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Abstract: Aiming at overcoming the difficulties derived from the traditional camera calibration methods to record the
underwater environment of a towing tank where experiments of scaled-model risers were carried on, a computer
vision method, combining traditional image processing algorithms and a self-calibration technique was ‘implemented.
This method was used (o identify the coordinates of control-points viewed on a scaled-model riser submitted to a
periodic force applied 1o its fairlead atiachment point. To study the observed motion, the riser was represented as a
pseudo rigid body model (PRBM) and the hypotheses of compliant mechanisms theory were assumed in order fo cope
with its ellastic behaviour. The derived Lagrangian equations of motion were linearized and expressed as a state-
space model in which the state variables include the generalized coordinates and the unknown generalized forces. The
state-vector thus assembled is estimated through a Kalman Filter. The estimation procedure allows the determination
of both the generalized forces and the tension along the cable, with statistically proven convergence.
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NOMENCLATURE

;= PRBM’s angular displacements ¥ = PRBM’s largest bar length ta [ = PRBM’s bar section area inertia
- . . actual bar length ratio moment

& = PRBM’s angular velocities T = kinetic energy

P m = PRBM’s bar mass

8; = PRBM’s angular accelerations V = potencial energy

K; = PRBM’s spring coefficients p= weigth per length ratio == Lagrangian ,
Ky = PRBM standard spring ps = underwater weight per length Foi = gen'crﬂ]{zed lorcesatiods |
= 2 . F = traction torce
coefficients raio
L. = PRBM'’s bar lengths E = material modulus of ellasticity
INTRODUCTION

The non-intrusive characteristics of the image-based instrumentation necessary to implement motion analysis is an
important advantage of this approach compared to the classical measurement methods based on the use of
accelerometers and load cells. Successive advances in the area of computer vision, concerning video segmentation,
object tracking and camera calibration, have also contributed to the application of image-based methods to the analysis
of kinematies phenomena that are difficult to measure, like the human motion (Moeslund ef al., 20006), or that occur in
regions of difficult access, as the underwater environments (Shortis e al., 2009).

Recently, this technique has been included in the palette of experimental methods of the Oceanic and Naval
Engineering Center of IPT, in order to improve the quality of the measurements required by the hydrodynamics tests in
a towing tank with scaled-models of ships and oceanic structures like platforms and risers. Although these
measurements have been successfully accomplished with the aid of a comercial motion analysis tool, the camera
calibration algorithms (Schalkoff, 1989) adopled by this software assume the use of calibration objects to previously
measure the three-dimensional space according to a metrological procedure difficult to be done in an underwater
environment. i

To cope with the various constraints imposed by the measurement environment, several camera self-calibration
methods have been proposed m the literature (Hartley, 1997; Valdés and Ronda, 2005; Habed and Bouftama, 2006;
Menudet er al., 2007). Since these methods are based on invariant geomelrical properties of the projective space
(Veblen and Young, 1938; Ayres Ir., 1967), they do not depend on the use of calibration artifacts and, consequently,
give rise 1o a calibrated space that is not limited by the volume of those objects. Such characteristics are specially
helpful in the approach of underwater experiments with scaled-model risers (long flexible ducts used by the petroleum
industry to pump eil and natural gas to the platforms). =
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Although the dynamics of cables has been longly approached in the early literature of theoretical mechames (Beghin,
1952 Péres, 1962), the recent technological advances observed in the petroleum industry concerning subsca felds
extraction has fostered the research of this subject. Pesce (1997) performed a thorough investigation about the static and
dynamic behaviours of risers under two-dimensional configurations. Using the theory of thin rods, 1t was shown that
the effect of flexural rigidity is restricted to the regions close to the extremities of the riser; the dynamic model, on the
other hand, was formulated as the solution of a perturbation problem around the equilibrium configuration. Both models
— the static and the dynamic — were validated against experimental results. Using the linite element program ANSYS,
Campos (1997) developed a computational non-linear model for a catenary nser, whose responses, concerning the
dynamic bending moments near the touchdown point, are close to the ones derived from the application of previously
proposed analytical models. Takafuji (2010), likewise, generated dynamical models through the finite element methoed,
representing the catenary riser by beamn elements. Firstly, a complete non-lincar dynarmical model was analysed using a
time-domain technique. Then, the non-linearities of the original moedel were removed and a frequency-domain
technique was applied, giving rise to results that compared well with the previous ones.

