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Abstract
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechan-

isms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating

insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE

patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-

onset, ranging from mid-adolescence to early adult life. The mechanisms governing early

(E) or late (L) disease onset are largely unknown. In order to unveil the molecular path-

ways underlying E and L subtypes of FS-MTLE we investigated global gene expression in

hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene

coexpression networks (GCNs) were obtained for the E and L patient groups. A network-

based approach for GCN analysis was employed allowing: i) the visualization and analy-

sis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts

- GCNs for the E and L groups; ii) the study of interactions between all the system’s con-

stituents based on community detection and coarse-grained community structure meth-

ods. We found that the E-DE communities with strongest connection weights harbor

highly connected genes mainly related to neural excitability and febrile seizures, whereas

in L-DE communities these genes are not only involved in network excitability but also

playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly con-

nected communities are related to compensatory pathways (seizure inhibition, neuronal

survival and responses to stress conditions) while in L-CO these communities harbor sev-

eral genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability

to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early
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onset epilepsies, although impacting more severely the hippocampus, are associated to

compensatory mechanisms, while in late MTLE development the brain is less able to gen-

erate adaptive mechanisms, what has implications for epilepsy management and

drug discovery.

Introduction
Mesial temporal lobe epilepsy with childhood febrile seizures (FS-MTLE) is a distinctive entity
that can be delineated from afebrile MTLE as demonstrated by epidemiological [1], radiologi-
cal [2], and genomic [3, 4] studies. The age at onset in FS-MTLE is trimodal, with peaks at
early childhood, adolescence, and early adult-life [5]. The age of seizure onset exerts a relevant
impact on brain activity and connectivity because epilepsy-associated processes interfere with
normal brain developmental changes, as evidenced by fMRI and network (graph theory)
computational studies of brain connectivity [6, 7, 8]. These studies show that late-onset MTLE
causes more pronounced neuronal network alterations (whole-brain properties), since the ma-
ture brain has a diminished capacity to generate adaptive responses to epilepsy effects, whereas
in early-onset MTLE several compensatory mechanisms are activated in the more plastic youn-
ger brain. On the other hand, early MTLE onset is associated to a more severe functional ab-
normality in the ictal hippocampus (local alteration) [8], what is in agreement with the inverse
correlation between age of seizure onset and severity of mesial temporal sclerosis [9]. About
40% of the patients with FS-MTLE develop refractory epilepsy [10] and early onset of seizures
is a predictive factor for pharmacoresistancy [11, 12].

Prolonged febrile seizures (FS) and febrile status epilepticus (FSE) in early childhood have
long been associated to a higher risk of temporal lobe epilepsy and mesial temporal sclerosis,
but a causal relationship was just recently established, based on epidemiological and imaging
investigations, as well as on studies with animal models (reviewed in [13]). FS and FSE can
cause hippocampal injury due to the interplay between inflammation and fever: fever increases
neuronal firing and causes the overexpression of inflammatory molecules (IL-1β, TNF-α,
HMGB1), leading to neuronal injury, neuronal excitability and epileptogenesis [14, 15, 16].
Studies in animal models showed that a single episode of neonatal seizure permanently alters
glutamatergic synapses [17]. In fact, initial precipitating injuries, such as complex febrile sei-
zures, are potent inducers of epigenetic alterations that modify brain functioning [18]. It was
shown that DNAmethylation is an early event triggered by FSE that may persists late in the ep-
ileptic hippocampus, leading to permanent changes in gene expression [19].

The predisposition to developing temporal lobe epilepsy and hippocampal sclerosis has
been investigated in animal models of FS induced by hyperthermia and in prospective clinical
studies of children with FSE. Altogether, these studies revealed that FS development and subse-
quent epilepsy results from a combination of environmental and genetic factors that vary in
each individual [13, 20, 21]. In rodent models of FS-like seizures induced by hyperthermia, a
quite regular latency period between the initial insult and the development of recurrent seizures
is always observed [22], but in human FS-MTLE the age at onset varies from early childhood to
adult life [5, 1]. The mechanisms governing early (E) or late (L) disease onset in FS-MTLE are
largely unknown but their unraveling is crucial, since the latent period could be a therapeutic
window for developing antiepileptogenic drugs [23].

