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Abstract
Over the past several decades, a rich series of experiments has repeatedly verified the quantumnature
of superconducting devices, leading some of these systems to be regarded as artificial atoms. In
addition to their application in quantum information processing, these ‘atoms’ provide a test bed for
studying quantummechanics inmacroscopic limits. Regarding the last point, we present here a
feasible protocol for directly testing time reversal symmetry (TRS) through the verification of the
microreversibility principle in a superconducting artificial atom. TRS is a fundamental property of
quantummechanics and is expected to hold if the dynamics of the artificial atom strictly follow the
Schrödinger equation.However, this property has yet to be tested in anymacroscopic quantum
system. In the end, as an application of this work, we outline how the successful implementation of the
protocol would provide the first verification of the quantumworkfluctuation theoremswith
superconducting systems.

1. Introduction

Few concepts in nature are so simple and yet as profound as those related to symmetry. Indeed, the beauty of its
manifestations has led to themodern view that principles of symmetry dictate the forms of nature’s fundamental
laws [1], embodying striking implications that range from conservation principles to the classification of
elementary particles.

Time reversal symmetry (TRS) is a prominent example that underlies a large variety of phenomena. Inmany
instances, the fundamentalmicroscopic laws of nature are invariant under time reversal transformations. This
invariance is at the heart ofmicroscopic reversibility (microreversibility) [2], which itself is crucial to powerful
concepts such as the principle of detailed balance [3], thefluctuation-dissipation theorem [4], andfluctuation
relations (e.g. Tasaki–Crooksfluctuation theorem) [5], to name a few.

Yet TRS is not an exact symmetry of nature: in the very least, it is observed to be broken in elementary
processes that involve theweak interaction [6, 7], andmoreover, there is evidence to suggest that itmust also be
violated over amuch broader range of conditions in order to account for the prevalence ofmatter over
antimatter in the universe [8, 9].Manifestations of such violations potentially herald newphenomena and are
thus the subject of extensive experimental investigations in both atomic and particle physics [9].

While considerable effort has been invested in the search for violations of TRS in the interactions of
fundamental particles, experiments have not been conducted to investigate TRS in the physics of quantum
systems at themacroscopic scale. Specifically, the question thus arises: once one properly takes into account
dissipative and decoherence effects, wouldTRS be observed in, say, amesoscopic or even amacroscopic device?
On the face of it, there is no reason to expect that it breaks down: we know themicroscopic laws of quantum
mechanics can be applied to at least some (properly prepared)macroscopic systems.Nonetheless, if it does
break down, thismust reflect newphysics, which could have potential connections to open questions like the
nature of the quantum-classical divide [10, 11].
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With these thoughts inmind, we delineate here a protocol for directly testing TRS in an artificial atom that is
based upon a superconducting quantumdevice (SQD).While similar types of SQDs are known for their use as
qubits in the development of quantum computing architectures [12, 13], we propose to utilize an SQD as a
multi-level artificial atom to test a specificmanifestation of TRS, namely the principle ofmicroreversibility.

2.Microreversibility and the artificial atom

Generally speaking, the principle ofmicroreversibility states that for each process (or trajectory in state space)
that is accessible to a given system, there is an equally probable time-reversed process that the system can
undergo [2]. In the context of quantummechanics, itmanifests in a simple relationship for the transition
probabilities between any two states of a systemwhoseHamiltonian has undergone a time-dependent
transformation [5], namely that

P P[ ] [ ˜], (1)m n n mλ λ=

where P P( )m n n m∣ ∣ is the probability for the system tomake a transition to state m n( )∣ 〉 ∣ 〉 when it starts in state

n m( )∣ 〉 ∣ 〉 . Here λ represents the forward-in-time transformation of the system’sHamiltonian and λ̃ represents
themotion-reversed process (figure 1(a)). It is important to note that the standard presentations of TRS (and
consequentlymicroreversibility) are done in the context of non-driven conservative systems [2].However, as
shown in appendix A, themicroreversibility principle can be readily adapted to include drivenHamiltonians,
where the key element for recovering the standard relations consists in the temporal inversion of the
Hamiltonian’s temporal sequence [5].

Equation (1) is a fundamental and general result for non-dissipative quantummechanical systems, deriving
from the invariance of a system’sHamiltonian under transformations by the antiunitary time-reversal operator
Θ [2, 5]. Thus it should hold true for all quantum systems inwhich TRS ismaintained. Naively, onewould
expect this to includemacroscopic systems forwhich the laws of quantummechanics have been shown to apply,
such asmechanical quantum systems [14, 15] and superconducting cavities, circuits and devices [12, 13, 16–18].
However, a direct test of TRS in these systems has yet to be performed.

