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Abstract 

Purpose: The objective is to suggest time as an important variable to consider 
in the network model, specifically when discussing causality.

Methods: There is a consideration of the context of functional connectivity 
because of the time importance of observing the feature inside the neuroscience con-
text. A network model was constructed using the Bayesian network method, utilizing 
a dataset consisting of three rats’ local field potentials. The model took into considera-
tion the time delay of communication among brain areas, as recorded in this study. 
In pursuit of this objective, the delayed mutual information method was employed 
to ascertain the temporal delay between local field potentials and K2 score for the pur-
pose of model comparison.

Results: Bayesian network depicted the probabilistic relationship among rat’s brain 
areas. Delayed mutual information captured the lag among brain areas, and after its 
appliance on the Bayesian network model, posed better results.

Conclusion: The primary novelty of this research lies in its integration of minor 
delays within the Bayesian network approach, accomplished through the utiliza-
tion of the delayed mutual information technique prior to its implementation. 
The suggested methodology incorporates an essential feature that supports 
the analysis of functional connectivity among brain areas, thereby providing support 
for the dynamics of neurophysiology.

Keywords: Local field potential, Time lag, Time series analysis, Temporal 
synchronization, Bayesian network, Neuroinformatics, Computational modeling, 
Information flow, Information theory, Mutual information

1 Introduction
The brain is an intricate network of nonlinear interactions among neuron popula-
tions originating from different regions of this organ [1, 2]. It is a complex system with 
emergent properties [3, 4], such as dynamic memory [5–7], creative thinking [8–10], 
behavior [11], and brain disorders [12–14]. A comprehensive examination of the spa-
tiotemporal attributes of brain disorders and their functional connectivity analysis is of 
utmost importance to facilitate more comprehensive investigations. This is because the 
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observed patterns of brain communication during a neurological disturbance diverge 
from the connections of healthy brains [15].

Synchronization of the brain network, a modern concept used to illuminate the 
healthy and pathological functioning of the brain [13], what differs the condition is the 
proper coordination in time of the states of the brain network, as well as the dynam-
ics of its elementary units, the neurons [16]. Synchronized neural oscillations enable 
efficient communication and integration of information across different brain regions 
through mechanisms like phase-locking and coherence. Studies have emphasized the 
importance of neural synchrony in various cognitive processes such as attention, mem-
ory, and sensory processing [17]. Abnormal synchronization patterns have been linked 
to neuropsychiatric conditions like schizophrenia and epilepsy, highlighting the impor-
tance of comprehending the principles that control brain network synchronization [18, 
19]. Understanding the mechanisms that cause synchronization between different brain 
regions is essential for uncovering the intricacies of brain function and treating neuro-
logical and psychiatric disorders.

Additionally to this upward trend, it is imperative to acknowledge that the commu-
nication between different brain regions entails a certain degree of temporal delay [20]. 
This delay plays a crucial role in preserving the synchronization of the brain’s healthy or 
pathological networks [21]. The time delay is a characteristic of realistic systems such as 
human or animal physiology that is inherent in them [22].

Comprehending the temporal dynamics and time delays among various brain regions 
is crucial for revealing the mechanisms implicated in the processing and integrating 
of information within the brain. Temporal delays in neural communication can offer 
knowledge of brain networks’ hierarchical structure and functional interconnections. 
Advanced techniques such as magnetoencephalography (MEG), electroencephalography 
(EEG), and functional magnetic resonance imaging (fMRI) along with effective connec-
tivity measures such as dynamic causal modeling (DCM) and Granger causality analysis 
have been crucial in studying how neural signals move and the time delays between dif-
ferent brain areas [23–26]. These methods allow researchers to deduce the direction of 
influences and measure the timing of neural interactions within widespread brain net-
works. Computational modeling methods such as neural mass models and neural net-
work simulations offer theoretical structures to study how time delays affect network 
dynamics and cognitive function [27, 28]. Researchers can thoroughly comprehend the 
spatial and temporal arrangement of brain activity and its functional importance in cog-
nition and behavior by combining multi-modal imaging and computational modeling.

