

Universidade de São Paulo Instituto de Física de São Carlos

XIV Semana Integrada do Instituto de Física de São Carlos

Livro de Resumos da Pós-Graduação

São Carlos 2024

Ficha catalográfica elaborada pelo Serviço de Informação do IFSC

Semana Integrada do Instituto de Física de São Carlos (13: 21-25 ago.: 2023: São Carlos, SP.)

Livro de resumos da XIII Semana Integrada do Instituto de Física de São Carlos – Universidade de São Paulo / Organizado por Adonai Hilário da Silva [et al.]. São Carlos: IFSC, 2023. 358p.

Texto em português.

1. Física. I. Silva, Adonai Hilário da, org. II. Título.

ISSN: 2965-7679

168

Simulation of photo dynamics in NV centers with Qutip

MUNIZ, Sérgio Ricardo¹; DOMINGUES, Artur Venturelli¹

artur.domingues@usp.br

¹Instituto de Física de São Carlos - USP

Nitrogen vacancy (NV) center in diamonds have gained a lot of attention in recent years as a very versatile platform in quantum technologies, with applications in various fields of quantum information processing and can be use as a platform from low to high temperatures, and can have very high decoherence times in room temperature. NV center states can be optically measured through a few techniques and for that reason being able to simulate it's dynamics is very important for a better understanding on how to control its states and operate it in different protocols and regimes. In this work we will present a model for its dynamics (1) as well as one of the protocols for optical readout of its states, namely the Optically detected microwave resonance (ODMR) in two regimes, continuous wave (CW-ODMR) and pulsed (Pu-ODMR) in a simulated environment using a well known python package, Qutip, for its versatility (2-3). With that we intend on having an environment to apply different control techniques and explore the potential of NV centers in multiple contexts.

Palavras-chave: NV center; Quantum simulation; Quantum information.

Agência de fomento: Sem auxílio

Referências:

- 1 MAGALETTI, S. *et al.* Modelling Rabi oscillations for widefield radiofrequency imaging in nitrogen-vacancy centers in diamond. **New Journal of Physics**, v. 26, n. 2, p. 023020, 2024. DOI: 10.1088/1367-2630/ad20b0.
- 2 JOHANSSON, J. R.; NATION, P. D.; NORI, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. **Computer Physics Communications**, v. 184, p. 1234, 2013. DOI: 10.1016/j.cpc.2012.11.019.
- 3 JOHANSSON, J. R.; NATION, P. D.; NORI, F. QuTiP: an open-source Python framework for the dynamics of open quantum systems. **Computer Physics Communications**, v. 183, p. 1760–1772, 2012. DOI: 10.1016/j.cpc.2012.02.021.