Considering that computer vision methods are not yet extensively adopted by the naval laboratories as a
measurement tool, not so many works have been reported concerning application ot those lechniques to identify riser
motions. Menezes (2008), aided by an image processing and computer gra shics Leol, constructed a computer vision
procedure whose temporal estimates of the scaled model riser configuration were very close to the ones generated by a
set of accelerometers fixed to the model. Using classical image segmentation algorithms, Amarante (2010) implemented
a computer vision procedure to identify the temporal geometrical variations ol a calenary riser near the touchdown
point; in his work, the direct linear transformation was applied to map the Euclidean three-dimensional space to the
projective two-dimensional spaces of the cameras.

In this article we explore the combination of a computer vision technique to measure the state variables that
characterize the temporal configurations of a scaled-model riser and a Kalman filter that, using these measurements,
estimales the state variables as well the generalized forces acting along the riser.

MATERIALS AND METHODS

A scaled-model riser, whose geometrical and physical characteristics are shown in Table 1, was submitted to a serics
of tests in a lowing tank, where the flexible line assumed a typical catenary configuration, with its lower end anchored
at the towing tank floor and its fairlead attachment point hinged to a harmonic oscilator assembled on a platform over
the water line (Fig. 1). The riser motion is known from the time evolution of the locations of 200mm equally spaced
small circular markers attached to the line, and is recorded by a high resolution video camera (JAT CV-Al) coupled to a
varifocal lens (6mm-12mm). Connected to an asynchronous [rame grabber (Coreco-Imaging PC2-Vision) and inserted
on a water-proof canister installed inside the tank, the image acquisition system was set up 1o record up to 4MB
monochromatic images of the region near the touchdown zone at the frequency of 100MB/s.

Table 1. Scaled-model riser: Geometrical properties, structural properties and distributed applied forces.

Length 8.190 m Linear density 0.2190 kg/m
Diameter 0.254m Submerged linear density | 0.1001 kg/m
Rigidity modulus | 1.337x10-° kg.m’
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Figure 1 - Experimental setup.
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Using the above referred image acquisition system, a series of images describimg the planar motion of the scaled
model riser were collected. As can be seen in Fig. 2a, the images generated by the experimental sctup easily permit 1o
estimate the inclination angle o between the image horizontal axis and the image towing bottom line. Furthermore,
the measurement of distances belween successive markers in the rotated image of Fig. 2b along its horizontal axis
indicate that the horizontal scale does not change with posttion, e, that:

dip=dyz=--dyy,=d (1

Figure 2. (a) Original image. (b) Image (a) rotated to align the towing bottom line with the horizontal axis.

The above results permit to assume that the projective transformation applied by the camera can be approximated by
an alfinity (see Fig. 3) with uniform horizontal and vertical scales estimated, respectively, by:
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where €, the distance between markers, is a priori known (200mm), & is the angle between the segment AB and the
horizontal line and sy is the scale measured along the segment AB.

Figure 3. Measurement of the scale factors along a generic direction of the image plane.

After applying ta the rotated images a segmentation process featured to isolate the image centroids (xim;,yim;) of the
markers (see Fig. 4), their motion plane coordinates (x,,y;) were obtained by a simple scaling operation. So, observations
of the scaled model riser kinematics could be properly described along the time.

Figure 4. Identified markers of a segmented image.
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Using the theory of compliant mechanisms (Howell, 2001), the scaled-model nser was represented as a pseudo rigid
body model (PRBM) composed of segments of rigid bars linked by torsional springs (see Fig. 5) with constants that
depend on the respective boundary conditions. As illustrated in Fig. 5, the number ol degrees of freedom of the
generated model is compatible with the observed kinematics data and the PRIBM’s equivalent compliant properties of
the mechanism are calculated according to the expressions suggested by Weight (2001) concerning flexible beams
submitted to some previously established load and boundary conditions.

Figure 5. PRBM for the scaled model riser.

For the fixed-fixed beam boundary condition, the spring constant is:

2K o El
¢

K= (4)

where, according to Howell (2001), v=0.85 and Ky=2.6.

