

Plantas medicinais durante a pandemia da COVID-19 na região Amazônica: estudo populacional

Medicinal plants during the COVID-19 pandemic in the Amazon region: a population study

DOI:10.34119/bjhrv6n6-077

Recebimento dos originais: 02/10/2023 Aceitação para publicação: 10/11/2023

Edivã Bernardo da Silva

Doutor em Ciências Instituição: Universidade Federal do Amazonas Endereço: Av. do Futuro, 305, Espírito Santo, Coari - AM E-mail: edivasilva@ufam.edu.br

Abel Santiago Muri Gama

Doutor em Ciências Instituição: Universidade Federal do Amazonas Endereço: Av. do Futuro, 305, Espírito Santo, Coari - AM E-mail: abelsmg@hotmail.com

Silvia Regina Secoli

Pós-Doutora em Farmacoepidemiologia Instituição: Escola de Enfermagem da Universidade de São Paulo Endereço: Av. Dr. Enéas Carvalho de Aguiar, 419, Cerqueira César, São Paulo - SP E-mail: secolisi@usp.br

RESUMO

O objetivo deste trabalho foi analisar o consumo de plantas medicinais para tratamento dos sinais ou sintomas da COVID-19. Para tanto, foi realizado um estudo transversal de base populacional em Coari-AM, Brasil. A coleta de dados foi por meio de um inquérito populacional aplicado nos meses de outubro e novembro de 2021, em uma amostra composta por 172 sujeitos que testaram positivo para COVID-19 e fizeram uso de plantas medicinais como tratamento para a doença. Foram relatados o uso 21 nomes de plantas distintas, dentre essas, 11 constam no RENISUS. As mais utilizadas foram: Jambu (*Spilanthes acmella*) (91,8%), limão (*Citrus aurantifolia* (54,5%) e alho (*Allium sativum*) (46,5%). A maioria (77,7%) utilizou até três tipos de plantas, em forma de chá (91,2%) e utilizados por conta própria (48,8%). O estudo evidenciou o uso de plantas medicinais para o tratamento da COVID-19, contudo, a indicação profissional praticamente foi ínfima, apesar da existência da (PNPIC), indicando a necessidade de qualificação dos profissionais da saúde e atualização do RENISUS.

Palavras-chave: planta medicinais, COVID-19, produtos naturais, medicina tradicional.

ABSTRACT

The objective of this work was to analyze the consumption of medicinal plants to treat the signs or symptoms of COVID-19. Therefore, a cross-sectional population-based study was carried out in Coari-AM, Brazil. Data collection was through a population survey applied in the months of October and November 2021, in a sample composed of 172 subjects who tested positive for

COVID-19 and used medicinal plants as a treatment for the disease. The use of 21 different plant names was reported, of which 11 are listed in RENISUS. The most used were: Jambu (Spilanthes acmella) (91.8%), lemon (Citrus aurantifolia (54.5%) and garlic (Allium sativum) (46.5%). The majority (77.7%) used up to three types of plants, in the form of tea (91.2%) and used on their own (48.8%). The study showed the use of medicinal plants for the treatment of COVID-19, however, the professional indication was practically negligible, despite the existence of the (PNPIC), indicating the need for qualification of health professionals and updating of RENISUS.

Keywords: medicinal plant, COVID-19, natural products, traditional medicine.

1 INTRODUÇÃO

Desde os primórdios da existência, a prática do uso de plantas medicinais no tratamento de doenças acompanha a humanidade, cujos conhecimentos são repassados por meio das gerações (RADOMSKI, 2003; BRAGA e SILVA 2021). Deste modo, plantas medicinais representam uma das principais fontes de cuidados por parte expressiva da população global (GANGULY e BAKHI, 2020; LIU et al., 2020; FAN, GU, ALENI, 2020; AL-KURAISHY, 2022), e de modo especial em regiões geográficas remotas, cujo acesso sanitário a medicina convencional é limitado.

O consumo das plantas medicinais apresenta padrões variados nos países desenvolvidos e em desenvolvimento, sendo maior em populações nesse segundo e na zona rural (BRAGA e SILVA, 2012; SMITT-HALL et al., 2012). De modo geral, a sua utilização encontra-se associada à menor renda familiar, ao acesso limitado aos serviços de saúde, a habitantes da zona rural, gênero feminino e ao conhecimento etnobotânico local (SMITT-HALL et al., 2012; POPOOLA et al 2022).

No Brasil, sobretudo na região amazônica, o uso de plantas medicinais e fitoterápicos no tratamento de doenças é bastante disseminado, condição que é facilitada pela existência da grande biodiversidade, influência das etnias indígenas e baixo custo (VEIGA JUNIOR, 2008). Adicionalmente, a região é um importante celeiro para o cultivo desses insumos da flora local, muito embora, ainda com evidências limitadas acerca das propriedades química-famacológicas das plantas e produtos naturais (BARRETO et al.; 2020).

O uso de plantas medicinais, durante a pandemia da COVID-19, não foi diferente. Devido a rápida disseminação, a contaminação pelo vírus SARS-COV representou um grande desafio de controle da infecção. A inexistência inicial de protocolo terapêutico específico motivou a população a adotar medidas alternativas de prevenção e tratamento por meio do uso de plantas medicinais, apesar da ausência de comprovação acerca da eficácia ao combate à

doença (LIU et al., 2020; AL-KURAISHY, 2022; POPOOLA et al., 2022; MORAIS, 2020; SOLEYMANI et al., 2022; YANG et al., 2020). Tal prática foi, de certo modo, suportada pela Organização Mundial da Saúde (OMS), que deu apoio ao desenvolvimento e adaptações terapêuticas tradicionais e naturais contra a doença, porém, com destaque a necessidade de avaliação da eficácia e segurança (WHO, 2020).

