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Abstract

We investigate the evolution of future trapping horizons through the dynamics of the
Misner–Sharp mass using ingoing Eddington–Finkelstein coordinates. Our analysis shows
that an integral formulation of Hayward’s first law governs much of the evolution of general
spherically symmetric spacetimes. To account for the accretion backreaction, we consider a
near-horizon approximation, which yields first-order corrections of a Vaidya-dark energy
form. We further propose a systematic perturbative scheme to study these effects for an
arbitrary background. As an application, we analyze an accreting Reissner–Nordström
black hole and demonstrate the horizon shifts produced. Finally, we compute accretion-
induced corrections to an extremal configuration. It is shown that momentum influx and
energy density produce distinct effects: the former forces the splitting of the extremal
horizon, while the latter induces significant displacements in its position, computed up to
first-order perturbative corrections. These results highlight how different components of
the stress–energy tensor significantly affect horizon geometry, with potential implications
for broader areas of research, including black-hole thermodynamics.

Keywords: dynamical black hole; trapping horizon; Misner–Sharp mass; accretion;
backreaction

1. Introduction
Black holes are inherently dynamical systems that interact with their environment

through accretion or Hawking evaporation. As horizons evolve and spacetime departs
from equilibrium, defining and studying black holes in dynamical regimes requires moving
beyond traditional tools like event horizons and Arnowitt-Deser-Misner (ADM)/Komar
mass [1,2]. Quasi-local approaches, such as trapping horizons [3] and the Misner–Sharp
mass [4], have emerged as essential counterparts in the descriptions of horizon dynam-
ics and gravitational energy without relying on particular asymptotic structures [5–13],
and avoiding teleological definitions [14]. Spherically symmetric spacetimes provide an
ideal testing ground for these methods, simplifying the analysis of quasi-local quantities
while preserving much of the essential phenomenology of gravitational dynamics.

While many exact solutions of the Einstein field equations exist, remarkably few de-
scribe dynamically interacting black holes with exact treatment for accretion or evaporation.
Notable examples include the McVittie spacetime (and its generalizations) for cosmological
black holes [15–20], the Thakurta solution [21], and the Vaidya metric [22,23], which later
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extended to include the cosmological constant [24,25]. The scarcity of exact solutions for
dynamical black holes makes perturbative and approximate approaches indispensable.
These methods are crucial for modeling realistic scenarios, such as the backreaction of
accreting matter on the metric tensor. For instance, the perturbative framework developed
by Babichev, Dokuchaev, and Eroshenko [26] generates first-order metric corrections arising
from the energy–momentum tensor in the test-fluid approximation, with the leading term
in a Vaidya-like form.

As we will show, the ingoing Eddington–Finkelstein coordinates not only avoid coor-
dinate singularities typical of black holes but also reveal the dynamics of the Misner–Sharp
mass in an intuitive way. This is a feature that is largely exploited in our work to analyze
general aspects of the evolution of trapping horizons beyond approximate results. To
develop effective descriptions within this framework, with this chart accommodating fu-
ture outer (FOTH) and inner (FITH) trapping horizons, we first employ an approximation
scheme to simplify the line element near a trapping horizon, yielding particularly tractable
results for perfect fluids. Building on this, we implement a systematic perturbative expan-
sion that goes beyond first-order corrections of matter-energy influx. A comprehensive
analysis of Reissner–Nordström black holes is carried out, with special attention given to
the extremal case.

This paper is organized as follows. In Section 2 the general spherically symmetric
framework is presented. The dynamics of the Misner–Sharp mass were investigated, with a
connection to Hayward’s first law established. We show in Section 3 that the metric admits
a suitable approximation in the neighborhood of any 2-sphere (here called “Vaidya-dark
energy”). We implement this approximation scheme specifically for perfect fluids near the
horizon. In Section 4, we introduce our perturbative approach to accretion, systematically
examining its effects on trapping horizon displacements. The presence of inner horizons
is analyzed in Section 5, with particular emphasis on how repulsive corrections in the
Misner–Sharp mass can eliminate a small FITH of a Reissner–Nordström black hole. We
conclude with a discussion and outlook in Section 6, with Appendix A providing a concise
review of future trapping horizon characterization. In the present work, we use signature
(−+++).

2. Dynamics of Spherically Symmetric Spacetimes
2.1. General Setup

This work focuses on a quasi-local approach in spherically symmetric spacetimes.
In this framework, the Misner–Sharp mass (MMS), defined as

MMS ≡ r
2
(1 − gµγ∂µr∂γr) , (1)

can be interpreted as the energy of the system inside a 2-sphere of area 4πr2 (r denoted as
the “areal radius”).

