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Abstract

In Bayesian analysis, testing for linearity requires placing a prior to the entire space of
potential regression functions. This poses a problem for many standard tests, as assigning
positive prior probability to such a hypothesis is challenging. The Full Bayesian Significance
Test (FBST) sidesteps this issue, standing out for also being logically coherent and offering
a measure of evidence against H0, although its application to nonparametric settings is still
limited. In this work, we use Gaussian process priors to derive FBST procedures that evalu-
ate general linearity assumptions, such as testing the adherence of data and performing
variable selection to linear models. We also make use of pragmatic hypotheses to verify
if the data might be compatible with a linear model when factors such as measurement
errors or utility judgments are accounted for. This contribution extends the theory of the
FBST, allowing for its application in nonparametric settings and requiring, at most, simple
optimization procedures to reach the desired conclusion.

Keywords: FBST; HPD; Bayesian nonparametrics; linear model; Gaussian process;
pragmatic hypothesis

1. Introduction
Although linear models are widespread in the scientific literature, their validity is

rarely tested in its full complexity. Generally, linearity is tested as a particular case of a more
general parametric model [1] or compared to a finite selection of models—each with their
own prior specification—through measures such as the Deviance Information Criterion [2].
In actuality, testing the adherence of linear models to data requires (i) assigning a nonpara-
metric prior to the set of regression functions and (ii) devising a procedure that highlights
the evidence against the linear model hypothesis based on the data and the prior. Devising
a test solely based on the posterior probability of the hypothesis in this case is seldom
advised, as it imposes positive prior probability to the set of linear models when there are
countless nonlinear functions arbitrarily close to any element of it.

The Full Bayesian Significance Test (FBST, [3]) is the testing framework used through-
out this work. The FBST does not violate the likelihood principle, does not require setting
positive prior probabilities to hypotheses, and provides a measure of evidence against
H0, along with other desirable characteristics. With the exceptions of Corrêa Filho [4]
and Liu et al. [5], the FBST has not been applied to nonparametrics, still requiring new
theoretical developments to systematically embrace such settings.
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Bridging the gaps above, this paper provides a nonparametric FBST formulation that
tests the adherence of linear models to data. By using a Gaussian Process (GP, [6]) as a prior
to model the regression function, we propose FBST procedures that depend on whether
the covariates’ domain X is finite or infinite. Furthermore, we lay out FBST procedures for
hypotheses that include negligible deviations from H0, known as pragmatic hypotheses [7],
useful to evaluate if H0 is approximately instead of precisely compatible with the data.

In Figure 1, we illustrate how the FBST operates when applied to H0 and its pragmatic
version, Pg(H0). For α ∈ (0, 1), the posterior is used to obtain the (1 − α)100% Highest
Posterior Density (HPD) region, the smallest credible region with probability (1 − α) of
containing the quantity of interest. The hypothesis is rejected if it does not intersect with
the HPD. This procedure is meaningful even when H0 is precise, that is, when P(H0) = 0.

H H H

• Do not reject H0
• Do not reject Pg(H0)

• Reject H0
• Do not reject Pg(H0)

• Reject H0
• Reject Pg(H0)

HPD
HPD

HPD

Pg(H
0 )H0

Pg(H
0 )H0

Pg(H
0 )H0

Figure 1. Illustration of the FBST for a precise H0 and its pragmatic version, Pg(H0), in the hypothesis
space H. Each panel presents a possible configuration of the hypotheses and the HPD, with the text
above the panels indicating the conclusion.

Even though our contribution makes exclusive use of the FBST, this does not imply
that it is the only valid framework for the problem. While no other testing procedure as
general as ours has been proposed, Mulder [8] uses Bayes factors to test if a single covariate
may be nonlinearly related to the response variable and Lassance et al. [9] (Section 3.1) test
the pragmatic version of the linear model hypothesis through its posterior probability.

This work is organized as follows. In Section 2, the required background knowledge is
provided. Our findings are presented in Section 3, leading in Section 4 to an application that
puts all the FBST procedures to use. Lastly, Section 5 describes how to enhance the FBST
further and establishes potential future research. All proofs can be found in Appendix A.

