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1. Preliminaries

The proof of Theorem 6 in [3] was based on a classification by M.A. Fasoli [1] of
maximal vector subspaces of My(C) consisting entirely of nilpotent matrices. That clas-
sification turned out to be incomplete, and a complete version has recently been obtained
in [2]. This complete classification includes an additional subspace

0 0 O

Cr; = 0 0 z 0 z,y,z € C 3,
Yy oz 0 =
0 —y —2 O

which was not described in Fasoli’s work. This case was not treated in [3], and its
consideration is necessary for the completeness of the proof of Theorem 6.

Let A be a commutative power-associative nilalgebra over the complex field. For
a€ A let L, : A— A denote the left multiplication operator defined by L,(z) = ax for
all x € A. As shown in [3], for every positive integer r,

3Lgrt> = 8Lgrt1Lg — Lar Ly> — 2Lar L2 + 4L 42 Lyr

(1)
— 2Ly Lgr+1 —2LLgr Ly — 2L2 Ly

Theorem 6. Let A be a commutative power-associative nilalgebra over the complex field
with dimension n > 9 and nilindex n — 3. Take a € A an element of maximal nilindez,
that is a"~* # 0. If M is the subalgebra of A generated by the element a, then there
exists a proper subalgebra B of A containing properly M.

First, we recall some notations and results from [3], that will be used in the proof of
this case. For each b € A, we write b = b+ M for the coset of b in the quotient space
A/M. For a matrix A, we denote by Al[i, j] its (4, j)-entry. If b € A satisfies bM C M,
we define the induced linear operator

Ly: A/M — A/M, Ly(x+ M) =bx+ M for all z € A.

Let ® = (wy, Wy, Ws, W) be a fixed basis of A/M, and let V denote the set of matrix
representations of all operators in My, = {L, : = € A, xM C M} with respect to the
basis ®. For each k € {1,2,...,n —4}, let Ay be the matrix of L.« in this basis. Since a
may be replaced by an element of the form

n—4

b= Ma®, (M #0),
k=1

and M remains the subalgebra of A generated by b, we may assume that the following
property holds for all 4,5 € {1,2,3,4}:
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If Aq[é,5] =0, then Ag[i,j] =0 for all k£ > 2. (2)
We now treat the case that was omitted in [3].
Completion of the proof of theorem. Case 6. Suppose that, up to conjugacy, the space

V' is contained in C7. By replacing ¢ with a suitable basis if necessary, we may assume
that

v g C7 = {T7(047ﬁa’}/) : aa,}ﬂﬁ € (C}7

where

T7(Oé,ﬁ7’7) =

[ heRelen}
o2 OO

There exist scalars «;, 5;,7; € C such that
Ay =Tr(on, B1,m), Az =Tr(az, B2, 72)
From equation (1) with » = 1, we obtain
Ay = 4A3A; — A1 Ay — 2(A))?

whose (1,4)-entry equals —2v3. Because Az € V, the (1, 4)-entry must be zero; therefore,
~v1 = 0. By property (2), it follows that v5 = 0 as well. Applying relation (1) for r = 1,2

yields
0 0 00 0 0 00
A= o ool A= 0 o 0o
a1fBs —4asf; —3aiaz 0 0 —anfs —a% 0 0
Since both A3 and A4 belong to V', we must have
A3 =0, Ay =0. (3)

Using (3), together with relation (1) and an inductive argument, we obtain that Ay =0
for all k£ > 3. This means that M3A C M. On the other hand, relation (3) immediately
yields g = 0 and a3 82 = 0. Consequently,

0 0 0 0 0 0 0 0

0 0 0 0 {0 0o o0 o0 B
A = B ay 0 ol Ay = Bs 0 0o o0l o132 = 0.

0 —ﬂl —Q 0 0 —ﬁg 0 0
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Since a1 82 = 0, we deduce that either ai; = 0 or B3 = 0. We analyze each case separately.

Case 6.1: aq = 0. In this situation we have wsM C M and wyM C M. Let T7(o/, 8',7)
and T (o, 3”,7") denote the matrices of L., and L,,, respectively, with respect to the
basis ®. Then

w3 + M = Ly, (W04) = wawg + M = Ly, (W03) = 7wy — o wy + M.
Therefore, v = 0. It follows that
0+ M = Ly, (W04) = wi + M,

so that wj € M. Hence B = M @ Cuwy is a subalgebra of A that properly contains M,
as required.

Case 6.2: a1 # 0 and hence By = 0. In this case we have Ay = 0, and consequently
M2A C M. Let w = aw; — oy Biwe + Biws. Then wM C M and wyM C M. Let
T7(a/,3,7') and T(a',3",~") denote the matrices of L,, and L,,, respectively, with
respect to the basis ®. We then obtain the relation

Y'Ws = Ly (W1) = wws + M = Ly, (W)
= ", 17 + ' Bwg + (8" oq — ' 1)z + (8" ay — o' By) frws.

This forces the condition
7/,61 — O

If v/ =0, then B = M @ Cwy is a subalgebra of A that properly contains M.
If 4" # 0, then necessarily ; = 0. Hence w = a2w1, and since a; # 0, we obtain
wiM C M. In the basis ¢, we have

0 0 0 0 0 ~" 0 0
— 0 0 0 0 — 0 0 " 0
[La] = Al = 0 o 0 K [LwA 5// o 0 ,Y//
0 0 —a; O 0 -pB" =" 0
Moreover,

—3
(wa)* = L, (ws) = (7")’w1 — (v")?B"ws = (v")*(v""w1 — 8"ws) mod M,
(wa)*M € (v")2(Y'w1 — B"ws) M + M? C wiM +wyM + M = M,
-7
(w4)4 . (w4)4 = (w4)8 = L,,(ws) =0 mod M, so (w4)4 . (w4)4 € M.

Therefore, B = M @ C (w4)* is a subalgebra of A that properly contains M, as required.
This completes the proof of the theorem. 0O
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