To study black holes while avoiding coordinate singularities, one can use ingoing
Eddington–Finkelstein coordinates (v, r, θ, ϕ), where v is the so-called “advanced time”
(actually a null coordinate). In this chart, a general spherically symmetric spacetime is
described by the line element [27]:

ds2 = −e2λ(v,r)
(

1 − 2MMS

r

)
dv2 + 2eλ(v,r)dvdr + r2dΩ2 , MMS ≡ MMS(v, r) . (2)
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It is straightforward to calculate the Einstein tensor Gµ
γ, whose relevant components

for this work are

Gv
v = −2∂r MMS

r2 , Gv
r =

2∂v MMS

r2 , Gr
v =

2e−λ∂rλ

r
. (3)

The Einstein equation is

Gµ
γ = 8π

(
Tµ

γ − ρΛδµ
γ
)

, Gµ
γ ≡ Gµ

γ(v, r) , Tµ
γ ≡ Tµ

γ(v, r) , (4)

where ρΛ ≡ Λ/8π denotes the energy density of the vacuum. From the first two components
in Equation (3), we obtain

∂r MMS = −4πr2(Tv
v − ρΛ) , ∂v MMS = 4πr2Tv

r . (5)

The third component in Equation (3) yields

∂re−λ =
r
2

Gr
v , (6)

which can be integrated to

e−λ(v,r) = 4π
∫ r

r0

Tr
v(v, r′)r′ dr′ + e−λ(v,r0) . (7)

Under the coordinate transformation dv −→ e−λ(v,r0)dv, the general line element (2)
reads

ds2 = −e2λ(v,r)−2λ(v,r0)

(
1 − 2MMS

r

)
dv2 + 2eλ(v,r)−λ(v,r0)dvdr + r2dΩ2 . (8)

It is apparent that the general metric, written in the form (8), can be approximated by the
Vaidya metric sufficiently close to r = r0. At this stage, r0 remains an arbitrary parameter.

2.2. Dynamics of the Misner–Sharp Mass

To analyze the evolution of the system, we express the Misner–Sharp mass in terms of
convenient dynamical variables, using the differential equations in (5), as

MMS(v, r)− MMS(0, r0) =
∫ v

0
A(v′, r0) dv′ +

∫ r

r0

B(v, r′) dr′ . (9)

The flux and energy functions A and B are defined as

A ≡ 4πr2Tv
r , B ≡ −4πr2(Tv

v − ρΛ) . (10)

These quantities have clear physical interpretations. The term A generates the radial energy
flux through a sphere of radius r at a fixed v, while B gives the effective energy density
within that sphere (including the cosmological constant contribution). In Equation (9), r0

serves as an arbitrary reference radius that sets the initial condition for the integration. It
follows that the evolution of the Misner–Sharp mass in Equation (9) admits the following
physical interpretation. For any v > 0 and r > r0, the mass consists of three contributions:

• the initial mass at the reference radius r0;
• the accumulated energy flux through the 2-sphere at r0 from v′ = 0 to v′ = v;
• the final energy contained between the 2-spheres at r0 and r.
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We observe that the Misner–Sharp mass at the reference radius r0 takes the form

MMS(v, r0) = MMS(0, r0) +
∫ v

0
A(v′, r0) dv′ , (11)

provided that B remains finite. The boundness of B is taken as a physically reasonable
assumption for the energy density. Result (11) shows that at r = r0, the mass evolves purely
as a function of v, representing an effective Vaidya solution with initial mass MMS(0, r0).

Let us assume that our system of interest is a black hole with a singularity at r → 0.
Since r0 is arbitrary in our treatment, we can take the limit r0 → 0 in (11):

M(v) ≡ lim
r0→0

MMS(0, r0) +
∫ v

0
lim
r0→0

A(v′, r0) dv′ . (12)

Therefore, we interpret the mass of the singularity itself as M(v) in Equation (12), which
adds its initial mass to all the influx of energy.

Building on Equation (9), we define the total energy of the black hole at time v as the
corresponding Misner–Sharp mass:

MMS(v, rH(v)) ≡ M(v) + lim
r0→0

∫ rH(v)

r0

B(v, r′) dr′ , (13)

where rH(v) is the position of the black-hole boundary. This surface constitutes a future
trapping horizon, which is the closure of a hypersurface foliated by 2-dimensional surfaces
satisfying

θl = 0 , θn < 0 . (14)

In Equation (14), θl and θn are the expansion scalars associated with the outgoing (lµ) and
ingoing (nν) congruences, respectively. For its full characterization further conditions must
be analyzed (see Appendix A for a short exposition on this subject). We denote a future
outer trapping horizon (FOTH) as r = r+, a future inner trapping horizon (FITH) as r = r−,
and if it is not specified, we use rH for the horizon radius.