In order to look into the molecular mechanisms leading to early or late FS-MTLE onset,
we have decided to investigate comparatively the hippocampal CA3 transcriptional profile of
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a group of FS-MTLE patients where all individuals had their IPI before 4 years of age but
who developed MTLE in early childhood or in mid-adolescence and adult life. Our rationale
was based on the evidences that FS-induced epigenetic changes produce lasting effects on
gene expression in human hippocampus, and in the tenets of network medicine: i) genes do
not operate in isolation but as components of complex networks [24, 25, 26]; ii) genomic in-
teraction data is basically composed of pairwise relationships among transcriptional modules
(network communities [27]); iii) complex diseases rarely derive from alterations in a single
gene but, on the contrary, reflect perturbations in cell’s genomic and protein-protein interac-
tion networks, often caused by environmental factors [28, 29, 30]. Therefore, we sought to
find out how FS, an initial precipitating insult of environmental origin, differentially impact-
ed hippocampal CA3 gene coexpression networks of FS-MTLE patients with early or late dis-
ease onset. Conceivably, different precipitating insult effects on disease onset could arise
from pre-existent CA3 gene network differences between E and L patients, due to inherited
genetic differences, or stem from different network adaptations to the insult, also influenced
by allelic differences among individuals. In order to investigate this issue, gene expression
data was analyzed using network science parameters, i.e. with emphasis in complex network
visualization, gene hierarchy categorization, community detection and coarse-grained com-
munity structure [4, 26, 31, 32].

Material and Methods

Patients
Ethics Statement. The patients with refractory MTLE and febrile IPI included in this

study were selected through the CInAPCe-FAPESP Program (www.fapesp.br/en/; www.
cinapce.org.br). This research has been approved by the research ethics committees of Hospital
das Clínicas da FMUSP and of Hospital Albert Einstein under numbers 251/05 and CAEE
0122.0.028.174.05 respectively. A written informed consent was obtained from all patients.

Refractory epilepsy cases were defined as those who have not gained seizure control after
treatment with three or more anticonvulsant drugs. In the last 3–4 years before surgery,
seizure control was attempted with carbamazepine, oxicarbazepine, phenobarbital, cloba-
zam, topiramate, and lamotrigine, in different drug combinations. The patients were submit-
ted to clinical, electrophysiological, neuropsychological and neuroimaging evaluations
before surgery. All patients included in this study (Table 1) had prolonged febrile seizures as
the IPI at or before the age of 4 years. Early onset patients were those who developed the dis-
ease soon after the IPI, whereas the late onset patients developed the disease after �13 years
old. In the present investigation we compared global gene expression profiles of CA3 ex-
plants obtained at surgery room from seven early-onset (group E) and seven late-onset
RMTLE patients (group L) submitted to corticoamigdalohippocampectomy. E and L groups
had the same gender composition: three males and four females. Hippocampal hypersignal
was observed in T2-weighted MRimages in all cases, what is a hallmark of hippocampal scle-
rosis [33]. MRI evidence indicated that six of the E patients had MTLE on the right side and
one on the left side, whereas five of the L patients had MTLE on the left side and two on the
right side. Patients with bilateral hippocampal sclerosis, lesions other than hippocampal scle-
rosis (tumors, dysplasias, etc), and psychiatric disorders were not included in this study. No
significant group differences were found for epilepsy duration or age at surgery between E
and L groups (S1 Fig). All surgical specimens were classified as ILAE type 1 hippocampal
sclerosis [34], that is, severe neuronal cell loss and gliosis predominantly in CA1 and
CA4 regions.
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Brain tissue specimens for gene expression and neuropathological
studies
Fresh ex-vivo explants from hippocampal CA3 of our patients were obtained at the surgery
room and immediately preserved with RNAlater (Qiagen cat. no. 76106, Valencia, CA). MRI
and histological studies were performed in all removed hippocampi for neuropathology analysis
and for confirming that the explants for genomic studies were obtained at the proper site [2, 3].

RNA extraction
Brain tissue explants from CA3 (3–4 mm3) were homogenized with TissueRupter (Qiagen, cat.
no. 9001272 Valencia, CA) and total RNA was extracted from the homogenates using the
RNeasy Lipid Tissue Kit (Qiagen cat. no. 74804, Valencia, CA) according to the manufacturer’s
instructions. RNA quality was assessed on the Agilent BioAnalyzer 2100 (Agilent, Santa Clara,
CA). All samples were stored at -80°C until used in hybridization experiments.

