINO 93.5±1.3 100±0.0 94.0±1.1

DeiT-B/16 91.9±0.6 99.9±0.1 92.5±0.7
DeiT3-B/16 86.1±1.3 99.9±0.1 88.0±1.6

ViT-B/16-SAM 90.9±1.2 100±0.0 91.8±0.8
CrossViT-B 87.4±1.5 99.2±0.3 89.1±1.5
ConViT-B 86.8±0.2 100±0.0 88.8±0.2
GC ViT-B 92.5±0.7 99.9±0.1 91.8±0.7
MViTv2-B 91.2±0.6 99.7±0.1 92.3±0.4
CaiT-S24 91.3±0.9 99.9±0.2 91.5±0.8

XCiT-M24/16 87.7±0.1 99.0±0.5 89.7±0.6

CNN baseline (ResNet50 IN-21k) 96.9±1.1 99.5±0.3 96.9±1.1
ViT-B/16 (IN-21k) 98.4±0.5 99.8±0.2 97.2±0.5

DeiT3-B/16 (IN-21k) 84.1±1.3 99.6±0.0 85.7±1.0
BeiT-B/16 (IN-21k) 98.4±0.4 100±0.0 97.8±0.3

BeiTv2-B/16 (IN-21k) 96.5±0.3 100±0.0 97.1±0.3
Swin-B (IN-21k) 97.8±0.6 100±0.0 97.0±0.3

On the Outex10 dataset, ResNet50 is outperformed by the majority of the ViTs, which
was expected given the limitation of CNNs regarding global patterns and long-range de-
pendencies, which are crucial for analyzing rotated texture images (see examples from this
dataset in Figure 3a). On the other hand, only two ViT models additionally outperformed
the hand-engineered baselines, namely ViT-B/16 (IN-21k) and BeiT-B/16 (IN-21k). These
results reflect the data-hungry aspects of ViTs, where IN-1k pre-training does not suffice to
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achieve better rotation robustness than classical methods such as LBP. Additionally, they
also show that ResNet50 is not able to outperform the hand-engineered baseline (LBP) even
when using IN-21k pre-training, highlighting a rotation robustness deficit of ImageNet
pre-trained models when dealing with controlled images (or homogeneous texture images).

On the Outex11 and Outex12 datasets, the majority of the ViTs outperform both the
hand-engineered and CNN baselines, except for the mobile ViTs. Many of the base-sized
ViTs exhibit a high robustness (above 99.5% accuracy) to the changes in texture scales that
are present in Outex11. As for Outex12, which contains illumination changes and is a
harder task for the baselines, many ViTs also outperform them. In this sense, this result
shows that pre-trained ViTs (of base size) using either IN-1k or IN-21k pre-training achieve
a strong scale and illumination robustness compared to the baselines. Some small ViTs,
such as CoaT-Mi and EfficientFormer-L1, may also be viable in this scenario given their
lower computational budgets, even though they do not surpass the baseline performance
in all cases. Particularly, it is worth highlighting the robustness to illumination changes of
ViT models with IN-21k pre-training specifically (except DeiT-B/16), which outperform the
baselines and IN-1k pre-training with a considerable margin.

It is also worth pointing to the degraded performance of some models in this first
evaluation step, especially MobileViT-S and Deit-B/16. This is related to their higher sensi-
tivity to rotation, scale, and illumination changes in textures. However, the representation
obtained from the last transformer layer may not be ideal for this application (homogeneous
textures), considering the complexity of these features. In this sense, multi-depth feature
engineering and aggregation may be necessary for improving the ViTs in these cases to
benefit from earlier features, as has been performed with pre-trained CNNs when applied
to texture analysis [26].

4.2.2. Complex and In-the-Wild Texture Recognition

The second evaluation step focuses on texture recognition datasets representing more
challenging scenarios. The datasets may contain variations in rotation, scale, and illumina-
tion like the previous datasets, but the classification tasks become harder due to a series of
other factors. We consider five datasets: Outex13 (color textures), Outex14 (color textures
with illumination changes), DTD (texture attributes in the wild), FMD (materials in the
wild), and KTH-TIPS2-b (materials under several conditions). The results for all ViTs and
baselines are shown in Table 3. In this comparison, we also include recent literature meth-
ods that are based on mathematical models and CNN backbones: RADAM (ResNet50) [26],
Multilevel Pooling [68], DTPNet [69], and Fractal Pooling [70].

