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This paper proposes five new imputation methods for unbalanced experiments with genotype by-environment interaction (𝐺 × 𝐸).
The methods use cross-validation by eigenvector, based on an iterative scheme with the singular value decomposition (SVD) of
a matrix. To test the methods, we performed a simulation study using three complete matrices of real data, obtained from 𝐺 × 𝐸

interaction trials of peas, cotton, and beans, and introducing lack of balance by randomly deleting in turn 10%, 20%, and 40% of
the values in each matrix.The quality of the imputations was evaluated with the additive main effects andmultiplicative interaction
model (AMMI), using the rootmean squared predictive difference (RMSPD) between the genotypes and environmental parameters
of the original data set and the set completed by imputation. The proposed methodology does not make any distributional or
structural assumptions and does not have any restrictions regarding the pattern or mechanism of missing values.

1. Introduction

In plant breeding, multienvironment trials are important
for testing the general and specific adaptations of cultivars.
A cultivar developed in different environments will show
significant fluctuations of performance in production relative
to other cultivars. These changes are influenced by different
environmental conditions and are referred to as genotype-by-
environment interactions, or𝐺×𝐸. Often,𝐺×𝐸 experiments
are unbalanced because several genotypes are not tested in
some environments. A common way of analyzing this type
of study is by imputing the missing values and then apply-
ing established procedures on the completed data matrix
(observed + imputed), for example, the additive main effects
and multiplicative interaction model—AMMI—or factorial
regression [1–5]. An alternative approximation is to work
with the incomplete data using a mixedmodel with estimates
based on maximum likelihood [6].

Several imputation methods have been suggested in the
literature to solve the problem of missing values. One of the
first was made by Freeman [7], who suggested imputing the

missing values iteratively by minimizing the residual sum of
squares and doing the 𝐺 × 𝐸 analysis on the completed table,
reducing the degrees of freedom by the number of missing
values. This work was developed by Gauch Jr. and Zobel [8],
who made the imputations using the EM algorithm and the
AMMImodel or EM-AMMI. Some variants of this procedure
using multivariate statistics (cluster analysis) were described
in Godfrey et al. [9] and Godfrey [10]. Raju [11] proposed
the EM-AMMI algorithm by treating the environments as
random and suggested applying a robust statistic to the
missing values in the stability analysis. Mandel [12] proposed
the imputation to be made in incomplete two-way tables
using linear functions of the rows (or columns). Other studies
recommended by van Eeuwijk and Kroonenberg [13] as
having good results in the case of missing values for G × 𝐸

experiments were developed byDenis [14], Caliński et al. [15],
and Denis and Baril [16]. They found that using imputations
through alternating least squares with bilinear interaction
models or AMMI estimates based on robust submodels could
give results as good as those found with the EM algorithm.
Additionally, Caliński et al. [17] introduced an algorithm
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that combines the singular value decomposition (SVD) of
a matrix with the EM algorithm, obtaining results very
useful for experiments in which the alternating least squares
have some problems, for instance, convergence failures [18].
Recently, Bergamo et al. [19] proposed a distribution-free
multiple imputationmethod that was assessed by Arciniegas-
Alarcón [20] and compared by Arciniegas-Alarcón and Dias
[21] with algorithms that use fixed effects models in a
simulation study with real data. Meanwhile, a determinis-
tic imputation method without structural or distributional
assumptions for multienvironment experiments was pro-
posed by Arciniegas-Alarcón et al. [22]. The method uses a
mixture of regression and lower-rank approximation. Finally,
other studies to analyze multienvironment experiments with
missing values can be found in the literature. For example,
methodologies for stability analysis have been studied byRaju
and Bhatia [23] and Raju et al. [24, 25]. Recently, Pereira et
al. [26], Rodrigues et al. [27], and Rodrigues [28] assessed
the robustness of joint regression analysis and AMMImodels
without the use of data imputation.

Given the historical information about data imputation
in experiments, and specifically in two-factor 𝐺 × 𝐸 exper-
iments, the objective of the present paper is to propose a
deterministic imputation algorithm without distributional
or structural assumptions, using an extension of the cross-
validation by eigenvectormethod presented by Bro et al. [29].

2. Materials and Methods

2.1. Data Imputation Using the Cross-Validation by Eigenvector
Method. The cross-validation method was presented by Bro
et al. [29] to find the optimum number of principal compo-
nents in any data set that can be arranged in a matrix form.
In this approximation, principal component analysis (PCA)
models are calculated with one or several samples left out and
the model is used to predict these samples. The method used
cross-validation “leave-one-out” and the same study showed
it to be more efficient than other well-known methodologies
used in multivariate statistics, such as those presented by
Wold [30] and Eastment and Krzanowski [31]. Because of this
finding, Arciniegas-Alarcón et al. [32] used the method to
determine the best AMMI models in (𝐺 × 𝐸) experiments.
This methodology is now presented.