Similarly to Equation (13), we obtain the Misner–Sharp mass decomposition:

MMS(v, r) = M(v) + lim
r0→0

∫ r

r0

B(v, r′) dr′ , (15)

where M(v) represents the singularity’s time-dependent mass. Note that the energy–
momentum tensor only determines variations in the Misner–Sharp mass since there is a
free integration constant [MMS(0, r0)], which must be specified in other ways.

The presented developments are well contextualized in the so-called Hayward ther-
modynamics [3,28–30], which established a consistent thermodynamic description for
evolving black holes and wormholes in non-stationary, spherically symmetric spacetimes.
Within this formalism, black holes are defined by their trapping horizons.

This framework allows deeper insights into the dynamics of the Misner–Sharp mass,
especially in non-stationary and strongly curved regimes. For instance, MMS can be inter-
preted as the conserved quantity associated with the conserved current Jµ ≡ GµγKγ [31],
where Kµ is the Kodama vector [32]. Furthermore, the Misner–Sharp mass in Equation (9)
leads to a generalized first law of black-hole thermodynamics that has its origins in [29,30]

∇µ MMS = Aψµ + w∇µV , (16)
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where A and V are the Euclidean area and volume of a 2-sphere, and we assume that the
relevant quantities can be expressed as functions of (v, r). In Equation (16), the energy-flux
vector field (ψµ) and work-density scalar (w) are given by

ψµ ≡ 1
8π

Gµγ∇γr + w∇µr , w = − 1
16π

gabGab , (17)

where gab is the metric on the (1 + 1)-dimensional reduced spacetime orthogonal to the
spherical orbits. In the coordinates (v, r),

ψµ =
1

8π
Gµ

r + wδµ
r , w = −Gv

v + Gr
r

16π
, (18)

with the nonzero components of Equation (16). Thus,

∂v MMS = Aψv = A , ∂r MMS = 4πr2
(

1
8π

Gr
r + 2w

)
= B . (19)

This analysis shows that Equation (9) is an integral form of Equation (16) for the Kodama
vector Kµ = e−λ(∂v)µ. Up to this point, there are no approximations involved.

3. Near-Horizon Approximation Scheme
3.1. Existence of Future Trapping Horizons

Following Hayward’s approach, we define a black hole in terms of its trapping hori-
zons. More precisely, we assume that the black-hole boundary is a future outer trapping
horizon, a concept that is properly reviewed in Appendix A.

Future outer trapping horizons and future inner trapping horizons are characterized
(respectively) by the conditions B(v, r+(v)) < 1/2 and B(v, r−(v)) > 1/2 on the surface
r = 2MMS. The sign of B, and thus the type of horizon, depends on the component Tv

v

of the energy–momentum tensor and also on the sign and magnitude of the cosmological
constant Λ. We initially consider the case of a vanishing Λ and write Tv

v = Tv
µδ

µ
v . We

observe that Tv
v < 0 in regions where ∂v is future-directed, assuming the dominant energy

condition holds. Hence B > 0 within these assumptions, with large (in module) Tv
v

contributing to the preferable existence of FITHs. Although the positivity of B is assured
by the dominant energy condition in this case, in regions of gvv > 0, the sign of B is not
determined a priori. If a cosmological constant is present, a Λ > 0 also contributes to the
formation of FITHs. But that is not the case if Λ < 0.

Several physically significant solutions to the Einstein field equations exhibit specific
energy conditions, Tv

v negative and ρΛ positive everywhere, which preferentially support
the existence of FITHs [33]. Prime examples are the Reissner–Nordstrom (low electric
charge) and Schwarzschild-de Sitter black holes, including their dynamical generaliza-
tions [24,34]. In such spacetimes, the standard configuration consists of concentric trapping
horizons, with both the FOTH and the FITH enclosing the central singularity.

In an extremal case, FOTH and FITH merge onto a single trapping horizon. This
condition is formally characterized by a vanishing geometric surface gravity, as presented
in Appendix A. A third, more radical, scenario arises when both horizons disappear
completely, exposing a naked singularity. Such cases raise profound theoretical challenges,
as they represent a violation of the cosmic censorship conjecture, which is beyond the scope
of the present work.

In summary, the existence of black holes with multiple horizons requires specific
conditions that ensure the simultaneous presence of both the outer and inner horizons.
When the black hole is perturbed, the positions of these horizons may shift, requiring
a reexamination of the conditions that guarantee the existence of the black hole with a
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well-defined boundary. In this work, we develop a systematic perturbative scheme for
investigating accretion-induced shifts in the horizons of an accreting black hole.

