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A gamma-ray computed tomography (CT) scanner was used to evaluate changes in the structure of clayey

soil samples with surface compaction submitted to wetting and drying (W–D) cycles. The obtained results

indicate that W–D cycles promoted an increasing of about 10% in soil porosity with a decreasing of about

6% in soil bulk density of this compacted region. With the use of the CT it was also possible to define the

thickness of the compacted region that in our case was of about 8.19 mm. This last information is very

important, for instance, to estimate hydraulic parameters in infiltration models. Finally, CT analysis

showed that the compacted region remained at the surface samples, even after the application of the W–D

cycles.

& 2010 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Computed tomography (CT) was first introduced into medical
science, and lately with the success of the technique, CT began to be
used in other areas of knowledge (Cattle, 2007; Peele et al., 2006;
Masschaele et al., 2004). In the field of soil science tomography was
first used in measurements of soil bulk density and soil water
content, and several contributions have been made to this area
afterwards (Pedrotti et al., 2005; Braz et al., 2001).

CT using X- and gamma-rays is a non-invasive method that
gives a detailed analysis of soil bulk density (rb) and porosity (P)
variability along a cross-section of a soil sample. CT images usually
employed in soil science are obtained with resolutions of the order
of millimeters to micrometers.

CT is based on the computation of the cross-sectional distribu-
tion of a physical property of a material from projections taken
from a number of different directions. The reconstruction of a CT
image is given by the definition of a plane or cut using a coordinate
system (x, y) to locate measurement points.

Mathematically, it is possible to define a density function f(x, y),
which represents the cross-sectional distribution of the soil
physical property of interest. CT has, as the main objective, the
reproduction of this function as accurately as possible. In the case of
gamma-ray CT, f(x, y) represents the linear attenuation coefficient
(m) of the material under analysis (Kak and Slaney, 1988).
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Compaction of the upper soil surface is an important phenom-
enon that may occur due to the impact of raindrops on bare soils,
which promotes the disintegration of soil aggregates and the
dispersion of the clay particles in the soil suspension. The thickness
of these little compacted regions can vary from 0.1 mm up to values
exceeding 50 mm (Valentin and Bresson, 1992). These compacted
regions can be influenced by the repetition of wetting and drying
(W–D) cycles during measurements of soil physical properties such
as the soil water retention curve (SWRC).

The repetition of wetting and drying (W–D) cycles can cause
important changes on the structure of a soil as reported in the
literature by several authors (Pillai-McGarry and Collis-George,
1990; Bresson and Moran, 2004; Denef et al., 2001). The soil pore
system (SPS) that is directly related to the temporal and spatial
distribution of soil water content can strongly be affected by the
application of W–D cycles due to the irreversible rearrangement of
soil particles inside the matrix frame (Sarmah et al., 1996; Pillai and
McGarry, 1999; Langmaack et al., 2002). Changes of soil structure
due to W–D cycles have important practical consequences when
calculating soil water storages and matric potentials, widely used
in irrigation management.

So the purpose of this research was twofold: first, to verify the
potential of CT to give detailed analysis of soil bulk density and
porosity, and second, to analyze the effect of repetitions of W–D
cycles in the dynamic of samples with surface compaction during
SWRC evaluation. The soil wetting was obtained through the
capillary rise method as traditionally made. Changes in the
compacted region were evaluated by using gamma-ray CT image
analysis with millimetric resolution.
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Fig. 1. Schematic diagram of the first generation gamma-ray computed tomogra-

phy (CT) scanner.
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2. Material and methods

2.1. Experimental area and sampling

The study area is located in Piracicaba, S~ao Paulo State (SE Brazil
– 22140S; 471380W; 580 m a.s.l.), on a soil characterized as a Dark
Red Latosol (LVE) (260 sand, 260 silt, 480 clay, and 20.2 g kg�1

organic matter), clayey texture. The average annual rainfall,
relative humidity, and air temperature are 1253 mm/year, 74%,
and 21.2 1C, respectively. The dry season covers June–August, July
being the driest month. During spring-summer, October to March,
very high intensity rainfall events are common, several of them
reaching intensities of 50 mm/h or more.

