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ABSTRACT
For the first time, we propose the called beta Moyal distribution that generalizes the Moyal distribution, and study its
properties. We derive expansions for the cumulative distribution function as power series of the Moyal cumulative
distribution. We derive expansions for its moments, generating function, mean deviations, density function of the
order statistics and their moments. We discuss maximum likelihood estimation of the model parameters. We illustrate
the superiority of the new distribution as compared to the beta normal, skew-normal and Moyal distributions by means
of three real data sets.

Keywords: Entropy; Expected information; Maximum likelihood estimation; Moment; Moyal distribution; Order
Statistic.

1. INTRODUCTION
One major benefit of the class of beta generalized distributions proposed by Eugene et al. (2002) is its ability of
fitting skewed data that can not be properly fitted by existing distributions. Starting from a parent cumulative

distribution function (cdf) G(X), this class is defined by
1 IG(X)

F(X) =g (ab) = B(a.b)

where @ and b are additional positive parameters, B(a,b) =T'(a)["(b)/T"(a+b) is the beta function, I"(a)
is the gamma function, | (a,b)=B,(a,b)/B(a,b) is the incomplete beta function ratio and

) 0" (1- w)" " do, 1)

Y o _
B,(a,b) = Lwa '(1—w)" ™ dw is the incomplete beta function. This class of generalized distributions has been

receiving considerable attention over the last years in particular after the work of Jones (2004).

Eugene etal. (2002), Nadarajah and Kotz (2004), Nadarajah and Gupta (2004), Nadarajah and Kotz (2005), Lee et
al. (2007) and Akinsete et al. (2008) defined the beta normal, beta Gumbel, beta Fréchet, beta exponential, beta
Weibull and beta Pareto distributions by taking G(X) to be the cdf of the normal, Gumbel, Fréchet, exponential,

Weibull and Pareto distributions, respectively. More recently, Pescim et al. (2010) and Barreto-Souza et al. (2010)
studied the beta generalized half-normal and beta generalized exponential distributions, respectively.
The probability density function (pdf) corresponding to (1) is

f(X)—B(a'b)G(X) {1-G()¥~, @

where g(X) = dG(x)/dx is the parent density function. The density f(X) will be most tractable when both
functions G(X) and g(X) have simple analytic expressions. Except for some special choices of these functions,

f (X) will be difficult to deal with some generality.

In this note, we introduce a four parameter model, called the beta Moyal (BMo) distribution, to extend the Moyal
distribution. The BMo distribution is convenient for modeling comfortable upside-down bathtub-shaped failure rates
and as a competitive model to the Moyal, half-normal, beta normal, skew normal and Gumbel distributions.

The article is organized as follows. In Section 2, we define the BMo distribution, present some special sub-models and
provide expansions for its distribution and density functions. Section 3 gives general expansions for the moments,
moment generating function (mgf), mean deviations and Rényi entropy. In Section 4, we derive expansions for the
moments of order statistics. Maximum likelihood estimation and inference issues are addressed in Section 5. Section 6
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illustrates the importance of the BMo distribution by means of three real data sets. Finally, concluding remarks are
given in Section 7.

2. BETAMOYAL DISTRIBUTION

The Moyal distribution (Moyal, 1955) was proposed as an approximation to the Landau distribution. It was also shown
that it remains valid taking into account quantum resonance effects and details of atomic structure of the absorber. The
Moyal distribution is a universal form for the energy loss by ionization for a fast charged particle and the number of

ion pairs produced in this process. Let X be a random variable having the Moyal standard density function given by
1
g, (X) = ——exp{-x+exp(-x)]/2}, —o<x<oo. ®)
§ N27

A location parameter 4 and a scale factor ¢ can be introduced to define the random variable Z = oX + 1
having a Moyal distribution, say Mo (£, ) , given by

g, (x) = \/%G exp{—%{()(%‘)wxp{— (X?T”)H} (4)

where —o0< X, <00 and o >0. The cumulative function corresponding to (4) depends on the incomplete

X
gamma function ¥(«, X) = J.Ot“‘le‘tdt. It is given by

o e )

reo)

The cumulants of the standard Moyal distribution (3) are

®)

~10g(2) - () = log@) + yand k, = (-1)"p"*(0) = (-2 -1 (Mn =2

where 7 ~0.57721 is Euler's constant, " denotes polygamma functions and ¢ () is the Riemann's zeta
function defined by
u-1

X
cw= = _F(u)oe 1x
The moments can be eaS|Iy obtained from these cumulants. Those of lower order are
1 =E(X)=1log(2)+y ~1.27036, 1, =Var(X)=r°/2~4.9348, u, =14¢, and u, =7x*/4 . For
the distribution (4), E(Z) = oE(X)+ u, Var(Z) = o?Var(X) and, more generally, the central moments of
Z (4, 7 ) are easily obtained from the central moments of X (Mo x )by 7 = G”,unvx for n>2.
The characteristic function of (3) is

for u>1.

b (1) = EE€™) = ?r(l—ut)

where 1 =+/—1. The gamma function T"(-) with complex argument is defined when the real part of the argument
is positive, which is indeed true in this case.
The Moyal distribution can be defined in a finite interval. In fact, the transformation X =tan(Y) gives the density

function of Y as
(y) = mexp{—%[tan(y)+exp{—tan(y)}]}, Z<y<l,

This density function has a maximum of about 0.91 and it is widely used to generate Moyal variates.
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Now, we introduce the four parameter BMo distribution by taking G(X) in (1) to be the cdf (5) of the Moyal
distribution. The BMo cumulative function is given by

el ()

