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Abstract. This paper proposes a framework to enhance the reliability of deep
classifiers in medical imaging by combining visualization and uncertainty quan-
tification through meta-learning. The methodology employs a Triplet Neural
Network (UTMap) to project instances into the Instance Uncertainty Space
(IUS), which highlights patterns of confidence and uncertainty. Additionally,
the Neighborhood Reliability Score (NRS) metric is introduced to estimate un-
certainty based on the spatial relationships within the IUS. Experimental results
show that the IUS effectively represents classifier behavior and that the NRS
achieves competitive performance compared to traditional uncertainty estima-
tion algorithms in distinguishing between correct and incorrect predictions.

1. Introduction
There is a growing interest in the integration of medicine and artificial intelligence (AI)
[Poon et al. 2025], driven by technological advances that enable increasingly sophisti-
cated algorithms. In this context, models based on Deep Neural Networks (DNNs)
have stood out for their ability to handle complex problems quickly and efficiently,
becoming a promising tool to support the analysis and diagnosis of medical images
[Mei et al. 2020, Gayathri et al. 2022].

Despite the potential of DNNs, especially Convolutional Neural Networks
(CNNs) [LeCun et al. 2015], these models face significant challenges. These challenges
include overconfidence even in the face of incorrect predictions [Nguyen et al. 2015,
Goodfellow et al. 2015] and a tendency to overfit [Lee et al. 2017]. Although effective
at identifying complex patterns, DNNs may also fit the noise present in training data
[Algan and Ulusoy 2021].

In the healthcare domain, these limitations are exacerbated by the re-
curring scarcity and low quality of data [Bajwa et al. 2021, Ahmed et al. 2023,
Hassan et al. 2024]. Preprocessing and data augmentation techniques are frequently ap-
plied to mitigate these limitations. [Islam et al. 2024, Goceri 2023]. Although such strate-
gies improve model performance and data quality, they do not eliminate the biases associ-
ated with small datasets [Shorten and Khoshgoftaar 2019], compromising the reliability
of deep learning-based solutions in clinical applications.

Uncertainty quantification methods have emerged as alternatives to increase
the reliability of DNNs. In the medical domain, approaches such as Monte
Carlo Dropout [Gal and Ghahramani 2016] and techniques based on DNN ensem-
bles [Lakshminarayanan et al. 2017] have been largely explored in the literature



[Ling Huang et al. 2024, Benjamin Lambert et al. 2024]. However, the practical adop-
tion of these techniques is limited by their high computational cost and the need
for technical expertise in AI, which remains scarce among healthcare professionals
[Ahmed et al. 2023, Hoffman et al. 2025].

In this work, we propose a novel methodology that integrates visualization and un-
certainty quantification for the task of medical image classification, grounded in principles
of Deep Meta-Learning [Huisman et al. 2021]. For such, we introduce the Uncertainty
Triplet Network Mapping (UTMap), a projection meta-model responsible for construct-
ing a two-dimensional metric space called the Instance Uncertainty Space (IUS). This
space aims to model the behavior of deep classifiers with respect to instances, grouping
those that are correctly classified and have low entropy, while placing more uncertain
or incorrectly classified samples separately. Additionally, we propose a new uncertainty
metric, named the Neighborhood Reliability Score (NRS), which is calculated based on
distances in the IUS and is inspired particularly by the instance hardness measure N2I
[Smith et al. 2014].

According to experiments conducted on public medical image datasets, the IUS
effectively represents the classifier’s behavior in relation to the data. Moreover, the NRS
metric demonstrated competitive and, in some aspects, superior performance compared to
traditional uncertainty estimation methods in distinguishing between correct and incorrect
predictions.

The main contributions of this work are:

• A novel framework integrating visualization and quantification for the analysis of
uncertainty for medical image classification models;

• Development of a projection meta-model capable of mapping extracted represen-
tations into a structured two-dimensional space (IUS);

• Definition of NRS, a metric based on distance relationships in the IUS, empirically
validated for accurately detecting classification failures;

• Practical validation of the approach on public medical image datasets, with source
code made available 1 for experiment reproducibility.