Microarray hybridization and gene expression analysis
In order to determine gene expression profiles, 4x44K DNA microarrrays (Whole Human
Genome Microarray Kit, Agilent Technologies, cat no. G4112F, Santa Clara, CA) were used.
The procedures for hybridization followed the protocols provided by the manufacturer´s in-
structions (One-Color Microarray-Based Gene Expression Analysis—Quick Amp Labeling).
The images were captured by the reader Agilent Bundle according to the parameters recom-
mended for bioarrays and extracted by Agilent Feature Extraction software version 9.5.3 and
considering spots present none or only one flag (i.e. low intensity, saturation, controls, etc.).
The selected transcripts were used for analysis using the R software version 2.11.1 (R Devel-
opment Core Team, 2010). We identified 13,427 valid GO annotated genes for the CA3 sam-
ples (early- and late-onset patients). By means of the TMEV software version 4.6.1 we
obtained the differentially expressed (DE) Gene Ontology (GO) annotated genes using the t-
test (P<0.05). All microarray raw data has been deposited in GEO public database (http://

Table 1. Patients' clinical and demographic data.

Epilepsy

Patient ID Gender FR IPI (yr/mo) Onset (yr/mo) Duration (yr/mo) Age at surgery (yr) Side

E1 M No 4yr 4yr 9yr 13 R

E2 M No 4yr 4yr 35yr 39 L

E3 M 2nd 2yr 2yr 31yr 33 R

E4 F No 6mo 6mo 55yr6mo 56 R

E5 F 1st/3rd 8mo 9mo 28yr3mo 29 R

E6 F No 2yr 2yr 18yr 20 R

E7 F 1st/3rd 3yr 5yr 42yr 47 R

L1 M 2nd 3yr 14yr 9yr 23 L

L2 F 2nd 2yr 29yr 13yr 42 L

L3 M 2nd 6mo 15yr 14yr 29 L

L4 F No 2yr 14yr 14yr 28 R

L5 M 2nd 2yr 19yr 31yr 50 L

L6 F No 9mo 13yr 11yr 24 R

L7 F 1st 6mo 16yr 38yr 54 L

E-Early onset; L-Late onset; FR-Familial recurrence; IPI-Initial precipitant insult; 1st/2nd/3rd- first, second or third degree relative with epilepsy.

doi:10.1371/journal.pone.0128174.t001
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www.ncbi.nlm.nih.gov/geo), a MIAME compliant database, under accession number
GSE57585. Differential gene expression data were validated through quantitative real-time
polymerase chain reaction [3].

Gene coexpression networks (GCNs): visualization, analysis and
community detection
Gene coexpression networks for differentially expressed GO annotated genes (DE) and for all
valid GO annotated genes (CO) were constructed for E and L groups based on Pearson’s corre-
lation, as we previously described [4]. Pearson’s correlation identifies sets of genes which covar-
ies (positively or negatively), thus allowing us to construct networks by considering nodes as
genes, with edges inferred if a pair presents high absolute value of correlation. Specifically, we
define a correlation threshold that determines if edges are present or absent in the resulting
network. This is done in a way that all nodes are connected to the major component and the
network is stable in the sense that slight changes in the threshold value do not significantly af-
fect its topological structure [4]. Networks were tested for scale free status by Kolmogorov-
Smirnov (K-S) statistics, i.e. power law distributions in empirical data [35].

As these networks may grow larger in the number of components (e.g. tens of thousands
genes) or present very intricate connections between them (such as hierarchical or modular
structure), it becomes mandatory the use of tools and methodologies borrowed from network
science to better characterize such systems.

We developed a network methodology for GCN visualization (3D) and analysis [4] that al-
lows the categorization of network nodes according to node-centered connectivity taken
along distinct hierarchical levels of gene-gene neighborhoods [36, 37]: hubs are highly con-
nected nodes, VIPs—standing for “Very Important Person”, an acronym initially coined for
the study of social networks [38] and equivalent to the term “date-hubs” in biological net-
work papers [39]—have low node degree but connect only with hubs, and high-hubs have
VIP status and high overall number of connections. We classified network nodes as VIPs,
hubs or high-hubs by obtaining the node degree, k0, and the first level concentric node de-
gree, k1, which takes into account all node connections leaving from its immediate neighbor-
hood, then projecting all node values in a k0 vs k1 graphic. All calculations were done by
using Python program and the conceptual framework is described at http://cyvision.if.sc.usp.
br/~bant/hierarchical/.