_ 1 a-1 b-1
FO) =4 @b) IO rd 0 (l-w) " do. ©)
Inserting (4) and (5) into (2) gives the BMo density function
_ _ 11 - ~
et S ren - V{Z,Zexp[—[ X ﬂ}
f(x)= =t 1- i x
NPY3 ar(;) B(a,b) e

(2] o

where —o0 < 1< oo is the location parameter, o >0 is the scale parameter and @ >0 and b >0 are shape

parameters. For @ =b =1, it reduces to the Moyal distribution. For £z =0 and o =1, we obtain the standard
BMo density function given by

1 1 ep9]]"
(00 = eXIO{—E[x +5<p =x)1} . 7/[2, 5 } { F, exp (_X)}} | ®
V27 r@j B(a,b) F(;j 22

Plots of the density function (7) for selected parameter values are given in Figure 1. These plots show great flexibility
of the new distribution for different values of the shape parameters @ and b, including the special case of the
standard Moyal distribution. The density function (7) allows for great flexibility and then it can be very useful in many
more practical situations, i.e. the BMo distribution can be symmetric and asymmetric.

uw
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o
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Figure 1:Plots of the density function (7) for some parameter values. (@) #=0 and o =1.(b) £ =0
and c0=1.(c) b=1 and 0=1.(d) =0 and a=1.

If X is a random variable with density function (7), we write X :BMo(a,b, £, 5). The BMo distribution is

easily simulated from F(X) in (6) as follows: if V has a beta distribution with parameters @ and b, then the
solution of the nonlinear equation

% - _|og{2[erf -1(1—V)]2}

gives the BMo (@,b, £, o) distribution, where 7/(5 X} Jrerf (\/_) and erf (x) = 2 J.Oxe’tzdt is the
Jr

error function. To simulate data from this nonlinear equation, we can use the programming language Ox through the
SolveNLE subroutine (see Doornik, 2007).

We provide two simple formulae for the cdf of the BMo distribution depending if the parameter b >0 is
real non-integer or integer. First, if |z |<1 and b >0 isreal non-integer, we have the series representation

Yo = Z (-1)’ r'0)
i= JT(b- J)
For b >0 real non-integer, by the representation (9), the standard cumulative function (6) (for #=0and c=1

) can be expanded as _
7(1 e‘J
: 2' 2
(_1)1 1- N =/

re)

)

F (%) I“(a+b)Z

. . . (10)
'@ = @+ j)rb-j
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If a>0 isaninteger, (10) gives the cdf of the BMo distribution in terms of a power series of the Moyal cumulative
function. Otherwise, if @ > 0 is real non-integer, inserting expansion (9) in (10) gives

j+r 1 eXp( X)
I'(a+b) 1) (2 2 j

NG (11)
I'(d) o j'"mTb-j)T@+j+1l-r) F(E)r

F(x)=

For both @ and b real non-integers, equation (11) reveals that the BMo cumulative distribution can be expressed
as an infinite power series of the incomplete gamma function.
By application of the binomial expansion in (6), when b >0 is an integer, we obtain

1 e a+])
s (=1)! Y 2" 2

F(x) = db-1 11— . (12)

B(a,b) i (a+]) F(E)

J 2

For @ >0 integer, applying the binomial expansion in (12), yields

b-1a+]j ( 1)J+r ] l e—x r

b-1 a+ =, — . 13
"B b)EZEZ j 7(2 5 j (13)

RE@EDIR)
For a >0 real non-integer, expanding (12) as in (9), we have

b-1 « j+r or H r

(-1 2" T'(a+ j+1) 1e

B(b)ZZ . . blry53_ -
=0 @+ prir(a+ j+1-r) F(E) js

The standard Moyal cumulative function can be obtained from equation (12) when a =b =1. Equations (10)-(14)
are the main expansions for the cdf of the BMo distribution. They (and other expansions in the paper) can be evaluated
in symbolic computation software such as Mathematica and Maple}.These symbolic software have currently the
ability to deal with analytic expressions of formidable size and complexity.

Alternatively to (8), an expansion for the standard BMo density function for b real non-integer follows by
differentiating (10) and using the series representation (9)

X 1 e ‘
f(x)= \/_exp{ [x+e ]IZ}ZWK(a b){ [ ; j} , (15)
whose coefficients W, (a,b) are
wah)=3 (VI TOIED
’OWﬂrm—JﬂXa+J—@TK) B@b)

Equation (15) is the basic expansion for the standard BMo density function.

3. PROPERTIES

We hardly need to emphasize the necessity and importance of moments and generating function in any statistical
analysis especially in applied work. Some of the most important features and characteristics of a distribution can be
studied through moments (e.g., tendency, dispersion, skewness and kurtosis).
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3.1 Moments

Theorem1: If X :BMo(a,b,0,1),the Sthmomentof X is given by

__szkrsm(a b)r(m'i_ﬂj (16)

k m=0r=0
where all quantities are defined in the following proof.

