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ingly applied in many technologies and industrial sectors, so there is an increasing concern about the ne-
gative impacts of NMs in the environment after their interaction with co-contaminants. Consequently,
mixture toxicology has been gaining attention in nanotoxicology recently. Usually, mixture toxicity or
combined toxicity is estimated from the individual effects of the chemicals using the mathematical models

ﬁi{:ﬁ;ﬁsﬁdes of concentration addition (CA) or independent action (IA), however these models do not account for me-
EcotoxicityCo-exposure tabolic interactions between the chemicals, when they act in related metabolic pathways and molecular
Nanoinformatics targets. As NMs unique physico-chemical properties make them highly reactive with a high surface area for
Nanosafety adsorption, those models may not realistically estimate the toxicological effects of mixtures containing

NMs. The co-exposition of NMs and other environmental contaminants (e.g., organic pollutants and heavy
metals) may cause different mixture effects such as addition, synergism, antagonism, or even other com-
plicated responses, including altered toxicokinetics/toxicodynamics, which vary according to the individual
components properties, environmental exposure conditions, and the biological system. Therefore, the large
number of factors that may influence the toxicity of a NM and contaminant mixture makes NMs mixture
risk assessment a complex task. Daphnia magna are one of the most commonly used model species in
nanotoxicology, including in mixture studies. It's advantages include short generation time, small body
sizes, ability to produce large populations rapidly, coupled with its completely mapped genome which
allows the use of a multitude of omics techniques to understand the stress responses of daphnids to NMs
and chemicals. Here, we analyse the toxicological effects of NMs and contaminant mixtures using Daphnia
as a model organism, and discuss future perspectives for NMs-mixtures risk assessment focusing on har-
monization of methodologies and application of data-driven science in mixture ecotoxicology.
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Introduction challenging task to enable proper environmental regulation, with

Mixture toxicology has recently been gaining attention in the
nanotoxicology community. Due to their constant use and discard,
pesticides, industrial chemicals, pharmaceuticals, and their de-
gradation by-products are ubiquitous in the environment [1]. They
co-exist as complex mixtures which have generated concern due to
the lack of full knowledge and appropriate regulations about their
individual and combined risks to human health and biota [2]. In
addition, nanomaterials (NMs) are increasingly incorporated into
new technologies and advanced materials for application in diverse
fields, for example, as drug carriers, catalysts, agrochemicals, cos-
metics, and electronics. Consequently, they are likely to reach the
environment in multiple ways and interact with other con-
taminants [3,4].

The overall toxicity of chemical mixtures is related to the mode of
action of each component and how they interfere with each other’s
metabolic pathways and molecular targets. Normally, mixture toxi-
city or combined toxicity is estimated as the individual effects of the
chemicals using the mathematical models of concentration addition
(CA), for compounds which share a mechanism of toxicity and target
site(s), or independent action (IA), when the mechanisms and the
targets are distinct [5]. These models assume that metabolic inter-
actions between the chemicals do not occur, and the general effect is
the combination of the individual actions. In the CA model, the
toxicity is additive, that is, all components of the mixture contribute
to the total toxicity depending on their concentration and potency
and the mixture may present harmful effects even if all chemicals
are present at levels below their individual toxicity thresholds [6].
Likewise, in the IA model the individual effects are unassociated,
their combination is the sum of their biological responses, and can
be calculated using the statistical concept of independent random
events.

Although regulatory risk assessment frameworks for environ-
mental chemical mixtures are based on CA or IA models [7-9], in
some cases, the mixtures may present a toxicity that differs from the
predicted one, and their risk to biota can be under or overestimated,
if the model does not account for metabolic interactions between
the chemicals [5,6]. In this context, interactions may occur at the
toxicokinetic level, when one chemical interferes with the absorp-
tion, distribution, metabolism, or elimination of another compound,
or at the toxicodynamic level, when the chemicals act on the same
molecular or cellular processes at the same or different target sites
[10]. Interactions in mixtures occur in specific combinations of
components and doses and are particular to different organisms,
causing higher (synergism) or lower (antagonism) toxicity than that
predicted by CA or IA (Fig. 1) [11]. Detecting the possible interactions
in chemical mixtures, especially synergisms, is an important and

theoretical models being a powerful tool to predict and guide ex-
periments in that direction [12,13]. However, there is currently no
model suitable for use as a standard protocol to predict mixture
interactions, mainly due to the variety of detailed information re-
garding mode of action, metabolism (toxicokinetic and tox-
icodynamic data) and toxicity of chemicals and the complexity of
approaches needed to obtain this data in order to parameterize such
predictive data-driven models [12-14].

Beyond chemical pollutants, NMs, as emerging environmental
contaminants, have been the focus of ongoing debates and research
regarding their ecotoxicological impacts, and more recently, in terms
of their role in enhancing the toxicity of other pollutants [3,4,15].
Due to their unique properties arising from the nanoscale, NMs
physicochemically interact with organic chemicals or metals present
in the environment, altering their bioavailability and resulting in
mixture effects such as synergism, antagonism, addition, orother
complicated responses. The different effects vary according to the
properties of the individual components (i.e., NMs and chemicals),
environmental conditions, and the biological system [16].

The large surface area and reactivity of NMs makes adsorption
the most observed physicochemical interaction with co-pollutants.
Thus, they may act as carriers influencing cell internalization, bioa-
vailability, accumulation, and distribution of co-pollutants [4]. The
responses observed are highly related to the type of interaction
between the NM and the co-pollutant (e.g. complexation of metals,
hydrogen bonding, electrostatic attraction, van der Waals interac-
tion, m-m stacking, covalent bonding, etc.), the mechanism(s) of the
NMs effects in the organisms and cells and the extent of desorption
of the chemical co-pollutant from the NM upon contact with, or
internalization by, organisms [3,16]. NMs may elicit endocytosis,
disrupt cell membranes, change membrane permeability, or even
interact with specific receptors facilitating pollutants entrance at
higher rates than would occur for the co-pollutant alone based on
equilibrium partitioning [16]. NMs may also trap chemicals through
aggregation and precipitation, and induce cellular defence me-
chanisms that reduce the availability and/or efficacy of co-pollu-
tants [17].

The number of characteristics (e.g., size, shape, composition,
surface chemistry, reactivity, etc) of NMs that can be related to their
toxicity is broad, and is further extended by modifications in the
environment including biomolecular corona formation, pollutant
interactions, oxidation, dissolution, agglomeration, etc., which in-
crease significantly the complexity of their environmental risk as-
sessment [18,19]. A recent review of the environmental dimensions
of the protein corona highlighted also the evolution of the eco-
corona as NMs move within the environment, are taken up and
excreted by organisms and (potentially) move up the food chain,
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Fig. 1. Co-exposition of NMs with organic chemicals or metals present in the environment may result in mixture effects such as synergism, antagonism, addition, or other
responses. Synergism and antagonism differentiate from concentration addition or independent action responses by the higher (synergism) or lower (antagonism) toxicity effect
than expected, considering the sum of the effects of the individual components of the mixture.

exchanging biomolecules and co-pollutants along the way based on
affinity and availability [20].

Ecotoxicology evaluation of NMs is based on in vivo assays uti-
lizing a variety of test organisms, and more recently also includes
some in vitro testing utilizing for example, fish cell lines [21-23].
Traditionally, in vivo studies relied on mice and rats for translation of
human biology, however continued investigation into the human
genome, and the sequencing of whole animal genomes, has identi-
fied significant numbers of conserved genes for growth, main-
tenance, and reproduction across different species. To gain insight
into the environmental effects of NMs, environmentally relevant
model organisms are required, and using a relevant test species can
help to align eco-toxicology and human toxicology, moving towards
a generalized understanding of how NMs disrupt molecular and
biological processes that can be translated across species [24].
Quintessentially, a model organism will have the following traits:
short generation cycles, small body sizes, a simplistic reproductive
cycle with a rapid turnover of progeny to produce large populations
and a simple genome [25]. ‘Model organisms’ are non-human
species, and some of the most widely used ones in ecotoxicity and
developmental biology include yeast, Drosophila, daphnids, nema-
todes, and zebrafish. These species are used to study molecular and
biological interactions, with the intention of understanding the
mechanistic significance linked to all living entities, but most im-
portantly the associations with human biology [25,26]. Therefore,
scientific investigations into these model organisms can produce
meaningful data that can be generalized across multiple and higher
species.

However, due to the wide variety of existing NMs and the velo-
city at which new materials are being developed, experimental
methodologies can be expensive, labour-intensive and time-con-
suming, presenting limitations in relation to the volume of testing
possible to be realized [27,28]. In this context, enormous efforts are
being invested into the development and application of computa-
tional approaches, such as theoretical simulation and machine
learning, in order to elucidate the mechanisms of NMs interactions
and behaviour in biological environments, and furthermore, to

assess the great volume of data, extracting information on distinct
NMs properties related to complex biological responses [27,29,30]
Due to the huge variability of distinct effects that NMs may induce,
and the lack of full understanding of the nano-bio interface, the
prediction and modelling of NM toxicity, as well as NMs joint
toxicity with other chemicals can only be assessed by integrating
different methodologies (i.e., experimental and computational
approaches) [31].

To facilitate progress towards prediction of NMs mixture toxicity
effects, this paper discusses the nanotoxicological effects of NMs
and contaminant mixtures using the water flea Daphnia magna
(D. magna) as the model organism. Additionally, promising compu-
tational methodologies with applications in environmental nano-
toxicology are summarized, and their potential for extension to
mixture risk assessment using data-driven science assessed.

Daphnia ecotoxicology

Daphnia are models microcrustaceans due to their well char-
acterized ecology, their ability to reproduce parthenogenetically
(genetically identical clones) under favourable conditions [32] and to
switch to sexual reproduction when under stress including from
pollutants, and their fully sequenced genome [32-34]. Due to their
position in the food chain, and their filter-feeding capabilities,
meaning that they are exposed to everything in their environment,
Daphnia are a fundamental ecological species utilized for various
biological applications including acute and chronic (eco)toxicology
assessment and in fundamental research on ecology, genetics, and
evolution [35]. The condition of the mother has a significant influ-
ence on the phenotypic response in the subsequent offspring, via
transgenerational inheritance as part of the organisms adaptation to
their new environmental conditions [36]. The genetic processes that
alter under chronic stress lead to phenotypic plasticity and
acclimation processes [37], are easily monitored in the progeny and
their subsequent generations [38], further increasing the utility of
daphnids for ecotoxicity assessment.
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During the last 15 years Daphnia have been utilized for nano-
toxicology studies [39,40], focusing on the acute and chronic effects
to life history traits when exposed to a variety of engineered (in)
organic NMs. More recently, studies involving Daphnia are becoming
increasingly mechanistically focused, aiming to identify NM-specific
responses using a variety of transgenerational inheritance [38,41,42],
multi-omics [43] approaches, and sophisticated imaging techniques.
Daphnia nanotoxicology studies have also been utilized for the
development and training of nanoinformatics models [44,45]. For
example, Varsou et al. (2021) [44] developed a predictive ecotox-
icological read-across model (a quantitative structure-activity rela-
tions (QSAR) model) for freshly-dispersed versus environmentally
aged NMs, exploring the impact of NMs-surface passivation by salts
and natural organic matter on the NM toxicity. Moreover, the phe-
notypic variation (which identifies the functional and fitness
changes in the same genotype in response to NM exposure [46]) of
Daphnia have been utilized by deep learning architectures to predict
NM toxicity. Karatzas et al. (2020) [45] utilized light microscopy
images of the daphnids acquired daily during chronic exposure to
NMs over 28 days. Using non-exposed daphnids as a control, the
authors were able to automatically detect malformations, such as
effects of NM exposure on the length of the tail, the overall size,
uncommon lipid concentrations and lipid deposits.

The use of Daphnia in multigenerational nanotoxicology studies
has begun to shed important insights into adaption and/or enhanced
sensitization of daphnids to NMs exposure. For example, transge-
nerational responses in multiple germlines exposed to different NMs
have shown a direct link with maternal exposure at ‘sub-lethal’ ef-
fect concentrations of NMs, which were lethal to the subsequent
generations [38,47]. Thus, parental exposure may compromise the
sensitivity and tolerance of future generations. Indeed, long-term
environmental stress disturbs physiological functions, disrupts cel-
lular functions, and results in age related stress responses as an
adaptive response to accumulated damage [48]. Use of multi-omics
techniques is enabling the identification of Adverse Outcome path-
ways (AOPs) induced by exposure to NMs [49-51].