2. Background and Related Work

2.1. Metric-Based Meta-Learning

Metric-based meta-learning methods aim to learn a latent space with meaningful represen-
tations, where the proximity between samples reflects their similarity [Tian et al. 2022].
From this space, new tasks are solved by directly comparing unseen inputs to the training
examples, using the similarity relationships learned during the meta-learning process.

The main approaches found in the literature include: Siamese Networks
[Koch et al. 2015], which learn a feature space based on comparisons between pairs
of samples; Matching Networks [Vinyals et al. 2016], which perform pairwise compar-
isons between the support set and the new query inputs to construct a representational
space; and Prototypical Networks [Snell et al. 2017], which organize latent representa-
tions around class prototypes.

1Public repository with the source code: https://github.com/Rafaelsoz/UTMap

https://github.com/Rafaelsoz/UTMap


2.2. Triplet Neural Network

Triplet Neural Networks (TNNs) [Hoffer and Ailon 2015], grounded in the principles of
Metric Learning [Kaya and Bilge 2019], are deep learning models capable of mapping
similarities through distance comparisons in the feature space. Their goal is to bring
instances of the same class closer together while pushing apart instances with different
labels, respecting a predefined margin.

Unlike Siamese Networks [Koch et al. 2015], which are trained on pairs of sam-
ples with either identical or different labels, TNNs operate on triplets of samples
(xa

i , x
p
i , x

n
i ), consisting of an anchor xa

i , a positive example xp
i that shares the same la-

bel as the anchor, and a negative example xn
i with a different label. The same network

processes all three samples, and the loss is computed based on the distances between their
representations.

However, the effectiveness of training heavily depends on selecting informa-
tive triplets to learn discriminative representations [Kaya and Bilge 2019], which re-
mains a challenging task. Mining strategies are often employed to address this issue
[Schroff et al. 2015, Simo-Serra et al. 2015], although they lead to higher computational
costs and increased training complexity.

2.3. Confidence Estimation

An intuitive approach to estimating the uncertainty associated with a classification is
to directly use the predicted probabilities, analyzing the Maximum Class Probability
(MCP), extracted from the model’s softmax layer. Despite its reasonable performance
[Hendrycks and Gimpel 2016], this approach has important limitations, as deep learn-
ing models tend to be overconfident, even in incorrect predictions [Nguyen et al. 2015,
Goodfellow et al. 2015].

Monte Carlo sampling-based methods have been explored to mitigate this issue,
with Monte Carlo Dropout (MCDropout) [Gal and Ghahramani 2016] being one of the
most widely used due to its ease of implementation. During inference, this technique
applies dropout and performs multiple forward passes to estimate uncertainty. The aver-
age of the softmax outputs is used as the final prediction, while metrics such as entropy
provide a measure of uncertainty. Although effective, the method can suffer from model
overfitting [Nguyen et al. 2015], which compromises the reliability of the estimates. Ad-
ditionally, interpreting the results requires appropriate statistical knowledge.

Another line of investigation involves neural network ensembles
[Lakshminarayanan et al. 2017], which quantify uncertainty based on the variation
in predictions from multiple independent models. This approach does not require
modifications to individual architectures and tends to produce more robust estimates, but
it comes with a high computational cost due to the need to train several networks.

2.4. Failure Prediction

Failure prediction aims to identify incorrect predictions made by a classification model
based on the analysis of confidence scores associated with its outputs. For this purpose,
a confidence scoring function κf : X → R+ is defined, such as the MCP, which, in
the context of deep learning, is associated with the model f to represent the level of



confidence in its predictions. An appropriate confidence function should assign lower
scores to incorrectly classified instances compared to those that are correctly classified.

Based on this principle, during inference, a predefined threshold δ ∈ R+ is applied
to the confidence scores, allowing the rejection of potentially incorrect predictions using
the following decision function:

g(x) =

{
1, if κf (x) ≥ δ,

0, otherwise.