Proof:
The S th moment of the BMo distribution is 2z, ZI x°* f (X)dx. Hence, if b >0 is real non-integer, we obtain
from (15)

Zwk(a b)[” x exp{——[x+exp( x)[}{ 1 expé X)}} dx.

Setting U =exp(—x)/2, 1, reduces to

:%g;‘wk (a,b) (—1)Sj:u; log®(2u) e™ {7@@} du.

Using the binomial expansion in the last equation, we can obtain

S (ab) () 0g® (@[ u * log' (1) € M%uﬂ du. @)

kOrO
r

(="

—————, we can rewrite the integral in (17), say 1(r,k), using
m=0 (¢t +m) m!

By the series expansion y(a, X) = X Z

the identity of a power series raised to an integer, namely (Zfzoakxk)” = Zfzock,nxk (see Gradshteyn and

_ k
Ryzhik, 2000), where C,, =ag and C,, = (ka,) "> ,_(nl-k+Dac,,,.
Hence,

k

1 1 k-1
"2 e Wz (W)” — ("1 2 laa' RS m
I(r,k)—Lu 2 Jog"(u) e uZmZ;)(ler) - du-IOu 2 log"(u) e mzz;)cmvku du,
2
n (1) (KI—m+1)

where C,, = m’lzlzl Cox for m=12,... and Gy, =2, k=1,2,... Inserting the

@1+1) 1!
last equation in (17) yields

k+1
4= f S Sw(@b) ¢,y (-1)°s logt™(2) [u"2 g’ et du.  qg)

k,m=0r=0
r

The integral J(r) in (18) can be easily determined from a result given by Prudnikov et al. (1986, Vol.1, Section
0" F(p)

2.6.21, integral 1). From the definition of T, (p) = , we have

kel
I(r) = j:u 2 " log(u) e du =rr(m+k7+1].
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Hence, the S th moment of the standard BMo distribution can be expressed as

where

The skewness and kurtosis measures can be determined calculated from the ordinary moments using well-known
relationships. Plots of the skewness and kurtosis for some choices of the parameter b as function of a, and for some

o0

k,m=0r=0

Z ivk,r,s,m (a, b) rr(m +%

Virsm(@b) =W (a,b) ¢,y (-1)*s log® (). +

Cordeiro & al. e The Beta Moyal Distribution

choices of the parameter @ as function of b, for =0 and o =1, are shown in Figures 1 and 2, respectively.

Skewness

Skewness

25

15

10

Kurtosis

n

oo oo
in

[

— a=05

. a=2
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10
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0o i
[
n

T oo

(b)

Figure 3: Skewness and kurtosis of the standard BMo distribution as a function of b for selected values of a.
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3.2 Generating Function

Theorem 2: If X :BMo(a,b,0,1), the mgfof X reduces to

M (t) =2% 3w (ab) c,, (m+k7+1—tj

7T k,m=0
where W, (a,b) and c,, are defined in Sections 2 and 3.1, respectively.

Proof:
The mgf of the standard BMo distribution is

M(t):\/;_zwk(a o), exp(tx)exp{ S rent- X)]H B expg X)}}

Substituting U = e~ /2, we have

k
o0 —t _u 1
M (t) = \/_ZWk(a b) ju 2 { [E,uﬂ du. (19)
Following similar steps of Theorem 1, M (t) takes the form
M (t) = Zwk(a b) € ju ERe e du.
k m=0

By the definition of the gamma function, we obtain the stated result.

3.3 Means Deviations
The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean

and median. The mean deviations of X about the mean and the median are defined by
5(X)= [ Ix=pldx and  &,(X)=[" [x=M]dx,

respectively, where £z, = E(X) and M = Median(X) isthe median. If X :BMo(a,b,0,1), these measures
can be expressed as

8,(X) =244 F (1) = 2T (1) and &,(X) = g4, = 2T (M),
where T(q) = f X f (x)dx, the median M satisfies the nonlinear equation

| ,b)=1/2,
{ly(llz,e_xm) (a,b)

r(12)

and F(z) and F(M) are given by (6). From (15), we have

T@= o 2w () x oot Dxren(- x)]/Z){ E iy X’}}
The transformation U =€ */2 leads to
T(@)=- Zwk(a b)j Nk * log(2u) exp (- u){

Following similar steps from Theorem 1, we can rewrite T () as

T(q) =—% S w,(a,b) cm,k{log(z) r(m+k—+1 Lep(- q)j

k,m=0

c
N——
| |

=~

o

c
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0 m+ﬂ—1
+j1 u 2 log(u)exp(-u)duy,
Sexp(=a)
k+1 e e
where F(m+ 5 Xp; q)j J“*Xp( ou 2 exp(-u)du is the complementary gamma function and

Cp,« is defined in Section 3.1. Then,

T(q)= —% i w,(a,b) ¢ myk{log(z) I“(m + % eXp;—Q)j

© (—1)" o m+r+E—1
+Z%j€xp(_q)u 2 " log(u) du}.
r=0 . 2

Calculating the integral in the last equation by Maple, we obtain

T(q) :—% S w,(a,b) cm,k{log@) r[m+k7+1 Lo q)j

k,m=0

+ (0’ Km+r+k—+ljg+l}[m+r+k+lj {exp( q)}(mw ) (20)
~ 2 )2 2 2

The measures 0, (X) and &,(X) are immediately determined from (20).