The results for the Outex13 and Outex14 datasets, which evaluate the ability to deal
with color textures, show that while many ViTs can outperform ResNet50 and RADAM,
just a few of them outperform the hand-engineered baselines. For instance, on Outex13
no neural network was able to surpass the results obtained with a 3-D RGB histogram
(from ref.[65]), which is a considerably simpler method. As for Outex14, which focuses
specifically on illumination changes in color textures, the following methods outperform
both baselines: ViT-B/16-DINO and DeiT3 on IN-1k and using IN-21k pre-training with
ViT-B/16, DeiT3-B/16, and BeiTv2-B/16. Furthermore, we highlight the results of ViT-
B/16-DINO, which achieves the highest performance among the ViTs on these two datasets
and represents a considerable improvement on Outex14 (78.4% versus 69% from LBP). In
conclusion, although hand-engineered baselines are strong candidates for characterizing
color textures, some architectures and improved pre-training approaches for ViTs may be
better in some cases.



J. Imaging 2025, 11, 304 16 of 26

Table 3. Average classification accuracy considering more challenging texture recognition tasks
involving color, different materials, and patterns collected “in the wild”. The hand-engineered
results for Outex are from ref.[65], using a 3-D RGB histogram (Outex13) and LBP (Outex14). The
hand-engineered results for DTD and FMD, based on the IFV method, are from ref.[25], and the KTH
results using LBP are from ref.[67]. Methods marked with * have their results taken from the original
paper, while dashes (–) indicate unavailable results for those datasets. Bold type indicates results
above the hand-engineered baseline results, and blue indicates results above the CNN baseline results
(according to pre-training).

Method Outex13 Outex14 DTD FMD KTH-2-b

hand-engineered (LBP) 94.7 69.0 61.2 58.2 84.0
CNN baseline (ResNet50) 87.6±2.2 54.4±0.7 69.2±2.9 81.8±3.9 84.6±1.3
RADAM (ResNet50) * [26] 90.7±2.6 63.6±0.6 73.1±3.0 81.3±6.5 86.8±1.4
Multilevel Pooling * [68] – – 83.1±0.3 – 93.4±3.6

DTPNet * [69] – – 73.5±0.4 87.8±1.3 88.5±1.6
Fractal Pooling * [70] – – – 89.3 91.2

ViT model

CoaT-Li-Mi 85.8±3.3 60.6±2.2 66.3±4.0 79.9±5.7 88.0±2.6
CoaT-Mi 85.0±2.4 57.7±2.8 64.0±2.2 79.6±4.5 84.5±2.8

MobileViT-S 85.0±1.8 23.6±0.8 19.4±2.6 27.1±4.1 56.8±1.7
MobileViTv2 74.4±2.6 31.6±3.9 18.0±1.2 25.2±3.2 58.3±3.1

EfficientFormer-L1 90.0±2.4 64.6±1.5 70.0±2.6 83.4±3.7 86.9±1.7

EfficientFormer-L3 89.6±2.1 64.2±1.4 70.7±3.1 83.9±4.1 86.2±1.0
ViT-B/16-DINO 94.2±1.3 78.4±0.9 74.0±2.2 85.2±3.8 88.6±1.0

DeiT-B/16 90.8±2.5 65.8±1.2 67.2±5.4 79.9±7.6 87.4±1.7
DeiT3-B/16 87.9±3.1 70.0±3.9 67.2±4.4 83.2±4.4 86.1±3.1

ViT-B/16-SAM 92.6±1.8 65.6±1.2 65.5±4.2 77.7±4.9 80.8±1.5
CrossViT-B 88.8±2.9 63.6±3.1 63.6±5.4 77.5±5.4 87.9±2.4
ConViT-B 89.5±2.5 67.9±2.2 66.8±5.4 80.6±9.9 86.1±1.8
GC ViT-B 89.9±2.8 67.4±3.0 70.1±4.6 85.6±5.6 82.1±2.5
MViTv2-B 87.4±3.4 65.3±1.7 69.1±4.5 83.3±4.5 87.1±1.5
CaiT-S24 90.4±3.0 67.1±1.6 68.3±3.0 82.6±5.0 88.1±1.7