Concerning the role played by themacroscopic nature of the system, it is worthy ofmentioning that the test
of TRSwe envision here has a different perspective than those conducted in other condensedmatter systems. In
fact, while herewewant to address the emergence of TRS in quantum systemswhose dynamics necessarily have
to be described by the superposition ofmacroscopically distinct states or, at least, by a collective variable which
obeys quantummechanical laws, other studies have utilizedmacroscopic systems in order tomagnify possible
effects due tomicroscopic time-reversal violations [19].One example is the search for permanent electric dipole
moment (EDM) of elementary particles [20] throughmeasurements of the bulkmagnetization of amacroscopic
collection of spins [21, 22]. Such experiments exploit themacroscopic size of the sample to significantly improve
the signal acquisition, which is used to set limits on the existence of such permanent EDMs, allowing one to draw
conclusions about the fundamental time-reversal invariance of the constituent elementary particles; by contrast,
in our proposal, we conceive testing time-reversal invariance in the dynamics of amacroscopic degree of
freedom representing the collective behavior of the constituent particles.

Aswe shownow, it should be technologically feasible to perform a test ofmicroreversibility, and hence TRS,
via equation (1), in an artificial atombased upon an SQD,whose quantumdynamics is associatedwith circuit
excitations, characterized by superpositions of several charge states.

The SQDhere is a Cooper-pair box (CPB), which in our proposal consists of a nanofabricated
superconducting island (or box) that is formed by a pair of Josephson junctions in aDCSQUID configuration
(figure 1(b)). The system iswell-characterized by the followingHamiltonian [23]
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Thefirst termon the right-hand side of equation (2) represents the electrostatic energy of theCPB for a given
charge state n (a discrete index labelling the number of Cooper-pairs on the island) and continuous polarization
charge ng on a nearby electrode; the pre-factor EC is the total charging energy of theCPB. The second termon the
right in equation (2) represents themixing of charge states due to the Josephson coupling of each junction.Here

E i( ) {cos( ) sin( )}J J
0 0

 Φ π α π≡ +Σ
Φ
Φ

Φ
Φ

is the total Josephson energy of the two junctions; observe that ( )J Φ∣ ∣
is periodic in appliedmagnetic fluxΦwith a period of oneflux quantumΦ0. To account for asymmetry between
the junctions, we define the parameter E E E( )J J J1 2α ≡ − Σ , where E E EJ J J1 2≡ +Σ is the sumof the individual
junction Josephson energies EJ1 andEJ2.
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It is important to note that numerous experiments over the past 15 years have shown that the two parameters
Φ and ng in equation (2) can be tuned in situ for experimental implementation of unitary operationswith the
CPB [12, 13]. The proposal we put forth for testing equation (1) exploits this coherent control. Specifically, it
relies upon the adjustment ofΦ and ng tomodify the characteristics of the CPB’s energy eigenstates. To
understand how thismight work, observe that, whenΦ is adjusted so that EJ∣ ∣ is relatively small (i.e

E(4 ) 1J Cβ ≡ ∣ ∣ ≪ ), and ng is adjusted near an integer, the eigenstates of the system are essentially the charge
states n∣ 〉. On the other hand, if 1β ≳ , or ng is near a half-integer, then the eigenstates are no longer well-defined
charge states, but instead areweighted superpositions ofmultiple values of n∣ 〉. Thus, through the rapid tuning
ofΦ and ng, the CPB can be forced to undergo unitary evolution between various superpositions of charge states.
Through repeated projectivemeasurements of the CPB’s charge state before n( ) and after m( ) identical forcing
protocols, the transition probabilities Pm n∣ between any given pair of charge states n∣ 〉 and m∣ 〉 in the spectral
decompositions of the initial and final states can be constructed.

At this point it should be stressed that the kind of quantum states we envision using in our protocol to test
TRS are not strictly speakingmacroscopic in the same sense as the so-called ‘cat states’ [24, 25].Whereas the
latter are also present in superconducting devices when one studies, say,macroscopic quantum coherence in
flux qubits or engineers entanglement between a superconductingmicrowave cavity and transmon qubit [26],
the quantum state of the CPB in our protocolmay involve the superposition of only a few charge states.
Nevertheless, this device ismacroscopic in the sense that it is an engineered system consisting of billions of

Figure 1. Schematics of TRS for driven (non-autonomous) quantum systems and the artificial atom. (a)While the unitary time
evolution of the forward-in-time protocol takes the initial state iΨ∣ 〉 to the evolved state U [ ]f F iΨ λ Ψ∣ 〉 = ∣ 〉, themotion reversed state

