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Abstract
Purpose  Asthma is a prevalent chronic respiratory condition. However, evidence on its association with mortality 
from severe acute respiratory infections (SARI), including COVID-19, remains scarce in South America, particularly in 
Brazil. Given asthma’s potential to influence respiratory outcomes, we investigated how age and other demographic 
or clinical predictor variables are associated with mortality in this context.

Methods  We analyzed SARI mortality data from 415,711 patients recorded in the Brazilian Unified Health System 
between January and December 2022. Patients were stratified by key predictors such as asthma status, age group, 
intensive care unit admission, and sex. Both frequentist and Bayesian logistic regression models were fitted to explore 
interactions among these predictors. To address class imbalance (fewer deaths relative to recoveries), we applied data-
balancing techniques before model estimation.

Results  Older age and admission to an intensive care unit were strong predictors of death. Invasive mechanical 
ventilation emerged as the single strongest clinical marker of severity, with an adjusted odds ratio (OR) of 
approximately 14.7, though this was exceeded by the effect of age, whose influence on mortality was even greater. 
Asthma was associated with lower mortality overall (adjusted OR ≈ 0.31), although the protective association 
weakened in young adults aged 19–29 years (OR ≈ 0.69) and in adults aged ≥ 79 years (OR ≈ 0.72). Vaccination 
against COVID-19 or influenza, as well as the use of antivirals, were each linked to lower mortality. The final model 
showed good discrimination, with an area under the receiver operating characteristic curve of 0.845.

Conclusion  Asthma is associated with lower odds of death, but the strength of this protective association 
diminishes in early adulthood and again in later life. These age-related differences warrant further investigation and, 
if confirmed, could inform age-tailored care strategies. Maintaining broad vaccine coverage and timely antiviral use 
remains advisable for all patients. Future studies that incorporate detailed information on asthma control, medication 
adherence and lifestyle factors are needed to clarify the mechanisms underlying these patterns.
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Introduction
Asthma is a complex and heterogeneous chronic respira-
tory disease that affects millions of people worldwide [1], 
contributing to high morbidity, premature mortality, and, 
in occupationally exposed groups, reduced work produc-
tivity [2]. It is characterized by chest tightness, coughing, 
shortness of breath, and wheezing, often accompanied 
by expiratory airflow limitation [3]. The disease requires 
individualized assessment and can markedly impair qual-
ity of life [3]. Although the global burden remains high, 
recent estimates indicate a rising prevalence among 
children and adolescents [4]. This highlights the impor-
tance of coordinated international initiatives such as the 
Global Asthma Network and the International Study of 
Asthma and Allergies in Childhood program, which have 
enhanced global data collection and supported evidence-
based management strategies [5].

Advances in artificial intelligence, data science, 
machine learning, and distributed ledger technologies 
have accelerated asthma research. Recent developments 
include machine-learning-based prediction of pediatric 
asthma exacerbations [6], deep learning for adult diagno-
sis [7], and risk score models for childhood-onset asthma 
[8], alongside artificial intelligence applications originally 
designed for other chronic or infectious diseases [9–11]. 
A bibliometric analysis further confirms the rapid growth 
of blockchain applications in clinical research and data 
governance [12].

AI-assisted clinical decision support, particularly in 
pediatric care, holds promise for optimizing treatment 
and reducing exacerbations [13–15]. The integration of 
electronic health record data enables phenotype identifi-
cation and early detection of high-risk patients, thereby 
fostering proactive care [16–19]. More broadly, artificial 
intelligence and machine learning contribute to precision 
healthcare by supporting patient-specific interventions in 
respiratory medicine [20–23], and have also been applied 
to develop diagnostic and prognostic tools for COVID-19 
[24, 25].

Wearable technology and big data analytics are trans-
forming the management of chronic conditions by 
enabling continuous data capture and real-time monitor-
ing [6, 26]. When combined with interpretable machine 
learning frameworks, these data streams support early 
diagnosis and identification of high-risk subgroups, 
thereby enhancing resource allocation in public health 
systems [9–11].

Despite these technological advances, the emergence 
of severe acute respiratory infections (SARI), includ-
ing COVID-19, has raised important questions about 
how asthma influences respiratory outcomes. Descrip-
tive studies suggest that asthma may not universally 
increase SARI mortality [27, 28], whereas cohort stud-
ies show that outcomes vary depending on asthma 

control, pharmacotherapy, and vaccination status [29, 
30]. Comorbidities, demographic factors or predictor 
variables (hereafter “predictors”), and micronutrient sta-
tus—such as vitamin D metabolites—also affect SARI 
outcomes among individuals with asthma [31–33]. Vac-
cination appears to confer a protective effect in mitigat-
ing infection severity among patients with asthma or 
chronic obstructive pulmonary disease [34], although 
intensive care unit (ICU)-based studies report heteroge-
neous outcomes across different phases of the COVID-19 
pandemic [35]. The multifactorial nature of these deter-
minants underscores the complexity of SARI risk in asth-
matic populations.

Large-scale surveillance data from the Brazilian Minis-
try of Health [36], together with global datasets, support 
the application of robust analytical methods. Bayesian 
approaches allow formal quantification of uncertainty in 
model parameters [37, 38], while specialized resampling 
techniques address the class imbalance often present in 
SARI data [39, 40]. Recent studies have also focused on 
improving model interpretability through local and Shap-
ley value-based explanation methods [41–43], although 
these techniques have yet to be systematically applied 
to SARI risk prediction. Moreover, meta-analyses often 
combine data from regions with healthcare systems that 
differ substantially from those in South America [27], and 
even studies that include Latin America frequently fail to 
account for regional specificities that influence clinical 
outcomes [28, 44]. As a result, a comprehensive evalua-
tion of the relationship between asthma and SARI mor-
tality in South America is still lacking.

To address this gap, we analyzed data from 415,711 
hospitalized patients recorded in Brazil’s Unified Health 
System between January and December 2022 [36]. We 
examined the association between asthma and SARI 
mortality, including COVID-19, while adjusting for age, 
sex, comorbidities, and vaccination status. Risk esti-
mates were refined using frequentist and Bayesian logis-
tic regression models, with class imbalance mitigated 
through the synthetic minority over-sampling technique 
(SMOTE)-based resampling methods [39, 40] in a coher-
ent probabilistic framework [37, 38]. Our findings aim to 
inform targeted public health interventions for patients 
with asthma hospitalized with SARI in the Brazilian 
context.

The article is organized as follows. “Materials and 
methods”  section describes the data sources, vari-
able definitions, and logistic regression methods. In 
“Results” section, we present the results, including logis-
tic regression analyses. In “Discussion”  section, clinical 
implications, study limitations, and directions for future 
research are discussed. “Conclusions”  section concludes 
by outlining the main contributions and potential appli-
cations of our findings in public health.
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Materials and methods
This section describes the dataset, key variable defini-
tions, and the methodological framework, including logis-
tic regression modeling and data-balancing techniques.

Dataset and source
This study uses data from the official surveillance sys-
tem for SARI maintained by the Brazilian Ministry of 
Health. The surveillance network, known as SIVEP-Gripe 
(Sistema de Informação de Vigilância Epidemiológica 
da Gripe, in Portuguese, the national epidemiological 
surveillance system for influenza and other respiratory 
viruses), was initially established to monitor influenza 
A(H1N1)pdm09 in 2009 and was expanded in 2020 to 
include COVID-19 surveillance. The SIVEP-Gripe data-
base is part of DATASUS (Departamento de Informática 
do Sistema Único de Saúde —SUS—, in Portuguese), the 
Brazilian public healthcare information system, which 
integrates data reported by both public and private hos-
pitals, including those regulated by the ANS (Agência 
Nacional de Saúde Suplementar, in Portuguese), the Bra-
zilian regulatory agency for private healthcare. Reporting 
of SARI cases is mandatory for all healthcare facilities, 
ensuring comprehensive epidemiological surveillance.

