

Contents lists available at [ScienceDirect](#)

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa



Corrigendum

Corrigendum to “Nilpotent linear spaces and Albert’s Problem” [Linear Algebra Appl. 518 (2017) 57–78]

Juan C. Gutierrez Fernandez ^{a,*}, E.O. Quintero Vanegas ^b

^a Institute of Mathematics and Statistics, Universidade de São Paulo, São Paulo, Brazil

^b Department of Mathematics, Universidade Federal do Amazonas (UFAM), Manaus, Brazil

ARTICLE INFO

Article history:

Received 15 September 2025

Received in revised form 9 October 2025

Accepted 11 October 2025

Available online 28 October 2025

Submitted by C. de Seguins Pazzis

MSC:

17A05

17A30

15A04

ABSTRACT

In our article Nilpotent Linear Spaces and Albert’s Problem [Linear Algebra Appl. 518 (2017) 57–78], the proof of Theorem 6 was incomplete, as a case was omitted. Here we supply the missing argument. The statement of Theorem 6, and all subsequent results depending on it, remain valid.

© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Keywords:

Nilpotent linear space

Nilalgebra

Albert’s Problem

Power-associative

DOI of original article: <https://doi.org/10.1016/j.laa.2016.12.026>.

* Corresponding author.

E-mail address: jcgf@ime.usp.br (J.C. Gutierrez Fernandez).

1. Preliminaries

The proof of Theorem 6 in [3] was based on a classification by M.A. Fasoli [1] of maximal vector subspaces of $M_4(\mathbb{C})$ consisting entirely of nilpotent matrices. That classification turned out to be incomplete, and a complete version has recently been obtained in [2]. This complete classification includes an additional subspace

$$\mathcal{C}_7 = \left\{ \begin{bmatrix} 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ y & z & 0 & x \\ 0 & -y & -z & 0 \end{bmatrix} : x, y, z \in \mathbb{C} \right\},$$

which was not described in Fasoli's work. This case was not treated in [3], and its consideration is necessary for the completeness of the proof of Theorem 6.

Let \mathcal{A} be a commutative power-associative nilalgebra over the complex field. For $a \in \mathcal{A}$, let $L_a : \mathcal{A} \rightarrow \mathcal{A}$ denote the left multiplication operator defined by $L_a(x) = ax$ for all $x \in \mathcal{A}$. As shown in [3], for every positive integer r ,

$$\begin{aligned} 3L_{a^{r+2}} &= 8L_{a^{r+1}}L_a - L_{a^r}L_{a^2} - 2L_{a^r}L_a^2 + 4L_{a^2}L_{a^r} \\ &\quad - 2L_aL_{a^{r+1}} - 2L_aL_{a^r}L_a - 2L_a^2L_{a^r}. \end{aligned} \tag{1}$$

Theorem 6. *Let \mathcal{A} be a commutative power-associative nilalgebra over the complex field with dimension $n \geq 9$ and nilindex $n - 3$. Take $a \in \mathcal{A}$ an element of maximal nilindex, that is $a^{n-4} \neq 0$. If M is the subalgebra of \mathcal{A} generated by the element a , then there exists a proper subalgebra B of \mathcal{A} containing properly M .*

First, we recall some notations and results from [3], that will be used in the proof of this case. For each $b \in \mathcal{A}$, we write $\bar{b} = b + M$ for the coset of b in the quotient space \mathcal{A}/M . For a matrix A , we denote by $A[i, j]$ its (i, j) -entry. If $b \in \mathcal{A}$ satisfies $bM \subseteq M$, we define the induced linear operator

$$\bar{L}_b : \mathcal{A}/M \rightarrow \mathcal{A}/M, \quad \bar{L}_b(x + M) = bx + M \text{ for all } x \in \mathcal{A}.$$