3.2. General Model

Aiming at this dynamical analysis of the trapping horizons subjected to perturbations,
an approximation scheme is developed in this section to simplify the metric near a surface
r = r0. We have seen that, in the appropriate coordinates of Equation (8), the metric tends
to a Vaidya form near r0. Moreover, we will show that, up to a first correction of the
Misner–Sharp mass near r0, the metric locally acquires a form that can be related to the
Vaidya–de Sitter spacetime.

For the subsequent analysis, consider the parameter ϵ, defined as

ϵ ≡ r − r0 . (20)

We will approximate the Misner–Sharp mass around r = r0, treating ϵ/r0 as a small parame-
ter. Concretely, the Vaidya–de Sitter line element,

ds2 = −
{

1 − 2
r

[
m(v) +

4πr3

3
ρΛ

]}
dv2 + 2dvdr + r2dΩ2 , (21)

has its quasi-local mass approximated in the vicinity of r0, (r0, r0 + ϵ), at first order in
ϵ/r0, as

MMS(v, r) ≈ MMS(v, r0) + 4πr2
0ϵρΛ , MMS(v, r0) = m(v) +

4πr3
0

3
ρΛ . (22)

The term 4πr2
0ϵ corresponds to the (Euclidean) volume of a thin spherical shell of radius r0

and thickness ϵ. Thus, the second term in the expansion of MMS(v, r) (4πr2
0ϵρΛ) represents

the energy contribution from the cosmological constant within this thin shell, providing a
first-order correction to the Misner–Sharp mass. Within this approximation, the Vaidya–de
Sitter geometry is characterized near r0 by

ds2 = −
{

1 − 2
r

[
m(v) +

4πr3
0

3
ρΛ + 4πr2

0ϵρΛ

]}
dv2 + 2dvdr + r2dΩ2 . (23)

More generally, using Equations (9)–(15) and keeping only the leading-order contribu-
tion of the energy–momentum tensor in the region (r0, r0 + ϵ), we obtain the following:

MMS(v, r) ≈ MMS(v, r0)− 4πr2
0ϵ[Tv

v(v, r0)− ρΛ] , (24)

with MMS(v, r0) determined by initial conditions and the flow A across r0. This result
implies that the metric can be approximated to a “Vaidya-dark energy form” around r0,
with an effective dynamical cosmological constant Λ̃ given by

ρΛ̃(v) ≡ −Tv
v(v, r0) + ρΛ . (25)

It follows that, given the condition

ϵ ≪
∣∣∣∣ B(v, r0)

B′(v, r0)

∣∣∣∣ , (26)

the Misner–Sharp mass in the vicinity of r0 is approximated to the mass of a Vaidya
geometry in a background dominated by a dynamical cosmological constant.
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3.3. Perfect Fluid Model

A particularly interesting case from our previous results concerns the accretion of
perfect fluids. More specifically, let us consider an energy–momentum tensor

Tµγ = (ρ + p)uµuγ + pgµγ , (27)

where the energy density ρ and pressure p are dynamical functions of both the time and
radial coordinates, i.e., ρ ≡ ρ(v, r) and p ≡ p(v, r).

The 4-velocity uµ of the fluid takes the form

uµ =
[
F(v, r) , −G(v, r) , 0 , 0

]
, (28)

with the radial velocity (G) required to be a positive function. The v-component (F) is
determined by the normalization condition uµuµ = −1, yielding:

uµ =

 e−λ

G +
√

G2 + 1 − 2MMS
r

, −G , 0 , 0

 . (29)

This is the general form for the 4-velocity of a radially ingoing perfect fluid in a spherically
symmetric spacetime using the coordinates of Equation (2). Near a fixed r0, the Misner–
Sharp mass in Equation (29) can be approximated by Equation (24).

Using the chart of Equation (8), the relevant non-zero components of the energy–
momentum tensor are written as

Tv
v =

−ρ
√

1 − 2MMS
r + G2 + pG√

1 − 2MMS
r + G2 + G

, Tr
v =

e−λ+λ0(ρ + p)[
G +

√
G2 + 1 − 2MMS

r

]2 , Tv
r = G(ρ + p)eλ−λ0

√
1 − 2MMS

r
+ G2 , (30)

with λ0 ≡ λ(v, r0). From the previous development, the metric takes the form of a Vaidya-
dark energy solution in the vicinity of the surface r = r0, up to first-order corrections of
ϵ/r0 on MMS. In the case of a perfect fluid, if r0 is the position of the trapping horizon
at a particular v, then the effective vacuum energy ρΛ̃ in Equation (25) (associated to an
effective dynamical cosmological constant Λ̃) acquires the form:

ρΛ̃(v, r0) =
1
2
[ρ(v, r0)− p(v, r0)] + ρΛ . (31)

We emphasize that the near-horizon approximation,

MMS(v, r) ≈ MMS(v, r0) + 2πr2
0ϵ[ρ(v, r0)− p(v, r0) + 2ρΛ] , (32)

exhibits a leading-order correction determined solely by the physical scalars ρ, p and ρΛ.
That is, this correction term is independent of any explicit coupling between the fluid and
the geometry, such as kinematic terms (uµ) or the metric itself (gµγ).