Considering that all the springs or pairs of springs correspond to the same fixed-fixed beam boundary conditions,
then:

(o El
i = i (5)
f
Moreover, the serial pairs of springs can be substituted by an equivalent spring with constant given by
, ky KoLl
R — 6
= . (6

In order to write the Lagrangian equations for the compliant mechanism of Fig. 5, the expressions for the kinetic
energy, the potential energy and the generalized forces were properly developed.

The kinetic energy 1s given by:
1 5ol 52
T=2 kit =) Jab, (7

where : i
Vi =voi #¥0k A(G; - 0;) (8)

and Jg; is the moment of inertia of the segment 0,0,
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After substituting (8) in (7), the following expression for the kinetic energy resulls:
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The potential energy of the scaled-model riser encompasses the energy stored in the springs and the polumal of the
gravilational and hydrostatic forces. So, itis described by:
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where p, is the underwater weight per length ratio.

The generalized force Fy applied at the node Os, 1s:

dxs . dys
J A s B 1)
AT e (
Adopting L=7-V and applying to Eq. (9) to (11) above the Lagrangian equations, given by:
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The set of linearized differential Eq. 18-22 in the generalized coordinates must now be solved for those coordinates
and for the unknown cable tension F, a forcing term that occurs at the right side of Eq. (18) to (21) and contribute to the
bending moment at the end of each but the outermost right segment of the compliant mechanism model. In order to
solve the stated problem, we formulate it as a state-space problem and use a Kalman filter to estimate the state, a vector
containing the generalized coordinates and its derivatives plus the unknown forcing terms. The approach we used to
obtain the state-space model 1s described next.

(2+Y)+2jj|93 +{inéz{%+l]+2'j 91 +{m§“ ]/+J}95 i

(21)

- fZ
—'Y‘f-]}% +|i*}’+fji91 1‘7"}2:"‘ ]iIQ +k195 ‘Jl‘prrfz Y =) (22)

Equations (18) to (22) are a space discretized and time continuous representation of the compliant mechanism
approach Lo the suspended cable problem; accordingly, they can be written as

" "
B0 + (Ko ="¢0). (23)
in which [M] ; [K]E R are respectively the inertia and stiffness matrices, Q(l) e R™™ isa vector of generalized

coordinates and (1) € R™ accounts for all terms that do not contain the generalized coordinates and their
derivatives. As it is noticeable from Eq. (18) to (22), the continuous-time model thus assembled is coupled 1n the second
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dernivatives, i. e, matrix [ﬂ/f] is not diagonal; however, since it is real and simetric, it is possible to write a linear map

[ -6 — n such that

8 =[L), (24)

|[L.] being a square non-singular constant malrix or order 5. As a consequence of substitution of Eq. (24) inte Eq. (23)
and multiplying both sides by [L]", one obtains

LT Il + LY kMo = LT v, (25)
or, in shorter form,
(M, B0 +[K, ) = 20), (26)

with [My] a diagonal matrix and [K,] a simetric matrix, thus decoupling the system in the second derivatives ol the

generalized coordinates and allowing its description in a canonical state-space, framework. In this work, we employed
i . . v . ~ " - " -

an appropriate built-in Octave function to obtain the transformation matrix [L;. I'he components of the state-vector are,

then, X,(¢), I =1:10 with

R Bh T BTE (27)
Th =%y Tk I, =Xy = X4 Tls = Xio = %
For the ordinary case in which the forcing vector of the right-hand side of Eq. 26 is known, x(t)e R" would be the

state-vector of the Kalman filter process model, represented in matrix form as

i=F,x+G,Q, F,e R, Ge R (28)

Nevertheless, since our interest is o estimate not only the generalized coordinates but also the forcing vector, we
include those terms in the estimation problem by augmenting the ordinary state-vector. Firstly, we consider the forcing
veetor as the output of a linear filter driven by zero-mean Gaussian white noise:

E‘ :FI +G E 2 £ :H E‘RSJ EFNN(O':Q)
r r=f P 7 43 J (29)
P =Hx,

Equaticns (29), in which Fr, Grand Hy are identitity matrices of order 5, exhibit respectively the state-space process

and observation models for the unknown forcing vector £2(1) = xf(t) . Next, those equations are used to augment the

system and observation state-space models for the original generalized coordinates according to Eq. (30),