Connectivity. The network connectivity k for non-directed networks was calculated by
k = 2L/N, where L stands for the number of edges and N for the number of nodes [40].

Community detection. Community detection in complex networks is usually accom-
plished by discovering the network modular structure that optimizes the modularity measure-
ment. Modularity takes into account the relationship between the number of links inside a
community and between nodes in distinct communities compared to the random model [27;
40]. A diverse range of optimization techniques exist to optimize the modularity. Here we ap-
plied the method proposed by Blondel et al. [41] which attains good modularity values and
presents excellent performance.

Coarse-grained community structure. As a complementary analysis for the community
detection, each GCN was rearranged in a new network accounting only for the relationships
between each community, also known as coarse-grained community structure (CGCS) [42].
Here the CGCS was generated by contracting all nodes inside each community into a single
community node, likewise, edges are added up as connection weights between such communi-
ties. This structure can also be obtained directly by considering the mixing matrix [27] as an
adjacency matrix of the new network.
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Interactome analysis
The interactome networks were constructed using an in house free web tool developed by Le-
andro de A. Lima and Renato D. Puga—Centro Internacional de Pesquisa e Ensino (CIPE)—
Hospital A. C. Camargo (http://bioinfo.lbhc.hcancer.org.br/cgi-bin/interactomegraph/index.
cgi). Only genes categorized as hubs, VIPs or high hubs were considered in this analysis. MINT
and IntAct databases (experimentally verified protein-protein interactions) were selected for
comparison and data generation. Data analysis and visualization were accomplished through
Cytoscape (version 3.1.0, www.cytoscape.org).

Results

GCN analyses
In the E versus L comparison, 761 DE genes were found to be upregulated and three were
downregulated in the E group. Gene coexpression networks (GCNs) were inferred for E and L
groups using DE or CO (encompassing all 13,427 valid transcripts) subsets of genes through
Pearson’s correlation method. A 0.965 link-strength cut-off was adopted for DE networks. The
resulting DE networks had 621 genes and 1367 links for the E-DE group, or 703 genes and
3,206 links for the L-DE group. We adopted a higher link-strength cut-off (0.998) to finalize
the CO networks, which had 9,578 genes and 32,807 links for the E-CO group, or 11,321 genes
and 76,711 links for CT group. All networks were validated as scale-free networks as seen in a
normalized degree distribution log-log plot: DE and CO networks are shown in Figs 1 and 2,
respectively. In these figures the nodes (genes) are depicted in different colors corresponding to
their hierarchical level: blue for hubs, red for VIPs, and green for high-hubs. Gene categoriza-
tion as hubs, VIPs, and high hubs, with their corresponding k0 and k1 values and biological
function appear in Table 2 (DE networks) and Table 3 (CO networks).

Connectivity. E networks exhibited lower connectivity when compared to L networks. The
k values for these four networks were: E-DE = 4.40; E-CO = 6.85; L-DE = 9.12; L-CO = 13.55.

Community detection. An overall picture of DE gene communities (modules) is depicted
in Fig 3A for E-DE and in Fig 4A for L-DE networks. Different node colors identify the distinct
gene communities in each network. Fig 3B, Fig 4B and 4C present, respectively, E-DE and
L-DE hierarchy-categorized selected nodes identified by their corresponding GO gene symbols.
Symbol letter colors indicate hubs (blue), VIPs (red) or high hubs (green). E-CO and L-CO
networks, respective communities, and hierarchy-categorized selected nodes can be properly
visualized only in 3D and are shown in S1 and S2 Videos. DE and CO networks presented
good quality of community structure and modularity values were quite similar for all networks:
E-DE = 0.657; L-DE = 0.530; E-CO = 0.514; L-CO = 0.506. It is interesting to note that the
E-CO network has more gene communities (24) than the L-CO network (16) as depicted in Fig
5A and 5B respectively. Fig 5C shows the number of nodes per community in each of the CO
networks. E networks (DE and CO) have lower connectivity and their communities are more
sparsely connected, what may indicate a higher grade of dysregulation in cell’s functional orga-
nization [4, 43]. A set of simulations run with slightly different link-strength thresholds (from
0.930 up to 0.980 for DE networks, and from 0.990 up to 0.998 for CO networks) did not reveal
alterations in community structure, thus indicating its robustness.