follows the dynamics U [ ˜]f
B

i B fΨ Θ Ψ λ Θ Ψ∣ 〉 ≡ ∣ 〉 = ∣ 〉, whereΘ represents the time reversal operator. In this generalization, t( )Φ
and n t( )g represent time-dependent parameters in the system’sHamiltonianwhich are tuned to change the state of the system. If a
systemparameter depends upon an appliedmagnetic field, then the fieldmust be inverted tomove from the forward to the backward
protocol as shown schematically with t( )Φ . (b) SQDbased upon aCPB, used to implement the artificial atom in our protocol. The
systemdynamics can be controlled by adjusting themagnetic flux t( )Φ through the loop and the charge n t C V t e( ) ( ) 2g g g= on a
nearby electrode, whereCg is the capacitance of theCPB to the electrode andVg(t) is an externally controlled voltage. The device
features two Josephson junctions (red boxes), arranged in parallel, interrupting the loop. The physical dimensions assumed here are
such that the geometrical inductance is negligible compared to the Josephson inductances, leading to theHamiltonian equation (2),
where: E E2 3GHz, 2 10GHzC Jπ π= × = ×Σ  , and 0.05α = .
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atoms; and it is thus remarkable that a single collective variable still describes the dynamics of the device through
genuine superpositions of its eigenstates.Moreover, it is alsoworthmentioning that although these states are
susceptible to the influence of external interactions, one can operate the systemunder conditions(see below)
which strongly reduce it and, therefore, safely describe its dynamics as unitary.

3. Forward and backward protocols

Our specific proposal to test equation (1) is outlined infigures 2(a)–(d). It involves the application of two
separate protocols to theCPB tomeasure P [ ]m n λ∣ and P [ ˜]n m λ∣ , whichwe refer to as the forward (λ) protocol and

the backward (λ̃) protocol respectively. For process λ, the CPB is taken through the following sequence of steps:
(1)first, with the external physical parameters set such that the energy eigenstates are definite charge states (i.e.

1β ≪ ), the CPB is initialized in its ground state and driven by a pulse sequence consisting of the simultaneous
application of time-varying signals n t( )g and t( )Φ (figures 2(c)–(d)), causing it to repeatedly pass through
avoided-level crossings in its energy spectrum (figure 2(e)). At each such crossing, the CPB can undergo a
Landau–Zener transition [27, 28] between the adjacent states involved in the crossing, which leaves it in a

Figure 2.Protocol scheme and system’s eigenenergies versus time. (a–b)Outline of the forward and backward protocols. The first
step, the preparation protocol, is used to construct an initial ensemble of several charge states. After the firstmeasurement is
performed, a driving protocol is used to implement a forward and backward-in-time evolution, which is followed by another charge
measurement. Aftermany runs, the transition probabilities between the allowed initial and final states can be constructed. (c–d) The
time forward (solid line) and backward (dashed line) drive protocols for the gate charge ng andfluxΦ. In order tomaintain the time
reversal symmetry, the sign of themagneticfieldmust be inverted. (e) The eigenenergies of the CPB as function of time the driving
protocol (the ground state energy is set zero). It is worth noticing the presence of several avoided level crossings, where Landau–Zener
transitions are induced. The eigenenergies are calculated for the same parameters stated infigure 1.
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superposition of those two states. For the parameters considered here, after traversing themultiple crossings
shown infigure 2(e), theCPB state should be in a superposition of asmany as 5 charge states. It should be noted
that at the end of the sweep, ng andΦ are brought back to their initial values so that once again 1β ≪ . (2) At this
point, immediately after the initial superposition state is prepared, a projectivemeasurement of the CPB’s charge
ismade and recorded as state n.We refer to those steps as the preparation protocol (figures 2(a)–(b)), since they
provide an effective way for preparing an initial ensemble of charge states which can be used formeasuring Pm n∣
-in our case, its composition is given in (figure 3(a)). (3)Next, after the collapse to the charge state n∣ 〉, a second
pulse sequence identical to the sequence in step (1) is applied, again preparing theCPB in a superposition of
charge states. (4) Finally, a second projectivemeasurement of theCPB charge state ismade and recorded asm.
After step (4), the CPB is allowed sufficient time to relax back to its ground state, after which time λ is repeated.
In thismanner, repeating λmany times, the transitions probabilities P [ ]m n λ∣ can be constructed. Figure 3(b)
illustrates a histogramof P [ ]m n λ∣ for this process calculatedwith numerical simulations using equation (2 and
the pulse sequences infigures 2(c)–(d) (see appendix B).

To implement the time-reversed process λ̃ and construct the corresponding transition probabilities P [ ˜]n m λ∣ ,
the same general procedure as outlined in the previous paragraph is followed.However, it is necessary to change
two physical quantities for the time-reversed process: first, the sign of themagnetic flux applied to theCPBmust
be reversed to account for the reversal ofmomentumof themagnetic field’s source charges. Observe that such
inversion leads to ( ) ( )J J