Em muitos países, autoridades sanitárias exploraram o papel antiviral das plantas medicinais, usadas de modo isolado ou como complemento da terapia antiviral, contra COVID-19 (AL-KURAISHY, 2022; KHAN e AL-BALUSHI, 2021). Além disso, em algumas regiões do globo, incluindo a Amazônia brasileira, o uso de determinadas plantas medicinais representou uma alternativa factível para pacientes infectados, não somente pela facilidade de acesso, mas também pelas características socioeconômicas e culturais da região, como baixo poder aquisitivo e o próprio hábito cultural do uso de plantas medicinais, para fins terapêuticos (MAFRA et al., 2020; COSTA 2021).

Estudos conduzidos durante a pandemia mostraram consumo elevado de plantas medicinais para prevenção, tratamento da doença ou como coadjuvante do tratamento, muitos dos quais (BRAGA e SILVA 2021; AL-KURAISHY, 2022; POPOOLA et al., 2022) mostraram desfechos positivos como melhora dos sintomas e fortalecimento do sistema imunológico (FAN et al., 2020; WANG et al., 2020). Na região Amazônica, algumas plantas medicinais consumidas pela população apresentam compostos bioativos com importantes propriedades antivirais, podendo ser uteis em doenças como Imunodeficiência Humana Vírus (HIV), Vírus Herpes Simplex tipos 1 e 2 (HSV-1,2), Vírus da Hepatite A e B (HAV/HBV), Poliovírus, influenza e SARS-CoV-2 (GOMES et al., 2022). Indígenas da tribo Sateré Mawé, do Estado do Amazonas, adotaram plantas medicinais para proteção dos sintomas do vírus, consumindo infusões com casca de árvores como carapanaúba e saracuramirá e chás com jambu, alho, limão, entre outros (MAFRA et al, 2020). Tendo em vista a importância das plantas medicinais como recurso terapêutico, o presente inquérito buscou analisar o consumo de plantas medicinais para tratamento dos sinais ou sintomas da COVID-19, na perspectiva populacional, na zona urbana de Coari, uma das principais cidades do Amazonas.

2 MÉTODOS

2.1 DELINEAMENTO E LOCAL DO ESTUDO

Trata-se de um estudo transversal de base populacional, conduzido no município de Coari – Amazonas (AM), no ano de 2021. Este município localiza-se na região setentrional do estado do Amazonas, na região do Médio Solimões e ocupa uma posição central em relação ao

estado e a região Amazônica (Figura 1). O clima é quente e a média de temperatura na seca foi de 27,3°C. A população estimada, no ano de 2021, foi de 86.713 habitantes, densidade demográfica de 1,31 hab./km², e índice de Desenvolvimento Humano (IDH) de 0,586 (BRASIL, 2022). A zona urbana é formada por 15 bairros e aproximadamente comunidade rural por 210 comunidades ribeirinhas.

Legenda

BRASIL

AMAZONAS

AMÉRICA DO SUL

COARI

0 950 1,900 3,800 Km

Figura 1 - Localização do município de Coari, Amazonas, Brasil.

Fonte: Guilherme et al., (2016).

No âmbito sanitário, o município conta com um Hospital Regional de Coari (HRC) de média complexidade; treze unidades básicas de saúde (UBS); um Instituto de Medicina Tropical; uma UBS fluvial (barco) para atender as comunidades ribeirinhas; um Laboratório Central de Análise Clínica; um Serviço de Emergência; um Núcleo de Vigilância Sanitária; uma Policlínica; e um Centro de Atenção Psicossocial (CAPS). Durante a pandemia de COVID-19, as autoridades sanitárias locais disponibilizaram o "Teste Rápido Antígeno (TR-Ag)" que detecta a presença de anticorpos IgM (recentemente) ou IgG (previamente).

2.2 POPULAÇÃO E AMOSTRA

A amostra probabilística, por conglomerado, foi composta 172 adultos (≥ 18 anos),

residentes nos 15 bairros urbanos e em casas flutuantes localizadas na orla da cidade. Realizouse se seleção aleatória dos domicílios e entrevistou-se o chefe ou responsável da família.

No cálculo amostral, considerou-se o quantitativo populacional de adultos residentes na zona urbana do município, segundo censo demográfico de 2010, e considerou-se população finita, com nível de confiança de 95%.

2.3 QUESTIONÁRIO E COLETA DE DADOS

A coleta foi realizada por meio da aplicação de um questionário composto por informações referentes a saber: (a) Informações socioeconômicas e demográficas; (b) Acesso aos serviços de saúde; (c) Informações sobre a COVID-19. As informações acerca o consumo de plantas medicinais foram extraídas por meio das seguintes perguntas: (i) "O (a) Sr. (a) consumiu alguma planta medicinal para tratar os sinais ou sintomas da COVID-19?; (ii) Qual foi a planta?; Qual foi a parte da planta?; Qual foi a forma de preparo?; e Quem foi a pessoa ou profissional que indicou o consumo da planta medicinal?".

2.4 ANÁLISE DOS DADOS

A unidade de análise foi composta por indivíduos que testaram positivo para COVID-19 segundo Teste Rápido Antígeno (TR-Ag). As análises foram realizadas por estatística descritiva (frequências absolutas e relativas), conforme as características de distribuição das variáveis. Utilizou-se o Excel 2013 (Microsoft Office 2013) para armazenamento e análise dos dados.