X _ FP GPHf X Olﬂxi T 15x15 15x5
- + W, = X=4X+Bw,, A€R ,Be R, (30
Xl [Osa0 Fr J1%f G, =

that provide the process state-space model in which both the generalized coordinates and the forcing terms constitute
the state variables to be estimated. In view of Eq. (28) and (29), it should be emphasized that process uncertainties,

expressed by the randem vector W, are implicitly assumed to be restricted to the unknown forcing ferms. This is a

feasible assumption, since the simplification introduced by modeling the actual experimental riser as two-bar compliant
mechanism according to Howell (2008) is capable of reproducing large displacements of an actual continuous beam,
whose elastic curve results from the solution of an elliptical differential equation.

The observation equation for the augmented model will be assembled taking into account that the only
measurements available are angular displacements of the bars, obtained from images grabbed by a video camera. Those
images, through a segmentation procedure, provide Cartesian coordinates of a set of markers that are used to generate
the comrespondent angles. Inherent errors in the image segmentation procedure are modeled as zero-mean Gaussian
noise with covariance matrix R, allowing for the observation equation to be written as

Y=[H, 0. X+v =Y=HX+y, HeR™ veR’ v~ N(O,R), G31)

The state-space representation of the riser dynamical model according to Eq. (30) and (31) is hybrid (continuous-
discrete), since the state evolves continously, whereas measurements are availabe at specific sample times. For
computational purposes, in this work the continuous process model was discretized (with the aid of a built-in function in
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Octave) using the same time step-size as thal of the measurements, 1.¢, cach £” iteration of the filter corresponds Lo a
new measurement available, The obtained discrete-time process model is, then,

X([,}) = (I)([k 1[}‘-_[)5:(,{[,‘( ,|)+ Bn‘ (fk )ﬁ([j\ ): (32)

in which X(7,) 1s the stale vector " time step kAt ®@(7,,7, ) is the discrele-ime rransition mairx, and

B,, )“'f (1,) isthe discrete-time forcing vector. Accordingly, the discrete-time observation equation 1s

Y(t)=HX(@)+u(). (33)

Regarding the estimation procedure, it suffices to mention that recursive estimation theory based on Kalman
filtering is extensively discussed in the literature, see for instance Jazwinski (1970); thus, for the moment, we only state
the hypotheses used and provide a brief explanation of the algorithm through ils equations. As already mentioned, white
noise sequences W and y are assumed zero-mean Gaussian with associated covariance matrices; in addition, those

sequences are considered mutually independent and, as a consequence of being Gaussian, they are also uncorrelated.
Covariance matrices Q and R are admitted constant and diagonal, whose glements are the variances of each state-
variable.

For the model given by Eq. (32) and (33), there is a forecast stage that secks to produce the best estimates (1 a
stochastic least-squares sense) by propagating the previous estimated state based on the process model and its known
(or admitted) statistics before new information is available. This way, Eq. (34)

I i
X' () = DX (1) (34)
provides the state estimation forecast and eq. (35)

PI([A-): P”(Zk—l)%Q(Ii{mL) (3%)

gives the estimation error covariance matrix forecast. When new data is available, an update stage provides proper
correction to the forecasted estimates of the state and error covariance according to Eq. (36) and (37),

X)) = X () + Koy - X (1) (36)

P'() = (I -K(t)H)P' (1) - (37)
It must be pointed out that in Eq. (36), ¥(#,) is employed to represent the measurement vector, distinet from Vit

measurement model.
The correction is provided by the Kalman gain matrix, computed according to Eq. (38)

K(1,)= P/ ()HHP ¢ )H" + R (38)

thus completing the prediction-correction steps necessary for the next iteration of the filter.

RESULTS AND DISCUSSION

The previously described experimental setup grabbed images at a rate of 28 frames/s, thus providing observations of
the position of each one of the five markers attached to the suspended cable at every 0.036 seconds. Computed
Cartesian coordinates of the markers were used to get the effective angular observations for the Kalman filter estimation
procedure. The covariance matrices were Q=0.9 I;5 (process model noise covariance matrix, assumed constant), R=0.01
I5 (measurement model noise covariance matrix, assumed constant) and Py=0.5 I,5 (state-estimation error covariance
matrix); the initial state-vector was

[-0.0183; 0.0276; 0.0085; 0.0262; 0.0633; 0.253; -0.5087; 0.011; 0.245; -0.189; 0.0376; 0.025; 0.0153; 0.0063; 0.07%,

obtained as the mean value of nieasurements from the three first frames grabbed. The last 5 state-variables correspond
to bending moments computed using a static estimate of the traetion force on the cable, F=0.5 N.