We describe the data access and anonymization, study 
population and data source, as well as the inclusion of 
private healthcare data as follows:

 	• Data access and anonymization —The dataset 
used here is publicly available and anonymized 
in accordance with the Brazilian General Data 
Protection Law (Lei n. 13.709/2018). To reproduce 
this study, readers can access the data through the 
Brazilian Ministry of Health’s open data webpage 
[36]. On this webpage, users should navigate to 
the section titled Recursos (Resources), select the 
relevant year (for this analysis, 2022), and download 
the desired file format (such as comma-separated 
values —CSV— files, *.csv). Each file includes 
nationwide reports of SARI cases (including 
COVID-19) reported from all Brazilian states and 
municipalities. Because updates and corrections 
are periodically implemented by local and regional 
epidemiological teams, exact record counts may vary 
slightly depending on the download date.

 	• Inclusion of private healthcare data —The SIVEP-
Gripe database integrates notifications from both 
public hospitals affiliated with the Brazilian Unified 
Health System and private hospitals regulated by the 
National Supplementary Health Agency (ANS). As of 
December 2024, approximately 24.5% of the Brazilian 
population was covered by private health plans 
(an increase from 23.2% in December 2022), with 
regional variations reaching nearly 50% in certain 

southeastern states, such as São Paulo and Rio de 
Janeiro [45]. All healthcare facilities, both public and 
private, are legally mandated to report SARI cases to 
the SIVEP-Gripe system [36]. This comprehensive 
reporting ensures that the dataset used in our study 
encompasses a broad spectrum of the Brazilian 
healthcare system, helping to mitigate potential 
biases arising from sectoral differences.

 	• Study population and data source —We included all 
anonymized SARI notifications reported between 
January and December 2022 from the SIVEP-Gripe 
database, covering the entirety of Brazil. As this study 
involved secondary analysis of publicly accessible, 
de-identified data, ethical approval was waived.

Variable definitions and data processing
From this national surveillance dataset, 14 key demo-
graphic and clinical variables relevant to SARI hospital-
izations were selected. The original SIVEP-Gripe system 
records age numerically. However, the publicly available 
data provide age categorized into standardized intervals. 
This categorization is applied by the surveillance system 
during data extraction, particularly when exact birth 
dates are missing and age is estimated. For consistency 
and analytic convenience, we retained these categorical 
age intervals throughout our analyses.

The selected variables and their respective categories 
are presented as follows:

 	• AGE —It represents the patient age categorized into 
nine groups, recorded as (0,9], (9,19], (19,29], (29,39], 
(39,49], (49,59], (59,69], (69,79], and (79,+infinite) 
years old.

 	• ANTIVIRAL —It indicates if the patient used 
antiviral drugs for the flu, recorded as Yes/No.

 	• ASTHMA —It states if the patient has asthma, 
recorded as Yes/No.

 	• CARDIO —It establishes the presence of 
cardiovascular disease, recorded as Yes/No.

 	• CFCLASS —It is the classification of SARI subtype 
defined by specific etiologies, including COVID-19-
related SARI, influenza-related SARI, unspecified 
SARI, SARI due to other etiologic agents, and SARI 
associated with other respiratory viruses.

 	• COVVAC —It is the COVID-19 vaccination status, 
recorded as Yes (vaccinated) or No (not vaccinated).

 	• DYSPNEA —It indicates if the patient experiences 
shortness of breath, recorded as Yes/No.

 	• EVOLUT —It corresponds to the patient outcome, 
categorized as Recovered/Died.

 	• FLUVAC —It represents the influenza vaccination 
status, recorded as Yes/No.

 	• ICU —It indicates whether the patient was admitted 
to the ICU, recorded as Yes/No.
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 	• OXYGEN —It is the type of oxygen support received, 
categorized as No (no support), Yes_non_invasive 
(non-invasive support), or Yes_invasive (invasive 
support).

 	• RESPDIS —It indicates if the patient suffers from 
respiratory distress, recorded as Yes/No.

 	• SATUR —It is an indicator of oxygen saturation (O2) 
issues, recorded as Yes/No.

 	• SEX —It is the biological sex assigned at birth, 
recorded as Female/Male.

Analytical methods
A descriptive analysis was conducted to compare clinical 
and demographic characteristics by asthma status, using 
frequencies, percentages, and chi-square (χ2) p-val-
ues to assess statistical significance between asthmatic 
and non-asthmatic groups. Based on these preliminary 
assessments and clinical plausibility, several candidate 
interactions were identified for consideration in our 
logistic regression models, including the following:

 	• Asthma × Age —Given distinct mortality patterns 
across age groups among asthmatics.

 	• Asthma × ICU Admission —To explore how critical 
care might differentially affect asthmatics.

 	• Age × ICU Admission —Motivated by the possibility 
that ICU care could have heterogeneous effects by age.

 	• Sex × Age and Sex × ICU Admission —Given 
indications of sex-specific responses in critical care 
outcomes and varied mortality patterns in different 
age brackets.

To quantify the effects of key predictors and their poten-
tial interactions, we applied both frequentist and Bayes-
ian logistic regression models [15, 38]. By integrating 
prior information, the Bayesian approach generated 
posterior distributions for each coefficient, allowing for 
probabilistic interpretations through credible intervals 
(CrI) that complemented frequentist confidence inter-
vals. For example, a 95% CrI indicates a 95% probability 
that the true parameter lies within the interval, given the 
data and priors. This perspective enhances the interpret-
ability of predictor effects and interactions.

Model-building procedure
All candidate interactions were initially included in both 
models. Subsequently, the following procedures were 
applied:

 	• Backward elimination (frequentist) —Interactions 
that did not meet a predefined statistical significance 
threshold (α = 0.05) were removed unless there was 
a compelling clinical rationale for retaining them.

 	• Posterior distributions (Bayesian) —For each 
interaction, we examined whether the 95% CrI 
excluded the null (OR = 1). Interactions with 
wide CrI centered near one were considered 
uninformative unless supported by strong clinical 
justification.

 	• Clinical plausibility and parsimony —Interactions 
supported by prior research or deemed biologically 
meaningful were considered for retention, provided 
they did not overly complicate the model without 
improving interpretability.

Following these procedures, a final model was obtained 
for both the frequentist and Bayesian analyses. Details on 
which interactions remained are presented in “Logistic 
regression analyses”  section, along with their estimated 
effects and implications.

Model fit and performance indicators
We evaluated the suitability of the logistic regression 
models using fit and performance indicators relevant to 
clinical and public health contexts. These indicators pro-
vide insights into model accuracy, robustness to class 
imbalance, and sensitivity in detecting high-risk cases 
[39]. The evaluated indicators include the following:

 	• Accuracy —It is the overall ratio of correct 
predictions across all instances. While it provides a 
general performance measure, accuracy may be less 
informative in imbalanced datasets where one class 
dominates.

 	• Sensitivity (recall) —It is the proportion of true 
positive predictions among all actual positives, 
reflecting the model’s ability to correctly identify 
patients at high risk of mortality.

 	• Specificity —It is the proportion of true negative 
predictions among all actual negatives, indicating the 
model’s ability to correctly identify patients who did 
not experience mortality.