Em relação as plantas, os nomes científicos foram obtidos no site da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) e demais bancos de dados de órgãos e instituições especializadas.

2.5 ASPECTOS ÉTICOS

O Estudo foi aprovado, pelo Comitê de Ética em Pesquisa da UFAM, protocolo 4.668.564, e encontra-se em conformidade com a Resolução nº 466/12, do Conselho Nacional de Saúde. O termo de Consentimento Livre e Esclarecido (TCLE) foi disponibilizado a todos os participantes e, para aqueles que informaram dificuldade de leitura, os termos foram lidos pelos pesquisadores. Para aqueles que não sabiam assinar, foram disponibilizados tinteiros com almofadas para colher as digitais.

3 RESULTADOS

Dentre os 394 entrevistados, mais da metade (53,5%; 211) relatou ter testado positivo para COVID-19, segundo o Teste Rápido Antígeno (TR-Ag). Dentre estes, a maioria (81,5%;172) consumiu algum tipo de planta medicinal para aliviar ou tratar os sintomas da COVID-19. Neste grupo, cujas características são apresentadas na Tabela 1, a média de idade foi 46,7 anos (±16,24) e da renda mensal foi R\$ 2.128,00 (±1.344,00). Observou-se que menos da metade (48,3%) fez uso combinado de medicamentos alopática e planta medicinal no tratamento da COVID-19.

Tabela 1 - Características socioeconômicas e condições de saúde dos adultos que consumiram plantas medicinais. Coari-AM. 2021.

medicinais. Coari-AM, 2		
Variáveis socioeconômicas e condições de saúde	N=172(%)	
Sexo	124/72 1)	
Feminino Magnetina	124(72,1)	
Masculino	48(27,9)	
Idade (anos)	60(20.5)	
18 a 39	68(39,5)	
40 a 59	65(37,8)	
≥60 G	39(22,7)	
Cor da pele	146(04.0)	
Morena/Parda	146(84,9)	
Branca	17(9,9)	
Amarela/negra/indígena	9(5,2)	
Estado conjugal		
Vive acompanhado	94(54,7)	
Vive desacompanhado	78(45,3)	
Religião		
Católica	94(54,7)	
Evangélica	67(38,9)	
Outras	6(3,5)	
Nenhuma	5(2,9)	
Escolaridade (anos de estudo)		
Não estudou	14(8,1)	
1 a 4	12(7,0)	
5 a 8	23(13,4)	
9 a 11	43(25)	
≥12	80(46,5)	
Renda familiar (salário mínimo)*		
<1	17(9,9)	
1 a 2	96(55,8)	
>2	59(34,3)	
Número de pessoas por domicílio	(- ,-)	
1 a 2	44(25,6)	
3 a 5	106(61,6)	
>6	22(12,8)	
Recebe algum benefício social?	== (:=,0)	
Não	148(86)	
Sim	24(14)	
Atividade Laboral	21(11)	
Func público e/ou empregado	79(45,9)	
Comerciante	18(10,4)	
Agricultura e/ou pesca	12(7)	
Outras	23(13,5)	
Outas	43(13,3)	

Aposentado	24(13,9)
Nenhuma	16(9,3)
Auto percepção da saúde	10(3,3)
Muito boa/boa	106(61,6)
Razoável	62(36,1)
Ruim/muito ruim	4(2,3)
Domicílio é acompanhado por ACS?	1(-7-7
Sim	145(84,3)
Não	27(15,7)
Quando alguém na família fica doente qual serviço prefere?	. (- , .)
Hospital	90(52,3)
UBS	72(41,9)
Farmácia	4(2,3)
Clínica particular	6(3,5)
Foi hospitalizado nos últimos 3 meses?	
Não	165(95,9)
Sim	7(4,1)
Uso de medicamento alopática no tratamento da COVID-19	
Sim	137(79,7)
Não	35(20,3)
Uso combinado de medicamentos alopática e planta medicinal no	
tratamento da COVID-19	
Não	89(51,7)
Sim	83(48,3)

*Salario mínimo equilente a R\$ 1.100,00, referente ao ano 2021. Fonte: Autores.

Foram relatados 21 nomes de plantas distintas, dentre essas, 11 constam no RENISUS. As plantas mais utilizadas incluiram Jambu (*Spilanthes acmella*) (91,8%), limão (*Citrus aurantifolia* (54,5%) e alho (*Allium sativum*) (46,5%). A maioria dos usuarios (77,7%) utilizou até três plantas, a forma de preparo mais utilizada foi chá (91,2%) e predominou o uso por conta própria (48,8%) (Tabela 2).

Outras plantas (11,6%;20) também foram citados como: casca de laranja, óleo de copaíba (*Copaifera langsdorffii*) (1,16%), malvariço (*Plectranthus amboinicus*) (1,7%), algodão roxo (*Gossypium herbaceum L.*) (1,16%), crajiru (*Arrebidaea chica Verlot*) (1,16%), leite de amapá (*Brosimum parinarioides Ducke*) (1,16%), dentre outras.

Além das plantas o mel de abelha *in natura* foi bastante citado, seu consumo foi de 13,4%.