2. Materials and Methods
2.1. Full Bayesian Significance Test (FBST)

The FBST is composed of three steps [3]. For H0 : θ ∈ Θ0 ⊂ Θ, where Θ is the
parameter space, these steps are as follows:

1. Delimit the set of elements in Θ that are more likely than those in Θ0. That is, if f (θ|D)

is the posterior density of θ given the data D,

T :=

{
θ ∈ Θ : f (θ|D) ≥ sup

θ∈Θ0

f (θ|D)

}
.

2. Obtain e-value := 1 − P(θ ∈ T|D) = 1 −
∫

T f (θ|D)dθ, the Bayesian evidence value.
3. Reject H0 if e-value ≤ α for a previously specified significance level α ∈ (0, 1).
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In this paper, we use a procedure equivalent to the FBST: reject H0 if the Highest
Posterior Density (HPD) region is such that HPD ∩ Θ0 = ∅. The HPD is the smallest
region with posterior probability of 1 − α, obtained by finding the value f ∗ such that

P(θ ∈ HPD|D) = 1 − α, HPD := {θ ∈ Θ : f (θ|D) ≥ f ∗}.

When θ|D is normally distributed, the HPD region is equivalent to the credible interval
symmetric around the posterior mean. For its multivariate counterpart, θ|D ∼ Nk(µ, Σ),
we have that Σ−1/2(θ− µ) ∼ Nk(0, I), and thus (θ− µ)′Σ−1(θ− µ) ∼ χ2

k , where χ2
k stands

for the chi-squared distribution with k degrees of freedom. Therefore, if q(1−α)(·) is the
(1− α)100% quantile function, the HPD is given by the following ellipsoid ([10], Result 4.7):

{θ ∈ Rk : (θ− µ)′Σ−1(θ− µ) ≤ q(1−α)(χ
2
k)}. (1)

2.2. Gaussian Processes (GPs)

A GP is a nonparametric family of priors used to model functions in regression settings.
The random function g : X → R behaves according to a GP if

g(X) ∼ N(m(X), K(X, X)), ∀X ⊂ X ,

where m(·) and K(·, ·), respectively, determine the mean and covariance of the process.
When the response variable Y is such that Y = g(x) + ϵ for ϵ ∼ N(0, σ2), that is,

L(g, σ2|y, X) = (2πσ2)−n/2 exp

{
− 1

2σ2

n

∑
i=1

(
yi − g(xi)

)2
}

,

then the GP is conjugate and its posterior is such that

g(X ′)|y, X, σ2 ∼ N(µ(X ′), Σ(X ′, X ′)),

µ(X ′) := m(X ′) + K(X, X ′)(K(X, X) + σ2I)−1(y − m(X)),

Σ(X ′, X ′) := K(X ′, X ′)− K(X, X ′)(K(X, X) + σ2I)−1K(X ′, X).

The choice of m, K, and σ2 reflect positions on the mean, smoothness, and variation
surrounding the GP. In Section 4, we use the specifics of the application to choose them.
For more general settings, one may assume that the uncertainty of m and K is reducible to a
finite number of parameters. Then, one can either set priors to such parameters directly [11]
or plug point estimates for them based on the maximum partial likelihood [12].

Conditionally on σ2, the HPD region of the GP can be analytically obtained for any
finite set X ′ = (x1, x2, · · · , xm)′. Since the marginals of the posterior GP are also normally
distributed, Equation (1) entails that the (1 − α)100% HPD region for g(X ′)|y, X is

{h ∈ H : (h(X ′)− µ(X ′))′Σ(X ′, X ′)−1(h(X ′)− µ(X ′)) ≤ q(1−α)(χ
2
m)}. (2)

It is also possible to obtain an HPD set for the GP without setting X ′. Let Pg and
Pg|y,X,σ2 , respectively, be the prior and posterior probability measures of the GP defined on
a measurable space (G,G). Hence,

Pg|y,X,σ2(A) =

∫
A L(g, σ2|y, X)dPg(h)∫
G L(g, σ2|y, X)dPg(h)

, ∀A ⊂ G.
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Since Pg|y,X,σ2 ≪ Pg, the Radon–Nikodym derivative of the GP for h ∈ G is such that

dPg|y,X,σ2

dPg
(h) ∝ exp

(
− 1

2σ2

n

∑
i=1

(yi − h(xi))
2

)
= exp

(
− 1

2σ2 (y − h(X))′(y − h(X))