 	• Precision —It is the proportion of true positive 
predictions among all positive predictions, indicating 
the reliability of predictions that identify high-risk 
patients.

 	• F1 score —It is the harmonic mean of precision 
and recall. This measure balances sensitivity and 
precision and is particularly valuable in imbalanced 
datasets.

 	• Receiver operating characteristic area under the 
curve (ROC-AUC) —It is the area under the receiver 
operating characteristic curve, which reflects the 
trade-off between sensitivity and specificity over 
varying thresholds. It offers a global measure of 
model discrimination.
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 	• Negative predictive value —It is the proportion of 
true negative predictions among all predictions 
classified as negative, indicating how reliably the 
model identifies non-mortality cases.

 	• False positive rate —It is the proportion of false 
positive predictions among all actual negatives, 
providing insight into the rate of false alarms in 
mortality prediction.

 	• Balanced accuracy —It is the average of sensitivity 
and specificity, giving equal weight to both classes, 
and providing a more robust performance measure 
in the presence of class imbalance.

These indicators form a comprehensive framework for 
evaluating model performance, focusing on identifying 
high-risk cases and minimizing misclassifications. Using 
this range of metrics, we assess the model’s ability to sup-
port clinical decision-making and public health strategies 
for managing SARI patients with asthma.

Data-balancing techniques
In imbalanced datasets—where one outcome class greatly 
outweighs the other—model performance may become 
biased. In our study, recovery cases greatly exceeded 
mortality cases, reducing the model’s sensitivity to the 
minority class (mortality), which is crucial for assessing 
mortality risk factors [39, 40].

To mitigate class imbalance, we utilized the following 
data balancing techniques:

 	• Undersampling —It involves reducing the size of 
the majority class by randomly removing instances, 
thereby balancing the dataset. While undersampling 
can prevent the model from being biased toward the 
majority class, it may lead to information loss due to 
the reduced sample size of the majority class.

 	• Oversampling —It increases the representation of the 
minority class by duplicating existing observations 
or generating synthetic instances. Oversampling 
enhances the model’s ability to learn from the 
minority class but can increase the risk of overfitting, 
as the model may learn patterns specific to duplicated 
instances rather than generalizable patterns.

 	• Hybrid methods —It includes techniques like 
SMOTE, which combine oversampling of the 
minority class with the creation of synthetic 
instances based on feature space similarities. This 
approach can improve model generalization by 
providing new and diverse instances without merely 
duplicating existing ones.

All techniques were applied, and sensitivity analyses con-
firmed that the choice of balancing method did not sub-
stantially affect the results.

We chose undersampling for presenting results, justi-
fied by the following:

 	• Computational efficiency —It reduced the 
computational resources required for model training, 
which was particularly important for running the 
Bayesian logistic regression models, as they are 
computationally intensive and memory-demanding.

 	• Large dataset —Given our substantial dataset, 
undersampling the majority class (recovery cases) 
still left us with a sufficient number of instances to 
maintain statistical power and model reliability. The 
reduction did not highly impact the model’s ability to 
detect relevant patterns or associations.

 	• Model stability —It minimized the risk of overfitting 
associated with oversampling techniques. By 
reducing the majority class rather than increasing the 
minority class, we avoided introducing redundant 
information that could bias the model.

Results
This section presents the findings of the study, includ-
ing the sensitivity analysis, exploratory data analysis, and 
logistic regression results.

Sensitivity analysis
Our sensitivity analysis indicated that the main predic-
tors and their associations with SARI mortality remained 
consistent across different data balancing techniques, 
including undersampling, oversampling, and SMOTE 
[39, 40]. This consistency suggests that our results are 
stable regardless of the balancing technique used, which 
is likely attributable to the large size of our dataset. 
Full details of the sensitivity analysis are available upon 
request.

Exploratory analysis
Preliminary analyses explored associations between 
asthma, age, comorbidities, ICU admission, SARI mor-
tality, and vaccination status by stratifying variables 
according to asthma status, age group, and sex. This pro-
vided initial insights into mortality patterns and respira-
tory health variations across clinical and demographic 
subgroups, guiding the development of our statistical 
models.

Table 1 presents the distribution of clinical and demo-
graphic characteristics by asthma status, including fre-
quencies, percentages, and chi-square p-values to assess 
statistical significance between asthmatic and non-asth-
matic groups.

Patients with asthma represented only 4.6% of the data-
set, highlighting their limited prevalence in the cohort. 
However, the large sample size of 415,711 individu-
als enables meaningful comparisons despite the small 
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proportion of asthmatic cases. The age distribution shows 
a high concentration of younger patients in the asthmatic 
group, with 43.6% aged 0 to 9 compared to 25.2% among 
non-asthmatics; see Table  1 and Fig.  1 supporting such 
findings. These patterns indicate that asthmatic children 
represent a relatively larger share of SARI cases, which 
is important for understanding how outcomes vary with 
age in this group. Conversely, older age groups (69–79 
years and 79 years or older) are less represented among 
asthmatics, suggesting potential differences in how 
asthma relates to SARI risk across life stages.

The classification of SARI types also varied between 
groups. A high proportion of non-asthmatic patients 
(46.1%) and asthmatic patients (25.8%) were classified as 
COVID-19-related SARI. However, 62.3% of asthmatic 

patients were categorized as unspecified SARI, compared 
to 44.6% among non-asthmatics. These differences in 
classification may reflect variation in diagnostic specific-
ity or reporting practices between the groups, and point 
to possible challenges in characterizing the etiology of 
respiratory infections among patients with asthma.

Gender distribution differed between groups, with 
females comprising 55.5% of the asthmatic group ver-
sus 48.9% in non-asthmatics. This pattern may suggest 
a high asthma prevalence among female SARI patients, 
although this observation requires further investigation.

Clinical symptoms such as dyspnea and respiratory dis-
tress were more frequently reported among asthmatics. 
Dyspnea was present in 77.5% of asthmatics compared 
to 59.3% of non-asthmatics, while respiratory distress 

Table 1  Distribution of clinical and demographic characteristics by asthma status with Brazilian data
Variable Class/Level No (396,530 patients, 95.4%) Yes (19,181 patients, 4.6%) p-value
AGE (0,9] 99,874 (25.2%) 8,371 (43.6%) < 0.001

(9,19] 15,305 (3.9%) 1,357 (7.1%)
(19,29] 13,814 (3.5%) 622 (3.2%)
(29,39] 16,695 (4.2%) 736 (3.8%)
(39,49] 20,913 (5.3%) 956 (5.0%)
(49,59] 31,660 (8.0%) 1,221 (6.4%)
(59,69] 49,903 (12.6%) 1,745 (9.1%)
(69,79] 63,525 (16.0%) 1,933 (10.1%)
(79, +infinite) 84,841 (21.4%) 2,240 (11.7%)

SEX Female 194,061 (48.9%) 10,641 (55.5%) < 0.001
Male 202,469 (51.1%) 8,540 (44.5%)

DYSPNEA No 161,197 (40.7%) 4,313 (22.5%) < 0.001
Yes 235,333 (59.3%) 14,868 (77.5%)

RESPDIS No 202,514 (51.1%) 6,766 (35.3%) < 0.001
Yes 194,016 (48.9%) 12,415 (64.7%)

SATUR No 190,991 (48.2%) 5,997 (31.3%) < 0.001
Yes 205,539 (51.8%) 13,184 (68.7%)