* Φ Φ− = . Then, since the time reversal operator is an antilinear operator (see
appendix A), the systemHamiltonian is left invariant when taking the time reversal transformation together
with themagnetic field sign change. Second, one should also invert the sign of the appropriate canonical variable
of the CPBduring λ̃ , which in this case turns out to be the effective phase differenceφ across theCPB’s
Josephson junctions. Even thoughwe have already found that theHamiltonian is left invariant under the joint
action of the time reversal operator and themagnetic field inversion, this stepmust be done in order to preserve
the time-reversal invariance of the canonical charge-phase commutation relations, since charge is considered an
invariant under TRS. Furthermore, not performing such a transformationmakes the time reversal
transformation of the supercurrent density ill defined (see appendix A). In our particular case, inverting the sign
ofφ togetherwith the antilinear transformation due to the time reversal operation has the effect of conjugating
EJ in theHamiltonian equation (2). Therefore, togetherwith as onewould expect, applying those two changes
leaves the systemHamiltonian invariant. In addition, sincewe have a time-dependentHamiltonian (non-
autonomous system) [5], we also have to revert the forcing protocol applied to the system, i.e.,

t t( ) ( )Φ Φ∣ ∣ → ∣ − ∣ and n t n t( ) ( )g g→ − .With these changes, numerical simulations of the backward protocol
indeed predict that equation (1) should hold (figure 3(c).

4. Conditions for unitarity and themeasurement protocol

To claim a true test of TRS through verification ofmicroreversibility (equation (1)), it is essential that the CPB’s
time evolution be predominantly unitary during the λ and λ̃ protocols. This requires that the protocols be
implemented on a time scale τp that ismuch faster than any environmental effects. By applying themethodology
introduced by Burkard–Koch–DiVincenzo [29], onefinds that the figure ofmerit for quantifying such effects in

Figure 3.Compiled probability distributions for preparation, forward and backward protocols. (a) The charge ensemble distribution
(%) prepared after starting the system in the ground state and performing the preparation protocol. For the parameters considered
here, the spectral decomposition obtained is predominantly ( 99.9%)> comprised of charge states { 2, 1, 0, 1, 2}− − . (b–c) The
probability transitions Pm n∣ (%)between the initial n∣ 〉 andfinal m∣ 〉 charge states determined for the forward λ (backward λ̃)
protocol. The leakage probability of leaving the charge subspace { 2, 1, 0, 1, 2}− − is determined to be 0.1%≲ . Observe that
microreversibility demands comparing columns of (b) with rows of (c). The spectral decomposition and transition probabilities are
calculated for the same parameters stated infigure 1.
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our protocol is the relaxation timeT1. From those estimations, it can be shown that the decoherence timeT2 is
determined byT1 (T T22 1∼ ), except for the regime 1β ≪ , which corresponds to a tinywindowof 0.2 ns∼ in
the protocol, duringwhichT T0.022 1∼ (see appendix C). Thus, even for amodestT1 of 50 ns, which is readily
achievable with current technology [30], the designed protocol with 1nspτ ∼ (figures 2(a)–(b)) should provide
a satisfactory unitary evolution.

It is also important that the projective chargemeasurements aremadewithin a time-scale Tmeas 1τ ≪ . That
T1 sets the relevant time-scale can be understood by realizing that decoherence effects becomes innocuous if one
chooses projectivemeasurements in the eigenenergy basis, since such effects would not lead to changes in the
system state eigenenergy spectral decomposition. Notice from figure 2(d) that our protocol complies with this
case: at the end of a protocol, when a projectivemeasurement of charge ismade, the CPB is biased so that the
charge states are quasi-eigenenergy states of the system (i.e. 1β ≪ ). Indeed, for the parameters chosen here
(figure 1), each eigenenergy state has a probability larger than 99.8% of being found in a specific charge state.
Hence thesemeasurements should also each be performed on a time scale 10 nsmeasτ ≲ . A natural and viable
possibility for performing such high-speed, high-sensitivity chargemeasurements would be to use a
superconducting single electron transistor (SSET) [31–33].When operated in RFmode, SSETs can have
bandwidth in excess of 100MHz [31] and charge detection sensitivity approaching the limit allowed by
quantummechanics [32, 33]. Indeed, assuming the detection sensitivity achieved in [32], it should be possible to
resolve theCPB’s charge state with an error of 0.5%∼ in a time scale of t 20 nsmeas ∼ (see appendixD). Such an
error sets the precision limit for our proposal, since those due to the relaxation and dephasing processes impose a
loss of statefidelity of the order of t T1 exp[ d

0 (1,2)
p∫− −

τ
t( )]

0

p∫∼ −
τ

t T td ( )(1,2) , for the short gate times

under consideration. UsingT1 andT2 time dependence determined [29] for our protocol, onefinds that the state
fidelity degrades by 0.4% (relaxation) and 0.3%(dephasing), by setting the conservativeT1minimumvalue as
50ns.

5.Gibbs ensemble emulation and quantumworkfluctuation relation

In addition to testing TRS in newmacroscopic quantum limits, the investigations that we have outlined here
would have implications for at least one contemporary avenue of investigation: quantumwork fluctuation
theorems4. Indeed, to derive these theorems, it is necessary tomake two hypotheses: themicroreversibility
principle and the assumption that the system is initially in thermal equilibrium at temperatureT (aGibbsian
distribution) [5].