Step 1. Consider the 𝑛 × 𝑝 matrix X with elements 𝑥
𝑖𝑗
, (𝑖 =

1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑝). The matrix is divided into disjoint
groups, each group is deleted in turn (leave-one-out), and a
PCAmodel (T,P) is obtained from the remainder by solving

min 󵄩󵄩󵄩󵄩󵄩
X(−𝑖) − TP𝑇󵄩󵄩󵄩󵄩󵄩

2

𝑚
(1)

with 𝑚 ≤ min(𝑛 − 1, 𝑝 − 1). Here X(−𝑖) represents the matrix
after deleting the 𝑖th group (leave-one-out), ‖ ⋅ ‖

2 defines the
squared Frobenius norm, P𝑇P = I, and T, P are scores and
loadings matrices with dimensions (𝑛 − 1) × 𝑚 and 𝑝 × 𝑚

respectively, where 𝑝 is the number of columns and 𝑚 is
the number of components. Note that, in this method the
deleted group corresponds to the 𝑖th row of X and according

to Smilde et al. [33] the model (1) can be rewritten in terms of
the singular value decomposition (SVD)

X(−𝑖) = UDV𝑇 =

𝑚

∑

𝑘=1

u
(𝑘)

𝑑
𝑘
k
(k)
𝑇
, (2)

where U = [u
1
, u
2
, . . . , u

𝑚
], V = [k

1
, k
2
, . . . , k

𝑚
], D =

diag[𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑚
], T = UD, and P = V.

Step 2. Estimate the score

t(−𝑗)𝑇 = x(−𝑗)𝑇
𝑖

P(−𝑗)(P(−𝑗)𝑇P(−𝑗))
−1

, (3)

whereP(−𝑗)𝑇 is the loadingmatrix found in Step 1 with the 𝑗th
row excluded. x(−𝑗)𝑇

𝑖
is a row vector containing the 𝑖th row of

X except for the 𝑗th element.

Step 3. Estimate the element 𝑥
𝑖𝑗
by

𝑥
(𝑚)

𝑖𝑗
= t(−𝑗)𝑇p𝑇

𝑗
, (4)

p
𝑗
is the 𝑗th row of P.

Step 4. Find the prediction error of the (𝑖𝑗)th element, 𝑒(𝑚)
𝑖𝑗

=

𝑥
𝑖𝑗

− 𝑥
(𝑚)

𝑖𝑗
.

Step 5. Obtain the criterion value

PRESS (𝑚) =

𝑛

∑

𝑖=1

𝑝

∑

𝑗=1

(𝑒
(𝑚)

𝑖𝑗
)
2

. (5)

In order to make the imputation of missing values in the
matrix from (𝐺×𝐸) experiments, a change is proposed in the
method following the work of Krzanowski [34], Bergamo et
al. [19], and Arciniegas-Alarcón et al. [22] using the singular
value decomposition of a matrix [35].

Initially, suppose that 𝑛 ≥ 𝑝 and the matrix X has
several missing values; in the case 𝑛 < 𝑝, the matrix should
first be transposed. The missing values are replaced by their
respective column means 𝑥

𝑗
, and after this has been done

the matrix is standardized by columns, subtracting 𝑥
𝑗
and

dividing by 𝑠
𝑗
(where 𝑥

𝑗
and 𝑠
𝑗
represent, resp., the mean and

the standard deviation of the jth column). The eigenvector
procedure using the SVD in expressions (2)–(4) is applied to
the standardized matrix to find the imputation of the (𝑖, 𝑗)

element, denoted by 𝑥
(𝑚)

𝑖𝑗
. After the imputation, the matrix

must be returned to its original scale, 𝑥
𝑖𝑗

= 𝑥
𝑗

+ 𝑠
𝑗
𝑥
(𝑚)

𝑖𝑗
.

At this point the matrix does not have anymissing values,
but the imputations are rather basic and need to be refined.
In the works that previously mentioned an iterative scheme
is advocated, iterations continuing until the imputations
achieve convergence (i.e., there is stability in successive
imputed values), but Caliński et al. [17] showed that this
convergence is not always necessary when using a method
that combines the EM algorithmwith SVD.Therefore, taking
this into account, we will also consider fixing in advance the
number of iterations between 0 and 3, as well as permitting
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the process to run until convergence has been achieved. As
regards to the computing effort, convergence can depend
strongly on the size of matrix analyzed and also on the data
structure (size of correlations, proportion of missing values,
etc.), but in, for instance, the SVDmethod ofHastie et al. [36],
convergence is achieved usually between 5 and 6 iterations,
and in the Bergamo et al. [19] method it is achieved in
between 20 and 50 iterations maximum.

On the other hand, the data imputation depends directly
on (2) and (3). Equation (2) needs prior choice of the number
of components (𝑚) to extract from the SVD. Krzanowski
[34] and Bergamo et al. [19] took 𝑚 = min{𝑛 − 1, 𝑝 − 1}

with the objective of using the maximum amount of available
information, but Hedderley and Wakeling [37] affirmed that
if the estimation is based on the choice of a unique fixed
number of dimensions, some of the lower dimensionsmay be
essentially random.This can influence the imputation within
an iterative scheme and can lead to the estimates becoming
trapped in a cycle, hence preventing convergence. To solve
this problem, they suggested including a test to check on
the convergence rate, and in case a specific criterion is not
being attained the number of dimensions should be reduced.
Another option that has satisfactory results, suggested by
Josse et al. [38] to choose an optimum 𝑚, is through cross-
validation based uniquely on the observed data. However, the
computational cost of this option is likely to be high.

Taking into account all the above mentioned in the
present study, for imputation of each missing value of the
matrix X the value of 𝑚 in (2) is allowed to be different in
each SVD calculated and is chosen according to the criterion
used by Arciniegas-Alarcón et al. [22].Thus,𝑚 is chosen such
that ((∑

𝑚

𝑘=1
𝑑
2

𝑘
)/(∑

min{𝑛−1,𝑝−1}
𝑘=1

𝑑
2

𝑘
)) ≈ 0.75. Moreover, in (3),

the Moore-Penrose generalized inverse can be used instead
of the classic inversematrix as was studied in cross-validation
by Dias and Krzanowski [39].