CARDIO No 292,783 (73.8%) 15,247 (79.5%) < 0.001
Yes 103,747 (26.2%) 3,934 (20.5%)

FLUVAC No 362,231 (91.4%) 17,002 (88.6%) < 0.001
Yes 34,299 (8.6%) 2,179 (11.4%)

ANTIVIRAL No 380,941 (96.1%) 18,046 (94.1%) < 0.001
Yes 15,589 (3.9%) 1,135 (5.9%)

ICU No 292,543 (73.8%) 14,527 (75.7%) < 0.001
Yes 103,987 (26.2%) 4,654 (24.3%)

OXYGEN No 108,781 (27.4%) 3,975 (20.7%) < 0.001
Yes (invasive) 47,222 (11.9%) 1,708 (8.9%)
Yes (non-invasive) 240,527 (60.7%) 13,498 (70.4%)

EVOLUT Died 88,104 (22.2%) 1,966 (10.2%) < 0.001
Recovered 308,426 (77.8%) 17,215 (89.8%)

COVVAC No 151,880 (38.3%) 8,110 (42.3%) < 0.001
Yes 244,650 (61.7%) 11,071 (57.7%)

CFCLASS COVID-19 182,842 (46.1%) 4,955 (25.8%) < 0.001
Influenza 9,149 (2.3%) 737 (3.8%)
Not specified 176,839 (44.6%) 11,955 (62.3%)
Other etiologic agent 3,337 (0.8%) 156 (0.8%)
Other respiratory virus 24,363 (6.1%) 1,378 (7.2%)
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affected 64.7% and 48.9%, respectively. These findings 
indicate that asthma is associated with an increased 
frequency of respiratory symptoms, which may influ-
ence the clinical presentation and course of SARI in this 
population.

Vaccination rates for influenza and COVID-19 differed 
modestly between groups, as shown in Table  1. Influ-
enza vaccination was more common among asthmatics 
(11.4%) than non-asthmatics (8.6%), possibly reflecting 
greater awareness or prioritization of vaccination in this 
subgroup. In contrast, COVID-19 vaccination rates were 
slightly lower among asthmatics (57.7%) compared to 
non-asthmatics (61.7%).

A detailed analysis of mortality rates by asthma and 
vaccination status is presented in Table 2. Non-asthmatic 
patients exhibited a mortality rate of 22.2%, much higher 
than the 10.2% observed among asthmatic patients (χ2 
= 1543.6, degrees of freedom = 1, p-value < 0.01). These 
results indicate a low observed mortality among patients 
with asthma. However, this should be interpreted with 
caution, as unmeasured confounders or differences in 
clinical management may underlie the observed pattern.

Table 3 presents the absolute number and percentage 
of deaths among vaccinated versus unvaccinated indi-
viduals, stratified by asthma status. Notably, non-asth-
matic patients who were vaccinated exhibited a 28.0% 
mortality rate, compared to 12.9% among unvaccinated 
non-asthmatics. A similar pattern is observed among 
asthmatic patients: 14.5% mortality in vaccinated indi-
viduals versus 4.5% in the unvaccinated group. A chi-
square test confirmed the statistical significance of 
these differences (χ2 = 14,328, degrees of freedom = 3, 
p-value < 0.01).

Although initially counterintuitive, the high mortality 
rates observed among vaccinated individuals are likely 
influenced by confounding, particularly by age and comor-
bidities. Older or more clinically vulnerable patients were 
often prioritized for vaccination, which may partially 
account for these patterns. To further explore this rela-
tionship, we computed mortality rates stratified by asthma 
status, vaccination status, and age.

Table 2  Distribution of patient outcomes by asthma status with 
Brazilian data

Percent of patients
Asthma status Died Recovered
Non-asthmatic 22.2 77.8
Asthmatic 10.2 89.8

Table 3  Mortality by asthma status and vaccination status 
(absolute numbers and percentages) with Brazilian data

Number of 
patients

Percent of 
patients

Asthma Vaccination Died Survived Died Survived
Asthmatic Unvaccinated 364 7,746 4.5 95.5
Asthmatic Vaccinated 1,602 9,469 14.5 85.5
Non-asthmatic Unvaccinated 19,641 132,239 12.9 87.1
Non-asthmatic Vaccinated 68,463 176,187 28.0 72.0

Fig. 1  Bar plot of age distribution of SARI patients by asthma status with Brazilian data
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Figure  2 presents a line graph illustrating age-specific 
mortality rates stratified by asthma and vaccination sta-
tus. The x-axis indicates the age brackets, while the 
y-axis represents the mortality rate (in percent). Each 
panel (facet) distinguishes asthmatic from non-asthmatic 
patients, and within each panel, the lines and points dif-
ferentiate vaccinated from unvaccinated individuals.

From Fig.  2, we observe that beginning in the 19–29 
age bracket, unvaccinated individuals consistently exhibit 
greater mortality rates than their vaccinated counter-
parts, both among asthmatics and non-asthmatics. This 
aligns with the notion that vaccination may be associated 
with low mortality risk, although interpretation must 
remain cautious due to potential residual confounding 
and lack of adjustment for baseline clinical severity.

Figure  3 shows a line plot of mortality rates among 
ICU patients segmented by age, asthma status, and sex. 
Non-asthmatic patients consistently exhibit high mortal-
ity percentages across all age groups. Among asthmatic 
males, mortality rates increase sharply between the 9–19 
and 19–29 age groups, stabilize until 49 years, and then 
rise again, peaking at 69–79 years, with a slight decline 
beyond 79 years. In contrast, asthmatic females display a 
more gradual and steady increase in mortality with age. 
Among non-asthmatic males, mortality rates are particu-
larly elevated in older age groups.

Figure  4 expands this analysis by incorporating 
COVID-19 status. The data indicate that, among asth-
matic males, SARS-CoV-2 infection is associated with 
an amplified age-related rise in mortality. For instance, 
in the 19–29 age group, asthmatic males with COVID-
19 exhibit a mortality rate more than twice that of their 
non-COVID counterparts, and among those aged from 

49 years onward, mortality in COVID-19 cases exceeds 
40%. In older age groups, non-asthmatic individuals con-
sistently show high mortality rates overall, regardless of 
whether the SARI case was attributed to COVID-19 or 
other etiologies. These patterns suggest that COVID-19 
may be linked to greater vulnerability among younger 
and middle-aged asthmatic men, while non-asthmatic 
patients continue to experience the highest absolute 
mortality burden at advanced ages.

Respiratory health differences were further explored by 
examining O2 saturation across age groups, stratified by 
asthma status and sex. As noted in Table 1, 68.7% of asth-
matic patients presented with low O2 saturation, com-
pared to 51.8% among non-asthmatics.

Figure 5 provides a stacked-bar chart showing the per-
centage of low (dark gray) versus normal (light gray) O2 
saturation across age brackets. A dashed horizontal line 
at the 50% mark aids interpretation. Among asthmatic 
individuals, the dark-gray segment exceeds half of each 
bar across nearly all age groups, indicating that more 
than 50% of asthmatic patients experienced low satura-
tion. By contrast, among non-asthmatics, the proportion 
of low saturation exceeds 50% only in older groups (from 
49 years onward), and remains consistently lower than 
that observed in asthmatics.