The performance of failure prediction methods is commonly evaluated using stan-
dardized metrics in the literature [Hendrycks and Gimpel 2016], such as: Area Under the
ROC Curve (AUROC); Area Under the Precision-Recall Curve (AUPR), considering both
error (AUPR-Error) and success (AUPR-Success) as the positive class; False Positive Rate
at 95% True Positive Rate (FPR@95%TPR); among others.

3. Uncertainty Triplet Network Mapping
The proposed framework, illustrated in Figure 1, is grounded in the principles of Deep
Meta-Learning and leverages the ability of Triplet Neural Networks (TNNs) to model
similarities in a metric space. To this end, we introduce the meta-model called Un-
certainty Triplet Network Mapping (UTMap), which maps the classifier’s behavior re-
garding the instances and their corresponding predictions into a two-dimensional space,
referred to as the Instance Uncertainty Space (IUS). Based on this space, we also pro-
pose a neighborhood-based confidence metric, called the Neighborhood Reliability Score
(NRS).

Figure 1. Uncertainty Triplet Network Mapping Framework

3.1. Instance Uncertainty Space
To construct the proposed space, we consider a binary classification problem over a
dataset D = {(xi, yi)}Ni=1, composed of N samples, where xi ∈ X represents the inputs
and yi ∈ Y their respective labels. During training, a set of stochastic transformations
is applied to the samples, denoted by x̃i, with the goal of introducing random perturba-
tions. This strategy allows for the capture of instances that, although initially correctly
classified, begin to exhibit increased prediction entropy or, in some cases, become mis-
classified. Such an approach supports the construction of a latent space that is more robust
to stochastic variations in the inputs.



Although data augmentation techniques are widely used in classification tasks, in
the medical context, overly aggressive transformations may compromise critical image
regions, such as tumor areas. To mitigate this risk, we adopt three transformations, based
on the study by [Goceri 2023], which analyzed common augmentation techniques and
their impacts on medical image classification. The applied transformations were: (1)
Translation, limited to the range [−15◦, 15◦]; (2) Shearing, within the same range; and (3)
Rotation, limited to the range [−25◦, 25◦].

From the transformed images x̃i, feature maps are extracted using the classifica-
tion neural network C, specifically from Cencoder, and the associated predictions ŷi are
produced by Chead over the dataset D, as illustrated in Figure 1. In this step, the weights
of C remain frozen, and no gradient is computed.

In this context, the architecture of C can be replaced, as long as the embedding
extraction is performed from the last convolutional layer, since the initial layers capture
generic visual patterns, while the final layers preserve spatial features specific to the image
[Zeiler and Fergus 2013, Yosinski et al. 2014]. These representations contribute to the
construction of a more robust and discriminative latent space, supporting the proposed
reliability analysis.

From the predictions generated by C, we define a label mapping function (LM )
responsible for assigning pseudo-labels used in the optimization of U . This function
organizes the samples into three distinct groups, as follows:

LM(y, ŷ) =


0, if y = 0 and ŷ = 0 (True Positive)
1, if y = 1 and ŷ = 1 (True Negative)
2, otherwise (Type 1 and Type 2 Error)

(1)

Thus, U is trained to group correctly classified instances in the latent space ac-
cording to their true labels, while aiming to separate those that were misclassified.

The architecture of U follows a simple structure, consisting of an encoder with two
convolutional layers [LeCun et al. 2015], followed by two fully connected (FC) layers,
all with batch normalization [Ioffe and Szegedy 2015] (BN) and ReLU activation func-
tions [Nair and Hinton 2010]. In addition to the encoder, the architecture includes two
additional sub-networks, both implemented as single linear layers: Uhead, responsible for
predicting the pseudo-labels; and Uproj , which projects the instances into the latent space.