One paradigmof suchworkfluctuation theorems is the quantumBochkov–Kuzovlevfluctuation theorem
between the forward and backwardwork probability distribution functions (PDF) [34]

P W

P W

[ ; ]

[ ; ˜]
e . (3)W k TB

λ
λ−

=

Such a relation states that, when leaving an initial thermal equilibrium state, the systemdynamics features a
probability bias in favor of events for whichwork is done on the system (W 0> ). Thus equation (3) can been
seen as amanifestation of the second law of thermodynamics, since it shows that energy releasing events are
exponentially suppressed compared to energy absorbing events. The relation (3) resembles verymuch the
Tasaki–Crooks theorem [5], for which the bias factor is W F k Texp[( ) ]BΔ− , where FΔ is the free energy
difference between equilibrium thermal states associatedwith the system initial and final conditions. Those
theorems are derived assuming different definitions of work, where one (Bochkov–Kuzovlev) associates work
with the change in energy of the systemunforcedHamiltonian, and the other relates it to changes in energy of the
total systemHamiltonian (see appendix E). Observe that both theorems give the same result for cyclical
processes such as the protocol that we have proposed in this work. It is important to stress that fluctuation
theorems like equation (3) are capable of determining the relative frequencywith each of such events happen,
which is a level of detail not provided by the standard thermodynamics approach of obtaining information from
ensemble averages. Such a feature has been explored to understand and try to design quantum thermal
machines [36].

An immediate consequence of equation (3) is the Bochkov-Kuzovlev equality e 1W k TB〈 〉 =− [34], which
clearly shows the power and the generality of the results derived from fluctuation theorems: independently of the
specifications of the driving protocol and the characteristics of the system, thework distribution of any driving
protocol applied to any system initially in thermal equilibrium at temperatureT is a randomdistribution, having
the same expected value for the functional W k Texp( )B− .

4
Byworkfluctuation theoremswemean relations between forward and backward PDF of physical quantities (e.g. work), for which the

microreversibility principle is a necessary condition.
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To investigate quantum fluctuation theorems, like equation (3), using an SQDwould require running an
experiment at very low temperature (T 30mK∼ ), inwhich case the SQD’s initial thermal state is predominantly
the population of the system ground state. Unfortunately this leads to very poor statistics for equation (3). In
principle, this problem could be solved by just increasing the system temperature, but in order to obtain a
Gibbsian distribution comprised of a reasonable number of states, e.g., 5 states, one should perform the
experiment atT 1K∼ , at which temperature the SQDcould no longer bewell-approximated as a non-
dissipative quantum systemundergoing purely unitary evolution.

Here, we envision a solution to this problemby constructing a thermal state out of the initial charge
ensemble obtained in the preparation protocol, whichwe name an emulation of an initial Gibbs ensemble. The
procedure consists of randomly selecting the outcomes of the firstmeasurement following the probability rule
imposed by the Boltzmannweight H k Texp( )B− . If the number of experimental events is sufficiently large,

such distribution can be obtained for a given temperatureT. Indeed, asfigure 4 and table 1 show, for N 106=
events, one can emulate aGibbs ensemble comprised of those 5 states for temperatures above 1K, leading to 21
possible different values of work, and verify with a small statistical error due to the sampling, which scales as

N1∼ , the quantumBochkov-Kuzovlev theorem and equality (see appendix E).
Considering that, as presented to date, the system evolution in a quantumfluctuation theorem verification

has to be disconnected from its environment during the forcing protocol5, if one is not capable ofmonitoring the
environment’s state, the role played by the initial Gibbs ensemble in a such experimental verification is just to
provide a set of initial states with their frequencies of appearance weighted by the Boltzmann factor—no

Figure 4.Work probability distribution functions for the forcing protocol (figure 2), obtained from emulatedGibbs ensembles
comprised of 5 states and generated from106 events. (a–c)Work PDFs for the forward P W( ( , ))λ and backward P W( ( , ˜))λ−
protocols assuming temperatures of T 1K, 10K, and 50K= . As depicted in panels (a–c), the higher the temperature, the closer
become the forward and backwardwork PDFs. (d) The logarithmic plot of equation (3) obtained from emulatedGibbs ensembles for
different temperatureT values. Dot symbols are the obtainedwork PDF ratios and straight lines are guides to the eye representing the
right hand side of equation (3), which slopes are determined by the inverse of temperature.

5
As amatter of fact, such a condition can be relaxed if one considers evolutions due to unital quantum channels, see [35].
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system-environment correlation ismaintained during single runs and between different runs of the experiment.
Thus, the ensemble emulation can be viewed playing the same role as a truly initial Gibbs ensemble in a quantum
fluctuation theorem verification: a simple provider of uncorrelated initial states, the frequency of which is
weighted by a know factor.Moreover, the emulation program can providemeans to explore SQDs as quantum
thermalmachines [36, 37].

6. Conclusions

In the present paper we have created a protocol for the preparation, time evolution andmeasurement of the
quantum state of an SQD in order to test TRS in a new regime, namely inmacroscopic quantumdynamics, using
current technology and techniques. Our numerical simulations show that the repeated application of this
protocol to the SQDwould enable verification of themicroreversibility principle in an artificial atom.