4. Perturbative Scheme for Accretion
4.1. Perturbations near a Trapping Horizon

In the previous section, we developed a general approximation scheme for the Misner–
Sharp mass, presented in Equation (24). This framework provides the specific form for a
perfect fluid’s energy–momentum tensor in Equation (32), valid near a trapping horizon.
Within this scheme, the surface r = r0 represents the position of the horizon at a fixed value
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of the affine parameter, set as v = 0 for convenience. To fully characterize the metric in
this neighborhood of r0, MMS(v, r0) must be specified. However, this typically requires
knowledge of the complete solution, which is generally not available. In this context,
a perturbative approach proves particularly valuable, as it allows us to consider fluid
accretion on a fixed, predetermined black-hole background.

The general framework of the perturbative scheme is given by a background metric
g(0)µγ that solves the Einstein Equation for a field ϕ(0),

Gµγ

[
g(0)µγ

]
= 8πTµγ

[
g(0)µγ , ϕ(0)

]
, (33)

and the perturbation g(1)µγ on the metric is produced by a field ϕ(1) such that the Einstein
Equation for the perturbed spacetime is given by

Gµγ

[
g(0)µγ + g(1)µγ

]
= 8πTµγ

[
g(0)µγ , ϕ(0) + ϕ(1)

]
. (34)

The energy–momentum tensor is determined by the test fluid approximation, requiring the
matter fields on the right-hand side of Equation (34) to satisfy their equations of motion on
the background spacetime. Nonetheless, backreaction effects on the metric are considered,
as evidenced in the left-hand side.

Our framework analyzes the backreaction on the background Misner–Sharp mass.
While reference [26] established conditions for the validity of a similar perturbation scheme,
we propose two significant refinements. First, the fluid’s dynamical degrees of freedom
are preserved. Second, the systematic near-horizon expansion in our method facilitates
the computation of higher-order corrections. This approach provides a controlled approxi-
mation scheme for studying backreaction effects while maintaining consistency with the
dynamical evolution of the spacetime.

To analyze the behavior of the trapping horizon under a perturbation, we employ the
Misner–Sharp mass decomposition within our perturbative framework,

MMS(v, r) = M(0)
MS(v, r) + M(1)

MS(v, r) , (35)

which requires
M(1)

MS(v, r)

M(0)
MS(v, r)

≪ 1 . (36)

In Equation (35), the background and first-order contributions are given by the following:

M(0)
MS(v, r) = M(0)

MS(0, r0) +
∫ v

0
A(0)(v′, r0)dv′ +

∫ r

r0

B(0)(v, r′)dr′ , T(0)
µγ = Tµγ

[
g(0)µγ , ϕ(0)

]
, (37)

M(1)
MS(v, r) =

∫ v

0
A(1)(v′, r0)dv′ +

∫ r

r0

B(1)(v, r′)dr′ , T(1)
µγ = Tµγ

[
g(0)µγ , ϕ(1)

]
. (38)

We have assumed that the accretion process begins strictly for v > 0, setting

M(1)
MS(0, r0) = 0 . (39)

That is, at v = 0, the Misner–Sharp mass evaluated at the initial position of the trapping
horizon (r0) is determined by the background alone.
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A natural initial application for the perturbative scheme involves a Schwarzschild
background [33], with mass parameter m and ϕ(0) = 0. In this case, the Misner–Sharp mass
decomposes as

M(0)
MS(v, r) = M(0)

MS = m , MMS(v, r) = m +
∫ v

0
A(1)(v′, r0)dv′ +

∫ r

r0

B(1)(v, r′)dr′ . (40)

As a more complex scenario, we consider a Reissner–Nordström background [33],
with electric charge Q and ϕ(0) representing the electric potential. In this case, the Misner–
Sharp mass can be written as follows:

M(0)
MS(v, r) = M(0)

MS(r) = m − Q2

2r
, MMS(v, r) = m − Q2

2r
+

∫ v

0
A(1)(v′, r0)dv′ +

∫ r

r0

B(1)(v, r′)dr′ . (41)

In the following section, we examine how accretion affects the trapping horizons of a
Reissner–Nordström black hole.