Important studies in the literature make use of Bayesian networks (BNs). In their 
study, Tsukahara et al. [29] employed Bayesian networks to simulate local field potentials 
(LFPs) recordings of rats that were induced with epilepsy. The researchers also assessed 
the arcs of these recordings using an analytical threshold approach. In their recent 
study, Sip et  al. [30] proposed a data-driven approach that utilizes Bayesian inference 
to deduce seizure propagation patterns in an epileptic brain using intracranial electro-
encephalography. In their study, Van Esch et  al. [31] employed the Bayesian approach 
to assess the efficacy of brain network connectivity in detecting the Mozart effect. In a 
study conducted by Eldawlatly et al. [32], the objective was to investigate the dynamic 
connectivity among cortical neurons. Smith et al. [33] deduced nonlinear connections 
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in communication between different regions of the brain. In their study, De Blasi et al. 
[34] employed the glsBN method to forecast associations with organ failure in situations 
where predefined outcomes were unavailable. In their study, Ruiz et al. [35] employed 
the GLSL-BN model to examine the correlation between various neuromuscular per-
formance parameters and dynamic postural control techniques. The models GLS-BN 
are probabilistic; the system consists of a directed acyclic graph (DAG) and conditional 
probability tables (CPTs) representing the probabilistic relationship between signals.

The paper proposes the utilization of delayed mutual information (DMI) within the 
glsBN method to account for the minor temporal delays between brain regions. This 
is because information theoretical approaches do not make any assumptions regard-
ing the interdependence of time series [36]. This paper hypothesizes that by replicating 
the delays observed in the brain, we can develop a more accurate model for a Bayes-
ian network. The method’s strength lies in its utilization of a nonparametric approach, 
which enables the measurement of generalized interdependence between two variables, 
encompassing both linear and nonlinear relationships [37]. According to WAN [38], it is 
widely acknowledged that real-world time series typically exhibit nonlinearity and non-
stationarity. The proposed methodology integrates the Bayesian network approach with 
the delayed mutual information technique to construct a network model using a dataset 
comprising the local field potentials of rats. The functional connectivity analysis exam-
ines the impact of slight delays on model results by considering six brain areas: dorsal 
hippocampus (glsdHp), ventral hippocampus (glsvHp), striate (glss), prefrontal cortex 
(glsPfc), thalamus (glsTh), and ventral tegmental area (glsVTA). This study’s primary 
contribution is the integration of minor delays within the GLSS-BN model. The neuro-
physiology of brain dynamics is substantiated by including a crucial aspect of the pro-
posed methodology for examining the temporal progression of brain communication.

2  Theory
2.1  Delayed mutual information

The deterministic nature of a given variable can be assessed by its entropy (H), which is 
defined as [39]:

Let X denote a discrete random variable. The function p(x) = P(X = x) represents 
the probability of X being equal to x, where x is a probability mass function of X. The 
logarithm base a is used to calculate the entropy measure in bits, assuming a = 2 . The 
mutual information can be used to quantify the amount of information shared between 
two signals modeled as random variables, namely signal X and signal Y. It quantifies the 
extent to which the uncertainty of signal X can be reduced based on the knowledge of 
signal Y [39].

The concept of delayed mutual information (DMI), as defined by NICHOLS [40], 
refers to the measurement of the amount of information that is shared between two vari-
ables X and Yτ , where Yτ represents the signal that has been displaced by a lag τ . Accord-
ing to Cover [39], it is defined as:

(1)H(X) = −
∑
x∈χ

p(x)logap(x)
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According to [39], the maximum measure of mutual information is defined as the chan-
nel capacity (C):

The channel capacity is used to determine the delay between temporal signals, with the 
interval where the maximum channel capacity is observed being the value of the delay to 
be considered in the analysis.