One proposed mechanism of toxicity of soluble inorganic NMs is
via the Trojan horse effect, whereby the NMs are taken up in par-
ticulate form via receptor-mediated processes at much higher con-
centrations than the dissolved form would be (as this is regulated by
chemical equilibrium generally) and then dissolve in vivo which
disrupts the cellular molecular and biological processes [52]. A si-
milar mechanism applies to co-pollutants, absorbed to NMs (soluble
or insoluble) whereby following uptake the surface bound chemical
residues/species are released, at higher concentrations than would
occur via uptake of the soluble chemical, leading to toxicity. There-
fore, the NMs act as a carrier to facilitate uptake, resulting in in-
creased toxicity [4,53-55]|. Other proposed mechanisms of NM
mixture toxicity include facilitating bioaccumulation of NMs
through co-exposure with food [56,57]| leading to localized toxicity
[55]. As daphnids are filter feeders it is likely that they will ingest
pollutants adsorbed onto NMs via water filtration more easily than
dissolved pollutants. Moreover, the specific physicochemical prop-
erties of the NMs, the biological/environmental conditions and col-
loidal stability will determine the type of interactions between the
NMs, chemical species and the host organism to which they are
exposed (Fig. 2) [58]. Additionally, the availability of biomolecules
and chemicals in the environmental surroundings will also de-
termine co-pollutant interactions with the NMs through competitive
binding to the NM surface [59]. Many studies have identified the
need for appropriate test media, ideally including natural organic
matter or conditioned with relevant biomolecules by filtration
through daphnia, to allow assessment of competitive binding and
dissociation kinetics following uptake, when reflecting on realistic
environmental NM exposure studies [56,60,61]. Recently, novel
nano-mixture QSAR models have been used to predict the effective

Nano Today 43 (2022) 101430

concentration at which 50% of organisms died (ECsg) of 76 mixtures
containing TiO, NMs and one of eight inorganic/organic compounds
[AgNO3, Cd(NO3),, Cu(NO3),, CuSO4, NayHAsO,4, NaAsO,, Benzylpar-
aben and Benzophenone-3] with D. magna without the need for
dose-response curves of the individual mixture components. The
models utilized mixture descriptors (D) that combine quantum
descriptors of mixture components (e.g., TiO, NMs and its partners)
and applied a range of machine learning techniques resulting in a
random-forest model that gave better logECsq prediction than either
of the CA and IA models [62], indicating the enormous potential for
nanoinformatics approaches in NMs mixture toxicity assessment, as
discussed in detail later in this article.

Toxicity of mixtures to Daphnia: effects of nanomaterials

Most nanotoxicology studies consider the effects of NMs
individually and in salt-only medium. However, ecosystems are
heterogeneous environments where contaminants, NMs and bio-
molecules will simultaneously occur. In this context, ecotox-
icological studies of NMs and contaminant mixtures are a step
towards a more environmentally realistic exposure scenario. The
OECD classifies 4 types of chemical mixtures: intentional (e.g., spe-
cific product formulations), discharge (e.g., effluent from a specific
site), coincidental (e.g., two cosmetics applied to skin) and en-
vironmental (e.g., water run-off), adding additional complexity to
the challenge of assessing mixture toxicity [63]. This review will
provide an overview of the toxicological effects of NM mixtures with
contaminants toward Daphnia as the model organisms, with a focus
on environmental mixtures containing NMs.

The literature research was conducted in ISI Web of Science and
Elsevier Science Direct, also, cross-referenced literature from the
selected studies was assessed. The terms searched were: "mixture”,
"joint”, "combine”, "co-exposure”, "nano*” and "Daphnia”. The stu-
dies found were carefully screening for eligibility (i.e. articles were
only selected if the study analysed the toxicity effect of NM mixture
with other substances using Daphnia model) and divided into three
groups: carbon, inorganic and polymeric NMs.

Carbon NMs, which have unique properties, such as great
thermal and chemical stability, high surface area to volume ratio and
high reactivity, are promising materials for a wide range of appli-
cations, from electronics and energy to biomedicine and environ-
mental technology. They are predominantly composed of
honeycomb-structured carbon atoms [64], and due to different de-
grees of crystallinity and morphology, form a variety of structures,
ranging from zero dimension to three dimensional nanostructures,
including fullerenes, single- and multi-walled carbon nanotubes,
graphite, and graphene among others (Fig. 3).

Recently, many studies have shown the potential of carbon NMs
for environmental applications, such as water remediation and
wastewater treatment. Due to the high adsorption capacity of those
NMs, they can be applied in the removal of different types of in-
organic and organic contaminants. As a result, their environmental
release is inevitable. The toxicological effects of carbon NMs have
been shown in many in vitro and in vivo studies, and the observed
harmful effects are directly related to the physical-chemical char-
acteristics of each type of carbon NM, such as diameter, length,
shape, and surface area, among others [65]. Moreover, it has been
suggested that when carbon NMs interact with contaminants by
surface adsorption, the toxicity effects of both the NMs and the
contaminants may be increased or decreased depending on the
strength of adsorption [4].

Inorganic NMs, comprising pure metals, metal oxide, bimetallic,
quantum dots and silica nanoparticles (Fig. 4), are a large group of
NMs, with a wide variety of compositions, sizes, shapes, and surface
chemistries [66]. Their small size and large surface area bring new
properties for those NMs in comparison to their bulk counterparts,
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Fig. 2. Schematic diagram showing the different ways in which NMs co-associated with other chemical substances may influence toxicological and bioaccumulation outcomes in

the model organism Daphnia.

enabling their applications in different fields, such as electronics,
healthcare, chemical sensing, cosmetics, composites, environment,
and energy [67]. Currently, according to the Nanodatabase, there are
823 commercially available products containing inorganic NMs;
among these, the most used are silver, contained in 379 products,
and titanium dioxide NMs, contained in 272 products [68].

Due to their great antimicrobial properties, silver nanoparticles
(AgNPs) are present in several applications, ranging from disin-
fecting medical devices, to antimicrobial textiles, household items
and in water treatment [69]. Moreover, AgNPs can be applied in bio-
sensing and imaging applications due to their plasmon-resonance
optical scattering properties [70]. Previous studies have indicated
that AgNPs may cause toxicity against aquatic organisms by inducing
oxidative stress and DNA damage [71]. However, once in the en-
vironment AgNPs also may interact with other contaminants causing
different adverse effects. Hence, with the increased use of AgNPs-
containing commercial products the concern about silver con-
taminants in aquatic environments is growing.

Another highly used inorganic NM is titanium dioxide (TiO,). It
has a high photocatalytic activity when exposed to UV radiation, and
has widespread application from personal care products (sunsc-
reens, toothpastes) and surface coatings to water treatments [72].
TiO, NMs have been used in consumer products for years, and it is

estimated that in densely populated regions, the concentration of
nano TiO, in the environment could reach 34-62 ugL'!, and that the
global production of nano TiO, can reach 2.5 million tons by 2025
[73,74]. Hence, the potential environmental impacts of nano TiO,
have raised growing concerns. As TiO, NMs possess high reactivity
and large surface area-to-volume ratios, this material has a tendency
to adsorb metals and organic contaminants from natural environ-
ments. Due to its high photocatalytic activities, nano TiO, may de-
grade those contaminants and favour the formation of toxic by-
products, influencing the toxicity of the components present in the
environmental media [4,75]. Moreover, it exists in 3 allotropic forms
with different structural arrangement (anatase, rutile and brookite)
that directly influence its properties or toxicological response.
Polymeric NMs are another major class of NMs, constituted by a
diverse range of polymers (i.e., chitosan, alginate, poly(ethylene
glycol), polystyrene, and many more) [76] with a wide range of sizes,
surface areas and shapes. Those materials have potential applica-
tions in theragnostic and nanomedicine applications, with pro-
mising results for targeted delivery of many therapeutics, and as
imaging contrast agents [77]. In an environmental context polymeric
NMs can be applied for agrochemical transport and controlled de-
livery [76]. While many are considered to be biocompatible, hence
their biomedical applications, like every anthropogenic material
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Fig. 3. Examples of representative carbon nanomaterial types and structures.

they can eventually reach ecosystems and interact with their com-
ponents, and thus, ecotoxicological studies are essential to under-
stand their environmental implications.

Besides carbon, inorganic and polymeric nanomaterials we also
have combination of more than one nanomaterial forming nano-
heterostructures (NHs), which comprise two or more components
fused into one nanoparticle [78-83]. Those structures are gaining
attention, as the combination of different nanoparticles with mul-
tiple properties allows the synthesis of single nanoscale structures
with multiple and increased functionalities; the combination of
properties not only sum the properties of the components but also
creates new properties. Therefore, those materials are being applied
in several areas, such as catalysis, electronics, optoelectronics,
medicine, biology, etc. There are a few toxicology studies on the
effects of nano-heterostructures towards daphnia [84-88|. However,
none focus on co-exposure, therefore this remains a gap that still
needs to be further addressed.

Understanding how NMs interact with other environmental
pollutants and their combined impacts on organisms is an emergent
research and regulatory question. Nevertheless, this type of study is
not trivial as the potential of NMs to interact with different types of
contaminants strongly depends on several factors, such as the NM’s
physical/chemical properties, its colloidal stability, the environ-
mental conditions (i.e., pH, temperature, ionic strength and available
biomolecules), as well as the structures and properties of the con-
taminants (Fig. 5) [4]. Despite the fact that the importance of the
biomolecule corona in mediating NMs toxicity is well accepted in
medical and nanosafety research, environmental acceptance and
adjustment of NMs ecotoxicity studies lags behind [89,90], and the
role of the eco-corona in NMs mixture toxicity studies is almost

completely ignored to date [91]. Thus, few studies address those
factors sufficiently, with most of the literature to date assessing
binary mixtures in salt-only media and their toxicological outcomes.

Carbon nanomaterials

The potential of carbon NMs to adsorb organic and inorganic
pollutants is well known; for example, they have a high capacity to
absorb heavy metals such as Zn, Cr, Pb, As, Hg [92,93], organic
pesticides such as phenols [92,94,95|, diuron and dichlobenil
[96,97], atrazine [98,99], and even antibiotics such as tetracycline
[100], and ciprofloxacin [101]. However, the adsorption of pollutants
can be influenced by different physical-chemical properties, such as
media composition, pH, NMs properties, and chemicals properties
[4,102], and in natural environments, there will also be competitive
interactions with natural organic matter (NOM) and other biomo-
lecules [59,103]. For instance, surface functionalization has a major
contribution on the interaction of carbon NMs and pollutants. Acid
treatment introduces defects into C=C bonds and adds different
functional groups to the carbon nanotube (CNT) structure, increasing
its hydrophilicity and enhancing their adsorption potential [104].
Chemical oxidation of graphene also enhanced the adsorptive
characteristics by adding oxygen-containing functional groups (car-
boxyl, hydroxyl and epoxy groups) [105]. Additionally, the structural
characteristics of the carbon NM can also impact on their adsorption
capability, for example, CNT can adsorb pollutants on their external
and internal surfaces, therefore the amount of adsorption sites can
be enhanced by adding walls to CNTs, such that multiwalled MWCNT
have additional adsorption spaces between their walls. In the case of
graphene oxide (GO), adsorption can be enhanced by adding layers
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to its structure as the adsorption can occur between layers as well as
on the external surface [106].

Due to those properties carbon NMs have an important role in
the partitioning, transport, and toxicity of other contaminants [107].
The interaction between carbon NMs and aquatic pollutants can
enhance or suppress the toxicity of those chemicals depending on
how strongly the co-pollutants are bound to the NM surface and on
the persistence and bioaccumulation or clearance of the NMs. The
study of these effects is environmentally relevant and extremely
necessary to predict the impact of carbon-based NMs on the aquatic
environment over acute and chronic timescales. In this review, we
find only 18 studies that explore the co-exposition of carbon NMs
and pollutants towards the model species daphnia. Among those
studies, 5 address fullerene, 9 CNTs, 3 graphene and 1 graphite-
diamond (Table 1).

Different effects can be observed in the studies that analysed the
influence of fullerene on the toxicity of contaminants. Baun et al.
studied the toxicological effect in D. magna of an aged dispersion of
fullerene and its co-exposition with three organic pollutants:
Methylparathion, Phenantherene and Pentachlorophenol (PCP). In
this case, fullerene decreased the toxicity of phenantherene and PCP
and did not significantly influence the toxicity of methylparathion
[108]. In the assays, fullerene was present in the form of aggregates
(>200 nm) and showed high adsorption of phenantherene (85%) and
PCP (10%), therefore the observed effect on the toxicity of these
chemicals could be related to a decrease in their bioavailability in
the NM’s presence. On the other hand, Brausch et al., studying the
influence of C60 on two organic pollutants toxicity, Bifenthrin and
Tribufus, observed that the NM increased the toxicity of both

pollutants in the D. magna immobilization assay [109]. Both studies
used Sigma-Aldrich Cgg however in the Brausch studies the Cgo were
functionalized. It is known that functionalization often decreases the
hydrophobicity of the materials, consequently increasing their dis-
persion; some functional groups also serve as binding sites for or-
ganic pollutants and for metal ions. Thus, binding to NMs may
increase the bioavailability and uptake, causing a trojan horse effect.
This was also observed by Tao et al., where stable aqueous fullerene
nanocrystals increased the toxicity of Cu?* and significantly en-
hanced the activity of Cu?>*-ATPhase, an enzyme indicative for
copper transportation in organisms, therefore increasing the bioa-
vailability and uptake of Cu?*[110].

Heidari et al. studied the toxicity of Cgg in the solvent 1,2,4-tri-
methylbenzene (TMB) versus olive oil, sunflower oil and linseed oil.
The toxicity effect observed was directly related to the Cgo con-
centration, that is, at lower concentrations of Cgo the mortality was
reduced, while for higher concentration it was increased (except for
sunflower oil) [111]. The presence of Cgq inside and outside D. magna
was evaluated; in combination with TMB it was observed that full-
erenes aggregated in D. magna’s gut, while for olive, sunflower and
linseed oil, the Cgo was observed inside and outside the gut, varying
according to the concentration of Cgg, therefore the uptake may be
influenced by the properties of the organic compounds (solvent) as
well as the NM properties (Fig. 6). Cgo has a large adsorption capa-
city, especially for hydrophobic compounds as the strong ionic forces
in solution favour the interaction with non-polar compounds. Also,
Csp has the capacity to translocate through the daphnia gut and even
through the plasma membrane acting as a carrier for those types of
pollutants, causing a trojan horse effect. This was observed by Seke
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Fig. 5. Environmental conditions and physical-chemical properties that influence the toxicological profile of NMs and their environmental mixtures.

et al. studying the combined toxicity of Cgo with chloromethanes. Cgg
caused a synergistic mitotoxicity in D. magna midgut epithelial cells.
Daphnia are filter-feeders, therefore NMs in water may be ingested
causing damage to its digestive tract. In this sense, it was observed
that Cgp does not cause toxicity to D. magna gut, however, when
combined with chloromethanes the midgut epithelium damage
caused by chloromethanes was more pronounced, causing necrosis,
mitochondrial swelling and cristolysis. Thus, Cgg may cause a trojan
horse effect by facilitating the internalization of chloromethanes in
D. magna digestive tract epithelial cells thereby increasing their
toxicity [112].