XCiT-M24/16 88.7±3.4 62.3±1.0 62.2±5.3 78.4±5.8 86.4±2.8
ViT-SO400M/16-SigLIP2 89.7±2.2 49.9±3.4 61.0±5.7 55.3±8.9 81.8±2.0

SHViT-S4 85.8±2.3 60.3±2.9 63.5±4.8 76.5±6.5 84.7±2.9
Next-ViT-L 91.2±2.4 64.0±1.5 72.6±3.8 84.6±5.9 84.4±1.3
NaFlexViT-B 90.7±2.7 66.1±1.4 65.9±5.4 76.4±7.6 85.3±1.3

CNN baseline (ResNet50 IN-21k) 90.5±1.3 66.3±0.5 74.0±1.9 86.1±4.1 84.7±0.4
ViT-B/16 (IN-21k) 92.2±2.4 71.0±3.1 71.0±3.6 82.3±6.0 86.5±1.3

DeiT3-B/16 (IN-21k) 88.8±3.2 71.6±3.2 70.1±3.9 83.9±4.9 89.3±1.2
BeiT-B/16 (IN-21k) 89.0±1.5 43.3±1.5 47.9±4.4 60.0±9.3 78.6±1.9

BeiTv2-B/16 (IN-21k) 91.6±1.8 73.3±1.1 79.1±2.8 90.9±4.6 93.7±1.2
Swin-B (IN-21k) 89.8±2.5 68.6±1.3 78.6±2.9 90.5±5.4 88.4±1.0

DTD and FMD are datasets with texture images obtained in the wild (from the Internet).
In this case, the texture recognition task is considerably more challenging, since models have
to deal with a wide variety of scenarios, noise, multiple objects, conditions, backgrounds,
etc. In this sense, the models need to deal not only with texture recognition but also
with object detection. In these cases, hand-engineered methods struggle in comparison
to neural networks, as their performance shows. Nevertheless, the hand-engineered
baseline can outperform or perform similarly to some of the compared ViTs, especially
some small/mobile architectures. In general, most of the base-sized ViTs outperform the
hand-engineered baseline, and some of them are also able to outperform ResNet50. When
compared to other recent methods from the literature, many base-sized ViTs also achieve
superior results, outperforming models such as DTPNet, Fractal Pooling, and RADAM.
The only exception is Multilevel Pooling, which achieves the highest accuracy on the
DTD dataset. We again point to models with IN-21k pre-training, where the gains can be
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expressive. For these tasks, we highlight EfficientFormer as a strong small-scale architecture
and BeiTv2 and Swin as the best-performing alternatives.

The last dataset analyzed here is KTH-TIPS2-b. Compared to the previous ones,
this dataset has different properties that deserve special attention. Firstly, the images are
collected in a controlled setting, and textures cover all their area (see Figure 3h). The textures
contain several variations such as scale, view angle, and illumination condition. This means
that there is no need for background removal, object detection, and similar skills at which
deep learning models excel, and the goal is solely to discriminate the target textures. In
this sense, this dataset combines various transformations analyzed before and is crucial for
comparing the capabilities of different approaches. The results show that most methods
obtain a similar classification accuracy in the range 84% to 89%. However, most of the ViTs
outperform the hand-engineered and CNN baselines. The literature approaches Multilevel
Pooling and Fractal Pooling achieved competitive accuracies, but their performance was
inferior to the BeiTv2-B/16 (IN-21k) model. This reflects their potential for texture analysis,
corroborating that some ViTs can be powerful alternatives for hand-engineered methods
and CNNs.

Another important aspect is the differences in architectural design and training sched-
ules among the ViTs. Although most models are considerably similar to the standard ViT
in terms of architecture, some differences such as different embedding approaches or self-
attention mechanisms may be related to their performance in texture recognition. Moreover,
the way the models are pre-trained may also be critical. Firstly, we observe that models
with patch embedding tend to perform generally better than convolutional embeddings.
This may be related to the fact that most mobile ViTs use convolutional embeddings, which
is understandable considering their focus on a lower computational budget. However,
EfficientFormer is situated among the mobile models but uses patch embedding and gen-
erally achieves a considerably higher performance than the other mobile variants, which
supports our claim about the superiority of patch embeddings for texture recognition. In
terms of the architecture, we note that although the common ViT-B architecture performs
well, some variants with different mechanisms such as the Swin transformer (which uses
shifted windows) achieve a superior performance.