Aside frombeing of fundamental importance to both equilibrium and non-equilibrium statistical
mechanics, such a result would have the immediate consequence of verifying quantum fluctuation theorems via
the construction of work PDFs. This has been the subject of intense interest since the first proposals for
determining thework PDF in quantum systemswere put forth [38, 39]. Recently thefirst experimental
verifications have been accomplished in nuclearmagnetic resonance [40] and ion trap [41] systems, but yet
remaining an outstanding task for artificial atoms. In addition, several works have put forward the idea of
inferring thework PDFusing approaches that eliminate either the need of implementing successive projective
energymeasurements or the requirement of having an environment-isolated systemdynamics— such as using
Ramsey interferometry performed on an ancilla system [42–44], single projectivemeasurements of observables
[45], quantum jumpmeasurements of a system and its environment in open quantum systems [46, 47], or
implementing the PositiveOperator ValuedMeasure (POVM) technique [48].Notwithstanding that those
approaches can represent great improvement for determining thework PDF inmany systems, when considering
the dynamics ofmacroscopic quantum states, the demand for the capability of either i)maintaining an auxiliary
quantum system coherently coupled to the systemof interest during themeasurement protocol [42–44, 48], ii)
restricting the investigation to sudden quench processes of specific initial states [45], or iii)monitoring the
environment’s state in order to analyze the system-environment energy exchange [47],may constitute
requirements as difficult as the original task of performing successive projective energymeasurements, inwhich
our proposal is based on.

Although one could argue that our results are formally expected, their experimental observationwould be of
utmost importance and, apart fromwhat we have said above, the reason is threefold. Firstly, it would provide the
first direct test of themicroreversibility of transitions between the states of amacroscopic quantum system.
Secondly, it could further our understanding of how collective variables couple to their environment and lead to
new techniques to enhance the reliability of decoupling from environmental degrees of freedom. Finally, if
microreversibility is indeed observed in this kind of system itmay constitute additional possible evidence of the
applicability of quantummechanics beyond its original realm.
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Table 1.Emulation for 106 events.

Temperature (K) 1 e W k TB− 〈 〉−

1 ( 0.4 5.8) 10 2− ± × −

10 ( 2.7 7.9) 10 4− ± × −

20 ( 2.1 4.2) 10 4− ± × −

30 ( 0.6 3.0) 10 4− ± × −

40 ( 0.1 2.2) 10 4− ± × −

50 ( 0.3 1.7) 10 4− ± × −
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AppendixA. TRS in driven superconducting devices

A.1. The time reversal operation
By definition, the effect of the time reversal operatorΘ inmechanical systems is to reverse the linear P( ) and
orbital angular L( )momentawhile leaving the position X unchanged, i.e., P P1Θ Θ = −− , L L1Θ Θ = −− , and

X X.1Θ Θ =− For consistency, in order to extend the notion of time reversal for systemswith spin variables, the
spin angularmomentum S must transform like the orbital angularmomentum, i.e. S S1Θ Θ = −− .

As for the electromagnetic phenomena, it is well known that theMaxwell equations and the Lorentz force are
invariant under time reversal [49]. By choosing the convention that the electric charge is an invariant under time
reversal, the TRS arises provided that the electric E andmagnetic B field transformations are given by

E E B Band .→ → −
In addition, the current density jmust reverse sign, i.e., j j→ − , which also conforms to its definition in terms of
charge times velocity.

A key feature of the time reversal operatorΘ is to be an antilinear operator. Such a property can be verified by
inspection of the transformation of the canonical commutator, which reverses sign under TRS

X P X P i, , .1
,

1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Θ Θ Θ δ Θ= − =α β α β α β
− −

Therefore it is necessary ofΘ to be an antilinear operator, i.e. i i1Θ Θ = −− , in order to preserve the commutation
relations6.

A.2. Superconducting devices under time reversal
The standard approach to quantize the dynamics of a superconducting circuit consists in elevating flux and
charge variables to the status of operators [12, 23]. Indeed, it can be shown that the superconducting phase
differenceφ across a Josephson junction and the chargeQ on the junction capacitance are canonically
conjungate variables [29]. Therefore, it follows from the canonical quantization that the conjugated variablesφ
andQ should obey commutation relations as

Q i
2

, .0⎡
⎣⎢

⎤
⎦⎥

Φ
π

φ = 

Since fundamental commutation relations should be preserved under time reversal, itmust be determined
which conjugated variablemust change sign under time reversal, once that i i1Θ Θ = −−  . If one follows the
standard approach of considering charge as invariant under time reversal [49], then the transformation

Q Qand , (4)1 1ΘφΘ φ Θ Θ= − =− −

complies with the requirements. It should be appreciated that the above transformation is consistent with the
expectation regarding the transformation of currents. Indeed, the supercurrent density can bewritten as

{ }e

m

e

m
j Ai

2
* *

2
,s

e

2

e

2 ψ ψ ψ ψ ψ= − −

where e2 and m2 e are respectively the charge andmass of a Cooper pair of electrons, A is the vector potential of
anymagnetic field applied, andψ represents thewave function of themacroscopic state occupied by theCooper
pair condensate [50]. Then, if onewrites t t tr r r( , ) ( , ) exp[i ( , )]ψ ψ ϕ= ∣ ∣ , it is found that

e

m

e

m
j A

2
.s

e

2
2

e

2ψ ϕ ψ= −

Consequently, if charge is taken invariant and the vector potential A reverses sign, js will only conformwith the
expectation of reversing sign under time reversal if the sign of the supercurrent phaseϕ is changed.