Tabela 2 – Plantas medicinais utilizadas no alivio ou tratamento de sinais e sintomas da COVID-19. Coari-AM,

Plantas medicinais	N=172(%)	
Jambu (Spilanthes acmella)	158(91,8)	
Limão (Citrus aurantifolia)	94(54,5)	
Alho (Allium sativum)	80(46,5)	
Mastruz (Disphania ambrosioides)	25(14,5)	
Gengibre (Zingiber officinale Roscoe)	23(13,3)	
Boldo (Peumus boldus Molina))	17(9,8)	
Andiroba (Carapa guianensis)	7(4)	
Cebola roxa (Allium cepa L.)	6(3,4)	

Sara tudo (Justicia calycina)	6(3,4)
Número de plantas medicinais consumidas	
Uma	34(19,8)
Duas	44(25,6)
Três	56(32,5)
Quatro	27(15,7)
Cinco ou mais	11(6,4)
Forma de preparo	
Chá	157(91,3)
Garrafada	8(4,6)
In natura	3(1,7)
Xarope	2(1,2)
Gargarejo	1(0,6)
Suco	1(0,6)
Indicação	
Conta própria	84(48,9)
Amigo/vizinho	45(26,2)
Familiares	32(18,6)
Dentista	5(2,9)
Médico	3(1,7)
Outro	3(1,7)

Fonte: Autores.

A maioria dos indivíduos utilizou combinação de plantas (80%) e cerca de um terço (32,5%) utilizou a combinação de três plantas na composição do remédio caseiro. O uso combinado de jambu (*Spilanthes acmella*), limão (*Citrus aurantifolia*) e alho (*Allium sativum*) foi o mais evidente (22,6%). Um quarto (25,5%) utilizou a combinação de duas plantas, sendo jambu e limão a principal combinação (11%), conforme Figura 2.

Jambu (Spilanthes acmella) Jambu e Jambu e limão alho (11%;19) Jambu, (4,6%;8)limão e Alho (22,6%;39) Alho (Allium sativum) Limão Limão e (Citrus aurantifolia) alho (3,4%;6)

Figura 2 – Plantas medicinais mais utilizadas e suas combinações, Coari-AM, 2021.

Fonte: Autores.

Entre os que consumiram algum tipo de planta medicinal a maioria (89,5%) apresentou algum sinal ou sintoma da COVID-19, sendo relatados 13 (treze) sinais e/ou sintomas, cujos principais foram: alteração no paladar (71,4%), perda e/ou redução do olfato (67,5%) e tosse (55,8%). Um terço do grupo (33,1%) apresentou 3 ou 4 sinais sintomas de (Tabela 3).

Tabela 3 - Presença de sinais e sintomas dos indivíduos com COVID-19 que consumiram plantas medicinais, Coari-AM, 2021.

Sinais e/ou sintomas relatados	N=154(%)	
Alteração no paladar	110(71,4)	
Perda/redução do olfato	104(67,5)	
Tosse	86(55,8)	
Falta de ar	79(51,2)	
Dificuldade de respirar	75(48,7)	
Coriza	75(48,7)	
Dor de garganta	71(46,1)	
Diarreia	68(44,1)	
Febre	6(3,8)	
Dor de cabeça	6(3,8)	
Outros	6(3,8)	
Quantidade de sinais/sintomas apresentados		
1 a 2	32(20,8)	
3 a 4	51(33,1)	
5 a 6	38(24,7)	
7 ou mais	33(21,4)	

Fonte: Autores

4 DISCUSSÃO

O estudo mostrou que habitantes de Coari, oriundos de uma região tropical multirracial, de um país rico em flora, adotaram o uso das plantas medicinais como recurso terapêutico durante a pandemia. Oito em cada dez indivíduos, cuja testagem para COVID-19 foi positiva, consumiram plantas, as quais foram usadas, em muitos casos, de modo combinado com medicamentos alopáticos. As principais plantas utilizadas foram aquelas que promoveram efeitos antiinflamatorios, broncodilatadores e imunomoduladores para alivio, sobretudo de sinais e sintomas no sistema respiratório.

Neste inquérito populacional, a prevalência de uso de plantas no alivio de sinais e sintomas da COVID-19 e o tipo de indicação foram corroborados por outros estudos conduzidos nas regiões do Brasil (BRAGA e SILVA, 2021; VEIGA JUNIOR, 2008), China, índia e Africa (LIU et al., AL-KURAISHY et al., 2022; POPOOLA et al., 2022; YANG et al., 2020). Estes achados podem ser explicados por aspectos que estão interrelacionados. O alto consumo de plantas medicinais, sobretudo por conta própria ou por indicação de amigos/vizinhos, representa uma prática local difundida por meio da sabedoria popular, na qual os conhecimentos são transmitidos de geração em geração (RADOMSKI, 2003; BRAGA e SILVA 2021;

GANGULY e BAKHSHI, 2020; YANG et al., 2020). A facilidade de acesso, visto que são plantas facilmente encontradas em mercados locais, independente da época do ano, e, muitas vezes, cultivadas em quintais e em pomares caseiros, combinadas ao fato de representam uma opção, por vezes, mais econômica e, em geral, bem aceita pela população, principalmente para aquelas que procuram ou prefiram por tratamento "naturais", são aspectos que podem ter contribuído para o alto consumo, sobretudo como automedicação (GUILHERME et al., 2016; COSTA e MITJA 2010).

A maioria dos usuários utilizou combinação de duas ou mais plantas, fato que pode ter ocorrido pelos efeitos sinérgicos, principalmente nos sistemas respiratório e imunológico. Jambu (*Spilanthes acmella*), alho (*Allium sativum*) e limão (*Citrus aurantifolia*), as plantas mais citadas pelos entrevistados, podem contribuir para alivio de sinais e sintomas, provocados pela COVID-19. Deste modo, podem ser utilizados como terapia alternativa, coadjuvante ou de suporte, uma vez que possuem ação anti-inflamatória, broncodilatadora, expectorante, analgésica e antipirética (KHAN e AL-BALUSHI, 2021; KHUBBER et al., 2020; ROUF et al., 2020). O consumo das plantas pode estar relacionado, também, com a necessidade de manter o sistema imunológico saudável, a fim de evitar a contaminação pelo vírus SARS-COV2. Algumas delas apresentam efeitos imunomoduladores, capazes de aumentar a imunidade do organismo (BRAGA e SILVA, 2021; KHAN e AL-BALUSHI, 2021; MAFRA et al., 2020; COSTA, 2021; KHUBBER et al., 2020; ROUF et al., 2020).