In this research, five imputation methods have been
assessed. They are denoted Eigenvector0, Eigenvector1,
Eigenvector2, Eigenvector3, and Eigenvector where the num-
ber indicates the number of iterations used while in the case
of Eigenvector the process is iterated until convergence is
achieved in the imputations.

These imputation methods are all deterministic impu-
tations, and they have the advantage over other stochastic
imputation methods (parametric multiple imputations) that
the imputed values are uniquely determined and will always
yield the same results when applied to a given data set. This
is not necessarily true for the stochastic imputation methods
[40].

2.2. The Data. To assess the imputation methods we used
three data sets, published in Caliński et al. [41, page 227],
Farias [42, page 115], and Flores et al. [43, page 274], respec-
tively. In each case the data were obtained from a randomized
complete block design with replication, and each reference
offers an excellent description of the design if further details
are required.

The first data set “Caliński” comprises an 18 × 9 matrix,
for 18 pea varieties assessed in 9 different locations in Poland.

The experiment was conducted by the Research Center for
Cultivar Testing, Slupia Wielka, and the studied variable was
mean yield (dt/ha).

The second data set “Farias” was obtained from Upland
cotton variety trials (Ensaio Estadual de Algodoeiro
Herbáceo) in the agricultural year 2000/01, part of the cotton
improvement program for the Cerrado conditions. The
experiments assessed 15 cotton cultivars in 27 locations in
the Brazilian states of Mato Grosso, Mato Grosso do Sul,
Goiás, Minas Gerais, Rondônia, Maranhão, and Piauı́. The
studied variable was yield seed cotton (kg/ha).

The third data set “Flores” is in a 15 × 12 matrix, for
15 bean varieties assessed in 12 environments in Spain. The
experiments were conducted by RAEA—Red Andaluza de
Experimentación Agraria—where the studied variable was
mean yield (kg/ha).

The three data matrices contained just the mean yield
for each genotype in each environment, but the proposed
methods work for any data set arranged in matrix form. For
example, if information about the replications is available, an
approach suggested by Bello [44] is to write the experiment in
terms of a classic linear regression model in order to obtain
the response vector and the design matrix, and then to join
them into a single matrix and apply the proposed methods in
this paper.

2.3. Simulation Study. Each original data matrix (“Caliński”,
“Farias”, and “Flores”) was submitted to random deletion of
values at the three rates 10%, 20%, and 40%. The process was
repeated in each data set 1000 times for each percentage of
missing values, giving a total of 3000 different matrices with
missing values. Altogether, therefore, 9000 incomplete data
sets were available, and for each one the missing values were
imputed with the 5 Eigenvector algorithms described above
using computational code in R [45].

The random deletion process for a matrix X (𝑛 × 𝑝) was
conducted as follows. Randomnumbers between 0 and 1were
generated in R with the runif function. For a fixed 𝑟 value
(0 < 𝑟 < 1), if the (𝑝𝑖 + 𝑗)th random number was lower
than 𝑟, then the element in the (𝑖+ 1, 𝑗) position of the matrix
was deleted (𝑖 = 0, 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑝). The expected
proportion of missing values in the matrix will be 𝑟 [34].This
technique was used with 𝑟 = 0.1, 0.2 and 0.4 (i.e., 10%, 20%,
and 40%).

2.4. Comparison Criteria. In general, the objective after
imputation is to estimate model parameters from the com-
plete table of information. One of the models frequently used
in genotype-by-environmental trials is the AMMI model
[46, 47], and for this reason the algorithms proposed in
this paper will be compared through the genotypic and
environmental parameters of the fitted AMMI models using
the root mean squared predictive difference—RMSPD [39].
The AMMI model is first briefly presented.

The usual two-way ANOVA model to analyze data from
genotype-by-environment trials is defined by

𝑦
𝑖𝑗

= 𝜇 + 𝑎
𝑖
+ 𝑏
𝑗

+ (𝑎𝑏)𝑖𝑗 + 𝑒
𝑖𝑗 (6)
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(𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑝) where 𝜇, 𝑎
𝑖
, 𝑏
𝑗
, (𝑎𝑏)

𝑖𝑗
, and

𝑒
𝑖𝑗

are respectively, the overall mean, the genotypic and
environmental main effects, the genotype-by-environment
interaction, and an error term associated with the 𝑖th geno-
type and jth location. It is assumed that all effects except
the error are fixed effects. The following reparametrization
constraints are imposed: ∑

𝑖
(𝑎𝑏)
𝑖𝑗

= ∑
𝑗
(𝑎𝑏)
𝑖𝑗

= ∑
𝑖
𝑎
𝑖

=

∑
𝑗
𝑏
𝑗

= 0. The AMMI model implies that interactions can
be expressed by the sum of multiplicative terms.Themodel is
given by

𝑦
𝑖𝑗

= 𝜇 + 𝑎
𝑖
+ 𝑏
𝑗

+ 𝜃
1
𝛼
𝑖1

𝛽
𝑗1

+ 𝜃
2
𝛼
𝑖2

𝛽
𝑗2

+ ⋅ ⋅ ⋅ + 𝑒
𝑖𝑗
, (7)

where 𝜃
𝑙
, 𝛼
𝑖𝑙
, and 𝛽

𝑗𝑙
(𝑙 = 1, 2, . . . ,min(𝑛 − 1, 𝑝 − 1)) are

estimated by the SVD of the matrix of residuals after fitting
the additive part. 𝜃

𝑙
is estimated by the 𝑙th singular value

of the SVD, 𝛼
𝑖𝑙
and 𝛽

𝑗𝑙
are estimated by the genotypic and

environmental eigenvector values corresponding to 𝜃
𝑙
.