Let $\Phi = (\bar{w}_1, \bar{w}_2, \bar{w}_3, \bar{w}_4)$ be a fixed basis of \mathcal{A}/M , and let V denote the set of matrix representations of all operators in $\mathcal{M}_M = \{\bar{L}_x : x \in \mathcal{A}, xM \subseteq M\}$ with respect to the basis Φ . For each $k \in \{1, 2, \dots, n-4\}$, let A_k be the matrix of \bar{L}_{a^k} in this basis. Since a may be replaced by an element of the form

$$b = \sum_{k=1}^{n-4} \lambda_k a^k, \quad (\lambda_1 \neq 0),$$

and M remains the subalgebra of \mathcal{A} generated by b , we may assume that the following property holds for all $i, j \in \{1, 2, 3, 4\}$:

If $A_1[i, j] = 0$, then $A_k[i, j] = 0$ for all $k \geq 2$. (2)

We now treat the case that was omitted in [3].

Completion of the proof of theorem. Case 6. Suppose that, up to conjugacy, the space V is contained in \mathcal{C}_7 . By replacing Φ with a suitable basis if necessary, we may assume that

$$V \subseteq \mathcal{C}_7 = \{T_7(\alpha, \beta, \gamma) : \alpha, \gamma, \beta \in \mathbb{C}\},$$

where

$$T_7(\alpha, \beta, \gamma) = \begin{pmatrix} 0 & \gamma & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ \beta & \alpha & 0 & \gamma \\ 0 & -\beta & -\alpha & 0 \end{pmatrix}.$$

There exist scalars $\alpha_i, \beta_i, \gamma_i \in \mathbb{C}$ such that

$$A_1 = T_7(\alpha_1, \beta_1, \gamma_1), \quad A_2 = T_7(\alpha_2, \beta_2, \gamma_2).$$

From equation (1) with $r = 1$, we obtain

$$A_3 = 4A_2A_1 - A_1A_2 - 2(A_1)^3$$

whose $(1, 4)$ -entry equals $-2\gamma_1^3$. Because $A_3 \in V$, the $(1, 4)$ -entry must be zero; therefore, $\gamma_1 = 0$. By property (2), it follows that $\gamma_2 = 0$ as well. Applying relation (1) for $r = 1, 2$ yields

$$A_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \alpha_1\beta_2 - 4\alpha_2\beta_1 & -3\alpha_1\alpha_2 & 0 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\alpha_2\beta_2 & -\alpha_2^2 & 0 & 0 \end{pmatrix}.$$

Since both A_3 and A_4 belong to V , we must have

$$A_3 = 0, \quad A_4 = 0. \quad (3)$$

Using (3), together with relation (1) and an inductive argument, we obtain that $A_k = 0$ for all $k \geq 3$. This means that $M^3\mathcal{A} \subseteq M$. On the other hand, relation (3) immediately yields $\alpha_2 = 0$ and $\alpha_1\beta_2 = 0$. Consequently,

$$A_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \beta_1 & \alpha_1 & 0 & 0 \\ 0 & -\beta_1 & -\alpha_1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \beta_2 & 0 & 0 & 0 \\ 0 & -\beta_2 & 0 & 0 \end{pmatrix}, \quad \alpha_1\beta_2 = 0.$$

Since $\alpha_1\beta_2 = 0$, we deduce that either $\alpha_1 = 0$ or $\beta_2 = 0$. We analyze each case separately.

Case 6.1: $\alpha_1 = 0$. In this situation we have $w_3M \subseteq M$ and $w_4M \subseteq M$. Let $T_7(\alpha', \beta', \gamma')$ and $T_7(\alpha'', \beta'', \gamma'')$ denote the matrices of \overline{L}_{w_3} and \overline{L}_{w_4} , respectively, with respect to the basis Φ . Then

$$\gamma'w_3 + M = \overline{L}_{w_3}(\overline{w}_4) = w_3w_4 + M = \overline{L}_{w_4}(\overline{w}_3) = \gamma''w_2 - \alpha''w_4 + M.$$

Therefore, $\gamma'' = 0$. It follows that

$$0 + M = \overline{L}_{w_4}(\overline{w}_4) = w_4^2 + M,$$

so that $w_4^2 \in M$. Hence $B = M \oplus \mathbb{C}w_4$ is a subalgebra of \mathcal{A} that properly contains M , as required.