Considering the pre-training differences among the ViTs, aside from the obvious
difference between IN-1k and IN-21k, we note that self-supervised approaches (DINO and
BeiT) generally perform better than supervised approaches. However, the DINO approach
works considerably better with the basic ViT-B architecture than with the XCiT architecture,
suggesting that feature channel attention may not be ideal for textures compared to token
attention. BeiT, another self-supervised approach that employs masked image modeling,
is among the best methods for homogeneous texture images and basic transformations
but struggles with more complex and in-the-wild texture images. Nevertheless, this seems
to have improved for BeiTv2, which enhanced masked image modeling from the pixel to
the semantic level, making it perform on par with the best methods and also have the best
performance for complex and in-the-wild textures.

4.3. Efciency Analysis

Performance is not the only desirable trait of CV models. Indeed, efficiency is another
strong aspect, especially when considering low-cost hardware or mobile devices. Therefore,
in this section, we discuss the efficiency of the ViTs in terms of feature extraction cost.
We removed MobileViT-S and MobileViTv2 from this analysis for better visualization,
considering their degraded performance observed in the previous experiments.
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4.3.1. Computational Complexity

The computational cost of neural networks or other machine learning models can be
estimated using a variety of properties. We consider three measurements that are commonly
employed in the deep learning and computer vision literature: the number of floating
point operations (FLOPs), the number of parameters, and the number of features (feature
vector size). The combination of these measurements provides a consistent estimation of
the feature extraction cost for the ViTs under comparison. For instance, the number of
FLOPs estimates the processing time, the number of parameters estimates the memory
consumption, and the number of features shows the size needed to encode the images
(feature dimensionality) as well as the cost of using these features for pattern recognition
(classification, regression, etc.). Figure 4 shows the results of this analysis, where we
consider the correlation between the cost measurements and the average performance in
the texture recognition tasks.

(a)

(b)

Figure 4. Efficiency analysis of ViT variants compared to hand-engineered and CNN baselines, where
accuracy represents the average accuracy over the corresponding datasets and classifiers considered
(KNN, LDA, and SVM). The yellow line with the smaller dots represents ResNet50 with IN-21k
pre-training. (a) Average accuracy on Outex 10, 11, and 12. (b) Average accuracy on Outex13, 14,
DTD, FMD, and KTH-2-b.

Figure 4a considers the average performance on the first three datasets (Outex 10,
11, and 12, see also Table 2). These results indicate the correlation between cost and
robustness to rotation, scale, and illumination. The few ViTs that outperform the baselines
have a significantly higher computational cost, except in terms of number of features,
where ViTs use a smaller image representation than ResNet50. The best alternative is the
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EfficientFormer-L3, but this ViT variant is outperformed by ResNet50 with IN-21k pre-
training. This situation may change with stronger pre-training of mobile or other smaller
ViT variants to improve their robustness.

Figure 4b focuses on datasets representing a more challenging scenario (Outex13 and
14, DTD, FMD, and KTH-2-b, see also Table 3). In general, ViTs performs better on these
more complex tasks, but the highest performance achieved by the bigger variants comes
with a considerably higher computational budget than that of ResNet50. Nevertheless,
the EfficientFormers and Coat-Li-Mi architectures arise as powerful alternatives in this
scenario, offering a balance between efficiency and performance compared to the baselines.

4.3.2. Feature Extraction Running Time

In practice, the computational budget of deep neural networks may also depend on the
quality of implementation, code optimization, hardware, etc. In this sense, we performed
an additional experiment to measure the real running time of each ViT when used for
feature extraction on one or more images (batches), also referred to as model throughput
(images processed per second). We consider running the models using either CPU or GPU
processing and also by varying the batch size (1, 8, or 16). The results for this experiment
are shown in Table 4. For each case (cell of the table), we run 100 repetitions and compute
the average and standard deviation of the processing times.

