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Prospects for Increasing Sugarcane
and Bioethanol Production on
Existing Crop Area in Brazil

FABIO R. MARIN, GERALDO B. MARTHA, JR., KENNETH G. CASSMAN, AND PATRICIO GRASSINI

This article assesses sugarcane yield gaps (YG) in Brazil to determine the degree to which production can be increased without land expansion.
In our scenario assessments, we evaluated how much of the projected sugarcane demand to 2024 (for both sugar and bioethanol) can be
satisfied through YG closure. The current national average yield is 62% of yield potential estimated for rainfed conditions (i.e., a YG of 38%).
Continuing the historical rate of yield gain is not sufficient to meet the projected demand without an area expansion by 5% and 45% for low-
and high-demand scenarios, respectively. Closing the exploitable YG to 80% of potential yield would meet future sugarcane demand, with an
18% reduction in sugarcane area for the low-demand scenario or a 13% expansion for the high-demand scenario. A focus on accelerating yield
gains to close current exploitable YG is a high priority for meeting future demand while minimizing pressure on additional land requirements.
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COncerns about food security, greenhouse gas
emissions, and loss of habitat for biodiversity from
direct and indirect land-use change are recognized as
important issues for evaluating future options to achieve
increased crop production (Lepers et al. 2005, Oliveira et al.
2005, Burney et al. 2010, Vermeulen et al. 2012, Laurance
et al. 2014). These issues are of central importance for Brazil
because, although sugarcane production has more than
doubled from 2000 to 2013, 88% of this increase came from
the expansion of sugarcane production area and only 12%
from yield increase (figure 1).

Brazil is the world’s largest producer of both sugarcane
and sugarcane-ethanol: during the 2013-2014 crop year,
approximately 9 million hectares of sugarcane produced
659 megatonnes (Mt) of harvested cane, 38 Mt of sugar, and
nearly 28 billion liters of ethanol (CONAB 2014). Indeed,
Brazil is the second largest bioethanol producer behind the
United States, which mostly produces maize-ethanol, and
the two countries account for nearly 90% of global bioetha-
nol production. Sugarcane ethanol is an alcohol-based fuel
produced by the fermentation of sugarcane juice, molasses,
and, more recently, cellulose through “second-generation”
approaches (Goldemberg et al. 2014). Biofuel production
is expected to increase because of renewable-fuel mandates
that seek to leverage the potential of sugarcane ethanol for
mitigating greenhouse gas (GHG) emissions (Goldemberg

2007, Naylor et al. 2007). Brazil has a comparative advantage
to help meet demand for GHG-mitigating biofuels because
of plentiful land and water resources, but the rate of sugar-
cane yield gain in Brazil has been relatively low, and average
yields remain well below yield levels achieved by several
other sugarcane producing countries (figure 1).

The challenge is to increase sugarcane yields on existing
farmland given concerns about the conversion of grassland
and rainforest to crop production and the rapidly increasing
global demand for sugarcane ethanol. A key issue, therefore,
is the extent to which the rate of yield gain can be accel-
erated above the yield trajectory of the past two decades
to achieve greater sugarcane production through higher
yields without further expansion of sugarcane produc-
tion area. Yield-gap analysis provides a robust quantitative
framework to answer this question (Lobell et al. 2009, van
Ittersum et al. 2013). Although there have been a few studies
addressing this question for specific areas of Brazil (Marin
et al. 2008, Marin and Carvalho 2012), a thorough assess-
ment of potential sugarcane production across all major
sugarcane producing regions in Brazil is lacking. Following
Evans (1993), yield potential (Yp) is defined as the yield of an
adapted crop cultivar when grown with water and nutrients
nonlimiting and biotic stress effectively controlled. Therefore,
Yp is determined only by solar radiation, temperature, atmo-
spheric carbon dioxide (CO,) concentration, and genetic
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In this article, we performed Yg analy-
sis of sugarcane in Brazil using a well-
validated sugarcane crop model; the best
available data for crop harvested area,
long-term weather, soil properties, and
Ya; and a bottom-up approach to upscale
results from specific locations to regional
and national levels. The specific objec-
Z— tives were to (a) determine the magni-
tude of the current sugarcane Yg in major
sugarcane producing regions of Brazil,
(b) estimate the additional production
that could be achieved by closing the
exploitable Yg on existing sugarcane area,
and (c) assess the degree to which this
extra production can satisfy the expected

future sugarcane demand while avoiding
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or minimizing sugarcane area expansion.