4.2. Accretion-Induced Shifts in Trapping Horizons

To incorporate the approximation scheme of Section 3 into the perturbative framework,
we perform a systematic near-horizon expansion in powers of ϵ, defined in Equation (20),
analyzing three successive orders:
(Zeroth-order accreting solution) The exact solution at ϵ = 0 from Equation (37), including
metric perturbations at ϵ = 0 from Equation (38):

M[0]
MS(v, r) ≡ M(0)

MS(v, r0) + Ā(1)(v, r0) . (42)

(First-order accreting solution) The full exact solution from Equation (37), including metric
perturbations at ϵ = 0 from Equation (38):

M[1]
MS(v, r) ≡ M(0)

MS(v, r) + Ā(1)(v, r0) . (43)

(Full perturbation) Incorporating the contribution B(1) evaluated at r0:

M[2]
MS(v, r) ≡ M(0)

MS(v, r) + Ā(1)(v, r0) + ϵB(1)(v, r0) . (44)

In Equations (42)–(44), we have defined

Ā(1)(v, r0) ≡
∫ v

0
A(1)(v′, r0)dv′ . (45)

Let r0 denote the initial position of a trapping horizon. In the unperturbed Reissner–
Nordström spacetime, its position is determined by

r0 = m ±
√

m2 − Q2 , (46)

with the usual extremal condition:

m ext
= |Q| , r0

ext
= |Q| . (47)

In what follows, we investigate small horizon shifts ϵ(v) ≡ rH(v)− r0 induced by mat-
ter accretion.
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Using the zeroth-order accreting solution of Equation (42), the perturbed Misner–Sharp
mass takes the form:

M[0]
MS(v, r) = m + Ā(1)(v, r0)−

Q2

2r0
. (48)

This leads to a time-dependent horizon shift:

r[0]H (v)
2

= m − Q2

2r0
+ Ā(1)(v, r0) . (49)

Extending to our first-order accreting solution of Equation (43), the Misner–Sharp
mass becomes

M[1]
MS(v, r) = m + Ā(1)(v, r0)−

Q2

2r
, (50)

which generates shifts in the horizon as

r[1]H (v)
2

= m − Q2

2r[1]H (v)
+ Ā(1)(v, r0) . (51)

This rational Equation (51) in r[1]H (v) yields the exact solution:

r[1]H (v) = m + Ā(1)(v, r0)±
√[

Ā(1)(v, r0)
]2

+ m2 − Q2 + 2mĀ(1)(v, r0) . (52)

Note that, in this first-order approximation, the horizon position remains fixed for v ≤ 0 as
a consequence of assumption (39), reducing to Equation (46).

At this order of approximation, the extremal condition is given by

m ext
= |Q| − Ā(1)(v, r0) , (53)

with the corresponding horizon position obtained from Equation (52),

r[1]H (v) ext
= |Q| . (54)

Thus, it is found that the corrected condition for the existence of the trapping horizons is

Ā(1)(v, r0) ≥ −m + |Q| , (55)

for all values of v.
Since the initial condition MMS(0, r0) = M(0)

MS(0, r0) implies m ≥ |Q|, the inequality
(55) is automatically satisfied for physical fluids obeying the traditional energy conditions.
This suggests that matter influx alone can only drive an extremal horizon to split into
distinct inner and outer horizons. That is, the influx of electrically neutral perfect fluid
directly leads to the breakdown of the extremality condition (53). Furthermore, it also
indicates that phantom-energy accretion (with Ā(1) < 0) could violate this condition,
leading to horizon disappearance.

So far, our analysis has not considered the contribution of the energy density. To in-
clude it, we use the full perturbation of Equation (44):

M[2]
MS(v, r) = m + Ā(1)(v, r0)−

Q2

2r
+ ϵB(1)(v, r0) . (56)
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For a dust fluid, generalization discussed previously as ρΛ̃, the horizon position becomes
the following:

r[2]H (v)
2

= m − Q2

2r[2]H (v)
+ Ā(1)(v, r0) + 2πr2

0

[
r[2]H (v)− r0

]
ρ(v, r0) . (57)

The exact solution to Equation (57) is

r[2]H (v) =
2πr3

0ρ(v, r0)− Ā(1)(v, r0)− m ±
√

Q2
[
4πr2

0ρ(v, r0)− 1
]
+

[
Ā(1)(v, r0) + m − 2πr3

0ρ(v, r0)
]2

4πr2
0ρ(v, r0)− 1

. (58)

The corrected extremal condition now incorporates energy density effects:

m ext
= −Ā(1)(v, r0) + 2πr3

0ρ(v, r0) +
√

Q2
[
1 − 4πr2

0ρ(v, r0)
]