The majority of studies about co-exposure of carbon NMs and
pollutants address the influence of CNTs on the toxicological effects
of chemicals towards daphnids. There are two types of CNTs, single
walled (SWCNT), that consist of a wrapped monolayer of graphene,
and multi walled (MWCNT), that consist of several single walled
tubes wrapped one over another [126]. Within those classifications,
CNTs can present different physical and chemical properties, such as
diameter, length, flexibility, number of layers, and can be functio-
nalized with different surface groups. Thus, the toxicity effects may
differ depending on the properties of the CNT. This was observed by
Yu et al. studying the influence of CNTs (single and multiwalled)
with and without -COOH functionalization on the bioaccumulation
of Cd** and Zn?'. In this study, the functionalized MWCNT and
SWCNT increased the bioaccumulation of Cd?* and Zn?* while
without functionalization both CNT decreased bioaccumulation
[115]. They also studied the adsorption capacity of each CNT, and for
the non-functionalized SWCNT and MWCNT there was almost no
adsorption of Cd?* and Zn?*, while for the functionalized SWCNT and

MWOCNT (4 mg L™!) 50% and 20% adsorption of Zn?* and 60% and 20%
of Cd?*, respectively, were determined. Therefore, the increase in
toxicity caused by the functionalized CNT could be characterized as a
trojan horse effect, in which the functionalized CNT carrying Zn**
and Cd?" are ingested by daphnia, facilitating enhanced uptake of the
metals.

Moreover, Liu et al. studied the bioaccumulation and toxicity of
Cd?* when exposed with 2 types of -COOH functionalized MWCNT,
one long (10-20 um) and one short (0.5-2.0 pm) [ 118]. In both cases,
compared with cadmium exposure only, a decrease in Cd** bioac-
cumulation was observed, also, the long MWCNT decreased the
acute toxicity of Cd?* to D. magna, while the short MWCNT did not
significantly affect toxicity. In this study the adsorption of Cd*
was < 11% for short-MWCNT and < 17% for long-MWCNT. At the
same concentration the long MWCNT solutions were much darker
than the short MWCNT solutions. The authors suggested that the
decrease in Cd?* bioaccumulation and toxicity may be associated
with inhibition of the uptake of Cd?* because of the free metal ions
binding with CNT decreasing bioavailability. However, due to the low
sorption potential of MWCNT in this study, they also suggested that
in the dark environment, caused by the presence of the MWCNT in
medium, the organisms were less active, lowering their mobility,
metabolism and filtering rate, influencing the uptake, explaining the
different results for both MWCNT.

Besides NM physical and chemical properties, several environ-
mental factors may influence the adsorption capacity of NMs in the
environment. For example, Lee et al. studied the influence of two
functionalized MWCNT (-COOH and -NH,) on Cd?* toxicity and
showed that both MWCNT decreased the toxicity of the metal [121].
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Fig. 6. The pH of the test medium at the end of each experiment and the average mortality of daphnids for the acute combined toxicity experiments. Daphnids were exposed to (a)
TMB+nC60, (b) linseed oil+ nC60, (c) olive oil+ nC60, and (d) sunflower oil+ nC60. The average mortality of daphnids exposed to the control (50% solvent and 50% reconstituted
water) for each mixture is shown in the red box. The average percentage of dead daphnids with 95% confidence intervals was used for (a)-(d). (e) The morphology of daphnids
after 48 h of exposure to combined toxicants (C60+ solvents) and controls (reconstituted water+solvents). In the figure caption, water=reconstituted water (reproduced from ref.
[96] with permission provided from Elsevier and Copyright Clearance Center 2021).
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However, by adding kaolinite, a clay mineral present in natural
waters, to the mixture a decrease in Cd%* adsorption capacity by
both MWCNT and a consequent increase in daphnid mortality was
observed. The authors suggested that kaolinite reduces MWCNT
mobility and triggers aggregation reducing the adsorption of Cd?*.
This shows the importance of the environmental conditions for a
more accurate prediction of the impact of mixtures in the aquatic
ecosystem.

The pH is another important parameter to be taken into con-
sideration when studying adsorption, and consequently, plays an
important role in the toxicity of mixtures. This was shown by Wang
et al., studying the influence of pH on the toxicity of a mixture be-
tween -OH functionalized MWCNT and Ni?* [116]. Overall, OH-
MWCNT increased the toxicity and bioaccumulation of Ni%*, how-
ever this effect was more pronounced at lower pH. Similarly, Wang
et al. studied the influence of pH on a mixture of -OH functionalized
MWCNT and As (III) and As (V) [117]. The adsorption capacity for As
(1) was low and did not significantly change with pH, however, an
increase in toxicity when increasing pH values (6, 7 and 8) was
observed. On the other hand, OH-MWCNT had a larger adsorption
capacity for As (V), and pH greatly influenced this: as pH increased
the adsorption capacity for this metal decreased, and consequently
there was less uptake and thus less toxicity, which also decreased as
the pH increased. These results demonstrated that adsorption of the
co-pollutant to the NM is a key factor in mixture toxicology.

In the case of graphene there are only three studies approaching
the mixture toxicity in D. magna. Ni and Li studied the toxicity of
graphene oxide (GO) with Cu?*, Cd?* and Zn?* at different pHs (7.8
and 6.8) [122]. Overall, their results show that GO decreased toxicity
and reduced metal bioaccumulation by daphnids. In this study, pH
played an important role in toxicity. In all treatments the toxicity
increased when pH decreased from 7.8 to 6.8. The low pH decreased
metal adsorption by GO and increased the desorption therefore in-
creasing toxicity and bioaccumulation by D. magna. The study also
reported oxidative damage using three biochemical indicators: su-
peroxide dismutase, malondialdehyde and glutathione. For all three
a reduction in oxidative damage when metals were co-exposed with
GO was observed, confirming the toxicity data.

Functional groups also have a high impact on graphene toxicity
when combined with pollutants. Liu at al. studied the role of surface
oxygen functional groups on the toxicity effect of graphene (GN) and
graphene oxide (GO) mixtures with Cu®* towards D. magna [123].
Oxygen functional groups increased the adsorption capacity and
water stability, therefore GO reduced D. magna mortality, Cu®*
bioaccumulation and oxidative stress, while GN showed enhanced
oxidative stress, increased bioaccumulation of Cu?** and did not
significantly influence Cu?* toxicity. The adsorption capacity of GO
can also be increased by the formation of a protein corona, as shown
by Martinez et al., where it was observed that BSA corona coated GO
(BSA@GO) increased the Cd?" adsorption capacity 4.5 fold compared
with GO. Consequently, BSA@GO enhanced the mitigation effect of
Cd?* toxicity when compared with GO [91].

Due to the extensive use of NMs, mixtures of NMs of different
compositions may occur in natural ecosystems. Ye at al. studied the
toxicological effect of a mixture of Zn nanoparticles (Zn NP) and GO,
considering the contribution of NMs and dissolved ions release to
the overall toxicity. Their findings suggest an additive response in D.
magna [124]. The results implied that suspended particles have a
higher influence on the combined toxicity than released Zn?*, mainly
because of the ions released from the Zn NPs being adsorbed onto
the GO, which, in the medium used for the D. magna immobility
assay, have a sorption capacity of 25% and 17% when the GO con-
centrations were 1 and 100 mg L™!, respectively.

Martin-de-Lucia et al. studied the combined toxicity of graphite-
diamond (GDN) NPs and thiabendazole (TBZ) to D. magna in the
presence and absence of food [125]. Their results show that at low

13

Nano Today 43 (2022) 101430

concentrations GDN increased the toxicity of TBZ, while at higher
GDN concentrations a decrease in toxicity was observed. The authors
attributed this effect to the GDN agglomeration at higher con-
centrations leading to lower uptake by daphnids, whereas at lower
GDN concentrations the particles were more bioavailable, therefore
causing a synergic effect. The presence of food in the assay reduced
toxicity and the synergic effect, probably due to the adsorption of
GDN and TBZ onto aggregates of food. Therefore, food is also an
important factor to consider when studying NMs and co-pollutant
mixtures. The presence of food helps with NM elimination from the
digestive tract [90], thus the presence or absence of food can cause
an under or overestimation of NM bioaccumulation and toxicity.

Based on the studies so far, it is not possible to draw conclusions
as to whether carbon NMs increase or decrease the toxicity of
aquatic pollutants towards daphnia. This is not only because of the
wide range of properties that NM and co-pollutnats can have, but
also due to the lack of standardization in the toxicological assess-
ment of NMs where test guidelines are still evolving, and in the
characterization of NMs studied. This makes it difficult to compare
the obtained results. For example, there are different guidelines for
toxicological assays in different geographical and regulatory regions;
while the fundamentals of those guidelines are the same, each of
them has minor differences that may impact the toxicological as-
sessment, especially for NMs whose properties are so strongly in-
fluenced by their surroundings, which has been described as NMs
having extrinsic properties [127,128]. For instance, it is known that
the medium used for the assay strongly influence the NM colloidal
stability, and this directly impacts the toxicological outcomes [129].
In the studies addressed in this review, the authors used different
guidelines (USEPA, OECD, ASTM, Chinese Standard) and different
media, as shown in Tables 1-3. Besides, in some studies, the ion
composition of the medium was changed to improved NM colloidal
stability. For example, Yu and Wang [115] and Liu and Wang [118]
used a low Ca®* version of the SM7 medium, while Jang and Hwang
[120] used a modified version of M4 medium.

Exposure time and organism age are also parameters that vary a
lot in toxicological evaluation. All studies reported here used D.
magna as the model organism, however, with different ages: < 24 h
neonates, 5 days old, and 7 days old. Exposure times varied from 24
to 72 h of exposure. D. magna has a fast development, and the first
brooding usually happens at around 10 days old, therefore the basic
physiology of a 24 h neonate and a 7 day old daphnid are very dif-
ferent, thus the toxicological response may be different, and the
same can be said for exposure time, the effects of an exposure of 24 h
will be significantly different than those from a 72 h exposure.

Overall, it is clear that binary mixtures of NMs and pollutants
may influence the toxicological outcomes differently compared to
non-binary exposures. However, due to the intrinsic characteristics
of NMs, the variability in the test guidelines and methodologies used
strongly influences the comparability of the produced results. Also,
due to the variability in NMs properties, extensive characterization is
recommended to allow comparability of the results. Furthermore,
Daphnia is a filter feeder, therefore is constantly moving in the water
column, and thus the toxicity is going to be strongly influenced by
whether the NM is in suspension, thus in order to fully understand
the results it is important to consider not only the NMs properties,
but also its colloidal stability under the exposure conditions and
over the exposure duration.

Inorganic nanomaterials

There is a wide range of inorganic NMs, and most of the studies
evaluating co-exposure of NMs and contaminants address this class
of materials. In this section, twenty-four studies were found
(Table 2) addressing NMs of titanium dioxide (TiO;), zinc oxide (ZnO
NPs), silver (AgNPs), aluminium oxide (Al,O3 NPs), cerium dioxide
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(CeO, NPs), copper oxide (CuO NPs), iron oxide (PVP-Fes04 NPs),
AuNPs and iron-modified biochar. All studies analysed binary mix-
tures of the NMs with metal ions, such as, Ag*; As(Ill), As(V), Cu®*;
Cd?*; Zn?*; Pb?* and with microplastics.

In the aquatic environment, a NM’s behaviour is affected by
physical and chemical processes, such as homo/hetero agglomera-
tion, sedimentation, photochemical reaction, dissolution, redox re-
actions, coating degradation, and biomolecule/macromolecule
binding [67]. These processes strongly depend on the NMs’ physical-
chemical properties, such as size, shape, surface area, charge, as well
as the environmental characteristics, such as pH, ionic strength, NM
concentration, specific surface area (SSA) and the presence of mac-
romolecules (e.g. NOM and/or proteins) [67]. The combination of
these influences NMs dissolutions rates, cellular uptake, and re-
activity, modulating their toxicity profile [130].

Dissolution plays a crucial role in inorganic NM toxicity. If the
NMs dissolve in the surrounding medium, the uptake mechanism
and the biological response to released ions could be distinct from
the responses to the NMs themselves [131]. For example, Ponyton
et al. observed a disruption at gene expression level of protein me-
tabolism and signal transduction in D. magna upon AgNPs exposure,
while AgNO3 caused a downregulation of developmental processes,
especially sensory development. Thus, both the NM and its dissolved
ions will contribute to the biological response in the studies|132]. To
simulate the toxicity under the dissolution scenario, Lopes and co-
workers [133] exposed D. magna to mixtures of ZnO and AgNPs and
their respective ionic counterparts (ZnCl, and AgNOs). Interestingly,
they observed that the ratio of Ag" ions and AgNPs influenced the
toxicological response. When the concentration of Ag* (from AgNOs)
increased, they observed a synergistic effect while antagonism oc-
cured when AgNPs were dominant in the mixture (low Ag"). Thus,
knowledge of dissolution kinetics of metallic NMs is fundamental to
understanding the toxicity of metallic NMs as it will co-occur with
the dissolved ions. To this end, some analytical techniques (as ul-
trafiltration, sp-ICP-MS, etc.) could be applied to measure the free
ions in the NMs dispersion.

