

UNIVERSIDADE DE SÃO PAULO

Instituto de Ciências Matemáticas e de Computação
 ISSN 0103-2569

SIMPLIFIED FUNCTION TO APPLY THE BAYESIAN HIERARCHICAL

STATISTICAL TEST

PAULO HENRIQUE PISANI

ANDRE C. P. L. F. DE CARVALHO

NO 413

RELATÓRIOS TÉCNICOS

São Carlos – SP
Dez./2016

Instituto de Ciências Matemáticas e de Computação

ISSN - 0103-2569

Simplified function to apply the Bayesian hierarchical statistical test

Paulo Henrique Pisani
André C. P. L. F. de Carvalho

No 413

ICMC TECHNICAL REPORT

São Carlos, SP, Brazil
December/2016

Simplified function to apply the Bayesian hierarchical statistical test

Paulo Henrique Pisani1

André C. P. L. F. de Carvalho1

1Instituto de Ciências Matemáticas e de Computação (ICMC)
Universidade de São Paulo (USP) - Campus de São Carlos

13560-970 São Carlos - SP, Brazil
e-mail: {phpisani, andre}@icmc.usp.br

December, 2016

Abstract

The application of a statistical test to assess the experimental results is an

important step in experimental research. Nowadays, the application of null

hypothesis significance tests is very common in Machine Learning studies.

However, the application of these tests in the area has been disputed due to

several reasons. In view of these problems, a Bayesian hierarchical test was

proposed in a recent tutorial. Based on the tutorial, this technical report

presents a simplified code to apply the Bayesian test.

Keywords: statistical test, R, machine learning

Contents

1 Introduction 1

2 Requirements 1

3 The function 2

A Source code of the simplified function 6

1 Introduction

An important step in experimental research is the application of a statistical

test to assess the significance of the obtained experimental results. Currently,

the application of null hypothesis significance tests is very common in Ma-

chine Learning, such as Friedman and Wilcoxon signed rank tests (Demsar,

2006).

Nevertheless, the use of these tests to check whether a given algorithm

performs significantly better than another algorithm has been criticized in the

Machine Learning community (Demsar, 2008; Drummond, 2006; Corani et al.,

2016; Benavoli et al., 2016). It is argued that null hypothesis significance

tests imply in several drawbacks. A key argument is that these statistical

tests simply do not output the probabilities of the null hypothesis and the

alternative hypothesis, given the observed data. Instead, those tests return

the probability of obtaining the observed or a larger difference between the

algorithms being evaluated if the null hypothesis was true. It must be observed

that it is different from returning the probability that one algorithm is better

than another algorithm, given the observed experimental results.

In view of this scenario, a statistical comparison using Bayesian Hierarchi-

cal modeling was proposed by (Corani et al., 2016; Benavoli et al., 2016). The

Bayesian test reports, given the observed empirical results, three probabilities:

named p(left), p(rope) and p(right). In the context of this report, they can be

understood as the posterior probabilities that a proposed algorithm performs,

respectively, worse, equivalent or better than a baseline algorithm.

This report describes a simple example to use the Bayesian Hierarchical

test. The code was based on the original source made available by the au-

thors os the test at https://github.com/BayesianTestsML/tutorial and

a further exchange of e-mails with them. The tutorial from the authors of this

Bayesian Hierarchical test can be found at http://ipg.idsia.ch/tutorials/

2016/bayesian-tests-ml/. This technical report is based on the latest ver-

sion of the code provided by the authors of the test (commit 2c1ea90 from

16/January/2017).

2 Requirements

The code that implements the test was executed on R 3.2.2 (https://

www.r-project.org/) using R Tools 3.3 on MS Windows 10 (https://cran.

r-project.org/bin/windows/Rtools/). In MS Windows, after installing R
Tools, the paths <Rtool-directory>\bin and <Rtool-directory>\gcc-4.

6.3\bin should be added to the PATH environment variable.

1

https://github.com/BayesianTestsML/tutorial
http://ipg.idsia.ch/tutorials/2016/bayesian-tests-ml/
http://ipg.idsia.ch/tutorials/2016/bayesian-tests-ml/
https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
<Rtool-directory>\bin
<Rtool-directory>\gcc-4.6.3\bin
<Rtool-directory>\gcc-4.6.3\bin

To run this code, the following packages from R are required:

• rstudioapi

• matrixStats

• rstan

• matrixcalc

• metRology

In addition, the STAN file shown next should be present at a folder named

stan in the R working directory .

• hierarchical − t− test.stan

This file is the same provided by the tutorial from (Corani

et al., 2016; Benavoli et al., 2016). The original version can be

found at: https://github.com/BayesianTestsML/tutorial/blob/

2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/stan/

hierarchical-t-test.stan.