Low O2 saturation is a well-established clinical indi-
cator of respiratory compromise and is frequently 
associated with severe outcomes, including mortality. 
Interestingly, although patients with asthma more often 
presented with low O2 saturation, our results show low 
observed mortality in this group. This apparent incon-
sistency may reflect differences in healthcare-seeking 
behavior, earlier clinical intervention, or unmeasured 

Fig. 2  Line plot comparing mortality rates by age group, asthma status, and COVID-19 vaccination status using Brazilian data
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predictors such as asthma control or comorbidity bur-
den. Figure 6 explores this further by illustrating the age-
specific prevalence of low O2 saturation, stratified by 
asthma status and sex. Each curve employs a distinct line 
type for asthma status and varying shades of gray for sex, 
facilitating visual comparison.

Among males, the lowest prevalence of low O2 satu-
ration consistently occurs in the 19–29 age group, 
regardless of asthma diagnosis. In contrast, female 
non-asthmatics also exhibit their lowest prevalence 
in this same younger group (19–29 years), while asth-
matic females reach their minimum prevalence slightly 
later, in the 29–39-year range. These subtle age-related 

differences may reflect underlying biological variation, 
differences in access or timing of care, or distinct comor-
bidity profiles, although further data would be required 
to confirm such hypotheses.

Given that our analysis does not include direct indi-
cators of asthma severity or disease control (such as 
exacerbation frequency, dyspnea severity, or detailed 
respiratory support), caution is warranted when inter-
preting the observed mortality patterns. Incorporat-
ing variables related to asthma management—such as 
medication adherence, corticosteroid usage, or ventila-
tory support—would likely improve the understanding 
of why some patient subgroups experience low mortality 

Fig. 4  Line plot of mortality rates of ICU patients by age group, asthma and COVID-19 status, and sex —female (F)/male (M)— with Brazilian data

 

Fig. 3  Line plot of mortality rates of ICU patients by age group, asthma status, and sex —female (F)/male (M)— with Brazilian data
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despite presenting with signs of respiratory compromise. 
Future studies incorporating these variables may help to 
clarify the complex role of asthma in modulating SARI 
outcomes.

Logistic regression analyses
Based on the exploratory analysis, we constructed a 
logistic regression model incorporating main effects and 
selected higher-order interactions to explore patterns of 

SARI mortality. The model was refined using backward 
elimination, sequentially removing non-significant pre-
dictors and interactions while retaining those supported 
by clinical relevance. This approach yielded a more 
streamlined and interpretable model, preserving key pre-
dictors and interactions identified in the data.

Table  4 and Fig.  7 present the results for the 
refined frequentist and Bayesian models, includ-
ing CrI for the Bayesian approach. This comparison 

Fig. 6  Line plot of the proportion of patients with low O2 saturation by age group, asthma status, and sex —female (F)/male (M)— using Brazilian data

 

Fig. 5  Bar plot of percentage of patients with the indicated O2 saturation level by age group and asthma status using Brazilian data
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illustrates the consistency of key associations across both 
methodologies.

Overall, the comparison shows that age, ICU admis-
sion, and asthma status were among the most influ-
ential predictors across both frequentist and Bayesian 
approaches, underscoring the robustness of the main 
associations; see Table 4 and Fig. 7.

Remark  (Bayesian CrI versus frequentist confidence 
intervals) In a frequentist framework, a 95% confidence 
interval is interpreted as follows: if the sampling process 
were repeated many times, 95% of the constructed inter-
vals would contain the true parameter. In contrast, in the 
Bayesian framework, a 95% CrI reflects a 95% probabil-
ity that the parameter lies within that interval, given the 
observed data and prior information. This probabilistic 
interpretation is often considered more intuitive by clini-
cians, as it directly expresses the uncertainty surrounding 
the parameter estimates.

Age-specific variations in the asthma–mortality association
Asthma was generally associated with lower odds of 
SARI mortality (main-effect OR = 0.308 in the frequen-
tist model; OR = 0.3135, 95% CrI 0.2187–0.4360, in the 
Bayesian model). However, interaction terms (Table  4) 
show that this protective association is not uniform 
across age groups: it is markedly weaker in young adults 
(19–29 years) and in the very old (79 years and above).

For individuals aged 19–29, the interaction term 
ASTHMA(yes):AGE(19,29] was 2.23 (95% CrI: [1.17; 
3.86]). Multiplying this by the main asthma effect yields a 
combined OR of approximately 0.69 compared with non-
asthmatics of the same age—still below one, but much 
closer to one than in intermediate ages (OR ≈ 0.42–0.44 
for 29–59 years). Thus, the lower odds of death for asth-
matics is attenuated, not reversed, in early adulthood.

Among the oldest individuals (79 years and above), the 
interaction ASTHMA(yes):AGE(79,+infinite) was 2.35, 
resulting in a combined OR of about 0.72 versus non-
asthmatics of the same age. The apparent protective asso-
ciation remains but is minimal, suggesting that advanced 
age and comorbidity burden nearly offset the expected 
benefit.

Several hypotheses might explain why protection 
wanes at the age extremes as follows:

CrI
Predictor OR OR 

(Bayes)
Lower Upper

AGE(9,19] 2.4120 2.3632 1.8404 3.0042
AGE(19,29] 3.3414 3.2871 2.6912 4.0552
AGE(29,39] 5.9488 5.8709 4.9530 7.0287
AGE(39,49] 12.1285 11.9413 10.1757 14.0132
AGE(49,59] 14.0524 13.8738 11.9413 16.1190
AGE(59,69] 17.7154 17.4615 15.3329 20.0855
AGE(69,79] 21.8635 21.5419 18.9158 24.7791
AGE(79,+infinite) 38.4307 37.7128 33.4483 43.3801
ANTIVIRAL(yes) 0.6837 0.6839 0.6250 0.7483
ASTHMA(yes) 0.3083 0.3135 0.2187 0.4360
ASTHMA(Yes):AGE(9,19] 1.2164 1.1618 0.6188 2.1598
ASTHMA(yes):AGE(19,29] 2.2342 2.1383 1.1735 3.8574
ASTHMA(yes):AGE(29,39] 1.3743 1.3364 0.7945 2.2705
ASTHMA(yes):AGE(39,49] 1.4383 1.4049 0.8869 2.2255
ASTHMA(yes):AGE(49,59] 1.3553 1.3231 0.8694 2.0544
ASTHMA(yes):AGE(59,69] 1.5833 1.5527 1.0618 2.2933
ASTHMA(yes):AGE(69,79] 1.7648 1.7333 1.1972 2.6117
ASTHMA(yes):AGE(79,+infinite) 2.3471 2.2933 1.5999 3.3872
ASTHMA(yes):ICU(yes) 1.2132 1.2214 1.0101 1.4623
CFCLASS SARI (influenza) 0.5519 0.5488 0.4966 0.6126
CFCLASS SARI (not specified) 0.6832 0.6839 0.6637 0.7047
CFCLASS SARI (other etiologic 
agent)

1.0886 1.0833 0.9324 1.2586

CFCLASS SARI (other respiratory 
virus)