O uso de duas ou mais plantas, combinado ao fato de que parcela expressiva dos indivíduos utilizou, simultaneamente, plantas medicinais e medicamentos alopáticos, são consonantes com investigações conduzidas na Índia e China (GANGULY e BAKHSHI, 2020; YANG et al., 2020). A coexistência de uso de estratégias terapêuticas, nas quais combinam-se tratamento complementar (plantas) e convencional (medicamento alopático) representa uma importante opção de cuidado aos pacientes infectados por COVID-19 (GANGULY e BAKHSHI, 2020; YANG et al., 2020), especialmente em contextos geograficamente remotos, como é o caso da região amazônica.

No Brasil, apesar da regulamentação do uso de plantas medicinais pela Política Nacional de Práticas Integrativas e Complementares (PNPIC) (BRASIL, 2006) e de muitas plantas constarem da lista de Plantas Medicinais de Interesse ao SUS (RENISUS), a indicação por profissionais da saúde foi muito baixa. Tal fato pode ser atribuído ao conhecimento limitado dos profissionais de saúde acerca da indicação/prescrição das plantas medicinais e a falta de hábito de indicar plantas para tratamento de doenças (MATTOS e et al., 2018). Em contrapartida, a sabedoria popular acerca das propriedades terapêuticas das plantas, certamente

contribuiu para a escolha da planta medicinal apropriada a sintomatologia da COVID-19. Tosse, coriza, falta de ar, dor de garganta, foram os sinais e sintomas que afetam o sistema respiratório mais autorrelatados, e para os quais plantas como jambu, alho e limão, parecem ser, de fato, muito úteis.

A quase totalidade da amostra consumiu jambu (*Spilanthes acmella*). Essa planta, há muito tempo, é utilizada pela população da região amazônica para tratamento da tuberculose. Do ponto de vista farmacológico a *S. acmella* exibe inúmeras propriedades incluindo anestésica local e antipirética (CHAKRABORTY et al., 2010), antifúngica (RANI e MURTY, 2009) e antimicrobiana (ARORA et al., 2011). A planta apresenta um biocomposto denominado espilantol, o qual expressa efeito inibidor na atividade da enzima quimase, funcionando como mediador do sistema renina-angiotensina (SRA) e exibindo um efeito anti-inflamatório agudo, e propriedades antioxidantes (STEIN et al., 2021). Estes efeitos mostram evidências razoáveis no mecanismo de prevenção ou redução da inflamação aguda por COVID-19 (KONRATH, et al., 2021; ABDUL et al., 2021).

Allium sativum utilizado, também, por parte expressiva da amostra, é consumido desde a antiguidade, em diferentes países do globo, possuindo grande importância terapêutica (ROUF et al., 2020). Seus compostos organossulfurados ativos (OSCs) (alicina e aliina) e flavonóides (quercetina) são responsáveis pelos efeitos imunomoduladores capazes de elevar a resposta imune inata e aumentar a imunidade adaptativa, os quais podem ocasionar redução da taxa de infecção viral causada pelo SARS-CoV-2 (KHUBBER et al., 2020; ROUF et al., 2020).

As indicações terapêuticas das plantas medicinais são diversas, podendo ser utilizadas em diversas condições, na presença de quadros álgicos, inflamações e infecções, seja na condição de prevenção, tratamento ou coadjuvante no tratamento (BRAGA e SILVA, 2021; SILVA et al., 2021). Estudos relatam que a diversidade de fins terapêuticos, dentre eles: gripes, viroses, tosse, asma, dor de cabeça, dor de garganta, diarreia, dor de estômago, cólicas, sinusite, pneumonia, infecção e inflamação nos rins, inflamação no fígado, inflamação na próstata, malária, hepatite, colesterol, diabetes, hipertensão arterial, entre outros (VÁSQUEZ et al., 2014; GHIZI e MEZZOMO, 2015).

O chá foi a forma de preparo mais utilizada, achado semelhante ao observados em estudos prévios (MAFRA et al., 2020; PEREIRA et al., 2021; AMAZONAS e FIGUEIREDO, 2021). A adoção desse tipo de preparo pode ser justificada pelo preparo prático, rápido e de baixo custo, bastando aquecer a água para decocção ou infusão.

O limão (*Citrus aurantifolia*) *utilizado* por mais da metade dos entrevistados. A espécie *Citrus limon* foi bastante utilizada como terapia complementar no tratamento da COVID-19 e

seus sintomas na Nigéria (ODEBUNMI et al., 2022). Na Índia, estudos revelaram que o limão possui compostos naturais, como a diosmetina, que apresenta potencial terapêutico para a COVID-19 (KHAN et al., 2022).

No Brasil, estudo realizado com plantas medicinais encontradas na ilha de Marajó (região Amazônica) dentre elas: o limão, das espécies (*Citrus limon* e *Citrus limonum* Risso) e o mastruz (*Disphania ambrosioides*) verificaram que essas podem conter compostos bioativos com importantes propriedades antivirais, como os causados da Imunodeficiência Humana Vírus (HIV), Vírus Herpes Simplex tipos 1 e 2 (HSV-1,2), Vírus da Hepatite A e B (HAV/HBV), Poliovírus, influenza e SARS-CoV-2 (GOMES et al., 2022).