2.2  Bayesian networks

Let G = (V ,E) be a directed acyclic graph (DAG) with vertices V and edges E. If each 
X1,X2, . . . ,Xn represents a random variable, Xa → Xb (meaning that Xa is a par-
ent of Xb or Xb is a descendent from Xa ) implies that there is statistical dependence 
between Xa and Xb . A Bayesian network B = (G,�) is represented by a pair G and the 
set of conditional dependence � = {θ1, θ2, . . . , θn} and G obeys the Markov Condition 
X ⊥⊥ NDX |PAX , for each X ∈ V  in which NDX represents the set of all vertices non-
descendent from X and PAX represents the parents of X. The joint probability func-
tion for any BN with joint distribution P and vertices V on the set of random variables 
X1,X2, . . . ,Xn can be defined as

Finding the BN that best fits the data is usually comprised of two parts: a scoring func-
tion to evaluate the likelihood of a certain DAG against the data and a search method 
to find possible DAGs. The maximum a posterior (MAP) probability of B given the data 
y�[T ] , where T is the time window of the local field potential under analysis [41]:

Bayesian networks assume that the conditional distribution of Directed Acyclic Graphs 
(DAGs) follows a Dirichlet distribution, as it offers mathematical convenience and 
suitability. The Dirichlet distribution serves as the conjugate prior for categorical and 
multinomial distributions, thereby simplifying computations by guaranteeing that the 
posterior distribution remains Dirichlet. The flexibility of this model enables the repre-
sentation of a diverse set of probability distributions that add up to one. The parameters 
of the model can be understood as prior counts, which enhances the intuitiveness of 
prior beliefs. Moreover, its uncomplicated structure and easily comprehensible charac-
teristics facilitate the process of drawing conclusions and acquiring knowledge, fitting 
seamlessly within the Bayesian framework. Assuming P(�|G)P(�|G) is a Dirichlet dis-
tribution [41, 42] defines the Bayesian-Dirichlet score, Bayesian Dirichlet (BD):

(2)I(X;Y τ ) =
∑
xn∈χ

∑
yτ∈γ

p(xn, yy−τ )loga
p(xn, yn−τ )

p(xn)p(yn−τ )

(3)C = maxI(X ,Y )

(4)P =
∏
x∈{X}

p(x|PAX )

(5)P(y�[T ]|G) =
∫

�

P(y�[T ]|G,�)P(�|G)d�
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Let n represent the total number of nodes, ri represent the number of states of node i, 
and qi represent the number of possible instances of the parents of node i. The symbol 
Ŵ(·) denotes the Gamma function. The variable Nijk represents the frequency of xi , tak-
ing the value k given the parent configuration j. The equation Nij =

∑ri
k=1Nijk and 

N ′
ij =

∑ri
k=1N

′
ijk can express these values. Including the quantization level of the varia-

bles, denoted as r, within a product implies that a sufficiently high quantization level 
may significantly increase the cost of the learning method. Nevertheless, if the quantiza-
tion is insufficient, the distinct dataset will forfeit its characteristics and modify its 
behavior, leading to an erroneous directed acyclic graph (DAG) being assumed to be the 
optimal Graph Linked Support Network (BN) for the original data. Multiple iterations of 
the BD score exist, including the BDe and BDeu scores [41]. However, for this study, the 
K2 score will be employed; this score is obtained by setting all Dirichlet hyperparame-
ters to 1, resulting in a Bayesian score [43]

It is important to notice that the directed edges from the BN represent statistical 
dependencies between the variables and are obtained from the data; they do not neces-
sarily represent causality relationships [44]. In general, to obtain causality corrections 
from the BN structure, it is necessary to have a specialist’s knowledge [45].

3  Methodology
3.1  Experimental protocol

The current experimental protocols involving rats are expounded upon in greater depth 
in de Oliveira-Junior et al. [46], Ruggiero et al. [47]. The open field test assesses the rats’ 
exploratory behavior and locomotion over 30 min. Each rat is individually placed in the 
center of an acrylic apparatus measuring 46× 46× 46  cm (height × width × length), 
and movements are recorded using a webcam connected to a computer. The animals 
scrutinize freely, with exploratory behavior evaluated through rearing and locomotion 
assessed by distance traveled and speed [46, 47].