0.4566 0.4538 0.4066 0.5066

COVVAC(yes) 0.8228 0.8270 0.7945 0.8521
DYSPNEA(yes) 1.1131 1.1163 1.0833 1.1503
FLUVAC(yes) 0.7332 0.7334 0.6977 0.7711
ICU(Yes) 2.5768 2.5345 2.1598 2.9743
ICU(Yes):AGE(9,19] 0.7357 0.7558 0.5326 1.0725
ICU(yes):AGE(19,29] 1.1421 1.1618 0.8521 1.5841
ICU(yes):AGE(29,39] 0.8976 0.9139 0.6977 1.1972
ICU(yes):AGE(39,49] 0.6285 0.6376 0.4966 0.8106
ICU(yes):AGE(49,59] 0.7254 0.7408 0.5945 0.9139
ICU(yes):AGE(59,69] 0.7340 0.7483 0.6126 0.9048
ICU(yes):AGE(69,79] 0.7365 0.7483 0.6188 0.8958
ICU(yes):AGE(79,+infinite) 0.5553 0.5655 0.4724 0.6771
OXYGEN(yes invasive) 14.7255 14.7317 13.8738 15.6426
OXYGEN(yes non-invasive) 1.9635 1.9542 1.8965 2.0340
RESPDIS(yes) 1.2214 1.2214 1.1853 1.2586
SATUR(yes) 1.1248 1.1275 1.0833 1.1618
SEX(male) 0.8681 0.8607 0.7334 1.0101
SEX(male):AGE(9,19] 1.3435 1.3634 0.9900 1.8965
SEX(male):AGE(19,29] 2.7501 2.7732 2.1170 3.6693
SEX(male):AGE(29,39] 2.0040 2.0340 1.6000 2.5600
SEX(male):AGE(39,49] 1.2004 1.2092 0.9802 1.5068
SEX(male):AGE(49,59] 1.3932 1.4049 1.1503 1.7160
SEX(male):AGE(59,69] 1.4372 1.4477 1.1972 1.7333
SEX(male):AGE(69,79] 1.4902 1.5068 1.2586 1.8040
SEX(male):AGE(79,+infinite) 1.2901 1.3100 1.0942 1.5527

Table 4  Results of frequentist and Bayesian logistic regressions 
for SARI mortality, showing OR as well as lower and upper limits 
of CrIs using Brazilian data

CrI
Predictor OR OR 

(Bayes)
Lower Upper

SEX(male):ICU(yes) 0.9922 1.0000 0.8025 1.2586
SEX(male):ICU(yes):AGE(19,29] 0.5257 0.5273 0.3465 0.8187

Table 4  (continued) 
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 	• Medication adherence —Suboptimal use of 
controller therapy may be more common in young 
adults, but medication data were unavailable.

 	• Healthcare-seeking behavior —Delayed presentation 
could contribute, yet timing information was lacking.

 	• Biological variation —Age-specific phenotypes or 
immune responses may modify outcomes.

 	• Sociodemographic predictors —Greater mobility or 
occupational exposure in young adults, and frailty in 
the very old, could influence risk.

These findings emphasize the need for age-stratified 
management: enhanced surveillance of young adult asth-
matics, who lose much of the usual survival advantage, 
and tailored care for the very elderly, in whom comorbid-
ities and physiological decline further erode protection.

In addition to asthma-related effects, age alone was the 
dominant predictor of death. Among non-asthmatics, the 
adjusted OR of SARI mortality increased sharply, rising 
from about 3.34 in the 19–29 year group to 38.4 in those 
aged 79 years and above.

A noteworthy three-way interaction, SEX(male):ICU 
(yes):AGE(19,29], had an OR of 0.53. This suggests that 
the young male patients admitted to the ICU experienced 
lower mortality than would be expected based on the 

individual effects of sex, ICU admission, and age—pos-
sibly reflecting particularly effective intensive care or 
unmeasured protective predictors in this subgroup.

Additional salient coefficients included:

 	• ICU admission —Main-effect OR ≈ 2.58, confirming 
a substantial increase in mortality risk, partially 
modified by age and sex interactions.

 	• COVID-19 vaccination (COVVAC(yes)) —
OR ≈ 0.82, corresponding to an 18% reduction in the 
adjusted OR of death.

 	• Oxygen support —The strongest single predictor 
of severity; invasive ventilation showed OR ≈ 14.7, 
while non-invasive support had OR ≈ 2.0.

Clinical and public health implications
These findings illustrate the heterogeneity of mortality 
risk in severe acute respiratory infection among people 
with asthma. Although an overall association with lower 
odds of death was observed, the magnitude of that asso-
ciation varied markedly: for adults aged 19–29 years and 
for those aged 79 years and above, the adjusted odds 
of death were only marginally lower than in non-asth-
matics of the same age. Possible explanations—such as 

Fig. 7  Interval plots of log(OR) from frequentist (95% confidence intervals) and Bayesian (95% CrLs) logistic regressions for each predictor, based on 
Brazilian SARI data (2022)
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differences in asthma control, access to timely care, phe-
notypic heterogeneity, or age-related immune variation—
remain speculative because the present dataset lacks the 
necessary detail to test them.

Accordingly, risk-reduction strategies should not 
assume uniform protection in asthma. Rather, the pres-
ent results suggest that:

 	• Surveillance and future research could focus on 
young adults with asthma (19–29 years) and on very 
old adults (≥ 79 years), the two strata in which the 
survival advantage was least apparent.

 	• Age-stratified evaluation of vaccination programs 
and antiviral timing may help to clarify how these 
interventions modify mortality associations in high-
risk subgroups.

 	• Critical-care pathways might benefit from further 
investigation of age–sex–asthma interactions before 
prescriptive changes in ICU triage are considered.

Because these conclusions derive from observational 
associations, they should be validated in prospective 
cohorts—including data on asthma severity, medication 
use, and socioeconomic context—before informing clini-
cal guidelines.

Model performance and predictive accuracy
To assess the predictive effectiveness of our models, 
Table  5 presents various performance metrics for the 
logistic regression models. The results indicate that the 
models perform adequately in predicting mortality risk. 
Figure 8 illustrates this through the ROC-AUC, demon-
strating good discrimination capability, with a ROC-AUC 
of 0.8448 and balanced between sensitivity and specific-
ity in predicting SARI mortality. These indicators support 
the consistency of our analytical approach in identifying 
patterns among high-risk subgroups.

While the primary goal of our logistic regression mod-
els was to interpret associations between variables and 
SARI mortality, the performance metrics offer addi-
tional support for the model’s ability to identify high-risk 
patients. The observed discriminatory capacity and bal-
ance between sensitivity and specificity suggest that the 
model captures relevant structure in the data without 
overfitting.

Discussion
In this section, clinical implications, study limitations, 
and directions for future research are discussed.

Age-specific impacts of asthma
The main effect of ASTHMA(yes) (OR ≈ 0.31) indicated 
substantially reduced mortality OR overall. However, 
interaction terms in Table  4 show that this favorable 
association is not uniform across age brackets, as follows:

 	• Young adults (19–29 years) —In this group, the 
interaction term ASTHMA(yes):AGE(19,29] 
(OR ≈ 2.23) markedly diminishes the survival 
advantage of asthma. When compared with non-
asthmatics of the same age, asthmatics still had 
low OR of death (combined OR ≈ 0.69), but 
the protection is far smaller than that seen in 
intermediate ages. Conversely, when referenced to 
asthmatic children (0–9 years), mortality is around 
7.5-fold higher, indicating that young adults with 
asthma represent a relative “gap” in the usual age-risk 
gradient and warrant focused study of adherence, 
disease control, and access to care.

 	• Elderly adults (over 79 years) —The interaction 
ASTHMA(yes):AGE(79,+infinite) (OR ≈ 2.35) 
similarly attenuates the protective association, 
yielding a combined OR ≈ 0.72 versus non-
asthmatics of the same age. Although asthma is still 
linked to slightly low OR of death, the difference is 
minimal, suggesting that advanced age, comorbidity 
burden, and physiological decline largely outweigh 
any benefit usually observed in asthmatic patients.