Data sources used for the
determination of yield potential,
actual yield, and yield gaps

Our analysis focuses on estimating the
Yw and Yg of rainfed sugarcane in
ratoon-crop systems because more than
90% of all sugarcane in Brazil relies
on rainfall (i.e., without irrigation)
and about 80% is produced in ratoon-
crop systems. Estimating Yg followed
the generic protocols developed by
the Global Yield Gap Atlas (Grassini
et al. 2015, van Bussel et al. 2015,
www.yieldgap.org). Briefly, sugarcane
area was estimated within a 100-kilo-
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Figure 1. Trends in sugarcane harvested area (top panel) and fresh stalk yield
(bottom panel) in five major sugarcane-producing countries from 1980 to 2011.
Abbreviations: ha, hectares; Mg, megagrams; Mha, megahectares. Source:

FAOSTAT (http://faostat.fao.org)

traits that govern the length of the growing period and light
interception by the crop canopy. In the case of rainfed crops,
water-limited yield potential (Yw) represents the yield ceiling
and, in addition to factors governing Yp, the rainfall amount
and distribution during the crop growing season; soil and
terrain properties that determine the water supply available
for crop transpiration are also sensitive factors governing
Yw. Actual yield (Ya) is the average yield obtained by crop
producers within a defined geographic region. For rainfed
cropping systems, the yield gap (Yg) is defined as the differ-
ence between Yw and Ya. The size of Yg ultimately determines
the additional production capacity that is possible on existing
production area for a given crop and region.
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2005 2010 meter-radius circular area around exist-

ing weather stations (hereafter called
buffers) on the basis of recent 5-year
(2006-2010) statistics on sugarcane
harvested area reported at the munici-
pality level (IBGE 2014). Municipalities
correspond to the smallest adminis-
trative unit in Brazil, with an average
area of 36,000 square kilometers. Each
buffer was “clipped” by the boundaries of the climate zone
in which the weather station was located using the climate
zonation scheme of Van Wart and colleagues (2013a).
Buffers were ranked by the sugarcane area they contained
(from highest to lowest) and selected until achieving
approximately 50% coverage of the total harvested sug-
arcane area in Brazil. Previous work by Van Wart and
colleagues (2013b) showed that achieving 50% coverage
of the production area was sufficient to obtain a robust
estimate of Yg at a national scale. Following this approach,
19 weather stations were selected, hereafter called reference
weather stations (RWS; figure 2, table 1). Selected RWS
buffers contained 47% of the total Brazilian sugarcane area,
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Institute of Meteorology (INMET; table 1,

~\ figure 2). Incident solar radiation was esti-

— mated from measured air temperature
\ using the Bristow and Campbell method

s (1984), with local calibration for Brazilian
sugarcane-producing areas (Fonseca and
Marin 2007). This approach gave a rea-
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meter per day) based on a subset of daily-
measured radiation data (n = 2261) and
gives confidence in estimated incident
solar radiation across the sugarcane-pro-
ducing areas in Brazil.

For each RWS, Yw was simulated over
a 30-year period (1981-2010) using the
DSSAT/CANEGRO (DC) model (Singels
et al. 2008; see the following section for
more details). Simulations were initiated
one year before sugarcane planting, with
a soil-water content near field capac-
ity. The dominant management prac-
tices (start of crop growing season, plant
density, and cultivar) and soil types were
obtained from local experts and offi-
cial statistics for each RWS buffer. The
harvest season typically starts in April
and finishes in November; therefore, we
assumed three harvest times for ratoon
crops: early (March 15), middle (August
15), and late harvest (November 15),
which account for a respective 28%, 44%,
and 28% of the harvested area (PMGCA

500 km
|

2012). Those dates were chosen to rep-
resent the main sprouting period for

Figure 2. The spatial distribution of reference weather stations (RWS) and
associated buffers selected for the simulation of sugarcane water-limited yield
potential in Brazil. Location codes for station names are provided in tables 1
and 2. The data on crop management, soil properties, and actual yield data
were collected to represent sugarcane production within each RWS buffer.
Sugarcane harvested area (in hectares) is shown in green and is based on recent
(2006-2010) municipality-level statistics. The inset shows the location of the

study area within Brazil. Abbreviation: km, kilometers.

whereas the climate zones in which the RWS were located
accounted for 88% of the national sugarcane area (table 1).
Therefore, the 19 RWS selected for this national assessment
of sugarcane yield gaps were representative of sugarcane-
producing areas throughout Brazil and provided adequate
coverage to achieve a robust estimate of Yg within climate
zones and at a national scale.

