

ANAIS

X SIMPÓSIO DE QUANTIFICAÇÃO EM GEOCIÊNCIAS

Balneário Camboriú, Santa Catarina 2025

Editores

Daniel Fabian Bett¿
Adilson Viana Soares Júnior
Daniela Kuranaka
Lindaura Maria Steffens
Paulo César Soares

lata Anderson de Souza Danielle Simeão Silvério Rocha Ana Paula Soares Francisco Manoel Wohnrath Tognoli

X SIMPÓSIO DE QUANTIFICAÇÃO EM GEOCIÊNCIAS

17 a 20 de agosto de 2025 / Balneário Camboriú - SC

INTELIGÊNCIA ARTIFICIAL NO MAPEAMENTO DE RISCO E SUSCETIBILIDADE A ESCORREGAMENTOS

Camila Duelis Viana¹, Ygor Sena Macedo¹, Karina da Silva Lima¹, Juliana Sabrina da Conceição Silva¹, Helen Cristina Dias², Lucas Pedrosa Soares², Rebeca Durço Coelho¹, Enzo Franceschi Genesi¹, Gabriella Labate Frugis², Carlos Eduardo da Silva², Debora Ferreira Quina¹, Guilherme P. B. Garcia¹, Carlos Henrique Grohmann²

¹ Instituto de Geociências, Universidade de São Paulo, e-mail de contato: camila.viana@usp.br
 ² Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, e-mail de contato: guano@usp.br

A quantificação de processos geodinâmicos é um dos grandes desafios das Geociências aplicadas. No caso dos escorregamentos, a complexidade espacial, temporal e multiescalar dos fatores condicionantes torna o mapeamento de risco e suscetibilidade uma tarefa intensiva em conhecimento e subjetividade. Frente a isso, ferramentas baseadas em inteligência artificial (IA) vêm sendo cada vez mais exploradas como alternativa ou complemento às abordagens tradicionais, oferecendo meios de lidar com grandes volumes de dados, reduzir vieses e sistematizar a extração de padrões complexos. Este trabalho apresenta uma visão geral do uso da IA no mapeamento de risco e suscetibilidade a escorregamentos, com foco em abordagens recentes que combinam métodos supervisionados, modelos fundacionais e integração com conhecimento especializado. São discutidas aplicações práticas desenvolvidas pelos grupos de pesquisa, evidenciando os avanços e desafios na adoção dessas técnicas no contexto geocientífico brasileiro. Diferentes abordagens de segmentação e classificação, como redes U-Net e análises orientadas a objetos, têm demonstrado desempenho promissor na detecção automática de escorregamentos, com acurácia geral acima de 70% a 85% em diversos contextos. Modelos treinados com dados espectrais, topográficos e de vegetação apresentam boa capacidade de generalização, especialmente quando ajustados ao tamanho e à complexidade das feições. Mesmo em áreas densamente vegetadas ou com poucos dados rotulados, técnicas baseadas em aprendizado profundo têm alcançado resultados robustos, suportando o potencial da IA para apoiar a construção de inventários e a análise de risco em escala regional. Outro exemplo envolve a aplicação de modelos fundacionais, como o Segment Anything Model (SAM), para a segmentação de cicatrizes de escorregamento em imagens de alta resolução. Tais modelos, originalmente treinados em contextos genéricos, possuem grande potencial de adaptação ao domínio geocientífico, permitindo acelerar a criação de bancos de dados georreferenciados. Apesar do potencial promissor da IA no contexto do mapeamento de escorregamentos, diversos desafios permanecem. Entre eles, destacam-se: a qualidade e heterogeneidade dos dados disponíveis, a dificuldade de transferência entre diferentes regiões geográficas, a necessidade de validação e explicação dos modelos, e a integração efetiva com o conhecimento técnico de especialistas em campo. Contribuições dos pesquisadores a tais questões envolvem a geração e disponibilização de modelos de elevação de alta resolução a partir de levantamentos lidar e de fotogrametria de dados históricos. Esses modelos vêm sendo utilizados para a construção de bancos de dados de cicatrizes em áreas da Serra do Mar, com o objetivo de subsidiar o treinamento e a validação de modelos por outros pesquisadores e promover a padronização de produtos e metodologias. São discutidos outros caminhos possíveis para mitigar esses desafios, como o uso de métodos híbridos e o desenvolvimento de modelos mais transparentes e adaptáveis. A aplicação da IA no mapeamento de risco e suscetibilidade a escorregamentos abre novas possibilidades para análises mais rápidas, robustas e reprodutíveis. No entanto, a consolidação dessas abordagens depende da colaboração entre pesquisadores, da democratização do acesso a dados e ferramentas, e do desenvolvimento de estratégias que considerem tanto o potencial técnico quanto os limites dos modelos preditivos.

Palavras-chave: aprendizado de máquina, Serra do Mar, São Paulo.