The time reversal ofHamiltonian (2) is obtained according to the transformation rule equation (4). Since the
charge state n∣ 〉 is an eigenstate ofQwith real eigenvalue n, the invariance ofQunder time reversal implies that
Q n Q n n n( ) ( )Θ Θ Θ∣ 〉 = ∣ 〉 = ∣ 〉 . Noticing thatQhas non-degenerate eigenstates, it follows that nΘ ∣ 〉 and n∣ 〉
represent the same charge state and hence can differ atmost by a constant phase, which can be set as 1+ without
loss of generality. The action of the antiunitary operatorΘ on the charging energy and Josephson coupling leads
respectively to: E n n( )C g

2Θ − E n n( )C g
2Θ= − and ( )JΘ Φ ( )J

* Φ Θ= 7. Thus, without inverting the sign of

6
That is also truewhen considering the commutation relations between the components of angularmomentum, or between components of

X and L or P and L .
7
In order to directly verify the effect of the time reversal operation inφ forHamiltonian equation (2), it is instructive looking at the

Josephson interactionHamiltonianwithout choosing a specific representation, which reads H ( ) (J JΦ = − ( )e J
i *Φ +φ ( )e ) 2iΦ φ− and

hence H ( ) (J J
1 *Θ Φ Θ = −− ( )e J

i( ) Φ +φ− − ( )e ) 2i( )Φ φ− . Therefore time reversingφ together with the antilinear transformation due to
the time reversal operation has the effect of conjugating EJ in equation (2).
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the appliedmagnetic field, one reaches the transformation

H H E n n n n

n n n n

4 ( )

( )

2
1

( )

2
1 ,

C

n

g

n

J J

1 2

*⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

 

∑

∑

Θ Θ

Φ Φ

→ = −

− + + +

−

which only restores the originalHamiltonianwhen one reverses the appliedmagnetic field, since under this
operation ( ) ( ) ( )J J J* *  Φ Φ Φ→ − = .

A.3. TRS of driven systems
Despite the standard presentation of TRS as a feature of non-driven (autonomous) systems [2], the concept of
time-reversal invariance and the principle ofmicroreversibility can be discussed inmore general cases, where the
systemdynamics is driven by a time-dependent force. Aswe showbelow, the inversion of theHamiltonian’s
temporal sequence is of prime featurewhen discussing TRS in driven systems (see [5] for amore detailed
presentation).

The time reversal transformation of the Schrödinger equation yields

H t t
t

t
t

t

H t t
t

t

( ) ( ) i ( ) i ( ) ,

( ) ( ) i ( ) ,

1

rev rev rev

⎜ ⎟⎛
⎝

⎞
⎠Θ Θ Θ ψ Θ ψ Θ ψ

ψ ψ

= ∂
∂

= − ∂
∂

⇒ = ∂
∂

−  



with H t H t( ) ( )rev
1Θ τ Θ≡ − − and t t( ) ( )revψ Θ ψ τ∣ 〉 ≡ ∣ − 〉. Observe that H t( )rev and t( ) revψ∣ 〉 represent

the systemmotion-reversedHamiltonian and state, respectively.
It is clear, then, that ifH is invariant under time reversal, i.e., H t t[ , ( )] 0,Θ = ∀ , the time evolution of the

motion-reversed state t( ) revψ∣ 〉 is determined by the time-reversed image ofH(t), satisfying initial condition
related to the state ψ∣ 〉, namely

(0) ( ) .revψ Θ ψ τ=

A system is said to be invariant under TRS if H t t[ , ( )] 0,Θ = ∀ . For a such system, the time evolution operator
and itsmotion-reversed are related through a simple identity [5], namely,U t U t( , 0) ( , )† 1

revΘ τ τ Θ= −− ,
which allows one to derive themicroreversibility principle for driven systems:

m U n n U m

n U m

( , 0) ˜ ( , 0) ˜

˜ ( , 0) ˜ , with ˜ ,

† 1

rev

τ Θ τ Θ
τ α Θ α

=
= ≡

−

for all n and m∣ 〉 ∣ 〉. Equation (1) represents a short notation of the above statedmicroreversibility principle,
where λ and λ̃ are used to represent the system forward-in-timeHamiltonian’s temporal sequence and its
motion-reversed transformation, respectively.