3 The function

Based on the code provided by the authors of the test (Corani et al.,

2016; Benavoli et al., 2016) at https://github.com/BayesianTestsML/

tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/

hierarchical/hierarchical_test.R, a simplified example explaining

how to apply the Bayesian Hierarchical Statistical Test function was written.

The current version of the test can only be applied if the experiments were

carried out using k-fold cross-validation.

The test was designed to compare the performance of two algorithms at a

time (a baseline and a proposal, for example). For comparison of multiple al-

gorithms, several tests must be performed. According to the authors (Benavoli

et al., 2016), the false alarms due to multiple comparisons are mitigated by

the adoption of a hierarchical model and the rope (the interval in which both

algorithms are considered to be equivalent). The issue of multiple comparisons

in this Bayesian Test may be further studied in the future.

The source code of the main function is shown in Appendix A. A sim-

ple function calling this main function adopting default parameter values is

shown next, where x is a matrix of results and numFolds is the value of k used

in the k-fold cross-validation. In the x matrix, the value of each cell is the

difference of the metric (e.g. accuracy) for each run for all folds (columns) on

each dataset (rows).

2

https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/stan/hierarchical-t-test.stan
https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/stan/hierarchical-t-test.stan
https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/stan/hierarchical-t-test.stan
https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/hierarchical_test.R
https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/hierarchical_test.R
https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/hierarchical_test.R

Simplified function using default parameter values.

hierarchical.test.default <- function(x, numFolds) {

return(hierarchical.test(x, sample_file=NULL,

rho=(1/numFolds), chains=10))

}

An example on how to use the previous function is shown next. This exam-

ple simulates two classification algorithms (good and bad) tested under 5-fold

cross-validation (30 runs per fold). The example can take a while to run (more

than one minute in an average computer). Most of the time is spent by the

main statistical test function.

Example to use the simplified function.

source(’hierarchical_test.R’)

runExample <- function() {

set.seed(123)

runsPerFold = 30

numFolds = 5

Random good classification algorithm on 3 datasets (lets assume it is

measuring the accuracy,

but it could be other metric, although their values always would be in

the [0;1] range.)

Note: it seems that the model is designed for metrics with values in

the [0;1] range

goodClassificationAlg_Dataset1 = runif(numFolds * runsPerFold, min=0.9,

max=1.0) # (number of folds) * (number of runs per fold)

goodClassificationAlg_Dataset2 = runif(numFolds * runsPerFold, min=0.9,

max=1.0)

goodClassificationAlg_Dataset3 = runif(numFolds * runsPerFold, min=0.9,

max=1.0)

Random bad classification algorithm on 3 datasets (lets assume it is

measuring the accuracy,

but it could be other metric, although their values always would be in

the [0;1] range.)

Note: it seems that the model is designed for metrics with values in

the [0;1] range

badClassificationAlg_Dataset1 = runif(numFolds * runsPerFold, min=0.6,

max=0.9)

badClassificationAlg_Dataset2 = runif(numFolds * runsPerFold, min=0.6,

max=0.9)

badClassificationAlg_Dataset3 = runif(numFolds * runsPerFold, min=0.6,

max=0.9)

CONTINUES IN THE NEXT PAGE

3

Compute the differences in the obtained values for the metric (e.g.

accuracy)

IMPORTANT: all results must be obtained from the SAME DATA (pairwise),

so fix the seed when running the cross-validation.

For example, train and test data for each run must be the same for all

algorithms (pairwise)

diff_Dataset1 = goodClassificationAlg_Dataset1 -

badClassificationAlg_Dataset1

diff_Dataset2 = goodClassificationAlg_Dataset2 -

badClassificationAlg_Dataset2

diff_Dataset3 = goodClassificationAlg_Dataset3 -

badClassificationAlg_Dataset3

matrix x has 150 columns and 3 rows

From the example provided by the author, it seems that the runs are

organized in this way:

[fold1run1, fold2run1, fold3run1, ..., fold5run1, fold1run2, fold2run2,

..., fol5run30]

x = rbind(

diff_Dataset1,

diff_Dataset2,

diff_Dataset3

)

tStart <- proc.time()

retStatTest = hierarchical.test.default(x, numFolds)

tFinish <- proc.time()

print(tFinish - tStart)

>> nextDelta is used for inference on a next (unseen) dataset

print(paste("[nextDelta] Probability that the accuracy of

goodClassificationAlg < the accuracy of badClassificationAlg = ",

retStatTest$nextDelta$left, "(given the observed data on x)"))

print(paste("[nextDelta] Probability that the accuracy of

goodClassificationAlg = the accuracy of badClassificationAlg = ",

retStatTest$nextDelta$rope, "(given the observed data on x)"))

print(paste("[nextDelta] Probability that the accuracy of

goodClassificationAlg > the accuracy of badClassificationAlg = ",

retStatTest$nextDelta$right, "(given the observed data on x)"))