Long-term (1981-2010) daily rainfall and temperature
data were available for each selected RWS from the Brazilian

http://bioscience.oxfordjournals.org

ratoon crops. The dominant soil types
and associated soil and terrain proper-
ties (e.g., texture, water-holding capac-
ity, rootable soil depth, and slope) were
retrieved for each RWS buffer from the
soil database created by the Radambrasil
Project (1973-1986) database (Cooper
et al. 2005). The soil-water parameters
were estimated using the pedo-trans-
fer functions developed by Tomasella
and colleagues (2000) for soils in Brazil.
Further details about the method followed to obtain soil
properties for crop yield simulation can be found in Marin
and colleagues (2015).

The average Yw for each RWS buffer was calculated on
the basis of the simulated Yw for each crop starting date,
weighted according to their relative contribution to the
total sugarcane harvested area. Following van Bussel and
colleagues (2015), upscaling of the Yw estimated for a
RWS was based on relative contribution of the harvested
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Table 1. Selected reference weather stations (RWS), their locations and associated codes (see figure 2), soil and climate
characteristics, the harvested area within each RWS buffer, and withing the climate zone (CZ) in which the RWS is located.
RWS area CZ area
Weather station Latitude Longitude Elevation Soil Soil depth (in 1000 (in 1000
(and its code) (in degrees) (in degrees) (in meters)  classification (in meters) Climate? hectares) hectares)
21.6°C,
Sorocoba (SO) -23.36 -47.52 645 Oxisol-Ultisol 2 1310 mm 540 (7%) 1892 (28%)
Catanduva (CAT) 2111 _48.93 570 23.8°C, 508 (7%)
) : Ultisol 1.5 1324 mm
Sao Simao (SS) —21.48 4755 617 22.9°C, 590 (8%) 1375 (20%)
) : Oxisol 2.5 1460 mm
23.5°C,
Uberaba (UB) -19.73 -47.95 737 Oxisol 25 1565 mm 252 (3%)
Maringa (MA) 234 -51.91 542 22.7°C, 111 (2%)
) : Oxisol 2.5 1631 mm
. 21.1°C,
Avaré (AV) -23.08 -54.7 813 Ultisol-Oxisol 2 1474 mm 40 (1%)
Votuporanga (VO)  -20.41 ~49.98 502 24.5°C, 496 (7%) 1322 (17%)
) : Oxisol 2.5 1379 mm
Campos (CAM) 21.75 ~41.33 11.2 24.9°C, 43 (1%)
) : ' Ultisol 1.5 1011 mm
Presidente 23.5°C,
Prudente (PP) —22.11 -51.38 435 Ultisol 1.5 1346 mm 192 (3%) 802 (11%)
St Antonio de 21.6°C,
Padua (SAP) -21.53 -42.15 95 Oxisol-Ultisol 2 1310 mm 46 (1%)
Frutal (FR) -20.03 _48.93 543 25.0°C, 231 (3%) 643 (8%)
’ ) Oxisol 2.5 1226 mm
Capin6polis (CAR) ~ -18.71 4955 620 24.5°C, 85 (1%)
) : Ultisol 2.5 1470 mm
Paranaiba (PA) ~19.75 51.18 331 24.8°C, 45 (1%)
' : Oxisol-Ultisol 2 1434 mm °
Sao Mateus (SM)  -18.7 ~39.85 25 24.9°C, 20 (1%)
: : Oxisol-Ultisol 2 1346 mm °
Rio Verde (RV) -17.8 -50.91 774 23.6°C, 70 (1%) 401 (5%)
) : Oxisol 2.5 1628 mm
) 23.6°C,
Ivinhema (1V) -22.3 -53.81 369 Oxisol 25 1460 mm 54 (1%)
Sao Seb.Paraiso 21.2°C,
(SSP) -20.91 -47.11 1026 Oxisol 25 1795 mm 182 (2%) 218 (3%)
Goids (GO) _15.91 -50.13 512 26.2°C, 38 (1%) 38 (1%)
’ : Oxisol 2.5 1777 mm
Diamantino (DI) _14.4 56.45 286 26.4°C, 42 (1%) 75 (1%)
) : Oxisol-Ultisol 2 1807 mm
Total 3617 (47%) 6734 (88%)
Note: The values in parentheses represent the relative contribution of each RWS or CZ to the total sugarcane production area in Brazil
(in %). @Long-term annual average temperature and total annual precipitation.