Vaccination and unadjusted versus adjusted mortality
Early descriptive results showed high unadjusted mor-
tality among vaccinated individuals (28% versus 12.9% 
in non-asthmatics, 14.5% versus 4.5% in asthmatics). At 
first glance, this might appear to contradict the expected 
protective association of vaccination. However, vaccina-
tion prioritization was given to older individuals and 
those with comorbid conditions [34, 35], introducing a 
strong confounding effect. Table 3 shows that vaccinated 
groups include a disproportionate number of high-risk 
individuals.

Table 5  Values of model performance metrics and their 
interpretation for logistic regression models with Brazilian data
Metric Value Interpretation
Accuracy 0.7512 Overall prediction accuracy
Sensitivity (recall) 0.7373 Ability to correctly identify mortality 

cases
Specificity 0.7670 Ability to correctly identify non-mor-

tality cases
Precision 0.7837 Reliability of high-risk predictions
F1 score 0.7598 Balance of precision and recall
ROC-AUC 0.8448 Overall model discrimination capability
Negative predictive 
value

0.7512 Reliability of non-mortality predictions

False positive rate 0.2330 Rate of false-positive mortality 
predictions

Balanced accuracy 0.7521 Average of sensitivity and specificity
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Figure  2 illustrates that, from age 19–29 onwards, 
unvaccinated individuals have greater mortality rates 
than vaccinated ones, both in asthmatic and non-asth-
matic subpopulations. This pattern aligns with the notion 
that crude mortality comparisons can be misleading 
when the distribution of key predictors (such as age or 
comorbidities) differs between vaccinated and unvacci-
nated groups.

In our multivariable logistic regression, after adjust-
ing for ICU admission, age, and selected comorbidities, 
COVVAC(Yes) was associated with approximately an 
18% lower limit for OR of mortality (OR ≈ 0.82). A simi-
lar association was observed for influenza vaccination. 
These results highlight that observational analyses of 
vaccine effectiveness require careful adjustment for con-
founding and support the potential value of immuniza-
tion in high-risk populations.

Therefore, while the raw data may initially suggest high 
mortality among vaccinated individuals, closer exami-
nation indicates that vaccination is associated with low 
mortality risk after appropriate adjustments. This empha-
sizes the need for caution when interpreting unadjusted 
comparisons in observational studies evaluating vaccine 
impact.

Role of intensive care unit admission
ICU admission was associated with substantially 
increased odds of mortality (adjusted OR ≈ 2.58). Nev-
ertheless, interaction terms revealed a more nuanced pat-
tern, as follows:

 	• Middle-aged patients (39–59) —These individuals 
appeared to experience better outcomes with ICU 
care than younger or older patients, possibly due 
to low comorbidity burden or high physiological 
reserve, although these predictors were not directly 
measured.

 	• Young males in ICU — The three-way interaction 
indicated that young male ICU patients (19–29 
years) had slightly lower odds of mortality than 
would be expected from the pairwise effects 
(adjusted OR lower than predicted), which may 
reflect differences in clinical response or unmeasured 
factors specific to this subgroup.

Overall, ICU admission remained a strong indicator of 
severe illness, yet certain demographic subgroups may 
exhibit differential outcomes following intensive care.

Antiviral use and oxygen saturation
Although antiviral treatment was associated with lower 
mortality, the observational nature of the dataset limits 
the ability to draw causal inferences.

By contrast, low oxygen saturation (SATUR = yes) con-
sistently emerged as a strong predictor of increased odds 
of mortality, with important interactions by asthma sta-
tus, age, and sex. Notably, although asthmatic patients 
frequently presented with low O2 saturation, they did not 
uniformly experience higher mortality.

This observation suggests that the relationship between 
oxygen saturation and mortality in asthmatic patients 

Fig. 8  ROC-AUC for the logistic regression model with Brazilian asthma data
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may be modulated by other unmeasured predictors, such 
as disease control, treatment adherence, or physiological 
characteristics. However, the present data do not include 
direct information on these variables, and the observed 
associations should be interpreted accordingly.

To explore whether the association between asthma 
and mortality varied according to clinical severity —par-
ticularly the level of respiratory support required— we 
performed an additional subgroup analysis stratified by 
oxygen therapy intensity, as outlined below.

Post-hoc analysis stratified by oxygen therapy
Our primary analysis adjusted for respiratory support 
(OXYGEN: no, yes_non_invasive, yes_invasive) as a pre-
dictor. However, recognizing that oxygen therapy inten-
sity may indirectly reflect clinical severity, we performed 
an additional targeted post-hoc analysis, stratifying 
patients explicitly by their required level of respiratory 
support. This allowed us to assess whether the associa-
tion between asthma and mortality remained consistent 
across different levels of respiratory distress.

We divided the dataset into three strata according to 
oxygen therapy level as follows:

 	• No oxygen support —112,756 patients with an 
overall mortality of 8.2% (9,282 deaths).

 	• Non-invasive support —254,025 patients with an 
overall mortality of 19.1% (48,420 deaths).

 	• Invasive support —48,930 patients with an overall 
mortality of 66.2% (32,368 deaths).

Within each stratum, logistic regression models were 
refitted using the same set of predictors described in 
“Logistic regression analyses” section, excluding the vari-
able OXYGEN, as all individuals within each subgroup 
shared identical oxygen-support status. Table 6 summa-
rizes the adjusted OR and corresponding 95% confidence 
intervals for mortality associated with ASTHMA(yes) in 
each oxygen-support subgroup.

In all three strata, asthma was consistently associated 
with lower odds of mortality, with adjusted ORs rang-
ing from approximately 0.47 (no oxygen support) to 
0.59 (invasive support). Notably, even among patients 
requiring invasive ventilation—who exhibited the high-
est baseline mortality rate (66.2%)—asthmatic patients 

showed a lower adjusted OR for death than non-asth-
matic patients. These patterns align with the findings of 
our main analysis (“Logistic regression analyses” section), 
in which asthma was generally associated with reduced 
mortality risk.

Nevertheless, interpretation of these results requires 
caution due to the potential for residual confounding. In 
particular, patients receiving invasive ventilation likely 
present with complex clinical profiles and comorbidities 
that may influence outcomes independently of asthma. 
Additionally, the categorical classification of oxygen sup-
port does not capture the full spectrum of asthma sever-
ity or control. Future research incorporating clinical 
variables such as inhaled corticosteroid use, frequency 
of asthma exacerbations, or objective lung function mea-
sures would be valuable in clarifying the relationship 
between asthma control, phenotype, and mortality across 
different levels of respiratory compromise.

Practical implications
Our results indicate that age, comorbidities, and ICU 
admission jointly shape the association between asthma 
and in-hospital mortality, cautioning against the assump-
tion that asthma is uniformly protective. They suggest the 
following priorities for further investigation and potential 
service planning:

 	• Young adults with asthma (19–29 years) —Often 
regarded as low-risk, this group shows a markedly 
smaller survival advantage than children and 
middle-aged adults and therefore merits closer 
epidemiological follow-up.

 	• Very old adults with asthma (≥ 79 years) —Frailty 
and multimorbidity almost eliminate the advantage 
observed at younger ages, underscoring the need 
to understand how geriatric factors modify SARI 
outcomes in this population.

 	• Vaccination and early antiviral therapy —The adjusted 
analyses support an association with lower mortality, 
but crude comparisons can be misleading when age 
and comorbidities are not taken into account.

 	• ICU triage and management —Some demographic 
subgroups (such as young adult males) may respond 
differently to intensive interventions, suggesting 
value in examining age-, sex-, and phenotype-specific 
critical-care pathways.