Alternating regressions can be used in place of the SVD
[48]; depending on the number of multiplicative terms, these
models may be called AMMI0, AMMI1, and so forth.

An inherent requirement of the AMMI model is prior
specification of the number of multiplicative components
[49–51]. Rodrigues [28] made an exhaustive analysis of the
related literature and concluded that usually two or three
components can be used because, in general, one component
is not enough to capture the entire pattern of response in the
data, but with more than three components there are obvious
visualization problems, and a huge quantity of noise is liable
to be captured.

So, for the original matrices “Caliński”, “Farias”, and
“Flores”, we fitted the AMMI2 and AMMI3models.The same
models were then fitted for each one of the 9000 sets of
data that had been completed by imputation, and each set of
parameterswas comparedwith its corresponding set from the
original data by using the RMSPD in the following way:

RMSPD (𝑔𝑒𝑛) =
√

∑
NG
𝑖=1

(𝑎
𝑖
− 𝑎
𝑖
)
2

NG
;

RMSPD (𝑒𝑛V) =
√

∑
NE
𝑗=1

(𝑏
𝑗

− 𝑏̂
𝑗
)
2

NE
;

RMSPD
𝑙
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) = √

∑
𝑙

ℎ=1
∑

NG
𝑖=1

(𝛼
𝑖ℎ

− 𝛼̂
𝑖ℎ

)
2

(NG) 𝑙
;

RMSPD
𝑙 (𝑒𝑛V𝑚𝑢𝑙𝑡) =

√
∑
𝑙

ℎ=1
∑

NE
𝑗=1

(𝛽
𝑗ℎ

− 𝛽
𝑗ℎ

)
2

(NE) 𝑙
.

(8)

Here RMSPD(𝑔𝑒𝑛) represents the RMSPD among the esti-
mated parameters for genotypemain effects from the original
data 𝑎

𝑖
and the corresponding parameters obtained from

the completed data sets by imputation 𝑎
𝑖
. RMSPD(𝑒𝑛V)

represents the RMSPD among the estimated parameters
for environments main effects from the original data 𝑏

𝑗

and the corresponding parameters obtained from the com-
pleted data sets by imputation 𝑏̂

𝑗
. RMSPD

𝑙
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) rep-

resents the equivalent RMSPD for the pairs of estimated

parameters of genotype multiplicative components 𝛼
𝑖ℎ
, 𝛼̂
𝑖ℎ
.

RMSPD
𝑙
(𝑒𝑛V𝑚𝑢𝑙𝑡) represents the equivalent RMSPD for the

pairs of estimated parameters of environments multiplicative
components 𝛽

𝑗ℎ
, 𝛽
𝑗ℎ
. In the statistics, NG represents the

number of genotypes, NE the number of environments, and
𝑙 = 2 or 3 depending on the considered model AMMI2 or
AMMI3.

The best imputation method is the one with the lowest
values of RMSPD in each case. Summarizing, in each simu-
lated data set with missing values, we applied the methods
Eigenvector, Eigenvector0, Eigenvector1, Eigenvector2, and
Eigenvector3 and, then, in the completed data (observed
+ imputed) we fitted AMMI2, AMMI3 models for the
calculation of the respectively RMSPD statistics. In order to
visualize any differences more readily, the RMSPD values
were standardized and the comparison was made directly.
Note that because of the standardized scale, the values of the
statistics can be either positive or negative.

3. Results

3.1. Polish Pea Data. Figure 1 shows the RMSPD(𝑔𝑒𝑛) dis-
tribution on the standardized scale for the “Caliński” data
set, showing each imputation method and each percentage.
It can be seen that the Eigenvector distribution is left asym-
metric and this asymmetry increases as the missing values
percentage increases. In general, the Eigenvector distribution
has values above zero and when the number of missing
values increases, it is concentrated above one. This means
that this method had the biggest differences among the
additive genotypic parameters of the real and completed (by
imputation) data.

The best method according to RMSPD(𝑔𝑒𝑛) is Eigenvec-
tor1, the method with just one iteration. This method has the
smallest median for the 10% and 20% percentages. In the 40%
percentage the medians of Eigenvector0 and Eigenvector1
are practically the same in the figure, but Eigenvector1
continues be preferable because it has the smallest dispersion.
So, Eigenvector1 gave the smallest differences between the
additive genotypic parameters of the real and completed data.

Figure 2 shows the RMSPD(𝑒𝑛V) on the standardized
scale for the “Caliński” data set. It shows very similar
behaviour to that of RMSPD(𝑔𝑒𝑛). Again the Eigenvector
method presents the biggest differences among the additive
environment parameters of the real and completed data
because of the algorithm that maximizes the RMSPD(𝑒𝑛V).
In this case, the RMSPD(𝑒𝑛V) isminimizedwith Eigenvector0
and Eigenvector1, and in all the percentages of missing values
the two have nearly equal medians. However, Eigenvector1
has the smallest dispersion and that makes this again the
method of choice.

The box plot analysis was useful in determining
the best imputation method for the RMSPD(𝑔𝑒𝑛)

and RMSPD(𝑒𝑛V) distributions, but in the case of
RMSPD

2
(𝑒𝑛V𝑚𝑢𝑙𝑡), RMSPD

2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), RMSPD

3
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡)

and RMSPD
3
(𝑒𝑛V𝑚𝑢𝑙𝑡), a more formal analysis can be used

to compare the distributions; for instance the Friedman
nonparametric test and, if this is significant, then the
Wilcoxon test [52].
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Figure 1: Box plot of the RMSPD(𝑔𝑒𝑛) distribution in Caliński data set.