Community structure analysis of transcriptional networks
This section portrays the biological functions of selected hubs, VIPs and high- hubs in the con-
text of the distinct gene communities, i.e. transcriptional modules, found in DE and CO net-
works generated for E and L groups. Coarse-grained community structure (CGCS) was obtained
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for each network, yielding the relationships between each community in the network (Fig 6).
Communities with the strongest connection weights (fraction of edges linking distinct commu-
nities) hold the most significant functional interactions in the network [30, 44, 45]. Therefore,
the subsequent analysis of gene communities in DE and CO networks was performed consider-
ing not only the gene/node hierarchy but, and principally, the networks’ CGCS.

E-DE network. This network encompasses 14 gene communities, of which 10 contain
high hierarchy nodes/genes—categorized as hubs, VIPs or high-hubs—with high network cen-
trality (Fig 3A, 3B and Table 2). Most of these high hierarchy genes play relevant roles in epi-
lepsy and brain functioning. These roles will be analyzed below in the setting of gene
community relationships. In the E-DE network communities C and I have the strongest con-
nection weights (Fig 6A), followed by communities A and B.

Community C harbors six E-DE high hierarchy genes and four of them are related to neuro-
nal excitability. Two of these genes are VIPs: SCN9A, which codes for Nav1.7 sodium channel
and whose allelic variants are implicated in genetic epilepsies with febrile seizures [46, 47] and
RTN2, also a VIP in L-DE network module C, a regulator of the trafficking and function of glu-
tamate transporter EAAC1 (excitatory amino acid carrier 1) [48]; dysregulation of EAAC1 was
reported in experimental models of epilepsy and also in the hippocampus of temporal lobe epi-
lepsy (TLE) patients [49]. The third gene, BAIAP2, is a high-hub. This gene codes for an adap-
tor protein (IRSp53) involved in the regulation of NMDA receptor-mediated excitatory
synaptic transmission, long-term potentiation, and learning and memory [50]. Rapid surface
accumulation of NMDA receptors in dentate gyrus and CA3 pyramidal cells increases

Fig 1. Node distribution and categorization for DE networks. Kolmogorov-Smirnov test for scale free status for E-DE (A) and L-DE (B) gene
coexpression networks (GCNs). Scatter plots of node degree (k0) vs concentric node degree (k1) measures of GO annotated genes in E-DE (C) and L-DE
networks (D). Hubs (blue), VIPs (red) and high-hubs (green), identified by their gene symbols.

doi:10.1371/journal.pone.0128174.g001
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glutamatergic excitation during status epilepticus [51]. The fourth gene in this functional
group, BRUNOL5, aliase CELF5, codes for a member of the CELF-Bruno Like family of RNA-
binding proteins. BRUNOL5 expression is restricted to brain [52]. CELF proteins share struc-
tural and functional redundancy. Human BRUNOL4, closely related to BRUNOL5 [48], is in-
volved in fine-tuning synaptic transmission and its deficiency causes recurrent seizures in mice
and man [53].

The remaining two genes in community C are high-hubs: AVIL codes for advillin, an actin
binding protein, and regulates neurite outgrowth [54, 55]; and FLJ37078 encodes a hitherto
uncharacterized protein.

In community I all four high hierarchy genes are clearly related to febrile seizures, synaptic
activity and epilepsy. EGR4, a hub, mediates BNDF induction of neuronal KCC2 (potassium
chloride cotransporter 2) transcription [56]. KCC2 variants determine susceptibility to febrile
seizures [57]. KCN3, a VIP, codes for a potassium channel related to febrile seizures and synap-
tic excitability [58, 59, 60]. B3GALTN1, also a VIP, glycosylates and promotes heteromerization
of HCN1-HCN2 channels in hippocampus upon seizure activity, thus enhancing network ex-
citability [61].MTA1, a high-hub, and a VIP in L-DE community H, codes for a core compo-
nent of NuRD (Nucleosome Remodeling and histone Deacetylation) complex [62], where it
enhances histone deacetylases (HDACs) 1 and 2 activity in order to repress gene expression
[63].HDAC2—the target of the antiepileptic drug Valproate—is overexpressed in the brain of
TLE patients and its transcriptional repression activity plays an important role in the patho-
genesis of epilepsy [64].