An application of the mean deviations is to obtain the Lorenz and Bonferroni curves, which are important in several
fields such as economics, reliability, demography, insurance and medicine. For a given probability 7, they are

defined by L(7)=T(Q)/, and B(z)=T(Q)/(7r) , respectively, where q=Q(z)=F*(x) is
determined from the beta quantile function with parameters a and b (say Qa’b(ﬂ') ) by

— -1

——Iog{z[erf (1—Qa,b(”))]2}-

In economics, if 7z = F(Q) is the proportion of units whose income is lower than or equal to ¢, L(7z) gives the
proportion of total income volume accumulated by the set of units with an income lower than or equal to (. The

Lorenz curve is increasing and convex and given the mean income, the density function of X can be obtained from
the curvature of L (7). Inasimilar manner, the Bonferroni curve B(7) gives the ratio between the mean income of

this group and the mean income of the population. In summary, L(7) yields fractions of the total income, while the
values of B(7) refer to relative income levels.

NgE

3.4 Rényi Entropy

The entropy of a random variable is a measure of variation of the uncertainty. Entropy has been used in various
situations in science and engineering, and numerous measures of entropy have been studied and compared in
literature. The Rényi entropy is defined by

INGE _§|og[| )

where 1(&) = J.f “(x)dx,&>0 and & #1. For the BMo density function (8), we have

(Vor)*

N X
[

1) =
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1 exp(-x)]] "
o {—£[x+exp(—x)]} Y E, 2 1 exp (—X) (1)
j 2 1 { {— —}} dx. 1)

CE R

1277 2
Using the series expansion (9) in (??), we obtain

-& w _a\h _
o= 02 $_ D@D+

1\ OD &t 1\]:
)] menr e )i}

£(0-1)+j;
x f; exp {— g [X+exp (—x)]}{y[% e ;_X) }} dx.

Using (9) again and then applying the binomial expansion yields

1)k T(E(a-1)+1) T(ED-1)+ j, +1)

(V2z)~* 5 Z I

£06-1) _ il
H;ﬂ [B(a.b) ** ™ kI T(§(@-1) +1- ) T(Eb-1)+ jy +1-k) H;ﬂ

X f; exp{—g [x+exp (—x)]){;/B , m;g_x)}} dx.

Setting u=e /2, (&) reducesto

1) =

(1)K T(E(a-1)+1) T(ED-1)+ j, +1)

Y :
1 (‘“bf)) gjl,sz%. r . . Nk
)] o T ey - ree-n a3

2
w0 £1 1 1
xJ‘O uz exp (—@){y(z : uﬂ du.
Following similar developments in Theorem 1, we have

¢
@=— 0n

1 &(b-1)
] e

Cryy (DK T(E(a-1)+1) T(E(b-1)+ j, +1)
o0 kl

22 :

AR G T (E(@-1) +1- ) T(E(D 1)+ j, +1- kl)H;ﬂ Jl

1(¢) =

0 +ﬂ7
< [u™7 Cep(-au) du, 22)

where ley is defined in Section 3.1. The integral in equation (22) can be easily calculated from the result given by

n
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Prudnikov et al. (1986, Vol.1, Section 2.3.3, integral 1). Hence,

=&
@)= 0n)

1 &(b-1)
2] o

Cryr (DMK T(E(@@-1)+1) T(E(b-1) + j, +1)

X . z_ Z £ 1 i
AT IT(E@-1) +1- ) D(E(b 1)+ +1- kp{r[zﬂ

| i,

rnm+-=—— 3 .
2

Finally, the Rényi entropy can be expressed as

i (&) = (1—5)-1{—5 log(v7)-&(b-1) Iog[r@ﬂ—é log[B(a,b)]

§+r1
2

xg[l

Crpr (DMK T(E(a-1)+1) T(E(b-1)+ j, +1)

+ log ZOO: Zl: : :
UM I (E(@-1) +1- ) T(E(b-1)+ j, +1- k){ @H

+ [ml + 5; IrlJlog(g) + Iog{l‘(ml + 5; d ﬂ} (23)

4. EXPANSIONS FOR THE ORDER STATISTICS

Moments of order statistics play an important role in quality control testing and reliability, where a practitioner needs
to predict the failure of future items based on the times of a few early failures. These predictors are often based on

moments of order statistics. We now derive an explicit expression for the density of the i th order statistic X, say

f.,(X), inarandom sample of size N from the BMo distribution. It is well-known that

X i .
fm(x)—mF(x) a-FI",

for i =1,...,n. Inserting (1) and (2) in the above equation, i:n (X) can be written as

— n! g (X) a-1 b-1 i1 n—i
)= iy O S0 e @) - 16 @)

Substituting (6) and (7) in the last equation, the density f,,,(X) for b>0 real non-integer becomes

{1 a(i+k)-1
So000)|
(=i ool Jerepli- 22

- k e
fin(X) = Z 1 11 b1
Ko F(E)(b_l) [[(b)"™**]™* B(a,b)"** B(i,n—l+i){7{2,2exp (—X)}}
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~ - itk-1

11 :

5500 (= X)}
(_1)1' 1_{22
Is re)

i (@+]) )T (b—j)

We define

11 :
E e x)}
(D1 e
] re)
A=§: 2

=0 (a+]) j!r(b—j)