These associations require confirmation in prospective, 
well-phenotyped cohorts before they can inform clinical 
guidelines. Further work should incorporate adherence, 
asthma phenotype, and other unmeasured modifiers of 
severe respiratory outcomes.

Table 6  Adjusted OR (95% CI) for ASTHMA(yes) within each 
oxygen-support stratum
O2 stratum N (deaths) OR for asthma 95% CI
No support 112,756 (9,282) 0.47 (0.39, 0.56)
Non-invasive 254,025 (48,420) 0.54 (0.51, 0.58)
Invasive 48,930 (32,368) 0.59 (0.53, 0.66)
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Limitations
While this study provides valuable insights, it is subject 
to several limitations as follows:

 	• Assumptions of logistic regression models —Neither 
frequentist nor Bayesian logistic regression requires 
the absence of multicollinearity; strong collinearity 
mainly inflates standard errors and can hamper 
interpretability but does not, by itself, bias coefficient 
estimates. Key assumptions remain (i) correct 
specification of the logit link, (ii) independence of 
observations, and (iii) approximate linearity of the 
log-odds for any continuous covariates. Even when 
categorical predictors are highly correlated, the 
principal consequence is loss of precision rather than 
model invalidation [38]. Given our large sample, we 
expect any loss of precision to have had only a minor 
impact on the main findings.

 	• Potential misclassification of SARI subtypes —A 
high proportion of our dataset falls under the “not 
specified” SARI category, which could mask cases of 
influenza, COVID-19, or other respiratory viruses. 
This incomplete or inaccurate classification may 
introduce bias if certain subtypes were systematically 
under- or over-reported.

 	• Unmeasured confounders —Despite adjustment 
for multiple predictors, several important variables 
remained unmeasured. For example, key variables 
such as obesity and smoking status (both established 
risk factors for severe respiratory outcomes) 
were not consistently captured in the dataset. 
Additionally, variables such as healthcare access, 
detailed socioeconomic status, regional disparities, 
and treatment adherence may also influence the 
relationship between asthma and SARI mortality, 
potentially introducing residual confounding.

 	• Regional differences —Although our dataset includes 
a variable identifying the five Brazilian regions, we 
did not perform a region-stratified analysis in this 
study. This decision was based on the substantial 
heterogeneity between regions in terms of 
socioeconomic status, healthcare access, population 
density, and resource availability, which would 
require extensive, region-specific adjustments to 
reliably interpret results. Future studies that explicitly 
address regional heterogeneity may further improve 
our understanding of socioeconomic and geographic 
disparities.

 	• Generalizability limitations —Our findings derive 
from nationwide data encompassing both public 
and private healthcare systems in Brazil, providing 
insights specific to the Brazilian context. Therefore, 
results may not be directly generalizable to 
countries with different healthcare infrastructures, 

demographic characteristics, or epidemiological 
profiles.

 	• Evolution of COVID-19 factors over time —The 
study does not explicitly account for temporal 
variations in COVID-19-related treatment protocols, 
viral mutations, or vaccination campaigns, which 
could affect mortality risk. Additionally, detailed 
timing information for interventions such as 
vaccinations and antiviral treatments was not 
consistently available, potentially influencing the 
associations observed.

 	• Data balancing considerations —We conducted 
sensitivity analyses using several data balancing 
methods (SMOTE, oversampling, and 
undersampling). Undersampling was ultimately 
selected to minimize artificial outcome distribution 
alteration. However, this method reduces the 
majority class sample size. While this choice was 
methodologically justified to preserve internal 
validity, it may modestly affect generalizability.

 	• Observational nature of the study —Findings reflect 
associations, not causality, as is characteristic of 
retrospective observational designs. Prospective and 
controlled studies would be necessary to confirm and 
clarify these associations.

Future directions
The previously mentioned limitations could be addressed 
by the following:

 	• Exploring detailed interactions –Further 
investigation into the interactions among asthma, 
comorbidities, and therapeutic interventions could 
help to develop refined risk profiles. For instance, 
evaluating asthma severity in conjunction with 
treatment adherence and COVID-19-related 
outcomes may provide more nuanced insights.

 	• Integrating additional variables –Incorporating 
environmental factors, healthcare access, 
socioeconomic status, and treatment adherence into 
the modeling framework could help to control for 
potential confounders and improve model precision.

 	• Validating models across different healthcare settings 
–Generalization and robustness assessments could 
be enhanced by validating the developed models 
using data from diverse healthcare environments. 
Cross-validation techniques and independent cohort 
studies may further strengthen model applicability.

 	• Conducting longitudinal studies –Prospective 
research could offer insights into the long-term 
effects of asthma on SARI outcomes, providing a 
more comprehensive understanding of how chronic 
conditions influence recovery trajectories.
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 	• Investigating biological mechanisms –
Complementary studies examining airway 
inflammation, asthma medication effects, and 
immune response variability could help to elucidate 
the pathways through which asthma influences SARI 
severity.

 	• Exploring advanced machine learning techniques 
–While our study focused on interpretable models, 
future research may consider approaches such as 
gradient boosting, neural networks, and random 
forests to detect complex patterns. However, 
balancing these methods with model interpretability 
remains essential. Techniques such as Shapley 
additive explanations or local interpretable model-
agnostic explanations could enhance transparency 
and reveal patterns not captured by simpler models, 
potentially improving clinical applicability [42, 43]. 
Recent applications of these methods in clinical 
datasets further highlight their potential to improve 
the interpretability and usability of complex models 
in healthcare settings [41].

Summary of the discussion
The multivariable models identified age and ICU admis-
sion as the strongest predictors of SARI mortality, in line 
with previous studies [27]. Asthma was generally associ-
ated with lower odds of death, but this association was 
strongly modified by age, emphasizing the need for age-
stratified research rather than one-size-fits-all manage-
ment strategies.

Conclusions
We analyzed 415,711 hospital admissions for severe 
acute respiratory infection recorded in Brazil in 2022. 
After addressing class imbalance by random undersam-
pling, we fitted frequentist and Bayesian logistic regres-
sion models to assess the relationship between asthma, 
age, and other clinical predictors and in-hospital mortal-
ity. The final model displayed good discrimination (ROC-
AUC 0.845; sensitivity 0.74; specificity 0.77).

Age was the dominant predictor: compared with chil-
dren aged 0–9 years, the adjusted odds of death rose 
to approximately 38 among patients aged 79 years or 
older. Asthma showed an overall protective association 
(adjusted OR ≈ 0.31), but this association weakened in 
young adults (19–29 years, OR ≈ 0.69) and in the very 
old (≥79 years, OR ≈ 0.72). Vaccination against COVID-
19 or influenza was associated with lower mortality (OR 
≈ 0.82), whereas ICU admission increased it (main-effect 
OR ≈ 2.6). Invasive mechanical ventilation remained the 
single strongest clinical marker of severity (OR ≈ 14.7). 
The protective association of asthma persisted among 
mechanically ventilated patients (adjusted OR ≈ 0.59).

These age-specific associations highlight hypotheses 
for future research—particularly regarding asthmat-
ics aged 19–29 and ≥79 years—and suggest the poten-
tial value of vaccination and early antiviral therapy in all 
high-risk groups. The Bayesian analysis complements tra-
ditional estimates by quantifying parameter uncertainty.

Key limitations include the absence of data on asthma 
control, medication adherence, smoking status, obe-
sity, and socioeconomic conditions, which may result 
in residual confounding. Prospective studies with richer 
clinical detail and external validation in other healthcare 
systems are essential before these associations can inform 
changes in clinical practice or policy.
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