Fig 2. Node distribution and categorization for CO networks. Kolmogorov-Smirnov test for scale free status for E-CO (A) and L-CO (B) networks. Scatter
plots of node degree (k0) vs concentric node degree (k1) measures of GO annotated genes in E-CO (C) and L-CO networks (D). Hubs (blue), VIPs (red) and
high-hubs (green), identified by their gene symbols.

doi:10.1371/journal.pone.0128174.g002
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Table 2. High-hubs, hubs, VIPs and communities in Early and/or Late DE networks.

Early Late

Gene Comm1 Cat2 K0 K1 Comm Cat K0 K1 Gene function/product [reference]

C1orf115 A Hub 27 67 Integral component of membrane (Gene ID: 79762)

SYN2 A VIP 6 98 Regulation of epileptic and synaptic activity on hippocampus [67]

AW948903 A VIP 10 96 Expressed sequence tag (EST) AW948903

FAM70B A VIP 10 91 Official symbol: TMEM255B. Integral component of membrane (Gene ID:
348013)

FHOD1 A High-
hub

17 110 Coordinates actin filament and microtubule alignment [67]

TUBB2A A High-
hub

23 95 Beta tubulin, a major component of hippocampal microtubules [71, 72]

C19orf28 B Hub 24 59 Aliase: MFSD12. Mediates sodium butyrate (HDAC inhibitor) inhibition of
Sirtuin-2 (HDAC III)-mediated hippocampal synaptic plasticity [73, 74]

ZDHHC23 B VIP 7 88 Aliase: NIDD. Controls surface expression of calcium-activated potassium
channels (BK) [76]

KRT14 B High-
hub

25 121 Codes for keratin 14 and modulates Notch signaling [80]

BRUNOL5 C Hub 21 54 Member of the CELF-Bruno Like family of RNA-binding proteins [52]

SCN9A C VIP 9 99 Febrile seizure associated gene coding for Nav 1.7 sodium channel; Allelic
variants may cause FS epilepsy [46, 47]

RTN2 C VIP 10 89 C VIP 25 407 Regulates the trafficking and function of glutamate transporter EAAC1 [48]

FLJ37078 C High-
hub

25 128 Official symbol: SRRM3. Serine/arginine repetitive matrix 3 (Gene ID:
222183)

AVIL C High-
hub

22 84 Codes for advillin, an actin binding protein, and regulates neurite outgrowth
[54, 55]

BAIAP2 C High-
hub

19 82 Adaptor protein IRSp53; involved in the regulation of NMDA receptor-
mediated excitatory synaptic transmission [50]

MYH14 D Hub 23 67 Neurite stabilization at adhesion sites [194]

TXNRD1 D VIP 10 95 Regulator of cellular redox balance (protection against oxidative stress) [195]

AA292106 D High-
hub

23 89 Expressed sequence tag (EST) AA292106

C1orf92 E Hub 24 68 Aliase: LRRC71. Protein harboring a leucine-rich repeat motif (Gene ID:
149499)

BF083139 E VIP 8 89 Expressed sequence tag (EST) BF083139

KNDC1 F Hub 28 47 Codes for a v-KIND domain containing protein involved in the control of
dendrite arborization patterns [196]

B4GALT2 G Hub 28 42 D High-
hub

57 496 Major regulator of glycan synthesis involved in neuronal development and
neuron outgrowth [197, 198]

GTF3C1 H High-
hub

21 109 Aliase: TFIIIC. Regulates the rearrangement of nuclear architecture allowing
the coordinated expression of activity-dependent neuronal genes [82]

EGR4 I Hub 27 72 Mediates BNDF induction of neuronal KCC2 transcription [56]

B3GALNT1 I VIP 8 97 Glycosylation of HCN1 channels upon seizure activity in hippocampus [61]

KCNC3 I VIP 7 95 Potassium channel related to febrile seizures and synaptic excitability [58,
59, 60]