Table 1 shows the Friedman test statistics. It can be seen
that a significant difference exists among the imputation
methods for the 10% and 20% percentage of missing values,
but with 40% the five methods have equivalent results. After
the general test, it is necessary to make multiple pairwise
comparisons for the two lower percentages.

Table 2 shows the Wilcoxon test to find the methods that
are different. When RMSPD

2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) for 10% was used,

Eigenvector1 had significant differences with the other four
methods. For 20%, Eigenvector1 was statistically different
from Eigenvector, Eigenvector2, and Eigenvector3. For this
percentage Eigenvector presents different results from Eigen-
vector0 and Eigenvector3. Joining the statistical differences
found with the nonparametric test about RMSPD

2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡)

and the correspond box plot in Figure 3, it can be said that
for 10% and 20% the most efficient method is Eigenvector1,
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Figure 2: Box plot of the RMSPD(𝑒𝑛V) distribution in Caliński data set.

Table 1: Friedman test for the standardized RMSPD
𝑙
(⋅)—Caliński data set.

Perc.
Statistic

RMSPD2(genmult) RMSPD2(envmult) RMSPD3(genmult) RMSPD3(envmult)
Friedman 𝑃 value Friedman 𝑃 value Friedman 𝑃 value Friedman 𝑃 value

10% 15.6256 0.0036 34.4896 0.0000 34.9368 0.0000 30.4928 0.0000
20% 10.7848 0.0291 11.3688 0.0227 16.7144 0.0022 11.1104 0.0254
40% 2.8416 0.5847 2.5568 0.6345 4.9496 0.2925 5.9448 0.2033
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Table 2: Wilcoxon test for the standardized RMSPD
2
(⋅)—Caliński data set.

RMSPD2(genmult) RMSPD2(envmult)
Percentage 10% 20% 10% 20%
comparison Wilcoxon Wilcoxon Wilcoxon Wilcoxon
Eigen-Eigen0 −0.2913 −2.4166∗ −0.8459 −1.7890
Eigen-Eigen1 −3.4322∗ −2.6145∗ −4.5972∗ −1.5540
Eigen-Eigen2 −1.0087 −1.0783 −2.0225∗ −0.1250
Eigen-Eigen3 −1.3178 −2.0335∗ −2.4155∗ −0.7970
Eigen1-Eigen0 −2.0468∗ −0.1261 −2.8270∗ −0.5490
Eigen2-Eigen0 −0.2997 −1.6703 −0.2598 −2.0420∗

Eigen3-Eigen0 −0.3213 −1.3256 −0.0852 −1.6410
Eigen2-Eigen1 −3.3075∗ −2.7537∗ −4.3006∗ −2.5030∗

Eigen3-Eigen1 −3.5483∗ −2.2389∗ −5.0405∗ −2.3590∗

Eigen3-Eigen2 −0.4955 −0.0203 −0.9271 −0.6170
∗Significant difference 5%.

Table 3: Wilcoxon test for the standardized RMSPD
3
(⋅)—Caliński data set.

RMSPD3(genmult) RMSPD3(envmult)
Percentage 10% 20% 10% 20%
comparison Wilcoxon Wilcoxon Wilcoxon Wilcoxon
Eigen-Eigen0 −1.7875 −2.6026∗ −2.1574∗ −1.9962∗

Eigen-Eigen1 −4.8856∗ −3.1579∗ −4.4210∗ −2.6059∗

Eigen-Eigen2 −1.8055 −1.9022 −1.7068 −1.2073
Eigen-Eigen3 −2.6978∗ −2.0075∗ −3.1627∗ −1.3278
Eigen1-Eigen0 −1.8186 −0.2928 −1.1885 −0.4978
Eigen2-Eigen0 −1.0934 −1.0855 −1.2860 −1.0310
Eigen3-Eigen0 −0.9545 −1.2510 −1.1276 −1.1751
Eigen2-Eigen1 −4.9417∗ −2.3846∗ −4.1071∗ −2.0129∗

Eigen3-Eigen1 −4.5703∗ −2.5499∗ −4.1410∗ −2.3572∗

Eigen3-Eigen2 −0.1905 −0.7254 −0.1788 −0.8727
∗Significant difference 5%.

because it minimizes the median and presents the smallest
dispersion comparedwith Eigenvector and Eigenvector0.The
five methods all present similar results for the 40% deletion
rate.

Table 2 shows the Wilcoxon test results for the 10% and
20% percentage of missing values using RMSPD

2
(𝑒𝑛V𝑚𝑢𝑙𝑡).

There are significant differences among Eigenvector and
Eigenvector2, Eigenvector3, and Eigenvector1 for the 10%
deletion rate. Differences were found between Eigenvector1
and Eigenvector0, Eigenvector2 and Eigenvector3, respec-
tively. For 20%, Eigenvector1 was different from Eigenvector2
and Eigenvector3; besides, there is a difference between
Eigenvector0 and Eigenvector2.

However, Table 3 shows the Wilcoxon test results of
the standardized RMSPD

3
(𝑒𝑛V𝑚𝑢𝑙𝑡) and RMSPD

3
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡)

values. In the 10% and 20% imputation percentages, there
were significant differences between Eigenvector1 and Eigen-
vector, Eigenvector2 and Eigenvector3, respectively. Also,
significant differences were detected between Eigenvector
and the Eigenvector0 and Eigenvector3.