Moreover, once NMs enter the environment, they will inevitably
interact with co-existing contaminants. The high reactive and large
surface area allows the interaction and/or surface complexation
through electrostatic interactions [134]. In addition, this interaction
could facilitate the degradation of different compounds over time.
For example, TiO, NPs are extensively applied in water treatment to
facilitate the degradation of organic pollutants and the reduction of
metals to their zero oxidation states [ 135]. This process happens due
to the photocatalytic splitting capability of TiO, NMs in aqueous
solution under UV light. The photodegradation could lead to the
formation of toxic products [136], such that the intermediate pro-
ducts resulting from this process could show higher toxicity profiles
then the pristine chemicals and thus needs to be carefully evaluated.

The main mechanism of interaction between inorganic NMs and
environmental components is adsorption, which was analysed for
most studies addressed here. The modification of the toxicological
outcomes by the adsorption of contaminants to NMs can go in two
ways; NMs can facilitate the delivery of contaminants, a process
known as the trojan horse effect, where the NM acts as a carrier
increasing the uptake by organisms [4], or NMs can reduce the
concentration of contaminants in the environment either by the
strong adsorption or aggregation and/or sedimentation, decreasing
the co-contaminant mobility and bioavailability [137]. Mixture stu-
dies involving NMs need to consider both possible outcomes, as
shown schematically in Fig. 3.

Trojan horse effects were observed in several co-exposure stu-
dies, where the presence of NMs led to increased bioaccumulation
and toxicity of contaminants in daphnids. For example, Fan et al.
observed that the co-exposure of copper ions (Cu?*) with TiO, NMs
(nontoxic NM concentration of 2.0mgL™") increased D. magna
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mortality, by decreasing the LCsq (the concentration that kills half of
the population) of Cu?* from 111 mgL™" to 42 mgL™! [138]. The co-
exposure resulted in increased Cu?* bioaccumulation in daphnids,
reaching 18-31% higher than during exposure to metal ions only,
which can be explained by the high adsorption capacity of TiO, NPs
for Cu?*. The complexation of Cu®* onto the TiO, MPs decreases the
concentration of free metals ions in the D. magna medium. On the
other hand, due to ingestion of the copper complexed with TiO,
NMs, the co-exposure enhanced the accumulation of Cu?*. Moreover,
co-exposure reduced the induction of metallothionein, an important
enzyme for metal detoxification, probably due the competition be-
tween the NMs and Cu?* for sulfhydryl groups, inhibiting this me-
chanism and contributing to an increase in the combined toxicity
(additive interaction).

According to Weltens et al., the uptake and bioaccumulation of
metals in daphnids could be related to the desorption of these
contaminants inside the organism gut, which is a complex en-
vironment that presents high enzymatic activity and low pH [139].
Tan et al. studied this mechanism by analysing the dietary assim-
ilation efficiency and efflux rate of two toxic metals (radiolabelled
Cd?* and Zn?*) combined with TiO, NMs [140]. They observed that
daphnids could actively ingest the TiO, NMs with contaminants
adsorbed, which were desorbed within the gut. This knowledge
points to the fact that NMs could act as a carrier of xenobiotics into
daphnids and deliver these inside the digestive tract thus increasing
the potential risks of contaminants accumulation.

Moreover, the Trojan horse effect could be influenced by the
exposure conditions. For example, Baek et al. studied the bioaccu-
mulation and acute toxicity of mixtures of ZnO NPs and AgNOs (Ag")
in D. magna under different concentration ratios [141]. At a high
concentration of ZnO NPs, the co-exposure enhanced the silver
bioaccumulation and daphnid mortality, due to the presence of ionic
Zn (released from ZnO NPs) and/or by ZnO NPs acting as carrier for
Ag" (Trojan horse effect). On the other hand, at lower ZnO NP con-
centrations a reduction in Ag* bioaccumulation and toxicity were
observed, which may be due to Zn?* and Ag* competition for re-
ceptor binding sites on Daphnia, leading to an antagonistic effect.

Similarly, Rosenfeldt et al. observed the influence of a mixture of
NMs (TiO,) and three different metal ions (As(V), Cu?* and Ag*)
[146]. The bioaccumulation and toxicity of As(V) and Cu®* was re-
duced in co-exposure with TiO, NPs in D. magna. In the medium, the
NMs rapid agglomerated, as observed by the increase of hydro-
dynamic size during the time, and sedimented together with the
adsorbed As(V) and Cu?*. This process led to a lower concentration of
TiO, NPs and free toxic metals in the medium and, consequently,
reduced their bioavailability to filter feeders. However, the same
study observed a synergistic effect on toxicity and bioaccumulation
in co-exposure with silver (Ag") probably due to the desorption of
Ag" in the gut (Trojan horse effect).

Agglomeration seems to play an important role in decreasing the
toxicity of NMs and contaminants in co-exposure outcomes. lonic
forces in the aquatic environment can affect colloidal stability due to
electrostatic screening of NM charge, causing agglomeration and
sedimentation. Thus, in a high ionic strength environment, NMs
show low colloid stability, especially in the presence of divalent
cations [162]. Furthermore, low colloidal stability leads to an in-
crease of NM size. This process could modify the available surface
area with which NMs can interact with other contaminants, and
affect their ability to be internalized, and subsequent interactions
with organisms and bioavailability in the water column [163]. In this
way, the colloidal behaviour of NMs plays a key role in their toxicity
profile, transport, and fate [130].

For example, Tan et al. observed the influence of colloidal sta-
bility on the toxicity profile of TiO, NPs and cadmium (Cd?*) in two
different scenarios: low and high calcium concentration in the
medium, and observed that colloidal stability influences the NM
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uptake route in D. magna [151]. In both scenarios, the co-exposure
with NPs reduced the toxic outcome of Cd®*. However, the uptake
route of TiO, agglomerates was different, as observed by X-ray
fluorescence microanalysis (pXRF). This technique allows analysis of
the presence of major, minor and trace elements in microscopic
sample surface areas and generation of a 2D spatial map of the
distribution of chemical elements [164]. At low concentration of
Ca?*, TiO, NPs showed better colloidal stability and lower agglom-
erate size. The metal-adsorbed NPs were internalized by endocytosis
via the cells of the filtration apparatus and passive drinking. In this
scenario, metal accumulation was observed to be well distributed
throughout the organism. However, at higher salt concentration, the
NPs showed lower colloidal stability which led to increased ag-
glomerate size in the medium, causing metal accumulation in the
abdominal zone (Fig. 7). Therefore, ingestion of NM agglomerates is
the principal route of Cd?* uptake. Under this condition, Cd?* accu-
mulation was enhanced. Hence, the NM agglomeration state could
modify completely the metal bioaccumulation upon combined ex-
posure.

Moreover, the concentration of NMs modifies their colloidal be-
haviour and toxicity. For example, Park et al. studied the acute
toxicity and bioaccumulation in D. magna exposed to a mixture of
PVP-Fe304 NPs and zinc sulphate (ZnSO,4) at different mixing ratios
[158]. Based on the dose-response curves, the mode of action of the
mixture was predicted by conventional models for binary toxicity
using the theoretical models of concentration addition (CA) and
independent action (IA) index. They observed that low concentra-
tion-combinations (< 5.0 pgmL™! of ZnSO,4 and < 9.6 pg mL™! of PVP-
Fes04 NPs) caused a ZnSO, dose dependent synergistic effect.
Nevertheless, at high concentration-combinations (> 5.0 pgmL™ of
ZnSO, and> 9.6 ugmL' of PVP-Fe;04 NPs), the binary mixture
shows an antagonist effect. The authors suggested that these effects
were dominated by the high adsorption capability and low stability
of PVP-Fe304 NPs at high concentrations leading to sedimentation of
the NPs with metal adsorbed, reducing its availability to daphnids
and thus its toxicity.

NM concentration effects were also observed by Wang et al.
studying the toxicological effects of a non-toxic concentration of
Al,03 NPs co-exposed with As(V) to C. dubia [142]. The NM shows no
toxicity until 200 mgL™! over 24 h. On the other hand, the toxicity
enhancement of As(V) is concentration dependent and the LCsq was
3.6mgL . In co-exposure, low Al,05 concentration (1.0 mgL!) had
almost no effect on the metal toxicity and the LCsq calculated was
close to that from single exposure of As(V). Conversely, increasing
the dose of Al,05 to between 20 and 100 mg L™, resulted in a sig-
nificant increase in toxicity and bioaccumulation and the LCsq cal-
culated was 1.0mgL'. Furthermore, the uptake of As(V)-loaded
nano-Al,03 played a very important role in the toxicity response of
C. dubia, pointing to a Trojan horse effect.

Similarity, TiO, NPs have the potential to adsorb As(V) onto its
surface. Thus, a reduction of the residual As(V) concentration in the
medium was observed. Consequently, the presence of NM impacts
the mixture toxicity. At low TiO, concentrations (less than 50 mg L")
the toxicity of As(V) is significantly increased. In this scenario, the
sorption of As(V) onto the TiO, NMs positively contributed to overall
toxicity once NMs enter daphnids bodies by oral uptake as “fake
food”. However, with increasing NMs concentration (100 and
200mg L"), the As(V) toxicity is decreased. Colloidal stability plays
an important role in this result, as increasing the TiO, NP con-
centration led to NM agglomeration, reducing the bioavailability of
TiO, NP/As(V) complexes, decreasing their oral uptake by C. dubia,
and consequently bioaccumulation and toxicity [17].

Another medium characteristic that could modulate the NMs
behaviour and the toxic outcome is the pH. To observe this influence,
Hu et al. studied the impacts of pH on lead (Pb?*) toxicity in a binary
mixture with CeO, NPs or TiO, NPs using C. dubia as the model
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Fig. 7. Quantitative spatial distribution of Ca®* (a-d), Cd®* (e-h) and TiO, NPs (i-1) in D. magna neonates exposed for 24 h as determined by X-ray fluorescence microscopy (pXRF).
The daphnids were exposed to Cd?* (100 pg L!) in the presence (a, b, e, f, i, and j) or absence (c, d, g, h, k, and 1) of TiO, NPs (4 mg-Ti L") at low (b, f, j, d, h, and 1) and high (a, e, i, c,
g, and k) Ca?* medium concentrations. The arrow indicates the gut (GT) or abdominal (AD) area (reprinted with permission from ref. [131], Copyright 2021 American Chemical

Society).

organism [143]. Both particles showed high Pb?* adsorption cap-
ability, however, this capacity was higher for TiO, NPs, as evidenced
by Energy Dispersive X-Ray Spectroscopy (EDS) analysis, which
showed an increase of hydrodynamic size and changes in zeta po-
tential (i.e., surface charge). Overall, co-exposure resulted in higher
metal bioaccumulation and acute toxicity. However, due to its high
adsorption capability the co-exposure with TiO, NP caused a more
pronounced bioaccumulation and toxicity effect than CeO, NP.
Hence, on reducing pH (from 7.8 to 6.8) an enhancement of overall
toxicity was observed (in single and combined exposures) due to
Pb2* speciation in solution and/or modified charges on the NP sur-
face, enhancing its bioavailability in the water column and mod-
ulating the toxicological outcome.

In natural water bodies, the presence of food is a factor that also
could modify the toxicity outcome. Considering more realistic ex-
posure scenarios, Liu et al. studied the co-exposure of TiO, and Pb?*
in C. dubia and the influence of algae (Raphidocelis) [154]. The TiO,
NPs act as an excellent sorbent of Pb?* and the presence of 200 mg L~
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1 Ti0, NMs reduces free Pb%* in the medium from the soluble
amount of 350 pg L' to less than 10 pg L', This interaction affects the
toxic outcome of Pb?* to C. dubia. In combined exposure, the TiO,
NPs act as a metal carrier, enhancing bioaccumulation and toxicity.
Moreover, the influence of food (algae) in the co-exposition was
explored to provide a more realistic scenario, and the presence of
algae modified the intake of toxic metal, reducing the mortality from
80% to 35%, and decreasing the total Pb?* content in the daphnids.
Hence, food may mitigate the toxicological effects in aquatic en-
vironments, both by reducing NMs and co-pollutant uptake and
through the provision of extra energy that can be diverted to miti-
gating toxicity impacts.

The physical-chemical properties of NMs also contribute to
mixtures toxicological profiles via unique mechanisms. For example,
Liu et al. studied two different types of TiO, NPs (hydrophilic and
hydrophobic) mixtures with Cu?* [154]. They observed enhanced
metal toxicity with both hydrophilic and hydrophobic TiO,. Never-
theless, despite similar lethality, the mechanisms involved were
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different. The mixture with hydrophilic TiO, damaged the intestinal
membrane more severely as observed by Scanning Electron Micro-
scopy (SEM) images and enhanced NA*/K* ATPase activities. On the
other hand, the co-exposure with hydrophobic TiO, NPs showed
higher bioaccumulation of Cu?* and high oxidative stress injury.