If an error rate is tested, the interpretation of the probabilities

changes (lower is better)

return(retStatTest)

}

runExample()

4

In the final part of the code, the results are printed. The output of the test

are three probabilities: p(left), p(rope) and p(right). The reported probabilities

are used for inference on a next (unseen) dataset. In this example, they can

be understood as follows:

• p(left): the posterior probability that the accuracy of the good algorithm

is worse than that of the bad algorithm;

• p(rope): the posterior probability that the accuracy of the good algorithm

is equivalent to that of the bad algorithm;

• p(right): the posterior probability that the accuracy of the good algorithm

is better than that of the bad algorithm;

The example compares the accuracy of two algorithms. It must be ob-

served, however, that if an error rate is evaluated, the interpretation of the

probabilities changes, since a lower value is better for error rates.

After running the code, the following output is obtained. Note that the

probability of the performance of the good classification algorithm being bet-

ter than that of the bad classification algorithm is higher than 95%. However,

depending on the context, different threshold values can be set for an auto-

matic decision, such as 90% or 80%.

Results obtained after executing the test.

[1] "[nextDelta] Probability that the accuracy of goodClassificationAlg <

the accuracy of badClassificationAlg = 0.0218 (given the observed data

on x)"

[1] "[nextDelta] Probability that the accuracy of goodClassificationAlg =

the accuracy of badClassificationAlg = 0 (given the observed data on x)

"

[1] "[nextDelta] Probability that the accuracy of goodClassificationAlg >

the accuracy of badClassificationAlg = 0.9782 (given the observed data

on x)"

Acknowledgements

The authors would like to thank Conselho Nacional de Desenvolvimento

Cientı́fico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado

de São Paulo (FAPESP - processes 2012/25032-0 and 2013/07375-0).

5

References

Benavoli, A., Corani, G., Demsar, J., and Zaffalon, M. (2016). Time for a

change: a tutorial for comparing multiple classifiers through bayesian anal-

ysis. CoRR, abs/1606.04316. Cited in page 1, 2, and 6.

Corani, G., Benavoli, A., Demsar, J., Mangili, F., and Zaffalon, M. (2016). Sta-

tistical comparison of classifiers through bayesian hierarchical modelling.

Technical report, IDSIA. Cited in page 1, 2, and 6.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data

sets. The Journal of Machine Learning Research, pages 1–30. Cited in

page 1.

Demsar, J. (2008). On the appropriateness of statistical tests in machine

learning. In Workshop on Evaluation Methods for Machine Learning in

conjunction with ICML, pages 1–4. Cited in page 1.

Drummond, C. (2006). Machine learning as an experimental science (revis-

ited). In Proceedings of the AAAI 2006 Workshop on Evaluation Methods for

Machine Learning, pages 1–5. Cited in page 1.

A Source code of the simplified function

The original function for the Hierarchical statistical test was devel-

oped by the authors of the tutorial (Corani et al., 2016; Benavoli et al.,

2016). However, the example described in this technical report uses

a modified version of the original function provided by the authors of

the test available at https://github.com/BayesianTestsML/tutorial/

blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/

hierarchical_test.R. The major change in the modified version is a code to

fix the random seeds of the R and the STAN. The modifications are highlighted

next.

6

https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/hierarchical_test.R
https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/hierarchical_test.R
https://github.com/BayesianTestsML/tutorial/blob/2c1ea90b801592212aec59b116b6b91f0967fac4/hierarchical/hierarchical_test.R

Function adapted from the authors of the Bayesian test.

hierarchical.test <- function(x,

sample_file=NULL,

rho,

samplingType="student",

alphaBeta = list(’lowerAlpha’ =0.5,

’upperAlpha’= 5,

’lowerBeta’ = 0.05,

’upperBeta’ = .15),

rope_min=-0.01,

rope_max=0.01,

std_upper_bound=1000,

chains=10,

stanSeed=123)

{

set.seed(stanSeed)

library(rstan)

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

library(matrixcalc)

library(matrixStats)

library(rstan)

#for sampling from non-standardized t distribution

library(metRology)

set.seed(stanSeed)

...

sample_file <- paste(’stanOut/’,sample_file,sep=’’)

Nsamples <- dim(x)[2]

q <- dim(x)[1]

sample_file <- paste(sample_file,".StanOut",sep=’’)

...

stanfit <- stan(file = ’stan/hierarchical-t-test.stan’, data =

dataList,sample_file=sample_file, chains=chains,

seed=stanSeed)

...

}

7

	Introduction
	Requirements
	The function
	Source code of the simplified function