Finally, box plots were made for RMSPD
2
(𝑒𝑛V𝑚𝑢𝑙𝑡),

RMSPD
3
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), and RMSPD

3
(𝑒𝑛V𝑚𝑢𝑙𝑡), but are not pre-

sented here because they have similar behaviour to those in
Figure 3, confirming that Eigenvector1minimizes themedian
if it is compared with Eigenvector2 and Eigenvector3 and also
has smaller dispersion than Eigenvector0. The method that
always maximized all the statistics was Eigenvector, and for
this reason it is the least recommended.

3.2. Brazilian Cotton Data. Figure 4 shows the RMSPD(𝑔𝑒𝑛)

distributions on the standardized scale for the “Farias” data
set. The Eigenvector0 distribution is left asymmetric, and
this asymmetry decreases as the missing values percentage
increases. For the three percentages considered, the Eigenvec-
tor0 distribution is above one and very close to the other two,
which means that this method had the biggest differences
among the additive genotypic parameters of the real and
completed (by imputation) data. With 10% imputation, the
Eigenvector, Eigenvector2, and Eigenvector3 methods have
very similar medians, but the smallest dispersion is achieved
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Figure 3: Box plot of the RMSPD
2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) distribution in Caliński data set.

Table 4: Friedman test for the standardized RMSPD
𝑙
(⋅)—Farias data set.

Perc.
Statistic

RMSPD2(genmult) RMSPD2(envmult) RMSPD3(genmult) RMSPD3(envmult)
Friedman 𝑃 value Friedman 𝑃 value Friedman 𝑃 value Friedman 𝑃 value

10% 452.1168 0.0000 444.0952 0.0000 228.6352 0.0000 201.9368 0.0000
20% 313.0696 0.0000 295.0152 0.0000 193.6624 0.0000 173.3472 0.0000
40% 49.8712 0.0000 32.3296 0.0000 25.5240 0.0000 10.8736 0.0280

with Eigenvector2. Overall, when the missing values per-
centage increases Eigenvector achieves the best performance,
because it minimizes RMSPD(𝑔𝑒𝑛). A similar behaviour is
shown for RMSPD(𝑒𝑛V), as can be observed in Figure 5.

Table 4 shows the Friedman test statistics for
RMSPD

2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), RMSPD

2
(𝑒𝑛V𝑚𝑢𝑙𝑡), RMSPD

3
(genmult),

and RMSPD
3
(𝑒𝑛V𝑚𝑢𝑙𝑡). There is a significant difference

among the imputation methods for all the percentages of
missing values, so multiple pairwise comparisons were made
with the Wilcoxon test.

Table 5 shows the Wilcoxon tests for RMSPD
2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡)

and RMSPD
2
(𝑒𝑛V𝑚𝑢𝑙𝑡). They indicate that with 10% impu-

tation, the majority of the compared pairs have a significant
difference, but, for example, Eigenvector1 is not significantly
different fromEigenvector, Eigenvector2 or Eigenvector3. For
the other two percentages, 20% and 40%, Eigenvector is not
statistically different from Eigenvector2, and Eigenvector3
which have similar performances.

Table 6 shows the Wilcoxon test for RMSPD
3
(𝑒𝑛V𝑚𝑢𝑙𝑡).

With 10% imputation, Eigenvector0 is different from all the
others, while for RMSPD

3
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) at the same percentage,

Eigenvector1 was statistically different from Eigenvector2.
With 20% and 40%of imputation, Eigenvector is not different

from Eigenvector2 or Eigenvector3, and likewise Eigenvec-
tor3 is not different from Eigenvector2.

In order to make a definitive conclusion, box plots
were made for RMSPD

3
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), RMSPD

3
(𝑒𝑛V𝑚𝑢𝑙𝑡),

RMSPD
2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), and RMSPD

2
(𝑒𝑛V𝑚𝑢𝑙𝑡), but just one

of them is presented because the distribution behaviour is
similar for the others. From Figure 6, it can be concluded that
the methods that minimize the median in all the percentages
are Eigenvector, Eigenvector2, and Eigenvector3, and Tables
5 and 6 show that these methods are equivalent.

In summary, for the “Farias” data set, with the six stan-
dardized statistics, Eigenvector always showed good results
and is therefore the recommended one.

3.3. Spanish Beans Data. Figure 7 shows the RMSPD(𝑔𝑒𝑛)

distribution on the standardized scale for the “Flores”
data set. Eigenvector has, in all the percentages, a left
asymmetric distribution and maximizes the RMSPD(𝑔𝑒𝑛)

median, therefore, it is the method that presents the biggest
differences among the main genotypic parameters of the
original and completed (by imputation) data. With 10%
imputation, Eigenvector0 is the method which presents the
best performance, while with 20% it is Eigenvector1 and
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Table 5: Wilcoxon test for the standardized RMSPD
2
(⋅)—Farias data set.