Table 4. Throughput (images per second, the higher the better) of models performing feature
extraction (average of 100 repetitions) using batches of 224 × 224 RGB images, performed on a
machine with a GTX 1080ti, Intel Core i7-7820X 3.60 GHz processor, and 64GB of RAM. Cells in blue
represent methods with a throughput higher than ResNet50 (CNN baseline) in the respective column.

Batch Size (CPU) Batch Size (GPU)
Model 1 8 16 1 8 16

CNN baseline (ResNet50) 44.59±5.35 113.12±9.86 42.52±1.23 158.43±3.30 1226.90±22.17 2494.15±44.70

CoaT-Li-Mi 48.06±2.16 141.89±11.35 58.60±2.01 208.83±8.53 672.77±24.71 1352.99±24.88
CoaT-Mi 15.83±0.66 47.09±2.23 21.84±0.51 68.65±1.22 180.24±4.01 109.42±0.21

MobileViT-S 49.39±3.10 128.42±7.43 43.46±1.73 146.92±3.10 1193.77±23.76 2375.24±53.52
MobileViTv2 52.90±3.19 148.75±7.44 49.31±1.39 122.57±2.11 974.70±15.99 1854.68±32.93

EfficientFormer-L1 67.88±6.27 218.89±21.47 83.22±2.40 169.66±6.63 1323.82±30.80 2628.99±90.08
EfficientFormer-L3 33.34±2.05 97.24±4.97 37.02±1.21 105.00±3.46 812.24±14.43 1646.44±36.23

ViT-B/16 20.38±1.47 46.34±2.26 21.99±0.91 302.58±11.11 2315.91±56.24 4937.86±111.52
DeiT-B/16 20.26±1.58 46.10±2.25 21.45±0.77 311.27±13.23 2324.72±46.65 4979.28±104.35
DeiT3-B/16 19.99±1.61 46.16±2.15 20.13±0.62 286.87±17.90 2154.10±38.75 4586.07±95.42
CrossViT-B 13.11±1.28 35.30±1.41 15.55±0.33 157.73±5.22 1173.96±28.97 2459.55±50.21
ConViT-B 14.71±0.98 32.49±1.08 14.75±0.22 190.96±2.42 1448.37±17.13 3189.61±278.31
GC ViT-B 10.03±0.73 25.64±0.92 11.44±0.70 65.99±3.16 236.71±4.92 104.65±0.82
MViTv2-B 13.30±0.51 39.50±1.34 17.48±0.28 50.38±0.74 185.04±0.42 106.18±0.19
CaiT-S24 17.69±1.06 46.14±1.76 23.60±0.51 108.59±3.86 461.23±11.32 182.48±0.56

XCiT-M24/16 12.71±0.68 35.53±0.92 18.59±0.33 74.12±1.75 240.27±4.87 133.77±1.06
BeiT-B/16 17.99±1.05 44.27±1.74 20.48±0.31 235.56±7.69 1750.17±32.89 3753.43±52.67

BeiTv2-B/16 18.51±0.33 45.70±0.13 20.53±0.11 233.99±4.65 1786.92±19.56 3740.98±48.88
Swin-B 11.41±0.13 30.74±0.07 16.64±0.14 104.62±1.26 819.50±10.15 292.53±5.43

We observe that the ViT throughput, in practice, is more nuanced than their perfor-
mance or estimated cost. Firstly, it is important to stress that the throughput decreases
when increasing the batch size from 8 to 16 on the CPU due to the fact that this is an
8-core/16-thread processor. The results also show that mobile or low-cost architectures
are generally faster than the CNN baseline (ResNet50) when running on the CPU, while
the situation changes on the GPU, where only the EfficientFormer-L1 outperforms it. On
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the other hand, considering the larger ViTs, none of them are faster than ResNet50 on the
CPU, while some of them can be up to two times faster than the CNN on the GPU. We
highlight the ViT-B and DeiT architectures (which are similar but have different codes),
which achieve the highest throughputs while running on the GPU.

The nuances in efficiency can be explained by the inherent differences between CNNs
and ViTs. Although having a quadratic cost, the self-attention mechanism is highly compat-
ible with parallel processing hardware like GPUs and TPUs, processing images globally in
a single pass compared to the more local and sequential processing of CNNs. Additionally,
ViTs have more regular memory access patterns, potentially reducing overheads for spatial
invariance and benefiting from adaptive computation. While these advantages can lead
to shorter processing times for ViTs, it is important to notice that the type and number of
CPUs and GPUs, as well as their memory size, can greatly impact the efficiency of both
ViTs and CNNs.