sugarcane area within each RWS buffer zone to the total
harvest area at the climate zone and national spatial scales
(Table 1).

The average 5-year (2006-2010) Ya was estimated from
official statistics reported for the municipalities that over-
lapped with each of the selected RWS buffers. This recent
5-year time period was selected because longer time periods
would underestimate actual yields because of the inclusion
of a small but significant technological trend (figure 1). Ya
values were upscaled from RWS buffer to climate zone and
country following the same procedure as for Yw, and Yg
was calculated as the difference between average 30-year
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(1981-2010) simulated Yw and average 5-year (2006-2010)
Ya at each spatial level (RWS buffer, climate zone, and
country). Yw, Ya and Yg were expressed in stalk fresh mass
(SFM), which is typically 25 to 33% dry matter.

Calibration of sugarcane crop model for simulating
yield potential

The DC model was used to simulate sugarcane Yw. The DC
model is based on a physiological description of sugarcane
growth and development processes, including phenology,
canopy development, tillering, root growth, biomass accu-
mulation and partitioning among organs, water stress, and

http://bioscience.oxfordjournals.org

GZ0z aunr O} uo Jasn Y LNID YOI LOITgIg/dd33 Ad 92079172/ L0€/7/99/91011E/80U19501q/Wo"dnoolWwapede//:sdRy Wolj papeojumoq



m [orum

Table 2. The average water-limited yield potential (Yw), actual yield (Ya), and yield gap (Yg) for the 19 reference
weather stations (RWS) in and for the associated climate zones (CZ) selected for sugarcane yield-gap analysis in Brazil.
RWS (in megagrams per hectare) CZ (in megagrams per hectare)

Weather station (code) Yw Ya Yg Yw Ya Yg

Sorocoba (SO) 121 (15%) 80 41 118 (9%) 83 34

Catanduva (CAT) 113 (12%) 86 27

Sao Simao (SS) 152 (6%) 83 68 146 (5%) 84 61

Uberaba (UB) 136 (13%) 88 48

Maringa (MA) 141 (9%) 85 56

Avaré (AV) 126 (14%) 71 55

Votuporanga (VO) 144 (6%) 86 57 141 (6%) 83 58

Campos (CAM) 110 (17%) 48 62

Presidente Prudente (PP) 110 (7%) 79 31 114 (6%) 73 41

St Antonio de Padua (SAP) 128 (11%) 49 80

Frutal (FR) 154 (4%) 87 66 141 (4%) 84 57

Capindpolis (CAR) 128 (14%) 81 47

Paranaiba (PA) 109 (28%) 76 32

Sao Mateus (SM) 120 (16%) 65 54

Rio Verde (RV) 157 (9%) 83 74 157 (6%) 84 74

Ivinhema (1V) 157 (4%) 84 72

Sao Sebastiao do Paraiso (SSP) 157 (14%) 83 74 157 (14%) 84 74

Goias (GO) 154 (6%) 75 79 154 (6%) 75 79

Diamantino (DI) 140 (10%) 66 74 140 (10%) 66 7
National weighted average 134 (4%) 82 52

Note: The parenthetic values for Yw are the temporal coefficients of variation.