Five samples were collected from the surface layer (0–10 cm)
with steel cylinders (h¼3.0 cm, D¼4.8 cm, V¼55 cm3). The sam-
pler was inserted into the soil by impact, with a rubber hammer
falling from a fixed height, as traditionally made. After complete
insertion of the cylinders into the soil, the surrounding soil was
carefully removed to minimize further soil disturbance due to
vibration, shear stress, and compaction. The excess of soil at upper
and bottom surfaces was carefully trimmed off and made flat to be
sure that the soil volume was approximately equal to the internal
volume of the cylinder.

2.2. Wetting and drying (W–D) cycles

Soil samples were saturated by the capillary rise method. The
wetting (W) procedure consisted in soaking the samples in a tray
with the water level just below the top of the steel rings. It was
found that twenty-four hours were necessary to saturate the
samples and to minimize entrapped air bubbles (Klute, 1986),
which can cause slaking of soil aggregates. Thereafter samples were
partially dried by submitting them to a 400 kPa pressure in a
pressure chamber. After drying samples were again saturated and
submitted to a new pressure application, in this way being
submitted to a series of W–D cycles. This wetting and drying
procedure is exactly the same employed to evaluate water reten-
tion curves by the Richards method (Klute, 1986). Three treatments
were investigated: 0 W–D, the control treatment, in which samples
were not submitted to W–D cycles; 3 W–D, samples submitted to
3 W–D cycles, and 9 W–D, samples submitted to 9 W–D cycles.

2.3. CT scanner

The scanning of core samples was performed with a first
generation CT scanner with fixed source–detector arrangement
and translation/rotational movements of the samples (Fig. 1). The
radioactive source used was 241Am (59.54 keV) with an activity of
3.7 GBq. NaI(Tl) scintillation crystal (7.62�7.62 cm) coupled to a
photomultiplier tube was used to detect the monoenergetic
photons passing through circular lead collimators (1 mm) mounted
between source and detector. Samples were rotated over 1801 in
intervals of 2.251, with linear movement intervals of 0.10 cm.

The acquired data were stored in a PC and CT images were
obtained using the reconstruction algorithm Microvis developed
by Embrapa Agricultural Instrumentation Center (CNPDIA) located
in S~ao Carlos, SP, Brazil. A matrix with resolution of 80�80 was
obtained for each scanning. This represents that 6400 tomographic
unit (TU) values were obtained for each sample. The measuring
time for each count was 26 s, giving a E46.5 h total exposure time
per tomography experiment, including the time for rotating and
translating the sample. The average incident monoenergetic
photon flux densities (number of photons m�2 s�1) was 10,800.

The calibration of the system was made through the correlation
between the linear attenuation coefficients, m (cm�1), of different
homogeneous materials and their respective tomographic unities
(TUs) obtained by the image reconstruction program (Pedrotti
et al., 2005).

2.4. Image processing and data analysis

For each sample four regions (layers) were selected (0–7 mm
(A); 7–14 mm (B); 14–21 mm (C); 21–28 mm (D)) for quantitative
image analysis. The first (layer A) was located in the compacted
region and the others (layers B–D) below this region. Each layer is
represented by six rb or P values (obtained for layers of about
1.2 mm).

CT analyses were performed on the very same soil samples
before any W–D cycle and after 3 and 9 W–D. The planes of image
acquisition were vertical, in the direction of the central axis of the
cylinders and the available data permitted a continuous 2-D
analysis of TU distributions and, consequently, of rb and P

variations along that cross-section of the sample.
Soil bulk density, rb (g cm�3), evaluated by CT was calculated

substituting d (angular coefficient) of the calibration curve by the
mass attenuation coefficients (mm) of water and soil (cm2 g�1), in
the Beer–Lambert equation, as derived by Pedrotti et al. (2005):

rb ¼
ðTU=dÞ�mmwyrrw

mms

ð1Þ

where yr (cm3 cm�3) represents the volumetric soil water content
of the air dry sample before CT scanning and rw (g cm�3) is the
water density.