RMSPD2(genmult) RMSPD2(envmult)
Percentage 10% 20% 40% 10% 20% 40%
comparison Wilcoxon Wilcoxon Wilcoxon Wilcoxon Wilcoxon Wilcoxon
Eigen-Eigen0 −12.7645∗ −11.8392∗ −5.5233∗ −12.0995∗ −11.3270∗ −4.4629∗

Eigen-Eigen1 −0.3505 −3.4137∗ −3.8021∗ −0.1890 −3.0716∗ −2.4969∗

Eigen-Eigen2 −2.6235∗ −0.7163 −1.4214 −2.4094∗ −0.4378 −0.3487
Eigen-Eigen3 −2.6720∗ −0.8664 −0.1908 −2.7633∗ −0.9311 −0.4897
Eigen1-Eigen0 −16.5991∗ −11.7349∗ −2.6190∗ −16.9885∗ −11.6590∗ −2.5653∗

Eigen2-Eigen0 −16.9878∗ −13.0576∗ −5.3009∗ −16.2317∗ −12.5528∗ −4.9312∗

Eigen3-Eigen0 −13.6133∗ −12.6292∗ −5.8550∗ −12.8970∗ −11.9226∗ −5.2543∗

Eigen2-Eigen1 −1.7703 −5.0465∗ −3.6028∗ −1.0721 −4.1600∗ −2.8340∗

Eigen3-Eigen1 −0.5797 −4.2466∗ −4.3441∗ −0.0083 −3.6872∗ −3.5903∗

Eigen3-Eigen2 −2.5865∗ −1.6592 −1.3257 −2.3910∗ −1.1199 −0.6422
∗Significant difference 5%.

Table 6: Wilcoxon test for the standardized RMSPD
3
(⋅)—Farias data set.

RMSPD3(genmult) RMSPD3(envmult)
Percentage 10% 20% 40% 10% 20% 40%
comparison Wilcoxon Wilcoxon Wilcoxon Wilcoxon Wilcoxon Wilcoxon
Eigen-Eigen0 −9.2191∗ −9.2224∗ −4.1232∗ −8.2742∗ −8.9679∗ −2.1050∗

Eigen-Eigen1 −1.1084 −2.2832∗ −3.3175∗ −0.1224 −2.2990∗ −2.0120∗

Eigen-Eigen2 −0.6928 −0.1061 −0.8429 −1.1718 −0.2890 −0.3286
Eigen-Eigen3 −0.9784 −0.1836 −0.2097 −1.7433 −0.2468 −0.5434
Eigen1-Eigen0 −11.1032∗ −8.6574∗ −1.0162 −10.6797∗ −8.5424∗ −0.2532
Eigen2-Eigen0 −11.7189∗ −9.8996∗ −3.5702∗ −11.2791∗ −9.5638∗ −2.5008∗

Eigen3-Eigen0 −9.8820∗ −9.3163∗ −4.3048∗ −8.8932∗ −9.1492∗ −2.7670∗

Eigen2-Eigen1 −2.2248∗ −3.7149∗ −3.0406∗ −1.4067 −3.5119∗ −2.6124∗

Eigen3-Eigen1 −1.5319 −2.3342∗ −3.5506∗ −0.5309 −2.4132∗ −2.8674∗

Eigen3-Eigen2 −0.3787 −0.2394 −0.9666 −0.8871 −0.2512 −0.0848
∗Significant difference 5%.

with 40% it is Eigenvector2, minimizing the median and
taking the RMSPD(𝑔𝑒𝑛) distribution to the bottom of the
standardized scale. Figure 8 presents a similar result, but
using RMSPD(𝑒𝑛V). From the figure it can be said that
with 20% imputation, Eigenvector0 and Eigenvector1 have
similar medians, but Eigenvector1 is preferred because it
has the smallest dispersion.With RMSPD(𝑒𝑛V), Eigenvector0
has right asymmetric distributions and Eigenvector1, Eigen-
vector2, and Eigenvector3 have approximately symmetric
distributions.

Table 7 shows the Friedman test for the statistics
RMSPD

2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), RMSPD

2
(𝑒𝑛V𝑚𝑢𝑙𝑡), RMSPD

3
(genmult),

and RMSPD
3
(𝑒𝑛V𝑚𝑢𝑙𝑡). It can be seen that significant

differences exist among the methods only for 10%
imputation. For this reason we restrict attention to this
percentage.

Table 8 shows the 10 pairwise possible comparisons of
imputation methods considering just 10% imputation and
the statistics RMSPD

2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), RMSPD

2
(𝑒𝑛V𝑚𝑢𝑙𝑡),

RMSPD
3
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡), and RMSPD

3
(𝑒𝑛V𝑚𝑢𝑙𝑡). Taken

across the statistics all the methods are different except
Eigenvector1 and Eigenvector0, but additionally, for

RMSPD
2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) the pair Eigenvector1 and Eigenvector2

and for RMSPD
3
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) the pair Eigenvector2 and

Eigenvector0 are not significantly different.
Finally, to make a definitive conclusion about the four

analyzed statistics in Tables 7 and 8, the box plot for
RMSPD

2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) is presented in Figure 9. Plots were made

of the other three statistics, but are not presented here because
the behaviour is similar. According to the box plot, the best
method is Eigenvector0 because it minimizes the median.

4. Discussion

We have presented five imputation methods and tested them
through a simulation study based on threemultienvironment
trials and using six statistics derived from RMSPD. Overall,
for big trials (i.e., 450 observations in the data matrix)
Eigenvector should be used under convergence, while for
small trials (i.e., 162 or 180 observations in the data matrix)
two cycles of the process are enough in order to obtain good
results without convergence.

We used experiments with different species, in different
countries, and in different continents. Some of the results
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Figure 4: Box plot of the RMSPD(𝑔𝑒𝑛) distribution in Farias data set.

Table 7: Friedman test for the standardized RMSPD
𝑙
(⋅)—Flores data set.