lodging (Singels et al. 2008). In the present study, the DC
model was calibrated by minimizing the root mean square
error (RMSE) for SFM and leaf area index (LAI) using field
data for the cultivar RB867515, which is grown on nearly
one-third of the sugarcane area in Brazil (PMGCA 2012).
Marin and colleagues (2015) described the experimental
data used for model calibration, which were collected from
seven experiments located throughout Brazil and con-
ducted over several years across a wide range of climate and
soil types representative of the major sugarcane production
regions. At all seven experimental sites, the sugarcane crop
was grown with good management that avoided growth
limitations from nutrient deficiencies and biotic stresses
from pests and diseases. It is therefore expected that yields
obtained in these experiments were very close to Yw for
each site and representative of the Yw across years and
major sugarcane-producing regions in Brazil. Detailed
descriptions of the procedures followed for model calibra-
tion can be found in Marin and colleagues (2011, 2015).
After calibration, the DC model reproduced well the
observed temporal growth dynamics in SFM and LAI
across the seven experiments, and SFM yields measured at
harvest (range: 77 to 152 megagrams, Mg, per hectare, ha)
were in reasonable agreement with simulated values (root
mean square error = 16.5 Mg per ha). This level of error
is comparable to the error reported in previous studies

http://bioscience.oxfordjournals.org

that evaluated sugarcane crop models (Keating et al. 1999,
Cheeroo-Nayamuth et al. 2000, O’Leary 2000, Singels and
Bezuidenhout 2002, Marin et al. 2012). Therefore, the DC
model calibrated in the present study provides a compe-
tent tool for estimating sugarcane Yw across the range of
climate and soils where sugarcane is grown in Brazil.

An assessment of future scenarios for sugarcane
area and yield in Brazil

The sugarcane production in Brazil required for satisfying
demand for sugar and ethanol by 2024 is projected to reach
(a) 851 million Mg SEM, as was reported by FIESP (2014),
or (b) 1179 Mg SFM, as was reported by FAPRI (2011).
The FIESP (2014) projection is based on an input-output
model evaluating the global balance of food production
and consumption, in which the demand of each country
is established from food income elasticities and expected
population- and economic-growth rates. Similarly, the
FAPRI (2011) projection is based on an econometric model
evaluating future demographics and economic growth.
Second-generation biofuels are not taken into account in
these projections. These two contrasting 2024 sugarcane pro-
jections are hereafter called low-production (LP) and high-
production (HP) projections, respectively. Sugarcane area
requirements required to meet the LP and HP projections
were assessed for two sugarcane yield scenarios (S1 and S2):
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Figure 3. Maps of (a) water-limited yield potential (Yw; in megagrams [Mg] per hectare [ha]) and (b) rainfed actual farm
yield (expressed as percentage of Yw) for sugarcane across the major climate zones where sugarcane is produced in Brazil.

(1) S1: projected production met, assuming that future yields
follow the historical rate of yield gain achieved from 1990 to
2012; (2) S2: projected production met by closing the Yg such
that Ya reaches 80% of Yw on current production area by 2024.

For both scenario assessments, sugarcane area and Ya in
2014 were the baseline, and the proportion of the production
area under irrigation was assumed to remain constant (cur-
rently less than 10% of total area). The historical rate of yield
used for S1 was estimated for the 1990-2012 time period on
the basis of publicly available statistics (IBGE, FAOSTAT).
The 80% of Yw threshold used in the S2 scenario is based on
the assumption that this yield level represents the upper ceil-
ing on attainable yields at a regional or national scale, because
it is not feasible or economically viable for commercial-scale
farming to achieve the degree of perfection in crop and soil
management required to eliminate all abiotic and biotic
stresses, which is a prerequisite for attaining Yw (Cassman
et al. 2003). Likewise, there is a growing body of evidence
indicating that national crop yields plateau at yield levels that
are 75%-85% of potential yields (Van Wart et al. 2013b).

Yield potential and yield gaps

The upscaled national average Yw estimated for sugarcane
in Brazil was 134 Mg per ha. Given the current national

312 BioScience « April 2016/ Vol. 66 No. 4

average Ya of 82 Mg per ha, the average Yg is 52 Mg per
ha, which represents 38% of Yw (table 2). The magnitude
of Yg, as a percentage of Yw, falls within the range of Yg for
large- (23%) and small-scale sugarcane farmers (53%) in
South Africa, as was estimated by van den Berg and Singels
(2013). Figure 3 shows variation in Yw and Ya (expressed as
percentage of Yw) across the major climate zones in which
sugarcane production takes place in Brazil. Both highest Yw
(figure 3a) and lowest Ya as a percentage of Yw (i.e., largest
Yg; figure 3b) were found in the north—central and western
sugarcane-producing regions, where sugarcane is a relatively
new crop with most of the production initiated within the
past 10 years. The large Yg in these regions may be explained
in large part by the lack of farmer experience in sugarcane
management, relatively low fertility soils, and difficulties in
acquiring healthy seedlings, fertilizers, and agrochemicals
in these “frontier” production areas (Manzatto et al. 2009).
In coming years, however, and assuming a supportive eco-
nomic environment for sugarcane production, Yg will likely
decrease as farmers begin to gain access to the required
inputs and become more proficient at adapting management
practices to climate and soils in these frontier sugarcane-pro-
duction areas. In contrast, Ya as a percentage of Yw was much
larger (i.e., the Yg was considerably smaller) in regions with a