, (59)

with the position of the extremal horizon given by

r[2]H (v) ext
=

|Q|√
1 − A0ρ(v, r0)

, A0 = 4πr2
0 . (60)

The framework is reliable for small perturbations, ρ(v, r) ∼ 0. Hence, up to a first correction,
the position of the trapping horizon of a perturbed extremal Reissner–Nordström black
hole is given by

r[2]H (v) ext
= |Q|

[
1 +

A0ρ(v, r0)

2

]
. (61)

Some key advances of our perturbative approach are discussed. The result (52) shows
that retaining second-order influx terms in the square root induces first-order corrections to
the extremal condition, leading to the necessity of a revised analysis of the existence criteria
for trapping horizons. Also, result (58) incorporates energy density effects, generating a
corrected extremal condition with additional terms, as well as a shifted horizon position
for extremal Reissner–Nordström black holes. Finally, our perturbative approach produced
higher order corrections than those of [26].

This section presents the main results of our work. However, we further examine the
properties of future inner trapping horizons, given their profound theoretical implications.

5. On the Presence of Future Inner Trapping Horizons
As established in Section 3.1, future inner trapping horizons are found in many

solutions. However, their presence implies that the standard black-hole boundary definition
via a future outer trapping horizon must now be complemented with additional existence
conditions. This requires a particularly careful treatment when studying perturbations on
extremal and near-extremal configurations, as was carried out in the previous section.

The existence of inner horizons also leads to a variety of potential theoretical chal-
lenges: as possible Cauchy horizons, raising questions regarding the predictability of
general relativity [35]; and as unstable loci [36], most notably resulting in the mass infla-
tion phenomenon [37–39]. Recent work has reinterpreted these phenomena for FITHs in
dynamical spacetimes [40], moving beyond the traditional analysis based on stationary
black holes.

It is thus remarkable that we can identify small metric corrections that incorporate
repulsive effects, which can eliminate the inner horizon in some scenarios. This mechanism
generates a secondary FOTH within the FITH. We have observed that the smaller the FITH
is, the easier it is to destroy it. For sufficiently strong corrections, this inner FOTH can
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completely cancel out the FITH, leaving only the outer horizon as the boundary of the black
hole. More precisely, we consider specific deviations of the form

MMS −→ MMS + αr−β , (62)

where α is positive and β is a non-negative integer. These corrections are well motivated
by several works in the literature, particularly spacetimes incorporating quantum gravity
effects. For instance, similar terms emerge as one-loop corrections in gravitational effective
field theories (see [41] and references therein). As a concrete scenario, the FOTH of a
Schwarzschild can be shifted (but never destroyed) for any pair of (α, β). For a Reissner–
Nordstrom black hole,

MMS = m − Q2

2r
−→ m − Q2

2r
+ αr−β . (63)

As shown in Figure 1, there are qualitatively different repulsive corrections on the
metric of a Reissner–Nordström black hole, which favors the vanishing of the FITH for
increasing values of β. In fact, virtually undetectable corrections to the metric by an exterior
observer can be sufficient to make the inner horizon vanish.

Figure 1. General representation of the metric function gvv of a pure Reissner–Nordström black
hole (β0) with (FITH) r− ∼ 0 corrected by the same α and increasing values of β: from β1 to β3.
The quantity r∗+ denotes a secondary FOTH that is formed between the singularity and the FITH by
the correction β2.

The perturbative analysis developed in the previous section can be straightforwardly
extended to Reissner–Nordström with this correction. For several values of the parameters
α and β, the solution admits a single (outer) trapping horizon, defining its boundary. This
simplifies the perturbative treatment and avoids potential instabilities arising from the
presence of the inner horizon.

6. Final Remarks
In this work, we have investigated the dynamics of future trapping horizons of spheri-

cally symmetric spacetimes using ingoing Eddington–Finkelstein coordinates. We have
shown that their exact evolution is described by an integral form of Hayward’s first law.
Our results demonstrate the important role of quasi-local quantities, in particular trapping
horizons and the Misner–Sharp mass, in characterizing the accretion-induced evolution of
black holes. These tools are particularly valuable when exact solutions incorporating backre-
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action effects are not available and when going beyond standard test-fluid approximations
is desirable.

To consider backreaction in our analysis, we have implemented a near-horizon ap-
proximation scheme that systematically captures first-order corrections of the Vaidya-dark
energy type. This framework is particularly useful for simplifying the analysis of per-
fect fluids near trapping horizons since the leading-order corrections depend only on the
fluid’s energy density ρ and pressure p, with no explicit dependence on either the fluid’s
velocity field or the background metric components. This simplification arises because,
in the first correction, the interaction of the fluid with the geometry is fully encoded in the
stress-energy tensor via ρ and p.