)
, (3)

i.e., it suffices to evaluate h only on the values of X in the sample. To account for repeated
lines in X, let X∗ be the matrix with all unique observations from X and n∗ be the number
of lines of X∗. Defining DnX∗ as a diagonal matrix that counts how many times each x ∈ X∗

appears in X and yX∗ as the vector of means of all elements of y related to each x,

dPg|y,X,σ2

dPg
(h) ∝ exp

(
− 1

2σ2 (h(X∗)− yX∗)′DnX∗ (h(X∗)− yX∗)

)
. (4)

Thus, for a constant cα, a Weighted Residual Sum of Squares (WRSS) defines the HPD:

HPD(1−α) = {h ∈ G : WRSS(h) ≤ cα}, WRSS(h) := (h(X∗)− yX∗)′DnX∗ (h(X∗)− yX∗). (5)

2.3. Pragmatic Hypotheses

The pragmatic hypothesis enlarges H0 to a set deemed as practically equivalent. The
implementation uses the notion of negligible deviations from H0. The degree to which
the hypothesis is enlarged depends on the choice of a threshold ε, and factors such as the
scale of measurement errors or expert’s utility judgments could help set it (see Section 4
for a practical example and (Lassance et al. [9], Section 4) for suggestions). Formally, for a
hypothesis space H, let d(·, ·) be the dissimilarity function from which one can express how
much of a departure from H0 is reasonable. Then, the pragmatic hypothesis is given by

Pg(H0, d, ε) :=
⋃

h0∈H0

{h ∈ H : d(h0, h) ≤ ε} =

{
h ∈ H : inf

h0∈H0
d(h0, h) ≤ ε

}
, (6)

that is, the pragmatic hypothesis contains all elements h ∈ H such that, for some element
h0 ∈ H0, d(h0, h) ≤ ε. In this work, we assume that H = G is a space of functions of the
type h : X → R. Further specifications on H are presented in Section 3. When d(·, ·) and ε

are implicit, we use Pg(H0) to denote the pragmatic hypothesis.

3. Results
Throughout this work, we use the modeling assumptions in Section 2.2 for the data

(y, X) and the regression function g(·), and assume that the hypothesis of interest is

H0 : g(x) = b(x)β, ∀x ∈ X , β ∈ Rk, (7)

where b(x) = (b1(x), b2(x), · · · , bk(x)) ⊂ H is a linearly independent set of linear functions
and X is the covariates’ domain. The choice of b determines the test performed, such as
evaluating linear models (b(x) := x) or doing variable selection (b(x) := x−i).

Our findings are divided in two settings: those applicable to H0 and those to Pg(H0).
In both cases, we explore when X is a finite or an infinite set. The finite case provides a
closed-form solution for the FBST of H0 and a solution for the pragmatic hypothesis that
requires a univariate optimization procedure. When X is infinite, testing H0 or Pg(H0)

also requires determining cα in the HPD of Equation (5), which is achieved by noting that
the WRSS can be expressed as a linear combination of noncentral chi-squared random
variables; therefore, cα is the (1 − α) quantile of a generalized chi-squared distribution [13].
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Theorem 1 (FBST of the linear model hypothesis). Let H0 be the hypothesis in Equation (7)
and g(·)|y, X ∼ GP(µ(·), Σ(·, ·)). Then,

• When X is a finite set, the FBST does not reject H0 if and only if

(
b(X )β̂ − µ(X )

)′
Σ(X ,X )−1

(
b(X )β̂ − µ(X )

)
≤ q(1−α)(χ

2
|X |),

where β̂ =
(
b(X )′Σ(X ,X )−1b(X )

)−1b(X )′Σ(X ,X )−1µ(X ) and |X | is the size of X .
• When X is an infinite set, the FBST does not reject H0 if and only if

y′
X∗ MyX∗ ≤ cα, M = DnX∗ − DnX∗ b(X∗)

(
b(X∗)′DnX∗ b(X∗)

)−1b(X∗)′DnX∗ .