The measurement of P was made using

Pð%Þ ¼ 1�
rb

rp

 !
100 ð2Þ

where rp (g cm�3) is the soil particle density. Details about the
method used to measure rp can be found in Flint and Flint (2002).

The per cent relative error (RE) between the values of rb for the
surface compacted region (Layer A) and for the layers below this
region (Layers B–D) was calculated according to:

REð%Þ ¼
rbðAÞ�rbðB�DÞ

rbðAÞ

�����
�����100 ð3Þ

The soil surface compacted region was defined through the
image analysis of 2-D TU maps. These maps were generated by
softwares that allow the construction of surface maps of the TU
matrix obtained after CT scanning. During the construction of
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surface maps TU values were separated in different TU strips. The
surface compacted region was defined choosing the strip with the
highest TU values.
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3. Results and discussion

From the 2-D images, 2-D TU maps, and TU distributions it is
possible to observe the structure modification of the soil com-
pacted region (Fig. 2a–i). The control sample (Fig. 2a and d) shows
the existence of large compacted regions at the upper surface
(Layer A). We can observe an important decrease of this soil
compacted region after the application of 9 W–D cycles (Fig. 2c
and f). However, there are practically no visual important mod-
ifications in the compacted surface region between samples
submitted to 0 (Fig. 2a and d) and 3 W–D cycles (Fig. 2b and e).

The mass attenuation coefficients, for the 59.54 keV photons, for the
LVE soil and water were 0.30770.003 and 0.19970.003 cm2 g�1,
which agree with values found in the literature for 241Am sources
(Ferraz and Mansell, 1979). The slope (d) of the linear regression
between m and TU was 0.959 cm (R¼0.99). These results were used to
calculaterb and P by the CT method using Eqs. (1) and (2). Averagesrp

obtained for six replicates of the LVE soil were 2.5370.03 g cm�3,
which agree with values found in the literature for clayey soils
(Grohmann, 1960).

Below the morphologically defined compacted region by 2-D
tomographic images (about 7 mm thick), it is possible to observe
increases in P with depth among treatments (Fig. 3). This result is
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Fig. 2. (a–c) 2-D tomographic images of core samples used to evaluate soil bulk densi
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very evident for the compacted region. The most important
differences in P occurred between 0 and 9 W–D. The analysis of
P profiles allowed us to obtain a better comprehension of the
structure changes showed by soil images (Fig. 2a–c) and to measure
porosity values for layers of about 1.2 mm which, as already said,
cannot be achieved by traditional techniques of analysis in a
non-destructive way.
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A possible explanation for the increases in P with the applica-
tions of W–D cycles can be explained by macropore development
(Fig. 4a and b) due to the friction between the soil sample and the
cylinder wall during wetting and subsequent drying. The internal
stress between the soil and the cylinder surface can cause a small
increase in the soil volume during wetting, but after drying this
volume cannot return to its original value. This effect may become
worse after sequences of W–D cycles causing the appearance of
small cracks or holes inside the soil structure.

W–D cycles affect the soil pore system due to internal stresses,
which changes irreversibly the soil structure after sequences of
wetting and drying (Baumgartl, 1998). Bresson and Moran (2004)
have demonstrated that soil samples when submitted to wetting by
capillary rise can present microcrackings of many aggregates with
an irregular pattern and wide spacing producing important struc-
tural changes. Dexter (1988) observed that W–D cycles directly
affect the soil aggregation due to the action of forces among soil
particles and between aggregates. Consequently, the soil porous
system will strongly be influenced by the sequences of W–D. These
sequences result in small changes in the soil core sample volume,
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caused by stresses due to water/air interfaces originated from
capillary forces. Therefore, after each new wetting the soil structure
will undergo alterations to a new state of energy, which most of the
time promotes definitive changes in soil structure like the forma-
tion of connected soil pores (Viana et al., 2004).

Fig. 5 indicates the variations of average rb values for the
different soil layers shown in Fig. 2. All the five samples of the LVE
soil demonstrated marked compacted regions at the surface.
However, after the procedure of wetting and drying used in this
work all samples had decreases in rb at this compacted region
(Layer A) showing that these cycles can cause important changes in
the soil structure of samples with surface compaction.