Moreover, Rosenfeldt et al. compared the toxicity of copper
(Cu?*) in binary mixtures with three different crystalline phases of
TiO, NPs (anatase, rutile and anatase/rutile mixture) using D. magna
[147]. TiO, NPs showed a high capacity for Cu?* adsorption, with
rutile TiO, and anatase TiO, NPs decreasing by 80% the Cu?" residual
in the water column, while the rutile/anatase TiO, NP reduced it by
60%. All three particles decreased Cu?* toxicity, however the anatase
TiO, NPs mixture showed the lowest toxicity values, while rutile and
rutile/anatase mixtures had similar toxicity values. The anatase TiO,
NP structure showed higher porosity and binding sites (unsaturated
oxygen and deprotonated surface hydroxyls) than the other crys-
talline phases, which may explain the toxicity results as the Cu®*
ions may remain bound to the anatase TiO, following internaliza-
tion. Besides crystalline phase, this study also evaluated the influ-
ence of NOM on TiO, NP Cu?* mixture toxicity, showing that NOM
modifies the surface of TiO, NMs by increasing their zeta potentials,
and as a consequence the TiO, NP adsorption capacity was increased,
resulting in a reduction in toxicity for all three TiO, NPs as the Cu®*
ions remained attached to the NPs following uptake rather than
desorbing and inducing toxicity.

Similar to their interaction with other chemicals, NPs can adsorb
NOM (e.g., humic and fulvic acids) and other macromolecules such
as secreted proteins and polysaccharides onto their surface (eco-
corona formation). This process may affect the NM toxicity due to
modification of colloidal stability, alteration of dissolution beha-
viour, complexation with free metallic ions and changes to the sur-
face that alter the NMs’ interactions with pollutants [165]. Moreover,
eco-corona formation modifies the NM surface providing a biological
identity to the NMs which changes the way that organisms interact
with it and, consequently, its toxicity [103,166,167]. As these mac-
romolecules naturally exist in the environment, consideration of
their presence is especially important to reach a more realistic ex-
position scenario, since NMs will never exist in the environment
without instantaneously acquiring an eco-corona.

Not only the physical-chemical properties of NM influence their
interaction with contaminants, but the characteristics of the pollu-
tants also play a role. For instance, Kim et al. observed distinct re-
sults when AgNPs were co-exposed with toxic metals [148]. They
observed that Cu?* presented good adherence onto the NPs due to
the difference of charge. The mixture with As(V) was more compe-
titive due to the negative charge. The daphnids survival was not
affected by the addition of NMs in both cases (As (V) and Cu?*) when
compared to the metals exposition alone, while bioaccumulation
significantly decreased since the interaction between metals and
NMs reduced the bioavailability of this metals. In contrast, in com-
bination with Cd*, they observed an increase of toxicity and bioac-
cumulation of NMs-complexed Cd. The interaction between AgNPs
and divalent ions present in the medium (Ca®*) can lead to enhanced
concentrations of intracellular Ca?*, disturbing cell homeostasis,
consequently stimulation of the Ca?* channel can increase Cd?*
bioaccumulation since the uptake pathway of Cd?* uses this channel.

Azevedo et al. (2017) performed a mixture toxicity study on D.
magna using zinc oxide tetrapods (ZnO-NM), a spherical silver na-
noparticle (Ag-NP) and zinc oxide tetrapods decorated with 1-3%
mol. of Ag NPs (ZnO/Ag-NS). The aim of this work was to understand
if it is possible to predict the toxicity of combined nanostructures
based on the toxicity of its isolated materials according to the CA
conceptual model for predicting binary mixture toxicity effects.
Importantly, the mixture of ZnO-NM and Ag-NP did not show an
additive pattern but rather deviations such as dose-level and sy-
nergism, while Zn/Ag-NS showed higher toxicity when compared
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with the predicted toxicity based on the results from the individual
materials. These results point out implications for regulation of
nano-heterostructures, suggesting that these new hybrid materials
need to be addressed as single materials and not only considering
the toxicity of isolated component materials [161].

Polymeric nanomaterials

Polymeric NMs are a large group of materials, they can be mi-
celles, vesicles, star polymers, and inorganic-polymer hybrids of
different shapes and sizes, different surface chemistry, surface
charge, etc. Due to these numerous different types, a wide number of
potential applications have been suggested, from environmental to
nanomedicine [168,169]. As the number of polymeric NMs produced
grows, it is inevitable that they will reach the aquatic environment.
In this section, five studies were found (Table 3) addressing co-ex-
posure of pollutants with polymeric NMs.

A recent study by Lin et al. quantitatively looked into the effects
of the combined acute toxicity of nano-polystyrene (100 nm) and
polychlorinated biphenyls (PCBs) on D. magna based on analytical
chemical speciation by measuring the sorption coefficients of PCBs
to nano-polystyrene (PS) [170]. Their findings showed that the
toxicity of the combined chemicals depended on the relative con-
centrations of PCB and PS. When PCB was combined with a certain
amount of PS, it was less toxic towards D. magna, while the toxicity
was increased when using excessive amounts of PS. In this study
they applied a passive dosing method to analyse the sorption coef-
ficients of 8 solid chemicals [PCB-1, 3, 9, 11, 18, 77, hexa-
chlorobenezene (Hexa-CB) and pentachlorobenzene (Penta-CB)]
with 100 nm PS particles and correlated the speciation results with
the observed toxicity endpoints, identifying joint toxicity effect of PS
and PCB-18 to D. magna. For the mixture toxicity experiment they
monitored the lethality to D. magna for 48 h by exposing the daph-
nids to a fixed concentration of PCB-18 (640 pg L}, i.e. the LC50 of
PCB-18) and varying the PS concentration from 0 to 75 mgL™!. Their
results showed that when D. magna were exposed to PS in con-
centrations that are lower than 1 mg L, their lethality decreased as
the concentration of PS increased. When the PS concentrations were
higher than 1mgL™!, the lethality of D. magna increased with the
addition of PS particles. To interpret their results, the authors stu-
died the sorption coefficient to understand the combined toxicity of
PCB on 100 nm PS, and the results indicated that combining PCB-18
with PS can reduce the free concentration of organic pollutants and
thus the toxicity towards D. magna.

Another study by Lin et al. revealed for the first time the effects
of combining two complex matrices (nano-sized polystyrene (PS)
and humid acid (HA)) on the bioaccumulation of polycyclic aromatic
hydrocarbons (PAHs) in D. magna [171]. The aim of this study was to
evaluate the joint effects of dissolved organic matter (DOM) and
NMs on the bioaccumulation of typical PAHs (e.g., anthracene,
phenanthrene, pyrene and others) by applying a modified matrix-
inclusive biodynamic model with full quantification for determining
the uptake pathways of PAH for various complex systems under
environmentally realistic conditions and concentrations. For simu-
lating the open water scenarios, where PAHs are present from var-
ious infinite sources, they utilized passive dosing vials, which
allowed identification of the uptake pathways by enabling constant
concentrations of freely dissolved PAHs during the entire experi-
ment. Suspensions of four different matrices for PAH exposure were
prepared using the (M7) artificial culture medium: the mixture of
100mgL! HA and 1mgL' PS; 100mgL! HA; 1mgL! PS, and a
solution of M7 medium as a control. The results showed that the rate
of PAH ingestion of the HA-PS or the HA matrix was faster than the
PS matrix, which could be due to the variation in matrix mass added
at the beginning of the study. The transfer of anthracene from the
HA-PS, HA and PS matrices via the gut to lipids were analysed and
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the uptake kinetics of anthracene had the same magnitude from the
different matrices. To indicatw the net mass transfer kinetics along
treatments, the ratio of forward and backward rate constants (kq/k)
were used as a lipid-matrix partition coefficient. Results showed that
in the PS matrix, all PAHs had a k;/k, < 1 and with the increase of the
PAHs hydrophobicity the ki/k, increased, indicating a “hindering
effect” from PS on the PAHs intestinal uptake in D. magna, and for
PAHs with lower hydrophobicity, the “hindering effect” was higher.
In the HA-PS and HA matrixes, all PAHs had kq/k, > 1 and with in-
creasing PAH hydrophobicity the value of k;/k, decreased, indicating
that the HA-PS and HA matrices enhanced the mass transfer of PAHs
from the matrices to lipids, and for the PAHs with low hydro-
phobicity, the facilitation of mass transfer was more significant.
Furthermore, anthracene was utilized to study the transfer effi-
ciency. At the beginning of treatments, the transfer efficiency was
larger than zero, and at 1.2 h and 1.0 h the efficiency decreased to
less than zero in the HA and PS suspensions, which indicated a
“carrier effect” of the matrix, implying that there were net mass
transfers from matrices to lipids. In contrast, the transfer efficiency
slowly decreased over time becoming less than zero at 5.0 h in the
HA-PS suspension, which indicates that the intestinal uptake
reached equilibrium after a period of time turning the matrix
transfer into a “cleaning” process when the transfer efficiency was
less than zero. The role of different uptake pathways to equilibrium
bioaccumulation for treatments that contain different types of ma-
trices were evaluated. Results showed that dermal uptake is the
major route for the bioaccumulation of PAHs, while intestinal up-
takes from singular or complex matrices at environmentally realistic
concentrations are trivial. The effect of complex matrix on PAHs
bioaccumulation was evaluated by a lipid normalized bioaccumu-
lation factor (BAFL). Evaluations indicated that the bioaccumulation
of PAHs in D. magna was through dermal uptake in the solution that
had no complex matrix (i.e., no PS particles or HA). With increasing
hydrophobicity of PAH, the logBAFL values substantially increased in
all suspensions. Compared with the control groups, PS decreased the
BAFL for anthracene, phenanthrene, acenaphthene and fluorene. For
the highly hydrophobic PAHs, no significant effects were observed.
The BAFL (of anthracene, phenanthrene, acenaphthene and fluorene)
had no significant variation in both HA-PS and HA matrixes, whereas
for pyrene and fluoranthene, an increase of 1.22-3.61 times and
1.75-2.78 times were observed respectively. The total concentrations
of PAHs, as well as the affinity of NMs for D. magna, were decreased
with the addition of HA.

Ma et al. identified the effects of co-exposure of PS NPs with
phenanthrene (Phs) as a model PAH, as well as the bioaccumulation
and environmental fate of *C-Phs within freshwater systems using
D. magna as a model organism [172]. They tested five different sizes
of PS particles ranging from (50 nm to 10 um). The effects of the PS
particles on the bioaccumulation and transformation of Phs, which is
mutagenic and carcinogenic to organisms, were determined using a
radioactive tracer. Their findings revealed that the 50nm PS at
10mg L! were toxic and caused significant physical damage to the
thoracopods of D. magna when observed under a microscope, af-
fecting their swimming and filter feeding behaviour by accumulating
on the surface of the thoracopods. An additive effect was observed
from the joint toxicity of 50 nm NPs and Phs when co-exposed to
daphnids. For the bioaccumulation tests they performed a 14-day
incubation experiment and showed that the presence of 10 um MPs
did not significantly affect the transformation, dissipation, and
bioaccumulation of Phs while the 50-nm NPs showed a significant
effect, enhancing the bioaccumulation of Phs-derived residues in the
body of D. magna. This could be due to the higher adsorption ca-
pacity of Phs on the 50 nm PS NPs. The findings of this experiment
confirm the importance of assessing both chemical and physical
impacts and quantifying the bioaccumulation of the individual
components and the mixture in order to have a better understanding
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of the interaction of NPs with hydrophobic pollutants in the en-
vironment.

Abdolahpur et al. investigated the role of dissolved organic
matter (DOM) on the sorption of silver ions (Ag") onto 300 nm
polyethylene (PE) and 600 and 300 nm polystyrene (PS) particles as
models of nanoscale plastic debris (NPD) for 6 days [173]. D. magna
was used as a model organism to determine how NPD affects the
toxicity profile of Ag* in the absence and presence of DOM. Their
findings demonstrated that under environmentally realistic condi-
tions, the sorption of Ag ions onto NPD is influenced by the size and
chemical composition of the particles. Their study showed that
when using a constant particle number concentration for all treat-
ments, a higher quantity of Ag" absorbed to the 600 nm PS-NPD
compared to the 300nm PS-NPD and PE-NPD. However, in the
presence of 300 nm PS and PE, the toxicity of Ag* to D. magna was
higher that when the 600 nm PS was present, implying that larger
particles of NPD can be potentially less toxic than smaller particles of
NPD even if smaller particles absorb a lower number of con-
taminants per particle. PE NMs sorbed a less amount of Ag* com-
pared to PS of the same size (300 nm). However, in the presence of
PE-NPD, the toxicity of Ag ions was higher in some cases, suggesting
that the toxicity of NPD can be affected by the chemical composition
of particles. Their findings also showed that, when DOM were pre-
sent at concentrations of 1 mg L™ up to 50 mgL™!, the sorption of Ag*
onto the 600 nm PS have decreased, while the sorption of Ag* onto
the 300 PE and PS increased when mixed with DOM. This study
suggested that the Trojan horse effects of NPD may be inhibited by
the presence of DOM in natural aquatic ecosystems. This study de-
monstrated the importance of understanding the relation between
particle size, chemical composition and the role of DOM when
evaluating the toxicity of NMs and determining the Trojan horse
impact in model organisms.