The optimization of U is performed using the Triplet Center Softmax Loss
[He et al. 2018], an alternative to the traditional Triplet Loss, which incorporates class
centers in the latent space, a concept introduced by [Wen et al. 2016]. Instead of directly
comparing instance pairs, this technique employs the distance between a sample and the
class centers, which are updated iteratively with each mini-batch during training. Thus, U
receives as input the feature maps extracted by Cencoder to generate the embeddings (ei),
as well as the logits corresponding to the assigned pseudo-labels:

Ltcl =
N∑
i=1

max(0,m+D(ei, cyi)− min
yj ̸=yi

D(ei, cyj)) (2)



Ltcsl = λLtcl + Lsoftmax (3)

where cyi denotes the center of class yi, which is used as the positive sample, and the
negative sample is the nearest center from a different class. This approach removes the
need for triplet mining, reducing computational cost and training complexity. The term
D(ei, cyi) represents the squared Euclidean distance between the sample and center. The
hyperparameter λ controls the contribution of the Triplet Center Loss in the combined loss
function. Finally, the softmax function guides the association of samples to pseudo-labels,
while the Triplet Center Loss directly shapes the embedding space.

3.2. Neighborhood Reliability Score
After constructing the IUS metric space, it becomes possible to compute the Neighbor-
hood Reliability Score (NRS), inspired by the instance hardness measure known as the
Ratio of Intra-Extra Class Distances at Instance Level (N2I) [Smith et al. 2014]. This
measure assesses how well-positioned an instance is in the feature space by computing
the ratio between the distance to its nearest neighbor of the same class and the distance to
its nearest neighbor from a different class.

The proposed metric follows the same principle as N2I but with two key differ-
ences: (1) distances are computed based on the projections in the IUS space; and (2) the
labels used to determine the neighbors are, respectively, the true labels of the training
instances and the predictions provided by C.

Thus, NRS allows us to infer the reliability of a prediction based on the relative
position of the instance within the IUS space, reflecting the similarities learned by the
meta-model U . The metric is defined as follows:

NRS(xi, ŷi) =
1

IntraInter(xi, ŷi) + 1
IntraInter(xi, ŷi) =

d(xi, NN(xi) ∧ yj = ŷi)

d(xi, NN(xi) ∧ yj ̸= ŷi)
(4)

Values close to zero indicate that the instance lies near examples from other
classes, that is, in regions of the IUS space composed of high-entropy or misclassified
samples, reflecting greater uncertainty in the prediction. On the other hand, values close
to one indicate that the instance is located within well-defined clusters, signaling higher
reliability in the classification provided by C.

4. Experiments
The experiments were conducted with two main objectives: (1) to evaluate UTMap’s
ability to structure the latent space in a way that reflects the classifier’s behavior toward the
instances; and (2) to compare the proposed metric, NRS, with well-established uncertainty
estimation methods in inference scenarios.

For the first objective, a visual analysis of the IUS space was performed, exam-
ining the organization of the samples in terms of class labels and predictive entropy. For
the second, a quantitative evaluation was conducted by directly comparing NRS to tra-
ditional uncertainty estimation approaches. All metrics were computed using stratified
10-fold cross-validation, with 80% of the data used for training and 20% for testing, with
10% of the training set reserved for validation.



4.1. Experimental Setup
To evaluate the proposed method, three public binary classification datasets with medical
images exhibiting distinct visual characteristics were used. The selection of these datasets
aims to cover various clinical scenarios and imaging modalities, thereby ensuring the
greater robustness of the results obtained.

The datasets include cases of Brain Cancer [Sartaj Bhuvaji 2020] using Magnetic
Resonance Imaging (MRI), Breast Cancer [Al-Dhabyani et al. 2020] using Ultrasound
(US), and SARS-CoV-2 [Soares et al. ] using Computed Tomography (CT). A summary
of the datasets, as well as the hyperparameters used for training the classifier, is presented
in Table 1.