A comparison of mean P variations for the compacted surface
(Layer A) and layers below this region (Layers B–D) with applications
of W–D cycles is given in Table 1. Relative differences at the
compacted region between 0 and 9 W–D where 7.7% and for layers
below this region were 6.8%. Per cent relative error (RE) analyses
Table 1
Porosity (P) by image variations due to application of wetting and drying (W–D) cycles.

P (%)

Treatments Control 3 WD 9 WD

Compacted layer 3972 3972 4272

Layers B–D 4474 4474 4775

RE (%) 12.8 12.8 11.9

Standard deviations represent the scatter of five porosity values for each treatment;

RE is the per cent relative error; control is related to samples not submitted to W–D

cycles (0 WD); 3 WD, samples submitted to 3 consecutive W–D cycles, and 9 WD,

samples submitted to 9 consecutive W–D cycles.
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between P values calculated at the surface compacted region (Layer A)
and at the other layers (Eq. (3)) demonstrate practically constant REs
among treatments. Through these results we can conclude that even
after 9 W–D cycles the LVE soil still shows the existence of a residual
compacted layer at the upper surface.

In our study, the decrease in rb with depth is non-linear (Fig. 6).
Fox et al. (2004) reported similar results when working with a
sandy loam soil. The greatest mean rb values at the compacted
surface layer (Layer A) in comparison to the other layers confirm
the presence of a compacted region at the soil surface.

The best mathematical adjustment ofrb for the LVE was obtained
by using a first decay exponential function (Fig. 6). The greatest
change in rb occurred in the top 10 mm and beyond this depth the
change in this soil physical property appears to be negligible.
Through the mathematical fit it is possible to conclude that the
application of W–D cycles can influence the region of compaction
and more homogeneous layers can be found after the first layer
(Layer A). However, the application of 9 W–D cycles (Fig. 6c) is
not sufficient to decrease the soil density gradient along depth
(soil layers). After 9 W–D the difference betweenr0 andrb (at 0 mm)
obtained by the mathematical adjustment is 0.22 g cm�3, while for
the control sample (0 W–D) is 0.24 g cm�3. Bresson et al. (2004) and
Fohrer et al. (1999) also observed similar results by using a medical
X-ray CT. The last authors observed a maximum rb 1 mm below the
soil surface and its value also decreased exponentially with depth up
to 10 mm when it merged with the initial rb.

The mathematical adjustments of the soil bulk density profile with
depth allow us to define a transition zone for the sample with surface
compaction (Fox et al., 2004). Layer B appears to be a transition zone
for the LVE soil below the compacted region (Layer A). This type of
information is very important because changes in rb with depth can
0
1.20

1.30

1.40

1.50

1.60

1.70

Soil layers
DCBA

ρ b
 (g

 c
m

-3
)

z (mm)

3 WD
Fit Data to:

ρb=1.41+0.22e^(-z/5.67)

Chi2 = 8E-4
R = 0.88

z (mm)

 9 WD
 Fit Data to:

ρb = 1.33+0.22e^(-z/7.24)

Chi2 = 6E-4
R = 0.92

5 10 15 20 25 30

15 20 25 30

mm (A); 7–14 mm (B); 14–21 mm (C); 21–28 mm (D)) for the Dark Red Latosol for:

samples submitted to 3 W–D cycles, and (c) core samples submitted to 9 W–D cycles.



L.F. Pires et al. / Radiation Physics and Chemistry 80 (2011) 561–566566
be helpful for the estimation of hydraulic parameters in infiltration
models.

To conclude, the results obtained in this work (Figs. 2–6)
confirm that wetting and drying cycles – by the capillary rise
method – can cause important modifications in the soil porous
system of samples with surface compaction. Through CT analysis it
was possible to analyze changes in soil structure of a very same
sample, which cannot be obtained by using traditional techniques
of image analysis. The procedure of sample saturation by the
capillary rise method is frequently used during SWRC evaluations
(Klute, 1986). Therefore, alterations in soil porosity distribution
(Fig. 4) due to repetitions of W–D cycles will directly affect the
representativeness of SWRCs, which are used for estimations of
water retention and movement, widely used in irrigation
management.
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