

Joint meeting VII Latin American Crystallographic Association and

XXVII Brazilian Crystallographic Association

BOOK OF ABSTRACTS

October 14 to 17, 2025 Fortaleza, Brazil

VII Latin American Crystallographic Association Meeting

XXVII Brazilian Crystallography Association Meeting

Effects of halogen substitution on a new Ru(II)-arene complex stabilized by N-H···Cl interactions

C. B. Pinto^{1,2}, P. H. O. Santiago¹, J. Ellena¹

¹São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil, ²Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil camila.batista@unesp.br

Hydrazides are a class of compounds known for their antimicrobial, anti-inflammatory and anticancer activities, among others [1]. The coordination of these compounds with Ru might enhance its properties, given that biological studies with Ru complexes have shown to increase the biological activity of a variety of ligands (e.g. [2]). In addition, halogen atoms are important in molecular recognition processes and in the binding of small molecules to receptors [3]. In this context, here we describe the synthesis and characterization of a new Ru-arene complex (C1), presenting 2-fluorobenzhydrazide (L1) as ligand. The interactions involving halogen atoms (F and CI) are explored and compared with those in an analogue compound presenting a -OH group in the para- position of the ligand [4].

The reaction synthesis consisted of mixing a solution of dichloro(p-cymene)ruthenium(II) dimer to a solution of L1 in dichloromethane under stirring. The reaction mixture was then filtered and left to evaporate under ambient conditions. Yellow single-crystals were formed and used for the X-ray diffraction experiment, which was performed on a XtaLAB Synergy-S diffractometer, using Cu K α radiation at 200 K. Infrared spectra was also acquired for both C1 and L1.

Compound C1 is comprised of a Ru(II) center, coordinated with one CI, one p-cymene and one L1 ligand, crystallizing in the triclinic space group $P\overline{1}$. The coordination of L1 to the Ru center happens in a bidentate mode through the oxygen and the nitrogen from the terminal -NH₂ group. The structure is also corroborated by the IR spectra, which indicates all expected shifts associated with the coordination. The structure is mainly stabilized by non-classic H-bonds, of N-H···Cl type, between L1 and the Cl counter-ion, C-H···Cl and C-H···F contacts. However, through Hirshfeld Surfaces (HS) it is possible to see other interactions involving halogens, such as, π ···F (on the fluorobenzene ring) and a very small amount of Cl···F contact. While in the analogue structure from literature, the HS indicates the presence of a π ···Cl contact involving the p-cymene group and the counter-ion, along with N-H···Cl, C-H···Cl and O-H···Cl contacts.

In conclusion, the use of HS allowed identification of halogen interactions, which could be one of the directional forces shaping the solid-state conformation and packing of the compounds. The Hirshfeld Atom Refinement is being undertaken in order to explore these interactions.

- [1] Popiołek, Ł. (2016). Med Chem Res., 26(2), 287–301.
- [2] Teixeira, T. et al. (2025). Inorg. Chem., 64(8),3707-3718.
- [3] Thomas, S. P. et al. (2022). Molecules, 27, 3690.
- [4] Lapasam, A. et al. (2021). J. Coord. Chem., 74(14), 2365-2379.

Keywords: Hydrazide; Intermolecular Interaction; Hirshfeld Surface

The authors are grateful to Brazilian Funding Agency FAPESP (grant # 2023/10889-7, 2021/10066-5 and 2017/15850-0).