Before presenting the FBST for the pragmatic version of Equation (7), we specify H
and provide the infimum when the dissimilarity function in Equation (6) is the L2 distance
in the probability space of X. The hypothesis space H is such that

h ∈ H ⇐⇒ EX(h2) =
∫
X

h(x)2dP(x) < ∞. (8)

As for the infimum, it is described in the following Lemma:

Lemma 1 (Infimum of the dissimilarity on the linear model set). Let Equation (8) denote the
hypothesis space and H0 be the hypothesis in Equation (7). If d(h0, h) :=

√
EX [(h0 − h)2], then

d(H0, h) = d(b × β̃h, h), ∀h ∈ H, where

β̃h = A−1
b × hb, Ab =


E[b2

1(X)] E[b2(X)b1(X)] · · · E[bk(X)b1(X)]

E[b1(X)b2(X)] E[b2
2(X)] · · · E[bk(X)b2(X)]

...
...

. . .
...

E[b1(X)bk(X)] E[b2(X)bk(X)] · · · E[b2
k(X)]

,

h′
b =

(
E[h(X)b1(X)], E[h(X)b2(X)], · · · , E[h(X)bk(X)]

)
.

Theorem 2 (FBST of the pragmatic version of H0). Let H be given by Equation (8) and define
d(h0, h) :=

√
EX [(h0 − h)2]. Assume that ∑x∈X∗ P(x) > 0. Then,

• When X is a finite set, the FBST does not reject Pg(H0) if and only if

∃s ∈ (0, 1) : 1 − µ(X )′
(

ε2

1 − s
N−1 +

1
s

Σ(X ,X )q(1−α)(χ
2
|X |)

)
µ(X ) < 0,

where N := DP(X )

[
I− b(X )

(
b(X )′DP(X )b(X )

)−1
b(X )′DP(X )

]
and DP(X ) is a diago-

nal matrix formed by the vector P(x), x ∈ X .
• When X is an infinite set, the FBST does not reject Pg(H0) if and only if

∃s ∈ (0, 1) : 1 − y′
X∗

(
ε2

1 − s
M−1 +

1
s

DnX∗ cα

)
yX∗ < 0,

where M := DP(X∗)

[
I− b(X∗)

(
b(X∗)′DP(X∗)b(X∗)

)−1
b(X∗)′DP(X∗)

]
and DP(X∗) is a

diagonal matrix formed by the vector P(x), x ∈ X∗.
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In the infinite case of X in Theorem 2, an appealing choice for the distribution of X is
based on the posterior of a Dirichlet process [14]. For a concentration parameter τ and a
centering distribution π, set a Dirichlet process P ∼ DP(τ, π) such that X|P ∼ P. Then,

P|x ∼ DP
(

τπ

τ + n
+

∑n
i=1 δxi

τ + n
, τ + n

)
=⇒ P(Xnew ∈ A|X = x) =

τπ(A)

τ + n
+

∑n
i=1 I(xi ∈ A)

τ + n
,

where δxi = I(xi ∈ A) for A ⊆ X . With this choice, one can ensure that positive probability
will always be assigned to all x ∈ X∗. Moreover, τ can leverage the weight of the prior on
the FBST, with higher values of τ leading to a higher chance of not rejecting Pg(H0).

4. Application: Water Droplet Experiment
The dataset from Duguid [15] provides a setting where small water droplets (ranging

from 3 to 9 µm) are free falling through a tube that keeps factors such as temperature
and humidity constant. As a droplet falls, a camera takes a picture at every 0.5 s, ceasing
activity after 7 s. One of the objectives of the study was to evaluate Fick’s law, which in this
setting implies that—when time is a covariate—the decrease in radius of the droplet can be
described through a linear model. The two hypotheses of interest are{

H1
0 : g(t) = β0 + β1t, ∀t ∈ {0s, 0.5s, · · · , 7s}, (β0, β1) ∈ R2;

H2
0 : g(t) = β0, ∀t ∈ {0s, 0.5s, · · · , 7s}, β0 ∈ R;

with the first hypothesis testing the validity of Fick’s law for this case and the second one
verifying if time can be removed as a covariate.

We use the GP in Section 2.2 to model the data, with the following prior settings:

σ2 = 0.01, m(t) =
3 + 9

2
= 6, ∀t ∈ X , K(t1, t2) = exp

{
−1

2
||t1 − t2||2

}
, (t1, t2) ⊂ X .