Intracranial electroencephalography signals are collected at a frequency of 10 kHz, 
through electrodes implanted directly in the following areas of the rat brain, during the 
open field test: Dorsal Hippocampus (dHp), Prefrontal Cortex (Pfc), Striate (s), Thala-
mus (Th), Ventral Hippocampus (vHp) and Ventral Tegmental Area (VTA). For each 
acquisition, approximately 8 million samples are collected for each brain area mapped in 
the study (approximately 13 min of acquisition)

3.2  Algorithms

Figure  1 presents the flowchart illustrating the summarized methodology. Initially, 
the dataset is divided into 100 smaller datasets, each containing 100,000 samples 

(6)BD = log

n∏
i=1

qi∏
j=1

Ŵ(N ′
ij)

Ŵ(N ′
ij + Nij)

ri∏
k=1

Ŵ(N ′
ijk + Nijk)

Ŵ(N ′
ijk)

(7)K2(y�[T ]|G) = log

n∏
i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk !
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and 6 columns (dHp, Pfc, s, Th, vHp, and VTA). An algorithm is utilized to collect 
the data points, randomly sampling the data at various points during the experiment 
recording—Fig. 3.

The relationships between the chosen variables were determined using a quantita-
tive approach that relied on graphical and nonparametric methods. A BN structure 
represented the functional connectivity networks among brain areas learned from the 
discretized dataset. In the study by Gencaga et  al. [48], a quantization technique was 
implemented, followed by the adaptive bins algorithm using a maximum of 32 bins (5 
bits) to keep the best tradeoff between resolution and computational time, previously 
tested with similar time series and published by Signal Processing Laboratory of Uni-
versity of São Paulo [49]. The hill climbing search algorithm, implemented in the Python 
package pgmpy,1 was utilized to acquire knowledge of the directed acyclic graph (DAG) 
from the dataset. The BDeu function was employed as a scoring method, as the task may 
be intricate or even unattainable for humans [50].

The experiment consists of a collection of K = 100 directed acyclic graphs (DAGs) 
constructed through the iterative execution of the hill climbing search algorithm. Each 
run utilizes distinct data from one of the rats in this preclinical study. The fundamental 
concept is a reduced ambiguity concerning the formed arcs, even when gathering data 
from a distinct animal. The wide range of structures observed can be attributed to using 
data from various rats within the same species, with typically assigned precise weights. 
Additionally, the hill climbing search process, when initialized randomly and subjected 
to local optimizations during a run, exhibits non-deterministic characteristics. By the 
stop criterion, the hill climbing search algorithm undergoes one million iterations for 

Fig. 1 Methodological summary: first, the local field potentials are acquired from 3 rats, using 10 kHz 
frequency of sampling [frequency of sampling (fs)]. After each rat acquisition, a dataframe with 6 columns is 
created. The next step is the BN method appliance, and a consolidated BN is created based on the analytical 
threshold method, obtaining its K2 score. The DMI method is applied to discover the lag among brain areas. 
After the lag consolidation, the BN method is applied to obtain a consolidated BN using the analytical 
threshold method again. The K2 score was obtained to compare with the previous results

1 https:// pgmpy. org/.

https://pgmpy.org/
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each complete run. Subsequently, the collection of directed acyclic graphs (DAGs) was 
condensed into a solitary consensus DAG using a technique known as the model-aver-
aging approach. This reduction involves calculating the frequency of each of the three 
potential connections (i.e., “ ← ”, “ → ”, and “absent”) by examining every pair of nodes 
in the 100 graphs obtained. Accepted were only directed arcs that met the minimum 
percentage (f ) as defined by the equation f = (1/3)+

√
2/K  . The analytical threshold 

model, as proposed by Gross [51] and extensively described in Gross [52], was utilized to 
assess the arcs. Additionally, a specialist analysis was conducted during the final evalu-
ation of the network, but only the edges derived from the analytical threshold analysis 
were considered.

The K2 score is calculated for the resulting BN to facilitate further comparison. The 
brain areas were represented using a BN structure learned from the discretized data-
set. The hill climbing search algorithm in Python is employed to acquire knowledge of 
the directed acyclic graph (DAG) from the dataset. K2 is utilized as a scoring method 
due to its high efficacy as a Bayesian network learning algorithm [53]. Additionally, the 
K2 score can be generalized. The term “Bayesian Dirichlet equivalence with a uniform 
prior metric, BDeu” refers to the Bayesian Dirichlet function used as the scoring func-
tion to determine the optimal Bayesian network (BN). The BDeu algorithm assigns equal 
scores to directed acyclic graphs (DAGs), which possess identical conditional independ-
encies, thereby establishing their Markov-equivalent nature [54]. BDeu’s performance 
may encounter difficulties in scenarios with many dimensions, such as when dealing 
with multivariate nonstationary time series [55]. Two additional frequently employed 
scoring methods include the utilization of Akaike information criteria (AIC) and Bayes-
ian information criteria (BIC) [56–58]. There are, however, apprehensions regarding the 
evaluation methodology, particularly the utilization of the asymptotic theory [59] for the 
calculation of both criteria.