Perc.
Statistic

RMSPD2(genmult) RMSPD2(envmult) RMSPD3(genmult) RMSPD3(envmult)
Friedman 𝑃 value Friedman 𝑃 value Friedman 𝑃 value Friedman 𝑃 value

10% 23.1512 0.0001 39.0136 0.0000 24.0736 0.0001 26.1888 0.0000
20% 5.0296 0.2843 2.2608 0.6879 1.8144 0.7698 1.0936 0.8953
40% 5.2256 0.2649 3.7480 0.4412 8.1944 0.0847 1.6856 0.7933
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Figure 5: Box plot of the RMSPD(𝑒𝑛V) distribution in Farias data set.

were as expected, but one important outcome is that the iter-
ative aspect of the proposed algorithms should be obligatory
when missing values are imputed in 𝐺 × 𝐸 experiments.

So there is a natural question for the applied researcher:
how to choose the appropriate Eigenvector imputation
method for experimentswith different size to those illustrated
in this paper? The answer depends on the imputation objec-
tive, because the imputation can be used in several ways: to
establish one or more genotype-environment combinations

that for some reason were not observed, or to follow the
imputationwith some further statisticalmodeling.The choice
criteria can be extensive, but for the first objective it would
be natural to find the imputation errors associated with each
Eigenvector method. To find these errors, we can employ
cross-validation, using the methodology proposed by Piepho
[18] and studied in more detail via simulations in real data
by Arciniegas-Alarcón et al. [32]. This methodology is now
briefly presented.
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Figure 6: Box plot of the RMSPD
2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) distribution in Farias data set.

Suppose a 𝐺 × 𝐸 experiment is arranged in a table with
missing values. From the table of observed values, delete
one cell at a time, impute all the missing values, and record
the difference between estimated and actual data for the cell
under consideration. Do this for all observed cells, and take

the average of the squared differences. Denote this quantity
by 𝐷. 𝐷 contains two components of variability: one due
to predictive inaccuracy of the estimate, the other due to
sampling error of the observed data. For this reason 𝐷 may
be corrected by subtracting an estimate of the error of a
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Figure 7: Box plot of the RMSPD(𝑔𝑒𝑛) distribution in Flores data set.

mean (𝑠
2
). The square root of (𝐷 − 𝑠

2
) may be taken as

the imputation error. The Eigenvector method with smallest
imputation error is the method to choose.

On the other hand, if the objective after imputation is
inference from the parameter estimates of a statistical model
[53, 54], the criterion for choosing the best Eigenvector
method can be the standard error of the statistic of interest.

The Eigenvector method that produces the smallest standard
error will be the best. The modern treatment of missing
values suggests multiple imputation as an alternative to find
the standard error [55], but in the case of deterministic
imputation a solution well known and tested with success
can be applied. This is the proportional bootstrap method
proposed by Bello [56], in which the proportion of present
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Figure 8: Box plot of the RMSPD(𝑒𝑛V) distribution in Flores data set.

and missing values that appear in each bootstrap sample is
exactly equal to the proportion that appear in the original
incomplete data.

Another aspect that can be of interest is the mechanism
producing the missing data. Generally, in situations that
involve the assessment of several genotypes in different

environments, missing observations follow one of the defi-
nitions proposed by Little and Rubin [57], namely, missing
completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). Values missing com-
pletely at random can occur, for example, when plants are
damaged due to uncontrollable factors in the experiments,
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Table 8: Wilcoxon test for the standardized RMSPD
𝑙
(⋅) (10% imputation)—“Flores” data set.

Comparison Statistic
RMSPD2(genmult) RMSPD2(envmult) RMSPD3(genmult) RMSPD3(envmult)

Eigen-Eigen0 −3.1132∗ −3.9729∗ −2.9800∗ −3.2533∗

Eigen-Eigen1 −2.7033∗ −3.4193∗ −2.6193∗ −2.6122∗

Eigen-Eigen2 −2.2662∗ −2.9110∗ −2.7950∗ −2.1989∗

Eigen-Eigen3 −2.2427∗ −3.0329∗ −2.5279∗ −2.8083∗

Eigen1-Eigen0 −1.3053 −1.9408 −0.6860 −0.9421
Eigen2-Eigen0 −2.4441∗ −3.2769∗ −1.6886 −2.1223∗

Eigen3-Eigen0 −3.2117∗ −3.8341∗ −2.3675∗ −2.7069∗

Eigen2-Eigen1 −1.8444 −2.8314∗ −2.0155∗ −2.5541∗

Eigen3-Eigen1 −2.3102∗ −2.9518∗ −2.3568∗ −2.3958∗

Eigen3-Eigen2 −2.2854∗ −2.4862∗ −2.4622∗ −2.0679∗
∗Significant difference 5%.
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Figure 9: Box plot of the RMSPD
2
(𝑔𝑒𝑛𝑚𝑢𝑙𝑡) distribution in Flores

data set—with 10% imputation.

or by incorrect data measurement or transcription. In this
case the cause of the missing value is not correlated with
the variable that has it. However, in the genotypes test
program in which the cultivars are chosen during each
year, using only the observed data without considering the
missing values, the missing mechanism is clearly random
MAR [58]. The last type of missing, MNAR, can be seen
usually when the same subset of genotypes can be missing
in some environments of the same subregion, because the
plant breeder in the location does not like these genotypes.
So, a genotype missing in one environment possibly will
be missing too in other environments. In these cases, the
mechanism that produces missing values is naturally not at
random. The present study has focused exclusively on the
MCAR mechanism, and further research is needed to study
the remaining mechanisms.

Finally, the proposed methods in this paper have easy
computational implementation, but one of the main advan-
tages is that they do not make any distributional or structural
assumptions and do not have any restrictions regarding the
pattern or mechanism of missing data in 𝐺 × 𝐸 experiments.
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