Potential role of chirality in nanomaterials mixture toxicity

Chiral substances possess a unique architecture such that, de-
spite sharing identical molecular formulas, atom-to-atom linkages,
and bonding distances, they cannot be superimposed [175]. In the
environment and living systems, where specific structure-activity
relationships are typically required for effect (on enzymes, receptors,
transporters, and DNA), the physiochemical and biochemical prop-
erties of individual stereoisomers can differ significantly, and ste-
reoselective metabolism of chiral compounds can influence
pharmacokinetics, pharmacodynamics, and toxicity [175]. Environ-
mental toxicology provides several examples in which bioaccumu-
lation, persistence, and toxicity of molecules shows chiral
dependence, and indeed many environmental pollutants are chiral,
including organophosphorus compounds, organochlorines, pyre-
throids, PCBs, polychlorinated dibenzo-p-dioxins and pharmaceu-
tical contaminants [175]. Degradation of these compounds, as well
as bioaccumulation, persistence, and toxicity of resulting metabo-
lites often show chiral dependence.

Importantly, chirality is not limited to organic molecules, but also
exists in inorganic compounds and crystals [176], whereby chiral
compounds produce optically active crystals upon crystallization in
which the spatial arrangement of the atoms are not superimposable
with its mirror image [177]. There are many chiral crystals in nature
with quartz, whose chirality arises from the helical arrangement of
SiO4 tetrahedra in the bulk structure, being the most common. CNTs
also have intrinsic chirality, which arises from the manner the gra-
phene layer is folded, as defined by a pair of integer indices (n, m)
that denote the chiral angle 0 (the degree of degree of helicity of the
lattice) and the chiral vector (the roll-up direction) [178]. Chirality
can be bestowed onto NMs by adsorption of chiral molecules [176],
and by careful design of the crystal to expose chiral kinked and
stepped surface structures - the kink sites lack symmetry being
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‘either left- or right-handed, and can be thought of as chiral, when
the step lengths on either side of the kink site are unequal’ [179].

NMs functionalised with different enantiomers (optical isomers)
have been shown to exhibit enantioselectivity in interaction with
receptors (for example) and different toxicities [176]. For example,
surface chirality was shown to significantly influence the adsorption
of blood plasma proteins (such as BSA and fibrinogen) onto TiO,
films functionalised with L- and D- lysine or L- and D- tartaric acid
[180], whereby the proteins had a stronger interaction with chiral
centres on L-Lysine than on D-Lysine, resulting in more protein ad-
sorption on L-Lysine and consequently more platelet immobilization
and decreased platelet activation compared to the p-lysine surface.
However, a mechanistic understanding of the effects of chirality on
protein adsorption kinetics and thermodynamics (isotherms) is re-
quired in order to make predictions for other chiral functionalisation
and for effects on NMs toxicity. CNTs with lower chirality were found
to require shorter times than those with higher chirality to trans-
locate through the membrane because of their weaker adhesion to
the membrane [181]. A review of chirality of NMs provides further
examples and readers are referred there for further details [175],
where key recommendations include the need for development of
three-dimensional structure-activity relationships, and considera-
tion of local conditions, species and tissue differences and popula-
tion polymorphisms which may additionally influence xenobiotic
effects of chiral compounds and chiral NMs [175].

From a mixture toxicity viewpoint, chirality needs to be considered
in terms of the NMs’ intrinsic chirality, as well as the potential for
enantiomer-specific or preferential surface functionalisation and spe-
cificity of subsequently protein binding and cellular adhesion as a result
of intentional or self-selective enantiospecific ligand enrichment at the
nanomaterials surface. To date, chirality has not been considered much
in nanosafety or mixture assessment, and no data has been found
specifically associated with impact of chirality of NMs on their toxicity
to D. magna. However, it is known that daphnids are differentially
sensitive to enantiomers of pesticides resulting in an order of magni-
tude difference in acute toxicities of the individual enantiomers and the
racemic mixture, which has implications for ecological risk assessment
for chiral entities [182].

Nanoinformatics approaches: From computational simulation to
data-driven science

Given the early stage of development of NMs mixture toxicity, it
is clear that predictive models of mixture toxicity have not yet even
begun to consider the additional complexity introduced by NMs
with their enormous surface area for co-pollutant binding and thus
their potential as carriers for other pollutants, as described by the
Trojan horse conceptualization [4,52-55,52]|. However, very sig-
nificant progress has been made in terms of the prediction of toxicity
of NMs themselves, including prediction of their biomolecule (pro-
tein and small molecule) coronas and their cellular adhesion, uptake
and toxicity, which form a strong basis upon which to develop NMs
mixture toxicity models. This section provides an overview of the
progress to date and the current state of the art, considering both
physics-based materials models and data-driven toxicity-focussed
models, and provides recommendations on where rapid progress
could be made towards implementation of NMs mixture toxicity
models.

The ecotoxicity evaluation of pollutant mixtures presents a great
challenge due to the lack of standard prediction models coupled
with the lack of ecotoxicological data for many of the individual
compounds. The release of NMs into environmental systems adds to
the complexity of this problem [1-3]. Considering the enormous
variety of NMs properties and their high potential to interact with
environmental compounds (e.g. organic matter, biomolecules, me-
tals, organic pollutants) and biological systems, multidisciplinary
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strategies are essential to the proper risk evaluation of these mate-
rials [ 183]. Computational approaches have already begun to provide
valuable advances in the understanding of mechanistic aspects of
nano-bio interactions, and in the development of predictive models
employing data-driven approaches [184,185], which made them in-
creasingly important in mixture toxicity assessment and regulation.
Correlation between NMs properties and their biological/environ-
mental effects have thus been extensively pursued in the field of
nanotoxicology [183,186]. While great advances have been achieved
in this area, they also led to increasingly complex questions, which
seek to comprehend the role of environmental components in NMs
toxicity and vice versa [15]. Once in biological environments, NMs
behaviour is complex and involves a series of phenomena occurring
at different scales, which comprise interactions with molecules,
cells, and organisms, as well as changes in NMs structure and dis-
persion [187]. Therefore, to comprehend the mechanisms involved
in the destination of these materials in biological medium, it is ne-
cessary to outline strategies that access and correlate across these
scales [188]. In this context, the application of in silico approaches is
advantageous to understand phenomena that cannot be easily ac-
cessed experimentally and to evaluate the primary NMs properties
responsible for them [27,30,187]. Current physics-based simulation
approaches can reveal phenomena at molecular, atomic, and elec-
tronic detail in systems with different level of complexity; well-
known methodologies include coarse-grained (CG), molecular dy-
namics (MD) and Density Functional Theory (DFT) models
[189-193]. These techniques are useful to describe the structure and
physicochemical properties of NMs, to evaluate their interactions
with molecules, including protein binding and cellular attachment,
and to elucidate the surface characteristics that promote NMs’ ag-
glomeration, dissolution, oxidation, catalytic activity among other
reactions (Fig. 8) [183,189,194].

In view of these dynamic and evolving interactions of NMs with
their surroundings, surface adsorption studies can provide im-
portant insights about the toxicity mechanisms of pollutants and
NMs in co-exposure scenarios. The characteristics of these interac-
tions (e.g., adsorption energy, chemical sites involved etc.) have an
important role in the fate of NMs and co-pollutants in organisms and
the environment, and consequently, in the hazards arising from
mixtures [187,197-199]. Geitner et al. showed that the presence of
sites specific to different types of interactions favours the adsorption
of pesticides to NMs surfaces and impacts the environmental fate of
the adsorbed chemicals [200]. They selected a library of 15 pesti-
cides, and 4 different NMs of natural or incidental sources (i.e., Cgo
fullerene, fullerols with 8 (fullerol-8) and 24 (fullerol-24) hydroxyl
groups, and ceria NMs) to evaluate interactions of all possible pairs
through MD simulations. Due to the presence of sites for different
types of adsorption mechanisms, such as hydrogen bonding, van der
Waals, and m-m interactions, fullerol-8 NMs presented the strongest
interaction with most of the chemicals tested. Furthermore, ex-
perimental adsorption assays showed that most pesticides pre-
ferentially interacted with NMs rather than clay, which emphasized
the role of NMs in the fate of co-contaminants and the necessity of
further studies that explore the complexities of NMs behaviour in
environmental media.

Similarly, when used to evaluate reactions in which NMs may be
involved in the environment, modelling approaches may provide
valuable information about catalysis, aging and degradation pro-
cesses involving these materials [201,202]. Moreover, NMs which
present different catalytic properties may elicit reactions involving
any coexisting pollutants and generate more toxic products, even
when the NMs are used for environmental remediation purposes.
Detailed analysis of the reactions pathways and kinetics, including
with co-pollutants other than their intended targets, is essential to
ensure the environmental safety of these materials and can be per-
formed by ab initio methods [187,203]. For example, Wei et al.
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utilized DFT to evaluate and compare the mechanisms, kinetics and
by-products of the photocatalytic degradation of 4-chloroguaiacol
(4-CG) catalyzed by graphene, boron-nitrite (BN), and carbon-doped
BN (BCN) nanosheets [204|. The authors showed that BCN na-
nosheets are a promising material for catalysis, due to its excellent
adsorption capacity for 4-CG, band gap, which narrowed from 3.81
to 1.54 eV by C-doping, and its suitability for visible light catalysis.
Furthermore, BCN nanosheets changed the catalysis reaction me-
chanism compared with other NMs, reducing free energy barriers
and increasing degradation rates. Toxicity analysis of the degrada-
tion products showed that all transformation products were harmful
to at least one organism tested (i.e., fish, green algae, or daphnia),
drawing attention to the need for evaluation of potentially toxic
products that can be formed during pollutant degradation. The po-
tential impact of chiral functional groups on NMs surfaces on ef-
fectiveness of degradation, and indeed on differences in rates of
environmental degradation of co-pollutant enantiomers may also
play an important role, which has not yet been considered in the
experimental approaches nor in modelling.

Despite simulation methodologies enabling deeper under-
standing of the processes of bio-nano interactions and giving im-
portant insights about the mode of action of NMs and pollutants
(eco)toxicity, they have significant limitations currently. They re-
quire extensive expertise and computational knowledge, and their
high computational cost limits model complexity, which made these

(a)
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approaches inadequate for the prediction of toxicity end points with
complex mechanisms (e.g., genotoxicity, reproductive toxicity,
apoptosis, etc.).[27,30,205] Therefore, in order to develop predictive
capacity for the (eco)toxicity of NMs and pollutants in en-
vironmentally realistic media, statistical and machine learning (ML)
methodologies, which are capable of dealing with such complexity,
are required. These methods utilize algorithms to assess a great
volume of data and can model the relationships between significant
descriptors (e.g., structural and molecular properties of NMs and
chemicals) and phenomena of interest (e.g., biological endpoints)
obtained experimentally or theoretically [206,207]. In this context,
physics based modelling methodologies are also applied to provide
descriptors that can be hard to measure and are useful for predictive
analysis, which include intrinsic NMs properties, such as consistent
or electronic properties (e.g., HOMO-LUMO gap, enthalpy of forma-
tion, molecular weight, cation charge, metal electronegativity), and
extrinsic NMs properties, which are dictated by the surrounding
medium (e.g., hydration energy, contact angle for water, dissolution
rate, surface charge density and more) [208-210].

Data driven approaches (e.g., machine learning, Quantitative
Structure-Activity Relationships (QSAR), deep learning) represent a
new paradigm in science, in which new knowledge is extracted from
data by identifying patterns and correlations that are not easily
detected in individual results or are impossible to visually analyse
due to the large amounts of complex and multidimensional data

(c)
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Fig. 8. Examples of application of different computational simulation approaches to understand the interface between NMs and the biological environment. a) Coarse-grained
simulation of the translocation of NMs across model cell membranes. Analysis of membrane curvature vs. simulation time. Reproduced from ref. [195] Copyright 2020 Springer
Nature. b) Ab initio study of reactive event chain in the GO interface with water. 1- Epoxide and water. 2- Epoxide opening to form an alkoxy and a carbocation. 3- Water hydrogen
abstraction by the alkoxy to form a hydroxy group. 4- Addition of the hydroxide onto the carbocation to form a new hydroxy group. Reproduced from ref. [194] Copyright 2020
American Chemical Society https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05282 ¢) Molecular dynamics simulation of binding of naphthalene to a carbon nanotube. Reproduced

from ref. [196] Copyright 2020 Elsevier.
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[206,211]. A great volume of data have been generated over decades,
and the advances in experimental and computational techniques
(e.g. High-Throughput approaches) have resulted in even greater
amounts of complex data, making necessary the development of
new methods to analyse and visualize it, in order to optimize the
extraction of knowledge from the data [206]. In biological science,
for example, associated with the advance of molecular biology and
genomics, bioinformatics has been demonstrating successful appli-
cation of data science in the last decades [212]. Currently, there are
numerous databases with vast information regarding DNA and RNA
sequences, protein structures and functionalities, metabolites,
among others, that are fundamental to understanding biological
processes at different levels of organization [213]. Taking this as
inspiration, in materials science, the Materials Genome Initiative
was created with the purpose of overcoming the trial-and-error
research and optimizing the development of advanced materials by
supporting a rational integration of theoretical (e.g., computational
methods) and experimental approaches, and the building of colla-
borative databases [214-216]. Several databases filled with struc-
tures and properties of materials, experimentally or theoretically
calculated, have been used in the discovery of promising materials
for diverse applications by the combination of data-driven methods,
computational simulation, and experimental testing in an optimized
workflow [217,218].