Table 1. Datasets used and base classifier hyperparameters

ID Dataset Modality Instances Epochs Batch Size Learning Rate

1 Brain Cancer MRI 3.264 10 256 1× 10−4

2 Breast Cancer US 780 5 128 1× 10−4

3 SARS-CoV-2 CT 2.279 10 256 1× 10−4

In this study, we adopted ResNet-18 [He et al. 2016] as the architecture for
the base classifier. The model was trained individually for each dataset using
transfer learning through fine-tuning on weights previously trained on ImageNet
[Russakovsky et al. 2015]. Additionally, data augmentation techniques were applied dur-
ing training to improve the model’s robustness. The transformations used follow the same
ones described in Section 3.1.

The algorithms adopted for comparison with the proposed method are:
Maximum Class Probability (MCP) [Hendrycks and Gimpel 2016]; Monte Carlo
Dropout (MCDropout) [Gal and Ghahramani 2016], using the mean predictive en-
tropy as the uncertainty measure with 50 samples; and Deep Ensemble (DE)
[Lakshminarayanan et al. 2017], configured with 5 independent models. For UTMap, the
λ value in the loss function was empirically set to 0.1. All models were trained using the
Adam optimizer [Kingma and Ba 2015], and the respective hyperparameters used in each
approach are described in Table 2.

Table 2. Hyperparameters used for training the uncertainty estimation algo-
rithms, organized by dataset.

Dataset MCDropout DE UTMap

Ep Batch Lr P Models Ep Batch Lr Center Lr

Brain Cancer 30 128 1× 10−4 0.1 5 20 16 5× 10−5 5× 10−3

Breast Cancer 30 128 1× 10−4 0.1 5 20 16 5× 10−5 5× 10−3

SARS-CoV-2 30 128 1× 10−4 0.1 5 20 16 5× 10−5 5× 10−3

To demonstrate the effectiveness of the proposed method, we evaluated the algo-
rithms’ ability to detect prediction failures using well-established metrics from the liter-
ature [Hendrycks and Gimpel 2016], as detailed in Section 2.4: AUROC; AUPR-Error,
due to its direct relevance to the task of failure detection; and finally, FPR@95%TPR.



4.2. Experimental Results

4.2.1. Analysis of Latent Projections

Based on the visualization presented in Figure 2, it can be observed that the meta-model is
capable of grouping samples according to the generated pseudo-labels, separating those
that are correctly classified from those associated with prediction errors. However, in
some instances, although correctly classified, are projected closer to regions associated
with errors than to regions corresponding to their true label.

Figure 2. Latent space projections with generated pseudo-labels.

This behavior can be attributed to the application of stochastic perturbations to
the images, which significantly affect the probability distribution generated by the clas-
sifier [Goodfellow et al. 2015]. In such cases, instances originally associated with low
predictive entropy may begin to exhibit higher uncertainty or even be misclassified af-
ter perturbations, and are thus displaced to regions of the latent space near misclassified
samples, as illustrated in Figure 3.

Figure 3. Latent space projections with the classifier’s predictive entropy.

Furthermore, Figure 3 shows that the meta-model, when mapping instances based
on pseudo-labels, also incorporates information about the classifier’s predictive entropy.
It is evident that samples with high entropy tend to cluster near regions associated with
classification errors, even when correctly classified. Conversely, samples located farther
away tend to exhibit lower entropy, revealing a gradual transition between regions of high
confidence and high uncertainty as one approaches the error zones.

Lastly, Figure 2 also shows cases where misclassified samples are projected into
densely populated regions of correctly classified instances. This scenario may indicate
the presence of outliers, mislabeled samples, or limitations in the discriminative capacity



of the feature space extracted by the classifier, as the misclassified instances in question
share latent representations that are very similar to those of correctly classified samples.
This similarity hinders their separation in the projection step, which depends on both the
pseudo-labels and the representations generated by the classification model.

4.2.2. Uncertainty Estimation Methods

The comparative results presented in Table 3 indicate that the proposed method demon-
strates competitive or superior performance compared to established approaches from the
literature in two out of the three evaluated metrics across different datasets, with particular
emphasis on AUPR and FPR@95%TPR.