Building on this foundation, our perturbative framework extends previous results
by systematically incorporating higher-order corrections. The formalism is constructed in
a background-independent manner and subsequently applied to study accretion onto a
Reissner–Nordström black hole. Our analysis reveals a hierarchy of horizon displacements,
with distinct perturbative orders producing characteristically different modifications to both
the horizon location and the extremality conditions. Significantly, we find that momentum
influx (from non-exotic matter) preserves the coordinate location of an extremal horizon,
serving only to bifurcate it into separate inner and outer components. Energy density
contributions, by contrast, produce measurable shifts of the extremal horizon position.

The generality of our framework, combined with its systematic perturbative construc-
tion, opens up several promising directions for future research. We have observed that
certain repulsive corrections in the metric are able to eliminate an inner horizon, thus
avoiding the additional theoretical challenges they pose. It would be of significant interest
to investigate this effect within a perturbative framework. However, such an analysis
would likely require going beyond the localized perturbations used in accretion models.
Furthermore, since these corrections directly impact the Misner–Sharp mass, they yield
new results for quasi-local versions of black-hole thermodynamics. This suggests the need
for further investigation into the effects of metric corrections on horizon structure.

Moreover, it is possible to implement our methodology to outgoing Eddington–
Finkelstein coordinates, which can be used to model Hawking evaporation [25,42,43].
Also, in this case, the formalism could be applied to the study of the dynamics of past
cosmological horizons, which are those of fast-expanding cosmologies. Since the perturba-
tive approach developed here is valid close to a trapping horizon, it naturally enables the
investigation of dynamical configurations in near-extremal regimes. This is particularly
true for spacetimes like Vaidya–de Sitter and its generalizations. Another extension of this
work involves incorporating higher-order perturbations, for which a better formalization
of our theoretical framework is required. Research is being conducted along these lines.
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Appendix A. Future Trapping Horizons
The boundary of a black hole is considered in this work to be a future outer trapping

horizon (FOTH), which is characterized by the conditions that are made explicit in this
appendix. The brief presentation starts with the expansion scalar, which measures the rate
of change of the transverse metric hµγ along the generators k of a null1 congruence,

θk =
1√
h

∂k
√

h , (A1)

where h denotes the determinant of the transverse metric hµγ:

h ≡ det
(
hµγ

)
, hµγ ≡ gµγ + lµnγ + nµlγ . (A2)

The tensor hµγ projects vectors on the cross-sectional surface orthogonal to the null vector
fields lµ and nµ.

In this work, we consider the metric of a spherically symmetric geometry in the general
form of Equation (2). For the null fields, we take the ingoing and outgoing vectors:

n = −∂r , (A3)

l = e−λ∂v +
1
2

(
1 − 2MMS

r

)
∂r . (A4)

It can be checked from Equation (A2) that the area element of the cross-sectional surface
orthogonal to both lµ and nµ is √

h = r2 sin θ , (A5)

which characterizes a 2-sphere. And, for the expansion scalar (A1),

θn = −2r sin θ , (A6)

θl =
1
r

(
1 − 2MMS

r

)
. (A7)

By definition (14), there is a future trapping horizon at rH(v) if

rH(v) = 2MMS . (A8)

This structure is characterized by the sign of Lnθl at rH , where L denotes the Lie derivative.
For a FOTH we have, for all v,

Lnθl
∣∣
rH(v) < 0 ⇐⇒ B(v, rH(v)) ≡

∂MMS

∂r

∣∣∣∣
rH(v)

<
1
2

. (A9)

And for it to be a future inner trapping horizon (FITH), which is a typical boundary of a
contracting spacetime,

Lnθl
∣∣
rH(v) > 0 ⇐⇒ B(v, rH(v)) ≡

∂MMS

∂r

∣∣∣∣
rH(v)

>
1
2

. (A10)

When B = 1/2, which suggests FOTH and FITH merging, we have an extremal
trapping horizon. This is equivalently characterized by the vanishing of the geometric
surface gravity:

κG ≡ 1
2
√

det|gab|
∂c

(√
det|gab| gcd∂dr

)
= −∂r

(
MMS

r

)
, (A11)
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with gab defined after Equation (17), and the second equality given by evaluation in the
coordinates of Equation (2), where Latin indexes stand for v and r.

There are two other types of trapping horizons: the past (outer and inner) ones.
However, these are covered by outgoing Eddington–Finkelstein coordinates, which are not
as useful for investigating the dynamics of black-hole accretion.

Note
1 The investigation of null congruences is useful for the study of trapping horizons, but the expansion scalar can also be defined for

timelike congruences.
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