Subsequently, the delayed mutual information technique was employed to examine the 
delay between different brain regions. The Thalamus brain region is a benchmark for 
determining the temporal delay between the LFP signals. In Fig. 2, the same 100 datasets 
used in developing the Bayesian networks without delay were employed to calculate the 

Fig. 2 The analysis of lag. The Thalamus, denoted as Th, serves as a reference point for determining the 
sample delay characteristic of LFP signals. According to the DMI analysis, the dHp, Pfc, s, vHp, and VTA LFP 
signals of τ1 and τ2 are being replaced in samples. This study employs a repetitive process for each time slice 
and rat data. Dataframe preparation is conducted before the application of the BN method
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Fig. 3 In the applied methodology, the initial two steps are as follows: The acquisition of local field potentials 
is initially conducted on three rats, encompassing five distinct brain regions—dHp, Pfc, s, Th, vHp, and VTA, 
using a sampling frequency of 10 kHz. After that, time series discretization using 32 bins is divided into 100 
smaller datasets, each containing 100,000 samples
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DMI between the brain areas involved in the experiment. The results obtained through 
the application of DMI were statistically tested to validate them before considering the 
delay between signals for developing Bayesian networks.

A collection of K = 100 directed acyclic graphs (DAGs) was constructed by itera-
tively executing the hill climbing search algorithm a hundred times. Subsequently, 
employing the described methodology, the collection of directed acyclic graphs 
(DAGs) was condensed into a solitary consensus DAG using a model-averaging tech-
nique as outlined by Gross et  al. (2019)—Fig.  4. The K2 score is calculated for the 
resulting BN to compare with previous results. Compiling each rat database, which 
consisted of five local field potential time series and totaled around 100,000 samples, 
required approximately 12 min, including the generation of BNs and preprocessing, 

Fig. 4 (1) The method uses all the dataframes from the three rats to develop the resulting BN without 
considering lag among brain areas. (2) The analytical threshold method evaluates the edges and provides a 
final Bayesian network. K2 score is then calculated for that structure. (3) The lag study among rats’ brain areas 
uses delayed mutual information. The consolidated lags were used in the Bayesian network (BN) structure 
for each dataset. The analytical threshold method is again employed to assess the edges and generate a 
conclusive Bayesian network. The K2 score is subsequently computed for the given structure. The objective is 
to examine the BN that exhibits the most optimal fit

Fig. 5 Pareto chart for each result, considering (b) or not (a) the lag among brain areas. It is important to 
observe the analytical threshold of 40%, indicating the probabilistic relationships considered in the final 
Bayesian network for each case
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which was found using a 1 TB RAM and 32-core/128-thread @2.70GHz POWER9-2.2 
computer with a NVidia Tesla V100 SXM2 16GB GPU. Therefore, the total time spent 
processing all databases comprising 3 rats (K=100 for each rat) was about 360 min.

4  Results
Based not on the number of datasets created (K = 100), the analytical threshold 
resulted in a value of 0.40 (40%). The Pareto chart with the frequency of edges result-
ing from applying the BN method can be observed in Fig. 5a. Figure 7a depicts the 
consolidated BN without the lag consideration.

After the BN and analytical threshold method were applied, without lag consideration, 
the DMI method was utilized to examine the temporal delay among brain regions to be 
considered within the model. Table 1 represents the median of the observed lags.

A statistical analysis was used to verify the DMI and observe the normality of the lag 
results. The Durbin–Watson test for heteroscedasticity yielded a statistically significant 
result of 2.76, while the Anderson–Darling test for normality yielded a statistically sig-
nificant result of 3.60. The critical values for each significance level are as follows:

significance level: 0.55 for 15.00%, 0.63 for 10.00%, 0.76 for 5.00%, 0.89 for 2.50% and 
1.05 for 1.00%. Figure  6 shows an example of the autocorrelation calculated for DMI 
results. The mean of the DMI results is not zero, and the variance is not constant and 
different from zero. It is possible to observe that there is an autocorrelation among the 
results.