Table 3. Comparison for Failure prediction performance.

Dataset Metric MCP MCDropout DE NRS

Brain Cancer
AUROC (↑) 0.86 ±0.12 0.91 ±0.02 0.85 ±0.12 0.96 ±0.03
AUPR (↑) 0.37 ±0.12 0.41 ±0.06 0.49 ±0.22 0.71 ±0.20
FPR @95% TPR(↓) 0.22 ±0.14 0.34 ±0.07 0.25 ±0.19 0.09 ±0.12

Breast Cancer
AUROC (↑) 0.87 ±0.05 0.89 ±0.06 0.88 ±0.08 0.85 ±0.08
AUPR (↑) 0.56 ±0.11 0.48 ±0.20 0.54 ±0.17 0.60 ±0.19
FPR @95% TPR(↓) 0.37 ±0.13 0.43 ±0.20 0.44 ±0.22 0.42 ±0.19

SARS-CoV-2
AUROC (↑) 0.90 ±0.03 0.56 ±0.02 0.90 ±0.04 0.89 ±0.03
AUPR (↑) 0.39 ±0.14 0.51 ±0.04 0.31 ±0.10 0.51 ±0.13
FPR @95% TPR(↓) 0.48 ±0.17 0.92 ±0.03 0.44 ±0.09 0.37 ±0.15

These results show that, with respect to the AUROC metric, the proposed method
stands out on the brain cancer dataset, shows competitive performance on the SARS-CoV-
2 dataset, and underperforms on the breast cancer dataset. Regarding AUPR, arguably
the metric most directly related to the task of failure detection, the proposed approach
performs strongly across all three datasets, ranking among the top two in each. It achieved
the best performance on the Brain Cancer and Breast Cancer datasets and the second-best
on the SARS-CoV-2 dataset.

Concerning the FPR@95%TPR metric, the proposed method proved to be the
most effective at identifying misclassified examples while maintaining a low false positive
rate. Again, it ranked among the top two methods in all datasets, achieving the best results
on Brain Cancer and SARS-CoV-2, and the second-best on the Breast Cancer dataset.

These results suggest that NRS is effective in identifying misclassified samples
while maintaining a low false-positive rate in error detection. Moreover, as it is based on
distances in the IUS space, the method provides a visual and intuitive representation for
identifying low-confidence instances. In contrast, approaches such as MCDropout and
Deep Ensemble entail higher computational costs, with MCDropout also requiring more
advanced technical understanding for proper result interpretation.

5. Discussion and Conclusion
This work proposes a method that integrates visualization and uncertainty quantification
in deep classification models applied to medical images. The approach consists of incor-



porating a projection meta-model into the classification network, enabling the construc-
tion of a two-dimensional metric space that represents the classifier’s uncertainty with
respect to the instances. From this space, a confidence metric is defined based on learned
similarities and grounded in hardness measures.

The main objective is to evaluate the proposed method’s ability to model a space
that adequately reflects the classifier’s behavior, as well as assess whether the uncertainty
metric achieves performance comparable to well-established approaches in the literature.
To this end, a visual analysis of the constructed space was performed, along with a quanti-
tative comparison against three well-known methods, using three distinct binary datasets.

The experimental results show that the proposed method is capable of model-
ing a latent space in which instances with similar predictive entropy tend to cluster to-
gether, while separating high-entropy instances from those with low entropy. Further-
more, the proposed metric demonstrates competitive or superior performance in two of
the three evaluated metrics across different datasets, with notable results in AUPR and
FPR@95%TPR. These findings demonstrate the effectiveness of the metric in identifying
misclassified samples while maintaining a low false positive rate in error detection.

Given the strong performance observed in modeling and quantifying uncertainty
for binary classification tasks, future work will focus on generalizing the method to multi-
class problems, a scenario that poses additional challenges, particularly in defining consis-
tent pseudo-labels. Overcoming these limitations will allow the approach to be evaluated
in more complex contexts, where multiple classes and diverse types of errors coexist.
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