4.4. Attention Maps

To better understand the previously observed performance variation for different
ViT pre-trainings, we compute the attention scores for ViT-B/16 using either supervised
IN-21k or self-supervised (DINO) IN-1k pre-training. The results are shown in Figure 5 for
three texture images. The scores are obtained as the average of the output of the softmax
operation of a transformer block (layer) in the architecture (see Equation (1)), given an input
image. In this sense, for the last layer l we obtain the attention matrix Al ∈ R(n+1)×(n+1)×s

as the output of the softmax of the self-attention mechanism, where s is the number of
attention heads. This matrix is then averaged over all attention heads:

Aµ(a, b) =
1
s

s

∑
z=1

Al(a, b, z) . (4)

From Aµ ∈ R(n+1)×(n+1) we first obtain the scores corresponding to the class token
(first row excluding its first element) and then reshape it according to the number of patches
(n), resulting in a

√
n×√

n matrix. This matrix represents the average attention scores for
each token (patch) used on the transformer input. It is then scaled up according to the input
image dimensions w× h (this is the original resolution, not the 224 × 224 transformation)
so that the patches match the original image area. These scores are then used as a mask
over the input image for a qualitative analysis of the self-attention operation.

As shown in Figure 5, we selected three different images with similar aspects to
better understand the attention mechanism of the different ViTs on textures. The first
image contains a wooden statue (labeled as wood), while having a cloudy background.
The second image is composed of glass objects (the desired texture), while also having
a background with wood texture. The third image does not contain a background and
represents only the target texture (wood), which we consider homogeneous here because it
lacks background elements or overlapping objects, even though it shows natural grain and
pattern variations. While both models can focus on the wooden statue in the first image
(with only small differences), the situation is different for the others. The DINO model
can effectively focus on the glass texture in the second image but focuses on the wood
defects of the last image, which may harm the characterization. On the other hand, ViT
with IN-21k pre-training was not able to focus on the glass texture and the attention seems
to collapse on the wooden background, but it exhibits a more coherent attention map for
the homogeneous wood texture in the last image. This behavior may explain the differences
observed between these models in some texture recognition tasks. For instance, IN-21k pre-
training achieves a better performance in some cases with homogeneous textures (Outex10
and 12 datasets), while DINO IN-1k pre-training achieves a better performance on the tasks
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containing textures in the wild, i.e., with background, multiple objects, etc. (DTD, FMD,
and KTH-2-b).

(a) (b) (c)

(d)

(e)

Figure 5. Visualization of attention maps (at the last layer) of different ViT models (d,e) for texture
samples (a–c) from the FMD dataset. (a) Wood texture with cloudy background. (b) Glass texture with
wooden background. (c) Homogeneous wood texture. (d) ViT-B/16-DINO attention. (e) ViT-B/16
(IN-21k) attention.

5. Discussion
The comparative analysis conducted in this study highlights how different ViT archi-

tectures respond to the challenges posed by texture datasets, offering insights beyond raw
performance metrics. One of the most consistent findings is that model pre-training plays
a crucial role in downstream texture classification. ViTs pre-trained on large and diverse
datasets (e.g., IN-21k) or through self-supervised methods (e.g., DINO and BeiT) exhibit
markedly superior generalization, even when features are extracted without fine-tuning.

Interestingly, the observed performance gains on complex datasets like DTD and
FMD suggest that ViTs are particularly adept at modeling high-level visual semantics
and capturing global dependencies, key advantages in natural textures with large intra-
class variability and cluttered backgrounds. However, their performance is not universally
superior: in rotation- and illumination-sensitive datasets such as Outex10, classical methods
and well-established CNNs still show strong results. This reinforces the idea that ViTs,
while powerful, lack the local spatial inductive biases needed for certain low-level texture
properties unless structurally compensated (e.g., via hierarchical or hybrid architectures
like Swin).