After validating the DMI results, the BN method was applied again, considering the 
lag among brain areas—the median of the lag observed for each brain area, considering 
the Th as reference. Figure 5b depicts the Pareto chart of the observed edges. Figure 7b 
presents the consolidated BN using the analytical threshold.

Fig. 6 Example of autocorrelation calculated for DMI results. Observe that variance is not constant over the 
sample lag, and the mean of the DMI results is not zero. Both results conclude that results are not Gaussian or 
random walk noise
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The K2 score observed for the consolidated BN without lag was − 98,222.96. Consider-
ing the lag, the K2 scores observed was − 100,376.71.

5  Discussion
5.1  Biological analysis

The results from both directed acyclic graphs (DAGs), whether with or without delay, 
highlight the connectivity between cortical and subcortical regions with the ventral 
tegmental area (VTA) during exploratory behavior and locomotion. Indeed, the VTA 
exhibits heightened activation in goal-directed behaviors, contributing to motivation, 
learning and memory, behavioral activation, and salience detection [60, 61].

The striatum is crucial in the basal ganglia associated with motor functions and 
a broad spectrum of goal-directed behaviors [62]. It is anticipated to be a key region 
involved in the exploratory behavior examined in this study. Its primary outputs extend 
to the ventral pallidum, the medial dorsal nucleus of the thalamus, as well as the globus 

Table 1 The median of the lag observed for each rat (ELS 11, ELS 12, and ELS13)

Each rat originated 100 dataframes comprising 6 columns. DMI was applied for each dataframe, and the lag was 
consolidated to consider it inside the BN method

Brain area Rat
ELS 11 ELS 12 ELS 13 Median

dHp 283.50 284.80 261.50 233.80

Pfc 246.80 175.70 76.20 175.70

s 290.80 129.10 79.20 129.10

Th 296.10 176.40 156.30 176.40

vHp 35.50 290.88 70.13 70.13

VTA 330.60 101.10 48.20 101.10

Fig. 7 The directed acyclic graph obtained considering the lag among local field potential time series and 
using the raw signal, without any delay. There is biologically a substantial difference in the probabilistic 
relationship between rat brain areas
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pallidus and substantia nigra pars reticulata (SNr) [62]. The proximity of the substan-
tia nigra to the ventral tegmental area (VTA) emphasizes its central role in the broader 
neural network regulating diverse behaviors. It justifies the DAG connectivity from the 
Striatum to the VTA.

Furthermore, the prefrontal cortex (PFC) and the hippocampus (HPC) play pivotal 
roles in modulating VTA function during motivated behavior, with the activity in the 
PFC and HPC predicting VTA responses (Murty et  al., 2017). Polysynaptic pathways 
connecting the hippocampus and VTA have been delineated [63, 64]. Conversely, the 
PFC sends direct excitatory projections to the VTA, regulating the activity of VTA neu-
rons and extracellular dopamine (DA) levels within forebrain regions [65, 66].

The literature data strongly support the proposed directed acyclic graph (DAG) for 
both networks, emphasizing the influential roles of the PFC, HPC, and striatum in shap-
ing VTA activity. However, a notable feature in the delayed network is the emergence of 
unique connectivity between the PFC and the midline thalamic nucleus-a phenomenon 
absent in the DAG without delay.

Neurobiological data support the connectivity presented in the network with delay. 
The PFC exhibits bidirectional connections with thalamic afferents [67, 68], particularly 
demonstrating dense reciprocal connectivity with the mediodorsal (MD) region. These 
reciprocal interactions play a pivotal role in cognition, with the PFC strongly influencing 
neuronal activity in the thalamus [69]. Given the significance of these dynamic inter-
actions in shaping cognitive processes, it becomes apparent that the delayed network 
offers a more comprehensive explanation of the neurobiological processes underlying 
the analyzed exploratory behavior.

Similarly, the CA1 and subiculum regions of the HPC project to the Reuniens nucleus 
of the thalamus, which, in turn, projects back to the HPC [70]. This emphasizes the 
crucial role of the ventral midline thalamus in establishing a bidirectional connection 
between the HPC and the PFC, governing cognitive processes and emotional regulation 
[47, 70]. These findings are further confirmed in the DAGs, demonstrating the influence 
of the ventral HPC on thalamic activity and affirming the validity of our network.