O gengibre (*Zingiber officinale* Roscoe), ainda que relatado por menor parcela, é uma planta bastante utilizada isolada, em forma de chá, ou como componente de preparos xaropes com propriedades expectorantes e antigripais. Seu uso terapêutico está associado a presença do gincerol, ingrediente ativo que possui atividade antiviral indireta significativa no tratamento viral, inibindo a infecção através da supressão da replicação viral (HAYATI et al., 2021). Na Nigéria o *Zingiber officinale* foi a planta mais utilizada pata o tratamento da COVID-19, usada também no tratamento de sintomas gripais da doença (ODEBUNMI, et al., 2022).

O mel de abelha, produto utilizado por 13,3%, possui compostos fenólicos antioxidantes, que pode ajudar direta e indiretamente na redução da gravidade da infecção por COVID-19, reforçando respostas imunológicas do organismo (AL-HATAMLEH et al., 2020), e quando combinado com própolis (substância resinosa natural produzida por abelhas), apresentaram melhor efeito na recuperação dos sintomas e eliminação viral em pacientes hospitalizados com COVID-19 (ALI et al., 2021).

O estudo analisou a prática do consumo de plantas medicinais utilizadas no tratamento dos sinais e sintomas da COVID-19. Contudo, não foi possível verificar a variedade específica ou espécie da planta autorrelatada, visto que, existem algumas que possui mais de uma variedade ou cultivar de mesma espécie que pode apresentar efeitos diferentes. Assim como, como também não foi possível determinar a origem das plantas utilizadas no tratamento.

5 CONCLUSÃO

As evidências apontam o alto consumo de plantas medicinais derivado da sabedoria popular uma vez que a indicação profissional praticamente foi ínfima, apesar da existência da Política Nacional de Práticas Integrativas e Complementares (PNPIC).

ISSN: 2595-6825

AGRADECIMENTO

O presente trabalho foi realizado com apoio da Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM).

REFERÊNCIAS

- RADOMSKI, M.I., (2003). Plantas Medicinais- Tradição e Ciência. Embrapa Floresta.
- BRAGA, J. C. B.; SILVA, L. R. Consumo de plantas medicinais e fitoterápicos no Brasil: perfil de consumidores e sua relação com a pandemia de COVID-19. Brazilian Journal of Health Review, Curitiba, v.4, n.1, p.3831-3839 jan./feb. 2021.
- GANGULY, S.; BAKHSHI, S. Traditional and complementary medicine during Covid-19 pandemic. Phytother Res. 2020 dez;34(12):3083-3084. doi:10.1002/ptr.6828
- LIU, M.; GAO, Y.; YUAN, Y.; YANG, K.; SHI, S.; ZHANG, J.; TIAN, J. Efficacy and Safety of Integrated Traditional Chinese and Western Medicine for Corona Virus Disease 2019 (COVID-19): a systematic review and metaanalys. Pharmacological Research 158 (2020) 104896. https://doi.org/10.1016/j.phrs.2020.104896
- FAN, A. Y.; GU, S.; ALEMI, S. F. Research Group for Evidence-based Chinese Medicine. Journal of Integrative Medicine 18 (2020) 385–394. https://doi.org/10.1016/j.joim.2020.07.008
- AL-KURAISHY, H. M.; AL-FAKHRANY, O. M.; ELEKHNAWY, E.; AL-GAREEB, A. I.; ALORABI, M.; DE WAARD, M.; ALBOGAMI, S. M.; BATIHA, G. E. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res. 2022 Sep 26;27(1):186. doi: 10.1186/s40001-022-00818-5. PMID: 36154838; PMCID: PMC9510171.
- SMITH-HALL, C.; LARSEN, H. O.; POULIOT, M. People, plants and health: a conceptual framework for assessing changes in medicinal plant consumption. Journal of Ethnobiology and Ethnomedicine, v. 8, n. 43.2012. doi: 10.1186/1746-4269-8-43
- POPOOLA, T. D.; SEGUN, P. A.; EKUADZI, E.; DICKSON, R. A.; AWOTONA, O. R.; NAHAR, L.; SARKER, S. D.; FATOKUN, A. A. West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19. Daru. 2022 Jun;30(1):191-210. doi: 10.1007/s40199-022-00437-9. Epub 2022 Apr 27. PMID: 35476297; PMCID: PMC9043090.
- VEIGA JUNIOR, V. F. Estudo do consumo de plantas medicinais na Região Centro-Norte do Estado do Rio de Janeiro: aceitação pelos profissionais de saúde e modo de uso pela população. Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy 18(2): 308-313, Abr./Jun. 2008.
- BARRETO, J. M. B.; MACIEL, N. F.; GARCIA, D. S. S. Plantas medicinais e covid-19: expectativas de investimento em produção de fitoterápicos no cenário pós-pandemia no Brasil. 13º Seminário Internacional- Democracia e Constitucionalismo Universidade do Vale do Itajaí Brasil novembro 2020.
- MORAIS, W. R. S. et al. (2020). Investigação Prospectiva do Novo Coronavírus e de Fármacos Antivirais com Potencial Atividade Terapêutica para o Tratamento de Pacientes Infectados pela COVID-19. Cadernos de Prospecção, Salvador, 13(3), 619-634.
- SOLEYMANI, S.; NAGHIZADEH, A.; KARIMI, M.; ZAREI, A.; MARDI, R.; KORDAFSHARI, G.; ESMAEALZADEH, N.; ZARGARAN, A. COVID-19: General