Appendix B.Numerical simulations

The system’s state time evolutionwas determined through numerical simulations of the unitary time-ordered
evolution operator due to theHamiltonian equation (2). The calculationwas performed taking into account an
N=51 charge dimensional Hilbert space. Considering the time discretization procedure and theHilbert space
truncation, we estimated amaximum relative error of 0.05%∼ for the probabilities quoted in themain text. The

specificflux and charge pulses used in our protocol read: t( ) ( 2)0Φ Φ= tcos(2
3

2
)π × × and

n t t( ) 0.05 2 cos(2
3

2
)g π= − × × , with time in unit of nanoseconds.

AppendixC.Decoherence and relaxation rates for theCPB

Themethodology introduced by Burkard–Koch–DiVincenzo [29] allows one to use circuit theory for describing
the dissipative elements of the circuit with a bath of oscillatorsmodel, fromwhich it is possible to estimate the
dissipative effects formultilevel superconducting devices. From thismodelling, the system-bath coupling
derived is a functional of the charge number operator n. Therefore, it will only connect the system energy
eigenstates that have at least one charge state in common in their spectral decomposition. For the physical CPB
parameters and theflux and charge protocols considered in our proposal, we found that only neighbouring
eigenstates share one charge state in their spectral decomposition. Thus, with a good approximation, the
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dissipative process can be viewed as a sequence ofmultiple processes involving only two eigenstates. Under this
perspective, one can obtain the relaxation (T1) and decoherence (T2) times concerning those two levels. In the
Born–Markov approximation, the relation betweenT1 and the pure dephasingTϕ is found to be

T

T

e n e

e n e e n e

e e

k T

e e

k T

4

2
coth

2
,

k k

k k k k

k k

B

k k

B1

1
2

1 1
2

1 1∼
−

− −ϕ +

+ +

+ +

where ek is the instantaneous value of the eigenenergy state k, andT T T22
1

1
1 1= + ϕ

− − − . Performing the
calculation of thematrix elements above for each time instant of our protocol, we found that the decoherence
timeT2 is determined byT1, i.e.,T T1≫ϕ , except for the regime 1β ≪ , duringwhichT T0.022 1∼ . Observe that
for 1β ≪ (the SQDcharge regime), the charge operator n almost commutes with the systemHamiltonian,
which explains whyT1 becomes the longest time scale here.

AppendixD. Estimate of theCPBmeasurement uncertainty

To estimate theCPB charge-statemeasurement uncertainty, wefirst assume that theCPB is probed using an
SSET that is coupled to theCPB through a capacitanceCC. It is further assumed that the SSET charge sensitivity
SQ is dominated by the noise of the pre-amplifier used to read-out the SSET. In this case, for eachCooper-pair
number stateN, the inferred charge Q( )C onCCwill have aGaussian distribution p Q( )N C with R.M.S. of

S( )Q Q measσ τ= , where taumeas is themeasurement time.We then define themeasurement uncertainty

through the use of theKolmogorov (trace) distance [51], which is given by D p Q p( ( ),N C N( 1)+

Q p Q( )) (1 2) ( )C N C∫= ∣ p Q Q( ) dN C C( 1)− ∣+ . The probability to correctly identify fromwhich of two adjacent

probability distributions p Q( )N C and p Q( )N C( 1)+ an outcome of ameasurementQC comes is thus given by

P D(1 ) 2D = + . For example, using S e1.7 HzQ
1 2 μ= , whichwas achieved in [32], ameasurement time

ns20measτ = , and realistic parameters for the total capacitance of theCPB island C 6.5fF=Σ (corresponding to
E 2 3GHzC π= × ) and C 0.20fFC = , wefind P 99.5%D = , corresponding to ameasurement uncertainty of
0.5%. It is assumed that the SETmeasurement is pulsed off during the forward and backward protocols so that it
does not serve as a strong source of dephasing.

Appendix E.Quantumwork and theGibbs ensemble generator

The quantumBochkov–Kuzovlev theorem equation (3) is derived [34] considering the exclusive viewpoint for
the definition of quantumwork. Such definition considers that the quantumwork performed in a specific
process λ is determined as the difference of the outcomes of the eigenenergymeasurements of the unperturbed
systemHamiltonian done at the initial andfinal process times. In our case, theHamiltonian equation (2) can be
viewed as H t H H t( ) [ ( )]p0 λ= + , where the unperturbedHamiltonianH0 is set as H t( 0)= , and the force-
dependentHamiltonian perturbation H t[ ( )]p λ is given by H t H( ) 0− . As for the Tasaki–Crooks theorem, the
inclusive viewpoint for the definition of work is adopted, which considers the outcomes of eigenenergy
measurements of the total systemHamiltonian at the initial and final process times.

TheGibbs ensemble emulation is constructed using a standard pseudorandom routine to select the states
out of the initial ensemble obtained from the preparation protocol. The pseudorandom choice is weighted by the
Boltzmannweight for a given temperatureT.
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