Setting U =€ */2 and using the series expansion
70 2y op(0Y X
- T(a) =0 I (¢ —m)

the quantity A becomes

(1) u? ep(up 3o
© m=0 F(——m)
A=
% @+j) j'T(b-j)
Hence,
R © ® ~(my+-e+my)
1! u zexp(-up) ... D0 i -
o m; =0 mj=0F(——ml)...F(——mj)
A= Z 2 2

(@+]) i'C(b-j)

Il
o

ull,
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(24)

(25)

Again we use the identity (z ak X ) = Zk -Gk x¥ (see Gradshteyn and Ryzhik, 2000), where a,

now comes by identifying (25) with the corresponding quantity which is elevated to the power i+ K —1 in equation

(24). We have

3k -
u (my+--+my )

(1)u2exp(uk)z Z

m; =0 mkol“(——ml) F( -m,)

a, =
(a+k) k!F(b—k)
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k
Con =8 and Cin = (kao)ilz(nl -k+Dac .,
=1

for k =1,2,... Thus, after some algebra, we obtain

(-1)*n-i T(b)"* Bla(i+k)+ j,bld;

3 n—i o k
fi:n (X) - ;J:ZO B(a,b)”k B(i,n—l+i) fi,j,k (X)1 (26)
where
a(i+k)+j-1
exp{—;[x+ exp (-]} 7{;;% (—X)}
fiin(¥)= b1 1- 1 X
J2r r@) B[a(i +K) + j,b] rc)

Pz o0 X)}}M

denotes the density of the BMo (a(i +k)+ j,b,0,1) distribution and the constants d; ;, can be obtained
recursively from the following equations
i+k-1
1 _ar( D' {G+k)—j :
d., = and d, ()Z( ) {I(i+k) J}C,-,mk,l,JZ _
ar(b) j = (@+hiro-0

The density function of the BMo order statistics is then an infinite linear combination of BMo density functions.
Hence, the ordinary and central moments of the order statistics can be calculated directly from those quantities of the

proposed distribution given in Section 3.1. For b >0 integer, expansion (26) holds but the sum in J stops at
(b—1)(k +i—1) . Analogously, the generating function of the standard BMo order statistics can be determined from

the result in Section 3.2.
An alternative expansion for the density of the order statistics can follow from the identity

(Zioai)k = Zw ,..,mkzoaml ...ay, for K a positive integer. Using this identity and equation (24), for b >0

real non-integer, it turns out that

(b-1)
(-1)" n—lkF(b)'*klrem{ Lixren(- x)]){ = —exp( X)}}

fi:n(x):nz_ii... i

k=0m=0  m =0 r(;)“’-l) B(i,n—1+i) B(a,b)"*
i+k21
i+k—1 a(i+k)+ m.
k+Zm- l le ( x) =l J

— . 2 2 X

(-<1) = n-i T)*N1-
1
k r(a)

i+k—1

H(a+mj) m,!T'(b—m,)

Hence,
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=53 09, @)

k= Oml'0 k-1~
where

(- [x+ep (X}

fi,k (x) = b1 kL .
or r@j Bla(i+k)+ Y m,,b]
1 a(i+k)+i+jkzllmj—l
{2 Eexp( x)} 1 b-1
1- 1 {E Eexp( x)}
re)

denotes the density of the BMo (a(i +K) + Zi:lflmj ,0,0,1) distribution and
i+k-1

k+ Zm- i
J i+k-1

j=1 . i+k-1 .
(-1) ' n-i T(b)"**B(a(i+k)+ > .m;,b)
k =
é‘i,k = i+k-1
B(a,b)"** B(i,n—i+1)[J(a+m;) m,!F(b—m, )
j=1
The constants J;, are easily obtained given i,n,K and a sequence of indices m,,...,M,,, ;. The sums in (27)
extend over all (i +K)-tuples (K, m,,...,m,,, ,) of non-negative integers and can be implemented in a computer

language (such as Mathematica) using just a few lines of code. If b >0 is an integer, equation (27) holds but the
indices m,,...,m;,,_, vary from zero to b—1. Expansion (26) is much simpler to be calculated numerically in
applications and the corresponding CPU times are usually smaller than those from (27).

The Sthmomentof X, for b>0 real non-integer comes from (26)

(-D*n—i T(b)*™** B(a(i+k)+j,b) di
n-i o k
E(X,) = : E(X?5x), 28
(Xin) kZ;]Z; B(i,n—i+1) B(a,b)"** (X1 )
where X, ;, :BMo(a(i +k)+ j,b,0,1) and the constants d, ;, were defined before. If b is an integer, the

sumin j stopsat b—1.