- Strategies for Herbal Therapies. Journal of Evidence-Based Integrative Medicine Volume: 27: 1-18, 2022; https://us.sagepub.com/en-us/journals-permissions
- YANG, Y.; ISLAM, M. S.; WANG, J.; LI, Y.; CHEN, X. Medicina Tradicional Chinesa no Tratamento de Pacientes Infectados com o Novo Coronavírus 2019 (SARS-CoV-2): Uma Revisão e Perspectiva. Int J Biol Sci. 15 de março de 2020;16(10):1708-1717. doi: 10.7150/ijbs.45538. PMID: 32226288; PMCID: PMC7098036.
- WHO World Health Organization. OMS apoia medicina tradicional comprovada cientificamente. 04 Maio 2020. Disponível em: https://www.afro.who.int/pt/news/oms-apoia-medicina-tradicional-comprovada-cientificamente. Acessado em: 29/03/2022 às 16:34.
- KHAN, A. S.; AL-BALUSHI, K. Combating COVID-19: The role of drug repurposing and medicinal plants. Journal of Infection and Public Health 14 (2021) 495–503. https://doi.org/10.1016/j.jiph.2020.10.012
- MAFRA, R. Z.; LASMAR, D. J.; RIVAS, A. A. O consumo de remédios caseiros durante a pandemia do covid19 e a evidência da bioeconomia. Nota técnica DEA/UFAM | Volume 1 | Número 7 | Junho de 2020.
- COSTA, N. S. Levantamento de plantas medicinais utilizadas como tratamento alternativo frente a pandemia de covid-19 no município de Porto Velho-RO. Ciências biológicas e da saúde: pesquisas básicas e aplicadas 2 /Ruth Silva Lima da Costa, Natália da Silva Freitas Marques (org.). Rio Branco: Stricto Sensu, 2021. 316 p.: il. ISBN: 978-65-86283-50-1 DOI: 10.35170/ss.ed.9786586283501
- WANG, S. X.; WANG, Y.; LU, Y. B.; LI, J. Y.; SONG, Y. J.; NYAMGERELT, M.; WANG, X. X. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J Integr Med. 2020; 18(4): 275–283. https://doi.org/10.1016/j.joim.2020.04.001
- GOMES, P.W.P.; MARTINS, L.; GOMES, E.; MURIBECA, A.; PAMPLONA, S.; KOMESU, A.; BICHARA, C.; RAI, M.; SILVA, C.; SILVA, M. Antiviral Plants from Marajó Island, Brazilian Amazon: A Narrative Review. Molecules 2022, 27, 1542. DOI: https://doi.org/10.3390/molecules27051542
- BRASIL. Instituto Brasileiro de Geografia e Estatística IBGE; 2022. Acessado em 09/04/2022. Disponivel: https://cidades.ibge.gov.br/brasil/am/coari/panorama
- GUILHERME, A. P.; MOTA, A. B. S.; MOTA, D. S.; MACHADO, H. G.; BIUDES, M. S. Uso de índice de vegetação para caracterizar a mudança no uso do solo em Coari-AM. Soc. & Nat., Uberlândia, 28 (2): 301-310, mai/ago/2016. DOI: http://dx.doi.org/10.1590/1982-451320160209
- COSTA, J. R.; MITJA D. Uso dos recursos vegetais por agricultores familiares de Manacapuru (AM). Acta Amazonica. Vol. 40(1) 2010: 49 58.
- VARGAS-CORTEZ, T.; JACOBO-VELÁZQUEZ, D. A.; BENAVIDES, J. Therapeutic Plants with Immunoregulatory Activity and Their Applications: A Scientific Vision of Traditional Medicine in Times of COVID-19. JOURNAL OF MEDICINAL FOOD J Med Food 00 (0) 2022, 1–12. DOI: 10.1089/jmf.2022.0038