Since the advent of nanotechnology, many different NMs have
been synthesized and tested for a wide range of applications. In this
period, it became clear that NMs’ properties (e.g., electronic, optical,
mechanical properties), as well as the nano-bio interactions and the
biological/environmental effects of these materials, are strongly re-
lated to their characteristics such as composition, size, shape, and
surface chemistry. [186,219]. However, it is still a challenge to track
these correlations and delineate models to predict the properties
and biological behaviours of NMs at the design stage. The obstacles
faced in this task include the lack of standardization in methodol-
ogies, the intrinsic structural variability of the samples (e.g., particle
size distribution, heterogeneity in shape and degree of agglomera-
tion), poor sample characterization (e.g., the potential for / impact of
NMs chirality is rarely considered), and a limited number of sys-
tematic studies of NMs' interactions in biological environments
[220-222]. Therefore, in order to advance to a rational development
of NMs following the safe-by-design concept, multidisciplinary and
collaborative approaches, and extensive dialogue between experi-
mental and computational researchers to design experiments that
maximize the available data and thus the modelling potential, have
been shown to be indispensable [223].

Great efforts have been made in the field of nanotoxicology to-
wards the integration of computational and experimental meth-
odologies, as well as the organization and storage of data in common
databases to enable the application of machine-learning analysis
[27,185]. To facilitate this, projects such as the Horizon2020-funded
NanoCommons and NanoSolvelT are creating the infrastructure ne-
cessary for computational modelling, data sharing, and tool devel-
opment, as well as establishing standard experimental and
modelling procedures, ontologies, and reporting templates. These
methodologies and tools, developed to collect, organize, validate,
store, share, model, analyse nanosafety data (termed nanoinfor-
matics), are intended for application in decision-making and reg-
ulation of nanotechnologies [27,30,205].

For data-driven modelling, the general concept of data consists of
an aggregation of numerical and textual information in the format of
matrix (Fig. 9), in which each input (row) is described by a number of
descriptors or features (columns) and represent the object of study
that can be, for example, a NM, a sample, an image, etc. The data may
also present defined target properties (also called labels), which
consist of specific properties to be predicted, whether numerical or
categorical, for example, toxicity endpoints (e.g., cytotoxicity,
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bioaccumulation, lethal dosage). In this case, the matrix of inputs X
is related to a vector Y containing outputs (indicated as (Y) in Fig. 9).
Depending on whether the model’s target properties are available or
not, different types of machine-learning algorithms are applied
[30,206].

Unsupervised techniques are used for data that has not been
harmonized or curated. This type of algorithm utilizes statistical
analysis for grouping of data based on similarity, which may be used
to elucidate hidden patterns and relations in the dataset when there
is no type of classification or categorization, or to reduce the di-
mensionality of the data to decrease computational cost and com-
plexity in processing information. Examples of unsupervised
algorithms include K-means, Hierarchical Cluster Analysis, Principal
Component Analysis, and Density-Based Spatial Clustering [30,222].

On the other hand, supervised algorithms are used when there is
a target variable or property defined in the data set. These techni-
ques apply mathematical and statistical strategies to find the func-
tion that lead the input data to the target (output) [206]. Supervised
methods are able to predict either numerical (e.g., No Observed Ef-
fect Level - NOEL, lethal dosage) or nominal (e.g. toxic, non-toxic)
outputs, which are characterized as regression or classification
problems, respectively [209]. The predictive capacity of these
methods makes them especially interesting for the ecotoxicology
context, in which the outputs consist of biological endpoints, such as
lethality, bioaccumulation, reproduction effects etc [45]. In that way,
as hazard and exposure data are obtained, the algorithms can be
used to fill missing values or classifications for non-tested conditions
in a faster and more cost-effective manner than via experimental
testing [220,222].

Currently in nanotoxicology, predictive models are mainly based
on NMs structural features, and the main approach used for that is
Quantitative nanostructure-activity relationships (QNAR). In this
approach, the predictions are based on the assumption that NMs
with similar properties present similar biological effects [224]. Ma-
chine-learning algorithms such as regressions [225], K-Nearest
Neighbours [226], support vector machine [227], artificial neural
network [228], decision tree [229], among others, play an important
role in development of these models. Depending on the algorithm
applied, the correlations found by the models are interpretable and
can give important insights for deriving causal relationships, how-
ever QNAR models normally do not provide direct mechanistic in-
terpretations [209].

In order to develop accurate and reliable predictive models (for
NMs alone or for environmental mixtures), the first task is to have a
good definition of the problem which needs to be solved, in order to
be able to properly proceed in the machine-learning work-flow, as
listed below and illustrated in Fig. 10 [206,230].

(1) Dataset Formation: Data collection from existing literature and
databases or from new experimental results, and extraction of
the information related to the defined problem, features, and
endpoints. Organisation of the data into a matrix (as shown in
Fig. 9) with one row for each NM / co-pollutant combination at a
specific concentration and timepoint.

Data Processing: This step involves cleaning of data by removing
corrupt or incomplete data. Feature selection and reduction is
then applied, to reduce the irrelevant and redundant informa-
tion by identifying those descriptors that are most predictive /
explain most of the variability in the dataset. Transformation of
data by normalization, discretization, averaging, etc. is then
applied, and finally a balancing of the representativeness of the
outputs categories is performed to ensure a reasonable dis-
tribution of (for example) toxic and non-toxic outcomes in the
training set.

Data representation and transformation: This involves formatting
of data into an understandable presentation for algorithms, for
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Fig. 9. Data matrix for machine-learning applications. For nanoinformatics, the matrix (X) contains the descriptors (columns) that represent individual NMs (or their mixtures
with co-pollutants) (rows). This matrix may be related to specific information (Y) regarding the impacts of the NMs or their mixtures, for example, toxicity endpoints. Machine-
learning algorithms are then trained with the known data to predict the missing values (?) in Y, and thus can predict the behaviour of NMs for which limited data is available
within the limitations of the domain of applicability which is determined by the properties of the training set of NMs.

example, representation of nominal features in quantitative
formats, representation of the object of study, such as a NM, by a
set of relevant features, etc.
Machine Learning algorithm application: The algorithm must be
chosen and trained according to the defined problem. It is es-
sential to pay attention to the algorithm’s characteristics such as
accuracy, performance, training time, quantity of data required,
complexity and interpretability of results. The dataset is divided
into training, validation, and test sets.
Model validation and optimization: The initial analysis of the
model prediction efficiency, and optimization of the models’
hyperparameters is executed utilizing the validation dataset.
When an optimal set of parameters is reached, the performance
and accuracy of the model is evaluated using the test dataset,
this step reveals if there are inconsistencies such as bias, var-
iance, or under/overfitting. If the model failed in prediction and
accuracy, the previous steps are repeated, since data selection
should be improved, or the learning algorithm should be
changed.

(6) Application: The validated model is applied in prediction or
classification of unknown data and may be further improved or
its domain of applicability extended as more data become
available.

—
w1
a2

To date, several studies have been published presenting com-
putational models to predict NMs’ properties and biological re-
sponses, and for use to develop new NMs through safe-by-design
approaches [210,225,228,231-236]. For example, Le et al. developed
predictive computational models to relate NMs’ properties to cel-
lular impact analysing experimental data of NMs characterization
(i.e., size, aspect ratio, doping type, doping concentration, and sur-
face coating) and toxicity endpoints (i.e., cell viability, membrane
integrity, and oxidative stress) of a library of 45 ZnO NMs. They
found that the NM concentration the cells are exposed to, the type of
surface coating, the nature and extent of doping, and the aspect ratio
of the NMs are all important factors in the cellular toxicity of the
NMs tested [225]. On the other hand, by implementing an electronic
structure-based descriptor, Shin et al. were able to calculate simi-
larity and predict cytotoxicity and zeta potential of ZnO NMs with
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different concentrations of dopants (i.e., Fe and Co). The new de-
scriptor, called a size-dependent electron configuration fingerprint,
was capable of describing the complex structure and composition of
doped NMs in a simplified manner [231]. Given the generally poorer
understanding, as yet, of the role of chirality in NMs toxicity it is not
that surprising that nanoinformatics models have yet to consider
chirality either intrinsic to the NMs or as a result of functionalisation
of the NMs with stereoisomers. However, the emerging evidence of
enantiomer-specific protein binding and cellular attachment and
uptake, and the prevalence of chirality in environmental co-pollu-
tants, provide clear imperative for inclusion of chirality in NMs
mixture modelling and will be an important feature to address in
mixture toxicity. That said, several machine learning models have
been developed to predict the chirality of small molecules and their
assemblies into metamaterials [237]. Additionally, machine learning
approaches such as deep feedforward neural networks and graph
neural networks for conformal prediction (of enantiomers) have
been developed and evaluated in terms of their performance on data
from the Tox21 challenge, indicated that the resulting models were
highly predictive with high confidence levels [238].

Despite the advances, there are many challenges to be overcome
in order to develop reliable mixture toxicity models for NMs, as well
as to completely comprehend and modulate the NM’s characteristics
involved in (eco)toxicity. One important issue comprises the avail-
ability, quality, organization, and standardization of data. Normally,
the available high-quality datasets of NMs biological assays are small
and lack complex biological response information (e.g., Adverse
Outcomes Pathways (AOP)), which limits the applicability domain of
models developed from these datasets. Another challenge is the
complexity inherent to accurately represent different NMs by useful
descriptors for machine-learning algorithms [239]. These descriptors
include: NMs characteristics (e.g. surface coatings, composition,
shapes, crystallinity, size distribution), their intrinsic properties (e.g.,
electronic structure, reactivity, ionization energy, electronegativity),
as well as their environmentally modulated properties (e.g. biomo-
lecular coronas, superficial charges, agglomeration, loss of coating,
dissolution rates etc.) [214,223,231,240]. Furthermore, in mixture
studies the implications of all these NMs properties and the en-
vironmental transformations of the NMs have to be considered in
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Fig. 10. Supervised hypothetical machine-learning workflow for applications with combined toxicity of nanomaterials and environmental pollutants.

terms of their influence on adsorption affinities and binding con-
stants of co-pollutants.

Diverse computational strategies can be used in overcoming
these challenges. For instance, when limited data is available, dif-
ferent predictive approaches are used for filling data-gaps, a
common methodology for which is read-across [44,222,241,242]. In
this method, target properties or biological endpoints of NMs are
estimated from the data available for structurally similar materials,
previously grouped by unsupervised machine learning techniques
[243]. Besides that, computational algorithms are important in the
generation of technologies that accelerate and increase the accuracy
of obtaining experimental data. Recently, Karatzas et al. developed a
deep learning-based (i.e., Neural Network-based) algorithm to au-
tomatically detect and classify the adverse effects of different NMs to
D. magna by analysing microscopy images generated from re-
productive assays over multiple generations with continuous versus
parent (FO generation) only exposure. The algorithm was trained
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with over 4000 light microscopy images of D. magna exposed to
different NMs and in various conditions, including different media,
and freshly dispersed versus environmentally aged NMs. At the end,
the model was capable of separating the regions of the organisms
(i.e., head, eye, tail, abdomen, heart, etc.) potentially affected by the
NMs and could classify the level of injury caused by different
NMs [45].

As the understanding and prediction capacity of NMs toxicity
advances it becomes clear that the environment characteristics and
its components are determinant in NMs’ interactions with biological
entities. In this context, mixture toxicity has been increasingly dis-
cussed in the nanotoxicology and nanoinformatics field. The pre-
dictability of joint effects of NMs and other components of the
environment (i.e., NM-mixtures) is of great importance for en-
vironmental risk assessment, however, these studies are still in their
infancy. The requirements of quality data, development of new de-
scriptors and models are even more demanding than for single
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toxicity models. Therefore, standardized, and reliable methods for
estimation of NM-mixture toxicity are still lacking. According to
Zhang et al. an initial strategy is to incorporate the common
methods applied to chemicals mixture toxicity, such as independent
action and concentration addition [244]. There are already examples
in the literature of application of descriptors based on chemical
mixtures to development of models for heterogeneous materials
[210,233,236] and joint toxicity of soluble NMs and their dissolution
products [133]. Furthermore, another important aspect is utilizing
computational models to accelerate the process of obtaining the
required input data. Advances in that direction include predictive
models for molecular adsorption onto NMs surface, either for pol-
lutants [245,246] or biomolecules [247-249], as well as exploration
of omics approaches [228,250,251] which are essential for me-
chanistic understanding of NMs mixture toxicity. Indeed, a recent
publication has indicated that even in the absence of dose-response
data, a random-forest QSAR model was developed that was more
predictive than either the CA or IA models for prediction of the
immobilization of daphnids by mixtures of TiO, NMs and selected
co-pollutants [62].

Computational chemistry methods such as QSAR, which are al-
ready successfully applied in the field of toxicology of chemicals,
have been gaining attention for regulatory purposes by government
agencies [230,252,253]. The REACH (Registration, Evaluation, Au-
thorisation and Restriction of Chemicals) regulation created a list of
conditions that must be satisfied in order to justify the application of
(Q)SARs instead of experimental analysis, including specificizing the
validation and documentation requirements, requiring utilization of
models according to their applicability domain, and ensuring that
the results are adequate to the needs of risk assessment [254]. In
addition, according to the Organisation for Economic Co-Operation
and Development (OECD), to be suitable for regulatory purposes, (Q)
SAR models should present a well-defined endpoint, an un-
ambiguous algorithm, a defined domain of applicability, appropriate
measures of goodness-of-fit, robustness and predictability, and,
when possible, a mechanistic interpretation of the mode of action of
the toxicants on which the model is based [255]. These principles are
fundamental, and extendable to any in silico modelling approach.