Estimates for the state-variables angular displacement and rotation are shown in Figs. 6 and 7. Thosc ten variables
are the ones of the “original” dynamical system, i.e., without the augmentation that included forcing terms as state
variables to be estimated. From Fig. 6, one realizes that the results are coherent since angular displacements have higher
amplitudes for those nodes close to the left-side of the cable; in addition, angular velocities behave accordingly, see Fig.
7.
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Figure 6: Angular displacements of the model bars at the rotational springs.
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Figure 7: Angular velocity of the model bars attached to rotational springs.

Results of generalized forces depicted on Fig. 8 also corroberate the previous assertions, for moments (in this case,
generalized forces are bending moments at the edge of each pair of bars setting) at the left-side of the cable present
higher amplitudes, that decrease in the direction of the right-side. Particularly interesting is that, for the generalized
force corresponding to state-variable number 15, the bending moement at the free-end of the cable, as shown by the
purple curve, has mean value around zero from 2.5 seconds onward {the actual mean value in this range is -0.0058 N.m),
complying with what was theoretically expected.
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Figure 8: Estimates of generalized forces.
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When the generalized forees, the | 1" 10 15" state-variables of the augmented stale-space model are used to compute
tension values on the string, its mean value is 10.9 N for the values calculated [rom curves representing state-variables
11 to 14, as seen of Fig. 9; regarding the 15" state-variable, its mean value is zero, for the same reasons stated above. It
is as well worthwhile to mention that curves representing state-variables 11 to 14 present peaks whose amplitudes 15
decreasing, therefore suggesting that, if more observations were available, the estimates would converge to the above-
mentioned mean value.

In order to support the assertions of the last paragraph, two evidences of the convergence of the estimation
procedure are provided by the behaviour of the error covariance matrix and the normalized residual. The Fuclidean
norm of the estimation error covariance matrix P'(1y) during the estimation process is depicted in Fig. 10, from which il
is possible to tealize that, after great amplitudes at the beginning of the process, once more observations are availabe,
the error decreases and reaches a steady-state value, which indicates that the procedure has converged. This condition 1s,
however, not enough to guarantee the actual convergence. As stated by Jazwinski (1970), actual convergence of the
estimation process must be asserted by the inspection of the observation the difference between the effective
measurement and its value as calculated by the filter using the last available slale estimate. An estimalion process 15
considered convergent once the normalized observation residuals is zero-mean Gaussian with standard deviation

i

L]

] & —
r, :;Z(Lm»g; [, ; | (39)

LU, =l

between — 3¢, and 3¢, , given by Eq. (39)

where / represents measurement veclor dimension, in our case, f =5 1InFig. 11, it is shown that those requirements
- - -[.2

are fulfilled, because /[ [i;]z 0.012 and ﬂ[rv J: 0.17 - therefore, one concludes that the procedure actually

CONVerges.
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Figure 10: Error covariance matrix Euclidean norm.
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CONCLUSIONS

This work investigated the use of a new approach to analyse the dynamies of an underwater suspended cable though
image-based instrumentation associated to parameter estimation techniques. A scaled-model riser has undertaken
several tests in a controlled environment. Simple self calibration procedures applied to images grabbed by a video
camera provided observations used in a state-space model of the system dynamics obtained from the application of
compliant mechanisms theory to spatially discretize the riser specimen. The system dynamical model was simulated
through a linear Kalman filter in which the state-variables of the augmented state-space vector included the unknown
generalized forces at the end of each discretized segment of the cable. Results from the simulations suggest that it 13
possible to use the described approach to estimate both the bending moments along the cable and the tension force at its
free extremety. This assertion is corroborated by statistical evidence ol the convergence of the filtering process, namely,
decreasing error covariance matrix Buclidean norm and consistency of the normalized observation resuduals.
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