5.2  The delayed mutual information and Bayesian belief network

According to Krubitzer [71], rats of the same species with similar weights may exhibit 
physiological differences when subjected to the same experimental protocol. The verac-
ity of this statement can be verified by examining the outcomes of the BN methodology 
employed to construct the database of rats. Figure  5 presents a Pareto chart illustrat-
ing the range of edges generated by the BN methodology appliance. This chart utilizes 
dataframes from the same rat and different rat periods. The superexponential increase 
in the quantity of potential directed acyclic graphs (DAGs) relative to the number of ver-
tices suggests that conducting a thorough search is unattainable. Multiple methodolo-
gies exist to achieve a satisfactory alignment with the data. The hill climbing algorithm’s 
state-space exhibits diverse outcomes due to its probabilistic nature. Both issues guaran-
tee the expected variability of the obtained results.

Utilizing delayed mutual information to examine the delay between recorded brain 
regions of rats appeared to be a viable alternative. The local field potentials of animals 
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exhibit characteristics such as kurtosis, nonlinearity, and heteroskedasticity, which 
aligns with the understanding that real-world problems are characterized by nonlinear-
ity. The method can handle signals, allowing communication delays between different 
brain regions.

The findings of the DMI model exhibited a departure from a normal distribution, sug-
gesting that the lag does not conform to Gaussian or random walk noise. The Anderson–
Darling normality test further supported the results, which yielded a p value of 5%.

The inclusion of communication delay between brain areas in the development of the 
BN method is documented in Table 1, which presents the lag observed in the time series 
obtained through this approach. The BN without any lag had a K2 score of − 98,222.96. 
The observed K2 scores were − 100,376.71, taking into account the lag. Upon compar-
ing the results, it is evident that incorporating lag consideration within the BN model 
enhanced the fit with the dataframes, resulting in a notable difference of 5%. As previ-
ously mentioned, Fig. 7b is more biologically logical than Fig. 7a.

It is important to indicate that, even when dealing with the same type of animal from 
the same species to perform the experiments, they are physiologically distinct [71]. 
Additionally, experiments to collect intracranial electroencephalography signals need 
substantial financial investments and, in addition to the required resources, demand 
refined techniques for animal preparation, electrode positioning, and inherent issues 
involving the animals themselves, such as movement artifacts. All these points are also 
challenges when conducting this type of study. Therefore, Table  1 presents distinct 
values for the delays among different brain areas. We must consider all the described 
factors for interpreting the encountered values, influencing the variability of the meas-
urements obtained with the DMI method.

Once more, the incorporation of communication delay between different regions 
yielded a model that exhibited superior fit compared to the BN model lacking commu-
nication lag. The findings support previous research indicating that there is a delay in 
communication between different regions of the brain [20], and this delay affects the 
synchronization of brain networks [21].

The involvement of a neuroscience expert in interpreting the BN models was crucial in 
transferring the probabilistic relationships obtained from the method to causal analysis 
of brain dynamics. It is crucial to remember that the Bayesian network (BN) method 
offers probabilistic relationships between variables, necessitating the evaluation of the 
resulting associations. Overall, the findings are consistent with the existing body of neu-
roscience research. Nevertheless, it is imperative to take into account certain concerns.

6  Conclusion
The Bayesian network method is a cost-effective approach that provides valuable 
insights into the dynamics of brain communication. Delayed mutual information refers 
to the temporal delay in communication between various brain regions in rats, includ-
ing the prefrontal cortex, dorsal and ventral hippocampus, striate, thalamus, and ventral 
tegmental area. By integrating the delay component into the Bayesian network model, 
notable enhancements were observed in the outcomes. The verification of this assertion 
was derived from the computed K2 scores for the constructed Bayesian networks, both 
with and without the inclusion of lag outcomes. As outlined in the results section, the 
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optimal Bayesian network model aligns with the existing body of neuroscience literature 
and offers recommendations for future comprehensive investigations. Hence, integrating 
both approaches presented a viable alternative for conducting functional connectivity 
analysis within the research framework involving LFP recordings.
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