From equation (27), we can obtain an alternative expression for the moments of the order statistics valid for b >0
real non-integer

E(Xi?n):ZZ"' Z Oix E(Xis,k)’ (29)
k=0my =0 m =0
where X Bl\/lo(a(IJrk)JrZ:I+k “m.,b,0 ,1) . If b>0is an integer, the indices m,,...,m,,, , stop at

b-1.
We therefore offer two alternative expressions (28) and (29) for the moments of the BMo order statistics, which are the

main results of this section.
From (28) and (29), we can easily derive expansions for the L-moments (Hosking, 1990) of the BMo distribution as

linear functions of expected order statistics given by
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r . k
ﬂ“r+l = r(r +1)1Z% E(xr+1—k:r+1)! r= 011""
k=0
The first four L-moments are: 4, = E(Xy,), 4, = % E(X,,— X)), A= % E(X;;—2X,;+ X,;) and
1
Ay = 1 E(X s =3X 34 +3X 50 — X14) -

5. ESTIMATION AND INFERENCE
The parameters of the BMo distribution are estimated by the method of maximum likelihood. If X has the BMo

distribution with vector of parameters A= (a,b, 4, O')T , the log-likelihood for the model parameters from a single
observation X of X isgivenby

WA= Iog(%)— log(c) —%(X;“j—%em{—(x%‘ﬂ— log[B(a,b)]

- (b-1) Iog[r(éj}(a—l) log1- 7{;;%{_0;@}

1
F(E)
+ (b-1) IOQ{J/{E,EEXP[—[X_'UHH, —00 < X < oo,
2 2 o
_ (o0 a0 o ar\
The components of the unit score vector U =| —,—,—,— | are
(aa ob ou 80}
o I [%?%exp(—z)}
7a = log {l - ) —(a) +Y(a+b),
514 11
Vo {3 [(V2r0) ool z-em (i op(-2)
P e Gl R CRS M AR
H o <0 ol T el _
r(zj 7[2'2%( Z)}
V2 1
geXp —EeXp(—Z)
+(b-1) ,

11
7{2 , EeXp (_Z)}
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o |- Lerev(-a
f a2 2 o)+ (0-1))-%C 2

oo o 20 20 }/B,;exp(—Z)}

F[;j(\/ﬂo-z)l exp {— ; [z +exp (—z)]}{; +zexp(~2) —1}

HEEEE

where Z = (X—u)/o and y(.) isthe digamma function.
For a random sample X=(X,...,xn)T of size N from X , the total log-likelihood is

L,=0.(A)= z:zlﬁ(i)( A), where /(1) is the log-likelihood for the ith observation (i =1,...,n). The

+(a-1)

total score function is U =Zin:lU O where U™ has the previous form for i =1,...,n . The maximum

likelihood estimate (MLE) A of A is the solution of the nonlinear system of equations U, = 0.
For interval estimation and tests of hypotheses on the parameters in A, we require the 4x4 unit expected
information matrix

Kia Kap K K

aa a,u a,o
. K, K K,
b,b b, b,o
K=K(A)= “ ,
. . Kpuw Kuo
Ko‘,a

whose elements are given in Appendix A.
Under conditions that are fulfilled for parameters in the interior of the parameter space, the asymptotic distribution of

\/ﬁ( A— A)is N,(0,K( A)™) . The estimated asymptotic distribution N ,(0,n*K( A)™) of A can be
used to construct approximate confidence intervals for the parameters and for the hazard rate and survival functions.
An asymptotic confidence interval with significance level y for each parameter A, is given by

ACI (4, 100(1-)%) = (4, ~ 2, V& A, + 2, &),

where &7 is the r th diagonal element of N"K( A)™" estimated at A, for r =1,---,4, and Z,, is the

quantile 1— /2 of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for testing goodness-of-fit of the BMo distribution and for comparing this
distribution with some of its special sub-models. We can compute the maximum values of the unrestricted and
restricted log-likelihoods to construct LR statistics for testing some sub-models of the BMo distribution. For example,
we may use the LR statistic to check if the fit using the BMo distribution is statistically ~“superior” to a fit using the

Moyal distribution for a given data set. In any case, considering the partition A= ( /11T, /”LDT, tests of hypotheses
ofthetype Hy: A4,= A? versus H,: A, 19 can be performed via the LR statistic W= 2{¢( A)—¢( 1)}
, where A and A are the MLEs of A under H, and H,, respectively. Under the null hypothesis H,

d
W—>;(§ ,where (| is the dimension of the vector A, of interest. The LR test rejects H, if wW>¢& , where &,

denotes the upper 100 y % point of the ;(j distribution. From the score vector and the information matrix given
before, we can also construct score and Wald statistics that are asymptotically equivalent to LR statistics.
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6. APPLICATIONS

In this section, we use several real data sets to compare the fits of the BMo distribution with those of the beta normal,
skew-normal and Moyal distributions. In each case, the parameters are estimated by maximum likelihood as described
in Section 5 using the subroutine NLMixed in SAS. First, we describe the data sets. Then, we provide the MLEs (and
the corresponding standard errors in parentheses) of the model parameters and the values of the AIC (Akaike
Information Criterion), CAIC (Consistent Akaike Information Criterion) and BIC (Bayesian Information Criterion)
statistics. The lower the values of these statistics, the better the fit. Next, we perform the LR tests (Section 5). Finally,
the histograms of these data sets are provided for a visual comparison of the fitted density functions.

(i) The wheaton river data

As a first example, we consider the data set (Akinsete et al., 2008) on the exceedances of flood peaks (in m3/s) of the
Wheaton River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for the years
1958-1984, rounded to one decimal place. These data were analyzed by Choulakian and Stephens (2001).

(ii) Tubercle bacilli data

The data, originally reported by Bjerkedal (1960), represent the survival times of guinea pigs injected with different
doses of tubercle bacilli. These data were analyzed by Kundu et al. (2008) and Leiva et al. (2009). It is known that
guinea pigs have high susceptibility to human tuberculosis and that they were used in this study. Here, we are
primarily concerned with the animals in the same cage that were under the same regimen. The regimen number is the
common logarithm of the number of bacillary units in 0.5 ml of challenge solution, that is, regimen 6.6 corresponding

to 4.0x106 bacillary units per 0.5 ml (log(4.0x106) = 6.6) .