Another important observation relates to model scalability. Larger ViTs (e.g., ViT-
B/16, Swin-B, and BeiTv2-B/16) tend to dominate across datasets, but efficient models like
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EfficientFormer-L3 offer a favorable trade-off between inference speed, memory footprint,
and accuracy, especially in resource-constrained scenarios. However, smaller mobile-
oriented models (e.g., MobileViT and DeiT-Ti) show limited capacity for discriminating
fine-grained texture patterns, especially when pre-training is limited.

In practical terms, the results underline that no single model is universally optimal.
Task-specific factors, such as dataset characteristics, hardware constraints, and the presence
of noise or transformations, should guide model selection. These findings also support
further exploration of hybrid strategies that combine ViTs with CNN-like inductive biases
or handcrafted descriptors, especially for scenarios where robustness to physical variation
is critical.

Finally, the diversity of architectural variants benchmarked in this study highlights
the evolving landscape of ViTs, revealing that future improvements might be based not
only on scale and data but also on architectural innovation that bridges semantic reasoning
with spatial sensitivity, which are both essential in texture understanding.

6. Conclusions
In this work, we explored several aspects of pre-trained ViTs, also known as foundation

models, when employed directly for texture analysis by using their class embeddings
as image representations. Our analysis shows that ViTs, with their unique architecture
and self-attention mechanisms, may provide significant improvements over traditional
CNNs and hand-engineered methods in texture recognition tasks. Therefore, the results
shed light on the paradigm shift in feature extraction methods in CV. Our experiments
compare the features extracted with a variety of ViTs (25 models) for capturing complex
texture patterns, their robustness to variations in rotation, scale, and illumination, and
the differences between textures filling the whole image or textures in the wild (multiple
objects, background, etc.).

We evaluated the ViT models on eight texture recognition tasks, measured their
efficiency, analyzed attention maps, and tested three different linear classifiers as their
classification heads. ViTs, through their self-attention mechanism, offer a more global per-
spective of the image data, unlike the local view provided by CNNs, which is an important
aspect for texture analysis. We observe that patch embedding and self-supervised learning
are important elements to achieve performant texture discrimination. For instance, BeiTv2
and ViT-B/16-DINO demonstrate remarkable performance in general, outperforming
other methods, such as ResNet50, with a considerable margin for some tasks. Our results
highlight that these models and other ViTs variants can outperform the hand-engineered
baselines, ResNet50, and recent methods under IN-1k or IN-21k pre-training regimes. These
results corroborate the paradigm shift from CNNs to ViTs seen recently in other CV areas.
However, the computation cost of some ViTs may still be a drawback. Some mobile ViT
variants may strike a balance between cost and performance, such as the EfficientFormer,
as shown by our efficiency analysis. On the other hand, we also show that the inference
throughput (i.e., images processed per second) of larger ViTs, in practice, can be superior
to ResNets on GPUs, which may be related to transformer mechanisms that are more
parallelizable and/or better code optimization.

Although showing promising results, our analyses also indicate a need for new tech-
niques and evaluation of more aspects of transformers regarding textures. Exploring the
impacts of different embedding sizes, image resolutions, and model depths will help consol-
idate their utility in texture analysis. Another aspect is the need for optimized ViT models
that balance performance with computational efficiency, making them more accessible for
real-world applications. Nevertheless, ViTs emerge as powerful candidates in texture anal-
ysis, offering new perspectives and capabilities and corroborating their groundbreaking
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results in other CV areas. New feature aggregation techniques specifically designed for
ViTs and texture may significantly improve the SOTA of texture analysis. Furthermore, as
ViTs continue to evolve, they hold the promise of impacting various industries and tasks
that rely on texture recognition models.

As a future research direction, understanding how deep models such as ViTs capture
and represent texture-specific patterns across different layers could provide valuable in-
sights into their decision-making processes. Another key direction involves the expansion
and enrichment of texture datasets. Most existing datasets are either limited in scale, lack
diversity in texture types and contexts, or are constrained to controlled environments.
Developing new large-scale, in-the-wild texture datasets with richer annotations (e.g., se-
mantic labels, hierarchical categories, or physical properties) would allow for more robust
training and enhance the generalization capability of deep models. Advancing in these di-
rections will help bridge the gap between academic benchmarks and practical deployment
in real-world texture-related applications.
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