http://bioscience.oxfordjournals.org
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Figure 4. The relationship between long-term (1981-2010)
average sugarcane water-limited yield potential and its
interannual coefficient of variation. Each data point
represents one of 19 reference weather stations selected
for the evaluation of sugarcane yield gaps in Brazil.
Abbreviations: ha, hectares; Mg, megagrams.

longer history of sugarcane production, such as in the south-
ern fringe of sugarcane-production area, which corresponds
to the states of Sao Paulo and Minas Gerais (figure 3b).

There was substantial variation in average Yw across
the 19 selected RWS, ranging from 109 to 157 Mg per ha
(table 2). This range compares well with the range in Ya
reported for well-managed, high yield sugarcane crops
grown in South Africa and Australia (Keating et al. 1999),
and with the range of SFM yields measured under near-
optimal production conditions by Marin and colleagues
(2011, 2015). In addition, Yw was remarkably stable across
years for a rainfed crop production system, as was indicated
by the small interannual coefficients of variation (CV;
table 2). Of the 19 locations at which Yw was simulated,
nine had a CV of less than 10%, and only three locations
had a CV of more than 15%, indicating the preference of
producers to grow sugarcane in favorable environments
with reliable rainfall. Indeed, there was an inverse relation-
ship between average Yw and the associated CV (figure 4),
which highlights the importance of the high-yield regions
for both their large contribution to national production
and production stability. Likewise, year-to-year variation in
Yw decreases with larger spatial aggregation, moving from
RWS (CV range: 6%-28%) to CZ (CV range: 4%-14%) and
country (CV: 4%) spatial scales (table 2). This scaling trend
suggests that countries with large crop-production area
spread across a number of different climate zones (as in
Argentina, Brazil, China, and the United States) are some-
what buffered against low national yields in a given year
because of unfavorable climatic events, such as drought,
because these events rarely occur across a majority of the
production area within a country.

http://bioscience.oxfordjournals.org
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How much additional sugarcane can Brazil produce
without area expansion?

Maintaining the historical rate of yield gain of 0.85 Mg
per ha per year (S1) will require a respective 5% and 45%
expansion in sugarcane production area to meet the LP and
HP projections by 2024, which represents a respective 0.4%
per-year and 4% per-year annual increase in production area
(figure 5, table 3). The S1 scenario assumes that the expan-
sion in sugarcane area will occur in areas with Yw similar to
the average Yw of 134 Mg per ha estimated for Brazil in this
study. If sugarcane expansion were to take place in harsher
rainfed environments or on poorer soils, the additional land
requirement would be greater. Nevertheless, the estimated
land requirement to satisfy sugarcane demand by the year
2024 seems modest under the LP scenario, and although
much greater under the HP scenario, the area expansion is
still much smaller than the rate of increase in sugarcane area
that occurred from 2004-2013 (7.5% per year).

If research and extension focused on closing the current
Yg using improved management and best available cultivars
to close the exploitable yield gap such that average farm
yields reach 80% of Yw by 2024 (S2), equivalent to an average
national yield of 107 Mg per ha, it will be possible to meet
the LP sugarcane demand while reducing land requirements
by 18% compared with current sugarcane area (figure 5,
table 3). In contrast, closing the exploitable yield gap on
existing sugarcane area will not be sufficient to meet the
HP demand scenario, and a 13% increase in sugarcane area
will be required, which represents a rate of area expansion
of approximately 1.2% per year. However, the area increase
under the HP-S2 scenario is 71% less than that required by
the “business-as-usual” HP-S1 scenario. At issue, however,
is whether it would be possible to increase the historical
annual yield gain more than threefold (from 0.85 to 3.2 Mg
per ha per year) and sustain such high rates of gain during
the next 10 years to close the exploitable yield gap by 2024.