As shown in Figure 2a, this choice leads to functions that obey the 3–9 µm restriction
without becoming too restrictive as a consequence. In Figure 2b, we observe that the
posterior draws resemble a linear model except on t = 0, due to the missing observation.

(a) Prior draws (b) Posterior draws

Figure 2. GP draws of the (a) prior and (b) posterior for the water droplet data. The colored curves
represent each draw, the black dots are the observed data and the dashed line is the least squares
estimate of the linear model.

In Table 1, we present the e-value for both hypotheses of interest, assuming that X
is either finite or infinite. Since small e-values provide strong evidence against H0, with
α = 0.05 we conclude that both H1

0 and H2
0 should be rejected, i.e., Fick’s law would fail.
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Table 1. e-value of H0 under finite and infinite X for the water droplet experiment.

Hypothesis
Assumption on t H1

0 : g(t) = β0 + β1t H2
0 : g(t) = β0

t is discrete and finite 0.0446 0
t is continuous 0.0068 0

While this analysis shows that Fick’s law is not exactly valid, it might still provide an
adequate approximation, motivating the use of pragmatic hypotheses. This requires setting
the threshold ε, which is detailed below.

In the original experiment, the radius of the droplets was obtained indirectly through
Stoke’s law, that is,

VT(t) =
g(t)2

Ks
=⇒ g(t) =

√
VT(t)× Ks, (9)

where VT is the terminal velocity and Ks = 8.446. Since the mean velocity (VM) was
used in (9) instead of VT , there are two sources of measurement error: the estimate of VM

(maximum error of δ = 0.14) and switching VT for VM in (9) (maximum error of η = 0.3555
([9], Example 1.3)). We conclude that the margin of error of the radius is

ϵ : = max
t∈T

|g(t)− y(t)| = max
t∈T

{∣∣∣∣√KsVT(t)− y(t)
∣∣∣∣}

= max
t∈T

{∣∣∣∣√Ks(VM(t)− δ − η)− y(t)
∣∣∣∣, ∣∣∣∣√Ks(VM(t) + δ + η)− y(t)

∣∣∣∣} ≈ 0.6218.

While ϵ relates to the l∞ distance, Lemma 1 uses the l2 distance. To obtain an estimate
of the latter from the former, we use Proposition 6.11 of Folland [16], which implies that√

1
n

n

∑
i=1

(y(xi)− g(xi))2 ≤
√

1
n

ϵ =⇒ max
i∈{1,2,··· ,n}

|y(xi)− g(xi)| ≤ ϵ,

thus ε ≈ 0.6218/
√

15 ≈ 0.1606.
Table 2 presents the e-values for the pragmatic hypotheses Pg(Hi

0, d, 0.1606), i ∈ {1, 2}.
We assume either that X = {0, 0.5, 1, · · · , 7} (original setting, discrete uniform) or that
t|P ∼ P, with P ∼ DP(1, U(0, 7)) (continuous uniform as centering distribution). Contrary
to Table 1, the first hypothesis is not rejected, demonstrating that Fick’s law provides a
good approximation of the phenomenon.

Table 2. e-value of Pg(H0, d, 0.1606) under finite and infinite X for the water droplet experiment.

Original Hypothesis
Assumption on t H1

0 : g(t) = β0 + β1t H2
0 : g(t) = β0

t ∈ {0, 0.5, 1, · · · , 7} 1 0
t|P ∼ P, P ∼ DP(1, U(0, 7)) 1 0

5. Discussion
Regarding the results of the application (Section 4), we believe to have demonstrated

the importance of using pragmatic hypotheses whenever reasonable. While choosing ε is
not a simple task in nonparametric settings, there are strategies available for deriving it [9].
Furthermore, while the e-value is not a measure of evidence against Hc

0 [3], combining it
with a pragmatic hypothesis allows one to perform the Generalized FBST (GFBST, [17]),
which can discriminate “evidence of absence” from “absence of evidence”, along with
many other desirable properties.
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One of the main limitations of this work is in the strategy of performing variable
selection. While the aforementioned GFBST allows for multiple testing without the necessity
of correcting α, variable selection is only possible through Equation (7) if the linear model
hypothesis is not rejected. Therefore, one future research direction is developing tests that
evaluate conditional independence without assuming a specific functional form for the
relationship between variables.
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Appendix A. Proofs
Proof of Theorem 1. The proof is done in parts:

Finite X . Since X is finite, Equation (2) is the HPD. Therefore, if ∃β ∈ Rk such that

(b(X )β − µ(X ))′Σ(X ,X )−1(b(X )β − µ(X )) ≤ q(1−α)(χ
2
|X |), (A1)

then the FBST does not reject H0. Derivating the left side of (A1) in terms of β, we observe
that β̂ minimizes such expression. ■

Infinite X . In this case, the FBST does not reject the hypothesis iff ∃β ∈ Rk such that
WRSS(b × β) ≤ cα. If β̃ =

(
b(X∗)′DnX∗ b(X∗)

)−1b(X∗)′DnX∗ yX∗ , this is equivalent to not
rejecting H0 iff

(yX∗ − b(X∗)β̃)′DnX∗ (yX∗ − b(X∗)β̃) = y′
X∗ MyX∗ ≤ cα,

https://github.com/rflassance/lmFBST
https://scholarsmine.mst.edu/cgi/viewcontent.cgi?params=/context/masters_theses/article/6294
https://scholarsmine.mst.edu/cgi/viewcontent.cgi?params=/context/masters_theses/article/6294
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since β̃ is the weighted least squares estimate of β. ■

Proof of Lemma 1. The proof is found in (Lassance et al. [9], Theorem 2).

Proof of Theorem 2. The proof is done in parts:

Finite X . Lemma 1 implies that

β̃h =
(

b(X )′DP(X )b(X )
)

b(X )′DP(X )h(X ),

and thus

d(H0, h(X )) =

√
∑

x∈X
P(x)

(
h(x)− b(x)′ β̃h

)2

=
√
(h(X )− b(X )β̃h)

′DP(X )(h(X )− b(X )β̃h) =
√

h(X )′Nh(X ) ≤ ε.

Since the HPD is given by Equation (2), the FBST does not reject Pg(H0) if and only if{
h ∈ H : d(H0, h(X )) =

√
h(X )′Nh(X ) ≤ ε

h ∈ H : (h(X)− µ(X ))′Σ(X ,X )−1(h(X )− µ(X )) ≤ q1−α(χ
2
|X |)

(A2)

are intersecting ellipsoids. From Proposition 2 of Gilitschenski and Hanebeck [18], the
ellipsoids intersect if and only if

∃s ∈ (0, 1) : 1 − µ(X )′
(

ε2

1 − s
N−1 +

1
s

Σ(X ,X )q(1−α)(χ
2
|X |)

)
µ(X ) < 0.

■

Infinite X . The FBST does not reject Pg(H0) if

inf
h∈HPD

d(H0, h)2 = inf
h∈HPD

inf
h0∈H0

d(h0, h)2 = inf
h0∈H0

inf
h∈HPD

∫
X
(h0(x)− h(x))2dPX (x) ≤ ε2. (A3)

The ellipsoid G := {z ∈ Rn∗
: (z − yX∗)′DnX∗ (z − yX∗) ≤ cα} is such that, for any

function h(·) where ∃z ∈ G : h(X∗) = z, we can conclude that h ∈ HPD. Therefore, the
HPD contains functions that are linear outside of X∗, and thus

inf
h0∈H0

inf
h∈HPD

∫
X
(h0 − h(x))2dPX(x) = inf

h0∈H0
inf
z∈G

n∗

∑
i=1

(zi − h0(X∗
i,.))

2P(X∗
i,.)

= inf
z∈G

inf
h0∈H0

(z − h0(X∗))′DP(X∗)(z − h0(X∗))

= inf
z∈G

(z − b(X∗)β̂z)
′DP(X∗)(z − b(X∗)β̂z),

where β̂z = (b(X∗)′DP(X∗)b(X∗))−1b(X∗)′DP(X∗)z, thus infh∈HPD d(H0, h)2 = infz∈G z′Mz.
Therefore, the FBST does not reject H0 if the ellipsoids G and {z ∈ Rn∗

: z′Mz ≤ ε} intersect,
which can be verified through Proposition 2 of Gilitschenski and Hanebeck [18]. ■
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