(iii) Air pollution data
To obtain the level of air pollution and its associated adverse effects on humans in Santiago, Chile, the National

Commission of Environment (CONAMA) of the government of Chile collects data on sulfur dioxide (SOZ)
concentrations in the air. The data correspond to the hourly 802 concentrations (in ppb, American parts per billion,
ppm x1000) observed at a monitoring station located in Santiago city. These data were analyzed by Balakrishnan
et al. (2009) and Leiva et al. (2009).

Table 1: Descriptive statistics.

Data Mean Median Mode SD Variance Skewness Kurtosis Min. Max.
Wheaton 12.2 9.5 1.7 12.3 151.2 15 3.2 0.1 64
river
Tubercle 99.8 70.0 60.0 81.1 6580.1 18 2.9 12 376
bacilli
Air 2.9 3.0 2.0 19 35 4.6 40.7 1.0 25
pollution

Table 0 gives a descriptive summary of each sample. The wheaton river, tubercle bacilli and air pollution data have
positive skewness and kurtosis, larger values of these sample moments are shown in the tubercle bacilli data.

We now compute the MLEs and the AIC, BIC and CAIC information criteria for the fitted models in each data set. The
classical estimates of ¢ and o for the normal distribution are taken as starting values for the fits of the BMo,

Moyal, beta normal and skew-normal distributions. The results are reported in Table 1. In any case, since the values of
the three statistics are smaller for the BMo distribution compared to those values of the Moyal, beta normal and
skew-normal distributions, we conclude that the new distribution is a very competitive model for data analysis.
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Table 2: MLEs and information criteria.

rivg’:’heam” a b H o AlIC CAIC BIC
BMo 0.2693 0.2612 5.5967 2.0295 257.5 258.1 266.6
(0.0370) (0.0479) (0.4095) (0.2230)
Moyal 1 1 5.4092 4.8127 271.6 271.8 276.1
- - (0.8569) (0.5126)
Beta normal 141.14 134.0 6.9376 161.35 572.6 573.2 581.7
(0.4302) (0.3954) (1.8309) (13.4563)
A H o
Skew-normal | - -0.0026 12.2279 12.2125 570.7 571.0 577.5
- (4.3820) (2.7227) (1.0214)
 Tubercle a b Iz o AIC CAIC BIC
acilli
BMo 0.4841 0.4568 61.0070 17.7372 787.9 788.5 797.0
(0.0953) (0.0928) (7.1896) (2.3706)
Moyal 1 1 59.8823 28.0211 790.9 791.1 795.4
- - (4.9499) (2.8541)
Beta normal 1.7519 0.2313 16.0616 44.4357 827.8 828.4 836.9
(0.7558) (0.0303) (17.3197) (2.3460)
A H o
Skew-normal | - 19.9240 15.4379 116.66 800.5 800.9 807.3
- (13.4867) (6.6814) (10.8566)
Air pollution a b U o AIC CAIC BIC
BMo 0.2488 0.9009 3.4512 0.7542 2858.3 2858.4 2877.3
(0.0144) (0.1164) (0.2455) (0.0758)
Moyal 1 1 2.0691 0.6708 2872.7 2872.8 2882.2
- - (0.0350) (0.0188)
Beta normal 3.2438 1.0887 0.5395 2.9670 3433.0 3433.1 3452.0
(0.3952) (0.0498) (0.3064) (0.0648)
A H o
Skew-normal | - 7.0336 1.0747 2.6400 3081.0 3081.1 3095.3
- (1.0518) (0.0593) (0.0761)

A formal test for the third skewness parameter in the BMo distribution can be based on the LR statistics (Section 5).
Applying this test to the three data sets, the results are shown in Table 2. For the three data sets, we reject the null

hypothesis H, :@ =hb =1 infavor of the BMo distribution. This fact provides an evidence of the importance for the
three skewness parameters when modeling real data.

Table 3: LR tests.

Wheaton river Hypotheses Statistic W p -value

BMo vs Moyal Ho a=b=1 vs | 181 0.0001
H,:H,is false

Tubercle bacilli Hypotheses Statistic W p -value

BMo vs Moyal Ho a=b=1 vs | 70 0.0302
H,:H,is false

Air pollution Hypotheses Statistic W p -value

BMo vs Moyal Ho a=b=1 vs | 204 0.00004
H,:H,is false
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The histogram of the data and the plots of the fitted BMo, Moyal, beta normal and skew-normal distributions are given
in Figures 3, 4 and 5. These plots show some evidence that the BMo distribution seems superior to the other
distributions in terms of model fit.
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Figure 4: Estimated densities of the BMo, Moyal, beta normal and skew-normal models for the wheaton river data.
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Figure 5: Estimated densities of the BMo, Moyal, beta normal and skew-normal models for the tubercle bacilli data.
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Figure 6: Estimated densities of the BMo, Moyal, beta normal and skew-normal models for the air pollution data.