Finally, it is notable that potential production can be fur-
ther increased (and land requirements reduced) if expansion
of irrigated area takes place in current sugarcane-produc-
tion areas. Indeed, there are prospects for expanding irriga-
tion in many parts of central Brazil (IICA and PROCISUR
2010). Likewise, the demand for additional sugarcane area
can be easily met through modest productivity gains in
pastoral livestock systems, given the sizeable land-saving
effects that would arise from such improvements (Martha
et al. 2012).

The findings of this study are subject to uncertainty
related to (a) the quality of long-term weather, soil, crop
management, and production statistics data required for
yield-gap estimation (Grassini et al. 2015); (b) upscal-
ing methods (van Bussel et al. 2015); and (c) assumptions
underpinning scenarios of future sugarcane demand (FIESP
2014, FAPRI 2011). Despite these uncertainties, this article
represents the first quantification of sugarcane-production
potential on existing sugarcane area in Brazil using the best
available data and published projections of future sugarcane
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Figure 5. The pathways to meet future sugarcane demand in Brazil showing the sugarcane yield (upper panels) and
sugarcane area (lower panels) required to meet 2024 “low” (LP, blue solid line) and “high” (HP, red dashed line)
production projections for two scenarios: demand met with historical rate of yield gain (S1, left panels) and demand met
by closing the exploitable yield gap to 80% of water-limited yield potential (S2, right panels). Abbreviations: ha, hectares;

Mg, megagrams; Mha, megahectares.

demand, a “state-of-the-art” biophysical sugarcane simula-
tion model, and a bottom-up spatial framework that covers
88% of the national sugarcane production area with only
19 locations strategically selected for their location within
climate zones with the greatest sugarcane-production area.

Conclusions

This article estimates sugarcane yield gaps at different spatial
scales using a novel bottom-up scaling approach to assess
future scenarios of sugarcane production and land use by
2024. The results suggest that Brazil has the potential to meet
the projected demand under a high-demand scenario with a
modest expansion of crop area (+13%)—or even with an 18%
reduction in area for the low-demand scenario. However, this
would require a large acceleration in the rate of yield gain
compared with the historical trend, which would be difficult

314 BioScience « April 2016/ Vol. 66 No. 4

to achieve without a concentrated and well-funded research
and extension effort. In contrast, if yields continue to increase
following the historical trajectory of the past two decades, a
respective expansion of 5% and 45% of sugarcane area would
be needed to satisty the low- and high-demand scenarios
by 2024. We conclude that a focus on accelerating the rate
of gain in sugarcane yields is the key to minimizing land
requirements for sugarcane, and the results from this study
can help inform policies and the prioritization of investments
in research and development to meet sugarcane demand
while also addressing associated environmental concerns.
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Table 3. The required sugarcane area to meet the 2024 projected “low” (LP) and “high” (HP) production projections for
two scenarios: demand met by the historical rate of yield gain (S1) or demand met by closing the exploitable yield gap

to 80% of water-limited yield potential (Yw) (S2).

2024 scenarios

Parameter Projected production® 2014 baseline S1 S2
Sugarcane area (Mha) LP 9.7° 10.2 (+5%) 7.9 (-18%)
HP 14.1 (+45%) 11.0 (+13%)
Production (million Mg) LP 732° 851 (+17%)
HP 1179 (+62%)
Actual yield (Mg per ha) LR HP 75° 84 (+11%) 107 (+42%)
2014-2024 yield gain rate (Mg per ha per year) LR HP 0.85° 0.85 (0%) 3.20 (+278%)

megagrams.
(2011), respectively.
(IBGE, FAOSTAT).

bAverage of 2011-2013 data (IBGE, FAOSTAT).

Note: The parenthetic values are the percentage change relative to 2014 baseline values. Abbreviations: ha, hectares; Mha, megahectares; Mg,
a“Low” (LR 851 million Mg) and “high” (HR 1179 million Mg) projected 2024 production as reported by FIESP (2014) and FAPRI
®Historical yield gain rate was estimated for the 1990-2012 time period

403946/2013-1, 302872/2012-4, and 480702/2012-8), and
the Research Foundation of the State of Sio Paulo (FAPESP
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