- KHUBBER, S.; HASHEMIFESHARAKI, R.; MOHAMMADI, M.; GHARIBZAHEDI, S. M. T. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutrition Journal (2020) 19:124. https://doi.org/10.1186/s12937-020-00643-8
- ROUF, R.; UDDIN, S.J.; SARKER, D. K.; ISLAM, M. T.; ALI, E. S.; SHILPI, J. A.; NAHARF, L.; TIRALONGO, E.; SARKER, S. D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology 104 (2020) 219–234. DOI: https://doi.org/10.1016/j.tifs.2020.08.006
- BRASIL. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Política Nacional de Práticas Integrativas e Complementares no SUS PNPIC-SUS / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica. Brasília: Ministério da Saúde, 2006. 92 p. (Série B. Textos Básicos de Saúde)
- MATTOS, G.; CAMARGO, A.; SOUSA, C. A.; ZEN, A. L. B. Plantas medicinais e fitoterápicos na Atenção Primária em Saúde: percepção dos profissionais. Ciência & Saúde Coletiva, 23(11):3735-3744, 2018. DOI: 10.1590/1413-812320182311.23572016
- CHAKRABORTY, A.; DEVI, B.; SANJEBAM, R.; KHUMBONG, S.; THOKCHOM, I. Preliminary studies on local anesthetic and antipyretic activities of Spilanthes acmella Murr. in experimental animal models. Indian J. Pharmacol. 2010, 42, 277–279.
- RANI, S.; MURTY, S. Antifungal potential of flower head extract of Spilanthes acmella Linn. Afr. J. Biomed. Res. 2009, 9, 67–69.
- ARORA, S.; VIJAY, S.; KUMAR, D. Phytochemical and Antimicrobial Studies on the Leaves of Spilanthes Acmella. J. Chem. Pharm. Res. 2011, 3, 145–150
- STEIN, R.; BERGER, M.; CECCO, B. S.; MALLMANN, L. P.; TERRACIANO, P. B.; DRIEMEIER, D.; RODRIGUES, E.; SILVA, W. O. B.; KONRATH, E. L. Chymase inhibition: A key factor in the anti-inflammatory activity of ethanolic extracts and spilanthol isolated from Acmella oleracea. J Ethnopharmacol. 2021 Apr 24;270:113610. doi: 10.1016/j.jep.2020.113610
- KONRATH, E. L.; BERGER, M.; ROSA, R. L.; SILVA, W. O. B. Acmella oleracea é uma planta medicinal que diminui a atividade da quimase, estresse oxidativo e inflamação: possível papel no tratamento adjuvante do COVID-19. Revista de Alimentos Medicinais.novembro 2021.1243-1244. http://doi.org/10.1089/jmf.2021.0055
- ABDUL, R. R.; JAYUSMAN, P. A.; MUHAMMAD, N.; MOHAMED, N.; LIM, V.; AHMAD, N. H.; MOHAMAD, S.; ABDUL HAMID, Z. A.; AHMAD, F.; MOKHTAR, N.; SHUID, A. N.; MOHAMED, I. N. Potential Antioxidant and Anti-Inflammatory Effects of *Spilanthes acmella* and Its Health Beneficial Effects: A Review. Int J Environ Res Public Health. 2021 Mar 29;18(7):3532. doi: 10.3390/ijerph18073532. PMID: 33805420; PMCID: PMC8036807.
- SILVA, E. D.; MATIAS, S. M. S.; BARROS, B. G. A.; OLIVEIRA, F. J. V. A importância do uso das plantas medicinais, frente ao cenário atual da pandemia causada pelo SARS-CoV-2. c, v. 10, n. 11, e399101119834, 2021 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i11.19834

- VÁSQUEZ, S. P. F.; MENDONÇA, M. S.; NODA, S. N. Etnobotânica de plantas medicinais em comunidades ribeirinhas do Município de Manacapuru, Amazonas, Brasil. ACTA AMAZONICA, Vol. 44(4) 2014: 457 472. http://dx.doi.org/10.1590/1809-4392201400423
- GHIZI, A.; MEZZOMO, T. R. Uso de Plantas Medicinais e Satisfação de Consumidores de Lojas de Produtos Naturais do Mercado Municipal de Curitiba, PR. Revista Fitos, Rio de Janeiro, Vol. 9(2): 73-159, Abr-Jun 2015. DOI 10.5935/2446-4775.20150012
- PEREIRA, K.; LIMA, M. A.; SOUZA, G. O. Plantas nativas da região amazônica: uma revisão integrativa acerca da sua aplicação na fitoterapia. Research, Society and Development, v. 10, n. 14, e313101422333, 2021. DOI: http://dx.doi.org/10.33448/rsd-v10i14.22333
- AMAZONAS, L. F.; FIGUEIREDO, E. F. G. Uma revisão sobre o uso das plantas medicinais como tratamento da COVID-19 e a importância do profissional farmacêutico no estado do Amazonas. Research, Society and Development, v. 10, n. 15, e406101523451, 2021. DOI: http://dx.doi.org/10.33448/rsd-v10i15.23451
- ODEBUNMI, C. A.; ADETUNJI, T. L.; ADETUNJI, A. E.; OLATUNDE, A.; OLUWOLE, O. E.; ADEWALE, I. A.; EJIWUMI, A. O.; IHEME, C. E.; AREMU, T. O. Ethnobotanical Survey of Medicinal Plants Used in the Treatment of COVID-19 and Related Respiratory Infections in Ogbomosho South and North Local Government Areas, Oyo State, Nigeria. Plants (Basel). 2022 Oct 10;11(19):2667. doi: 10.3390/plants11192667. PMID: 36235532; PMCID: PMC9573491.
- KHAN, J.; SAKIB, S. A.; MAHMUD, S.; KHAN, Z.; ISLAM, M. N.; SAKIB, M. A.; EMRAN, T. B.; SIMAL-GANDARA, J. Identification of potential phytochemicals from *Citrus Limon* against main protease of SARS-CoV-2: molecular docking, molecular dynamic simulations and quantum computations. J Biomol Struct Dyn. 2022;40(21):10741-10752. doi: 10.1080/07391102.2021.1947893. Epub 2021 Jul 19. PMID: 34278965.
- HAYATI, R. F.; BETTER, C. D.; DENIS, D.; KOMARUDIN, A. G.; BOWOLAKSONO, A.; YOHAN, B.; SASMONO, R. T. [6]-Gingerol Inhibits Chikungunya Virus Infection by Suppressing Viral Replication. BioMed Research International Volume 2021, Article ID 6623400, 7 pages https://doi.org/10.1155/2021/6623400
- AL-HATAMLEH, M. A.I.; HATMAL, M. M.; SATTAR, K.; AHMAD, S.; MUSTAFA, M. Z.; BITTENCOURT, M. C.; MOHAMUD, R. Antiviral and Immunomodulatory Effects of Phytochemicals from Honey against COVID-19: Potential Mechanisms of Action and Future Directions. Molecules 2020, 25, 5017; doi: 10.3390/molecules25215017
- ALI, A. M.; KUNUGI, H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021, 26, 1232. https://doi.org/10.3390/molecules26051232