7. CONCLUSIONS

In this article, we propose a new model called the beta Moyal (BMo) distribution to extend the Moyal distribution in
the analysis of skew data with real support. An obvious reason for generalizing a ““standard distribution" is because the
generalized form provides greater flexibility in modeling real data. We provide a mathematical treatment of the new
distribution including expansions for its distribution and density functions. We derive expansions for the moments,
generating function, mean deviations and moments of order statistics. The estimation of parameters is performed by
the method of maximum likelihood and the information matrix is derived. We adopt the likelihood ratio (LR) statistic
to compare the new model with its baseline model. Three applications of the BMo distribution to real data show that
the new distribution can be used quite effectively to provide better fits than the beta normal, Moyal and skew-normal
distributions.

Appendix A
The elements of the 4x 4 unit expected information matrix are given by

1 1 ﬁ(a—l){ 2

Koo =7 _?[ 0,0,2,0,10,0 _To,o,z,o,zq,o]_ ROy By [(1"‘ 109(2)) T, 011.m0

1 ]1
+ log(4) T, -4, +T, +——=T
94 To21m0 1,0,3,1,0,0 1,0,1,1,01,0] 5 /—7[[2 1,0,1,1,2,0

2 1
+8 T1,o,4,2,20,0]+; T2,o,2,2,m,0} _\/E(b_l){ﬁ To,1,1,1,]g,o
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1 J2
+ 4\/;(72 [‘/E To,1,1,1,;13,0_2 T0,1,3,1,20,0]_ 272'(72 To,z,z,z,zo,o}’
11 @a-1)[ 171 3
K,u,a = 20_2 _?[TO,O,Z,O,(DVO +T0,o,2,o,m,o]_ o_3 {ﬁ‘iz T1,0,1,1,]Q,o+5 T1,0,3,1,]Q,0
1
+3 Tl,o,s,lm,o _Tl,O,l,l,(D,O]+E[TZ,O,Z,Z,IQ,O +4 T2,0,4,2,]o,0 +2 Tz,o,z,z,(l),o]
(b—1) [ 1 1 1
+- ri - {F To,1.1.1.000 — p Toz22100+ ? [Tn.l.l.l.l.n.n -2 El.l.fs.l.].i].ﬂ]} y
1 [2 1 :
Kby = —2—”_1’..' - To101000 FKbo= r_ll_\—FT;lL.l.].l.[].n- Kab = —1 (a+ b),

1 (a-1) | 2 1 2 V2
Ky = ?To,o,z,o,oq,o _Gg—ﬁ{ﬁ{(l_gj T1,0,4,2,(n,o +; Tl,0,8,2,(1),0:| +Z [Tz,o,z,s,tl),o

+2T2043(I)0]}+M|:iT0121(1)0+£T0202(D0:|’
T N

1 . .
Kaag = ) [(1+1log(2)) Thor1000+10g(4) Tvoz1000+4 Ti031.010+T 1010010

[

1 . . . .
Kou = [Tl,o,z,z,oo,o +2 T1,o,4,2,oo,o]’ Kea =V (@)-w (a+h) Kop =V (b)-w (a+b).

Here, we assume that a random variable V has a beta distribution with parameters a and b and define the
expected value

T iimnn :E{V A@-v) ! [erf ra-v)f exp%l[erf *1-v)f }[log {z[erf ‘1(1—V)]2}r
x[log{erf *(1-v)|I [exp {2[erf *(1-V)[ log {2[erf ’1(1—V)]2}}]p }

These expected values can be determined numerically using Maple and Mathematica for any a and b.
For example, for a = 2:5 and b = 3, we easily calculate all T’s in the information matrix:

To0,0;2,0;1,00 = 0:4598979; To,0;2,02,0,0 = 0:1271101; To;1;1;1;1,00 = j0:4559037; To;1;1;1;2;,00 = 1:800166;
To;1:3:1;2,00 = 0:1077819 ; To;2;2;2;2;0,0 = 0:9190356; T0:0;2;0;0;0,0 = 0:4948074; To:1:1.1,0.000 = 0:6847316;
To2;2;2;1,00 = 0:291509; To;1;3;1;1;00 = j0:08361248; To;1,0;1;000 = 1:745719; To:1;2;1,0,00 = 0:4406842;
To;2;0,2;0,00 = 3:955121; T1,0;1;1,0,00 = 0:9004557; Ti101;1;010 =; j0:8180274; T101;1,2,00 = 0:3652951;
T1,0;1;1;1,00 = j0:2425763; T1;0,2;1;0,0,0 = 0:39603; T1;0,2;2;2,00 =; 0:04201742; T1,0;2;2;0,0,0 = 0:01161524;
T1,0;3;1;0,10 = j0:2319999; T1,0:3;1,2,0,0 = 0:2246422; T1,0;3:1;1;00 = j0:2028589; T1,0;3;1;1,0;1 = j0:1049516;

T1;0:3:1;0,0.0 = 0:7749216; T1;0;5;1;2;0.0 = 0:004927196; T1:0:4:2;2;0,0 = 0:003980552; T1,0:4:2:0.0.,0 = 0:09122807;
T2;0;2;2;1;0,0 = 1:632044; T2;0;2;2;0,0,0 = 2:917779; T2;0;2;3;0,0;0 = 2:567143; T2;0;4;2;1;0,0 = {0:5019668;
T2;0:4;3;0,0,0 = 2:570722; T1:0:8,2;0,0,0 = 0:08920794.
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