Case 6.2: $\alpha_1 \neq 0$ and hence $\beta_2 = 0$. In this case we have $A_2 = 0$, and consequently $M^2\mathcal{A} \subseteq M$. Let $w = \alpha_1^2w_1 - \alpha_1\beta_1w_2 + \beta_1^2w_3$. Then $wM \subseteq M$ and $w_4M \subseteq M$. Let $T_7(\alpha', \beta', \gamma')$ and $T_7(\alpha'', \beta'', \gamma'')$ denote the matrices of \overline{L}_w and \overline{L}_{w_4} , respectively, with respect to the basis Φ . We then obtain the relation

$$\begin{aligned} \gamma'\overline{w}_3 &= \overline{L}_w(\overline{w}_4) = ww_4 + M = \overline{L}_{w_4}(\overline{w}) \\ &= -\gamma''\alpha_1\beta_1\overline{w}_1 + \gamma''\beta_1^2\overline{w}_2 + (\beta''\alpha_1 - \alpha''\beta_1)\alpha_1\overline{w}_3 + (\beta''\alpha_1 - \alpha''\beta_1)\beta_1\overline{w}_4. \end{aligned}$$

This forces the condition

$$\gamma''\beta_1 = 0.$$

If $\gamma'' = 0$, then $B = M \oplus \mathbb{C}w_4$ is a subalgebra of \mathcal{A} that properly contains M .

If $\gamma'' \neq 0$, then necessarily $\beta_1 = 0$. Hence $w = \alpha_1^2w_1$, and since $\alpha_1 \neq 0$, we obtain $w_1M \subseteq M$. In the basis Φ , we have

$$[\overline{L}_a] = A_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & \alpha_1 & 0 & 0 \\ 0 & 0 & -\alpha_1 & 0 \end{pmatrix}, \quad [\overline{L}_{w_4}] = \begin{pmatrix} 0 & \gamma'' & 0 & 0 \\ 0 & 0 & \gamma'' & 0 \\ \beta'' & \alpha'' & 0 & \gamma'' \\ 0 & -\beta'' & -\alpha'' & 0 \end{pmatrix}.$$

Moreover,

$$\begin{aligned} (w_4)^4 &\equiv \overline{L}_{w_4}^3(w_4) \equiv (\gamma'')^3w_1 - (\gamma'')^2\beta''w_4 \equiv (\gamma'')^2(\gamma''w_1 - \beta''w_4) \pmod{M}, \\ (w_4)^4M &\subseteq (\gamma'')^2(\gamma''w_1 - \beta''w_4)M + M^2 \subseteq w_1M + w_4M + M = M, \\ (w_4)^4 \cdot (w_4)^4 &= (w_4)^8 \equiv \overline{L}_{w_4}^7(\overline{w}_4) \equiv 0 \pmod{M}, \text{ so } (w_4)^4 \cdot (w_4)^4 \in M. \end{aligned}$$

Therefore, $B = M \oplus \mathbb{C}(w_4)^4$ is a subalgebra of \mathcal{A} that properly contains M , as required. This completes the proof of the theorem. \square

Declaration of competing interest

The authors declare no competing interests.

Acknowledgements

The first author was partially supported by the project 2024/14914-9, the São Paulo Research Foundation (FAPESP).

The second author was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Data availability

No data was used for the research described in the article.

References

- [1] M.A. Fasoli, Classification of nilpotent linear spaces in $M(4, \mathbb{C})$, *Commun. Algebra* 25 (6) (1997) 1919–1932.
- [2] Juan C. Gutierrez Fernandez, Claudia I. Garcia, Nilpotent linear spaces in $M_4(F)$, *Linear Multilinear Algebra* (2025), <https://doi.org/10.1080/03081087.2025.2524019> (Online).
- [3] E.O. Quintero Vanejas, Juan C. Gutierrez Fernandez, Nilpotent linear spaces and Albert's Problem, *Linear Algebra Appl.* 518 (2017) 57–78.