The relevance of understanding NM's biological/environmental
behaviour for proper risk assessment and regulation of new tech-
nologies is undeniable. It is clear that computational techniques are
valuable to access complex phenomena, either by analysing specific
pieces of the important processes, such as interactions of nano-bio
interface, or correlating complex data sets to biological endpoints
[187,211,256]. However, there is no absolute approach capable of
dealing with all aspects of intricate systems, such as biological and
environmental media. In this context, recent experiences from
bioinformatics and the Materials Genome Initiative have shown that
the integration of computational and experimental methodologies
by the cooperative interchange of information provides a powerful
strategy to advance towards complex questions such as NMs mixture
toxicity [213,215]. The combination of physics-based simulation with
advanced ML & Al techniques will lead to the development of ad-
vanced chemo-/nano-informatics models [257]. Molecular docking
or/and molecular dynamics methodologies can be applied to protein
systems to recognize proper ligand placement that facilitates com-
plex stabilization. While ligand-based models (mL/AI) can provide
an initial estimation of the toxicity of compounds, they often result
in low specificity. The combination of the two computational tech-
niques in a consensus manner that utilizes multiple sources of in-
formation rather than just structural or ligand assay data improves
the specificity of the procedure. Another promising approach is to
incorporate the complexity of nanomaterial and co-pollutant fea-
tures, alongside their environmental conditions, is the emerging
meta ensemble approach, which is a deep learning framework for
quantitative toxicity prediction that integrates the outputs of a set of
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models for individual endpoints (of which chirality impacts on
protein corona and/or cellular attachment could be one) into an
overarching toxicity prediction. This meal-model deep learning ap-
proach has recently been demonstrated by Karim et al., using five
individual deep learning models each with their own base feature
representations (including physicochemical descriptors, low-level
fingerprints, SMILES etc.), which are then integrated using a separate
deep learning model to perform aggregation of the outputs of the
individual deep learning models [258]. The demonstrated version,
for small molecule toxicity, trained the deep learning models by
combining four quantitative toxicity data sets including: an LDsq
dataset indicating the lethal dose data for killing 50% rat population
when a given compound is administered orally; an IGCso dataset
which shows the concentration of a chemical compound needed to
arrest the growth of Tetrahymena pyriformis when exposed for 40 h;
an LCsy dataset on fathead minnow, a species of temperate fresh-
water fish, after 96 h exposure; and an LCso-DM dataset which in-
dicated the concentration of a compound in water (mg/L) causing
50% population of D. magna to die after 48 h. The outputs of the base
learning models were used as the meta features for the meta-
learning model. High-level physicochemical, low-level fingerprints,
SMILES-embedded vectors, and fingerprint-embedded vectors when
used to create meta features for the meta ensemble model to en-
hance the performance over a wide range of metrics for the quan-
titative toxicity prediction tasks [258]. Thus, a promising direction
for NMs mixture modelling could be to integrate the best, and most
relevant existing NMs models, including for binding kinetics and
competitive adsorption to NMs surfaces, and those for co-pollutant
and /or mixture toxicity into meta models utilizing knowledge
graphs, neural networks and other deep learning approaches.

Regulatory issues

Regulation of nanotechnologies is currently under discussion
worldwide towards promoting safer and sustainable utilization of
NMs. As highlighted in this review, Daphnia is a key aquatic or-
ganism for ecotoxicity assessment of chemicals and NM and is an
ideal species for computational approaches including deep learning.
The OECD recommends a defined synthetic medium for the har-
monized testing of chemicals in acute and chronic ecotoxicity testing
using the D. magna immobilization and reproduction tests [259,260],
since the goal of standard testing is to facilitate comparison of
chemicals under identical conditions for ranking of toxicity, rather
than to provide environmental realism. While this is ideal for soluble
chemicals, these tests are not optimized for NMs with properties
that can be determined by their environmental surroundings, a
feature referred to as having extrinsic properties as well as intrinsic
ones [127,261,262], leading to suggestions for modification of the
test guidelines to include natural organic matter (NOM) or utiliza-
tion of daphnia conditioned medium [56,89].

The highly reactive surfaces of NMs means they can interact with
themselves or surrounding biomolecules and chemicals, suggesting
that the lack of dispersing agent in the OECD Daphnia tests com-
promises the ability of the tests to rank NMs toxicity. Chronic
transgenerational studies in the presence and absence of en-
vironmentally relevant media (with differing NOM contents), with
the use of transformed NMs that are more representative of en-
vironmental pollutants, have demonstrated that the standardized
Daphnia tests currently overestimate NM toxicity to the first ex-
posed generation yet fail to consider potentially more severe impacts
in subsequent generations [56]. These results demonstrate the im-
portance of updating standard testing to reflect scientific advances
and increase stakeholder trust in regulation. However, for NMs, the
ranking will be meaningless if incorrect forms are assessed com-
pared to those present in the environment. Similarly, for assessment
and ranking of mixture toxicity, if mixtures including NMs are
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evaluated in the absence of competitive interactions arising from
biomolecules and without considering the impact of biomolecules
on the bioavailability and retention of co-pollutants at the NM sur-
face, the results will be meaningless [89].

Regulation of complex mixtures is increasingly important as
most regulatory guidelines available nowadays are focused on single
chemicals or commercial formulations (combinations of well-known
chemicals) [263,264]. Evaluating and predicting toxicity of in-
dividual small molecules or nanomaterial in the environment does
not provide realistic information as in the majority of the cases ex-
posure occurs as a mixture rather than to a single component, and
thus organism responses are to the multiple challenges simulta-
neously. Thus, evaluation of single component toxicity for specific
species and environmental compartments may be misleading and
may underestimate aspects such as overload or threshold ex-
ceedance through additive effects. However, the assessment of a
mixture’s toxicity is much more complex than toxicity evaluation of
a single component material or chemical, as the interactions among
the individual components of a mixture can significantly change the
apparent properties of its components. For instance, the components
in a mixture can present additive behaviour of response/effects or
may induce either increased (synergistic) or decreased (antag-
onistic) effects [13]. A recent review by Kar & Leszczynski sum-
marized the advantages of chemo-/nano-informatics methodologies
for the prediction of the toxicity of mixtures and multicomponent
materials, including the fact that: (i) the in silico methods can be
applied for the replacement of animal testing for toxicity purposes;
(ii) the developed chemo-/nano-informatics approaches can be ap-
plied for the prediction of unknown mixture combinations [13]. This
is especially important for the majority of mixtures since toxicity
data are missing for the individual components and thus predictive
models can be used to fill the data gaps also. Since a single model
cannot be applicable for the whole universe of chemicals and ma-
terials, the domain of applicability determination it is a crucial step
for the identification of the area of the reliable predictions. Several
regulatory agencies (US EPA, ECHA, EFSA, Health Canada) have al-
ready applied chemo-/nano-informatics predictive models for the
toxicity and risk assessment of chemicals and NMs. Recently, with
the development of advanced tools based on mL & Al, chemical and
NMs mixture risks can be quantified with high reliability in a cost
and time effective manner compared to the experimental methods
(in vitro and in vivo).

Methodologies for assessing risks from combined exposure to
multiple chemicals have been developed for different regulatory sec-
tors, however, a harmonized approach for evaluating combined ex-
posure and management across different regulatory sectors is lacking
[263]. There is no consensus currently by the legal authorities of US,
Europe, Canada, and Brazil about regulating mixtures of chemicals in
our changing environment, especially, considering real and dynamic
exposure conditions, despite this being an increasing concern [1,2,265].
In fact, there is a general perception that testing of chemicals on an
individual basis does not reflect real conditions in the environment,
where organisms are typically exposed to various chemicals at the
same time. Indeed, the OECD recently published a document with
considerations for risk assessment of combined exposure of multiple
chemicals [7]. Furthermore, additional attention will be necessary for
NMs in mixtures/combined exposures considering the unique proper-
ties of these innovative nanoscale materials, including competitive
binding, ageing, dynamic transformations, dissolution, etc. Within the
EU, REACH has was updated in 2018 (Regulation 2018/1881) to require
information on NMs to be reported by January 2020, focussing on
nanoforms, which consider changes in size, shape, coating etc. for a
specific composition, and sets of nanoforms which despite slight var-
iations in their physico-chemical properties are demonstrated to be-
have similarly from a toxicological perspective [266]. However, this
does not consider potential differences in biomolecule interactions, nor
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in adsorption of co-pollutants as yet, but as functional assays for these
end-points become available they could easily be incorporated into the
evidence basis required to demonstrate similarity. To the best our
knowledge, there is no specific guidelines available for assessing the
effects of NMs in mixtures using validated and harmonized protocols at
moment. For NMs containing more than one substance, their toxicity
has to be evaluated or predicted in order to fulfil the requirements of
CLP regulation (Classification, Labelling and Packaging of Substances
and Mixtures), which implements the United Nations’s Globally Har-
monized System of Classification and Labelling of Chemicals (UN GHS)
[44,267] Ultimately, the Water Framework Directive, Green Deal and
Circular Economy policies and regulations may provide a stronger
driver for adoption of mixture toxicity, with a focus on reduction of
undesirable emissions into the environment in the first place. In the
near-term, the development of Integrated Approach to Testing and
Assessment (IATA), implemented by state-of-the art computational
methods, underpinned by an expert decision-support system that
minimizes the time and cost required for NMs mixture risk assessment
is the most likely approach.

Conclusions and perspectives

Based on the studies reported so far, there is still a long way to go
to fully comprehend the toxicological effects of chemical mixtures
containing NMs in the environment. The lack of standardized assays
that account for the dynamic reactivity of NMs, consistent NMs
characterization, and colloidal stability studies makes it difficult to
compare results and understand the properties and mechanisms
behind the experimental results reported in the literature or NMs
environmental mixture toxicity, even focussing on just one species,
as we did here using Daphnia as the model organism. There are
several environmental parameters (e.g., pH, ionic strength, organic
matter, biomolecule content, NMs ageing and transformation) that
must be considered when addressing mixtures toxicity with NMs,
due to their strong influence on the ecotoxicological outcomes. A
fundamental gap noted in the literature on NMs mixture studies to
date has been the lack of competitive binding studies in co-exposi-
tion scenarios, such that all NMs potential binding sites are acces-
sible to the co-pollutant, increasing its uptake/bioavailability,
whereas, in reality, many of the binding sites would be occupied by
NOM or other molecules. Indeed, molecular interactions of the co-
pollutant with NOM might also influence its subsequent release
from the NMs surface following ingestion by organisms. Similarly,
the impact of chirality, both intrinsic to NMs but also that arising
from surface functionalisation of NMs and that inherent in many co-
environmental pollutants on binding to the NMs surface and at-
tachment to cells and organisms is an important, as yet overlooked,
factor that needs to be considered in both the assessment and pre-
diction of NMs mixture toxicity. Thus, a clear recommendation from
this paper is that NMs mixture studies utilize conditioned medium
or add biomolecules at environmentally realistic concentrations
when assessing combined (and indeed individual) toxicity.

The potential for nanoinformatics and computational approaches
in NMs-mixtures toxicity is enormous; nanoinformatics will bring
great benefit to this area, establishing new standards, harmonized
experimental protocols, ontological terms and common language, as
well as enhancing storage and sharing of data, which will help to
optimize the availability of information, either experimental and
computational, by applications of the FAIR principles and data-
driven application for nano-ecotoxicity modelling of complex mix-
tures in the environment. Integration of existing modelling ap-
proaches for chemicals mixtures with recent advances in simulation
and machine learning applied to NMs toxicity will lead to rapid
progress. To achieve NMs mixture toxicity assessment and predic-
tion, we highlight here some important areas for future research and
development:
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Physico-chemical characterization of NMs is vital, especially, the
surface chemistry properties of NMs and their influence on
binding of organic and inorganic contaminants. Predictive
models are emerging for this, but a strong focus on competitive
binding scenarios and evolution of the corona composition as the
NMs move through the environment and through organisms is
needed.

It is critical to develop harmonized protocols for performing co-
exposure toxicity testing with nanomaterials, in order to de-
termine if the effects are synergistic or agonistic, and to explore
the on/off kinetics of the co-pollutants relative to the uptake and
biodistribution of the NMs in organisms.

The impacts of the eco-corona formation on NMs and binding of
co-pollutants needs investigation during mixture toxicity ex-
periments. Harmonized protocols for conditioning media, corona
characterization and competitive binding assays are critical as-
pects to be considered.

Analytical methods to confirm both NM and co-pollutant accu-
mulation and tissue distribution are required, and models for the
transport and release of co-pollutants from NMs coronas under
different physiological conditions would enable enhanced un-
derstanding of where cargos are released (e.g., in the organism
gut or only in lysosomes following internalization) and at what
rates, and how this is affected by various NMs transformations
(agglomeration, dissolution, sulfidation, enzymatic biodegrada-
tion etc.).

Adverse Outcomes Pathways (AOPs) are a promising approach in
(eco)toxicology, especially, for understanding the impacts of low-
dose mixtures at environmental realistic exposure conditions.
While good progress is being made for chemicals, NMs introduce
a range of challenges, for all the reasons described above,
meaning that additional effort is needed to establish them for
NMs and NMs mixtures. In particular, careful thought and vali-
dation is needed for NMs-specific molecular initiating events
(MIEs), given that NMs can induce both physical and chemical
effects, and that in the case of NMs mixtures an MIE might be
associated with an adsorbed co-pollutant whose bioavailability is
increased through uptake with the NM.

There is an urgent to further develop ontologies, public databases
and user-friendly nanoinformatics tools for modelling and pre-
dicting these complex interactions between NMs and environ-
mental contaminants during co-exposure assessments. This is an
active area of development, with recent developments in this
direction including the NanoPharos database [268] designed for
computational modelling of NMs. Collectively, these tools and
approaches support the implementation of the FAIR data prin-
ciples in the nanoecotoxicology research community to facilitate
data-driven science, predictive mixture ecotoxicity and risk as-
sessment.
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