MTA1 I High-
hub

29 137 H VIP 27 451 Codes for a protein which is an integral part of the nucleosome remodeling
and histone deacetylation complex [62]

KIAA1539 A Hub 48 380 Official symbol: FAM214B. Family with sequence similarity 214, member B
(Gene ID: 80256)

FAM116B A Hub 45 308 Aliase: DENND6B. DENN/MADD domain proteins regulate Rab-mediated
trafficking role in neurite formation [199, 200]

SNX25 A Hub 40 268 Codes for Sorting Nexin 25; modulates TGF-beta signaling pathway and is
involved in epileptogenesis and TLE [106]

(Continued)
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Communities A and B have the second strongest connection weights in E-DE. Noteworthy,
community A harbors SYN2, a VIP that encodes Synapsin II, a phosphoprotein which desyn-
chronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic Ca
channels, modulating synaptic transmission and plasticity; allelic variants of SYN2 contribute
to epilepsy predisposition [65, 66]. In community A are also located two high-hubs—FOHD1

Table 2. (Continued)

Early Late

Gene Comm1 Cat2 K0 K1 Comm Cat K0 K1 Gene function/product [reference]

VTI1B A Hub 37 368 Non-canonical SNARE molecule involved in synaptic vesicle recycling and
spontaneous neurotransmitter release [201]

TMEM2 A Hub 34 294 Transmembrane protein 2 (Gene ID: 23670)

ARPC5L A High-
hub

51 548 Arp2/3 complex protein involved in actin polymerization and control of neurite
outgrowth of hippocampal neurons [107, 108]

RLBP1 B Hub 43 210 Retinaldehyde binding protein 1, a molecule controlling PAX6 (candidate
genefor epilepsy) expression [110, 111]

LRRC56 C VIP 24 478 Leucine rich repeat containing 5 (Gene ID: 115399)

RACGAP1 C VIP 28 462 Constituent of the IQGAP1–filamin-A—RacGAP1 pathway that coordinates
directional cell migration [99]

C16orf59 C VIP 29 455 Chromosome 16 open reading frame 59 (Gene ID: 80178)

TCEA2 C VIP 30 446 Aliase: TFIIS. SII class transcription elongation factor; prevents cellular death
due to oxidative DNA damage [88]

TUBB C VIP 23 440 Tubulin beta I; cytoskeleton protein aberrantly expressed in the hippocampus
of TLE patients [75]

CACNA1C C VIP 30 439 L-type voltage-gated calcium channel Cav1.2. Involved in synaptic activity-
dependent gene expression [83]; neurotransmitter release in hippocampal
interneurons [80]; control of neurite extension [85]

LAMA5 C VIP 26 453 Hippocampal laminin matrix essential for its dynamic structure and for
neuronal survival under stress conditions [92]

RING1 C VIP 24 429 Promotes transcriptional activation/silencing via Polycomb [87]

CALM3 C VIP 25 422 Calcium signal transducer involved in the NFKB activation pathway [94]

EFHD2 C VIP 21 411 Conserved calcium binding protein that regulates F-actin access to cofilin
[96]

FDXR C VIP 22 408 Maintenance of cytosolic and mitochondrial iron homeostasis [89]

LRFN3 C VIP 23 400 Aliase: SALM4. Leucine-rich repeat and synaptic adhesion-like molecule;
promotes neurite outgrowth and branching [202]

ST7 C High-
hub

56 593 Cytoplasmic protein involved in remodeling extracellular matrix structure
[203]

ANKRD39 C High-
hub

42 586 Ankyrin repeat domain 39 (Gene ID: 51239)

C1orf93 C High-
hub

41 570 Official symbol: FAM213. Family with sequence similarity 213, member B
(Gene ID: 127281)

TESC C High-
hub

46 561 Calcineurin B-like protein involved in rapid hippocampal network adaptation
to recurring synchronous activity [93]

C3orf39 C High-
hub

47 544 POMGNT2; aliase: GTDC2. Glycosyltransferase catalyzing GlcNAcylation o
fO-mannosylated α-DG in the ER [204]

CLDN10 C High-
hub

43 521 Tight junction protein which mediates cell adhesion [205]

ZMYM3 C High-
hub

41 496 Transcriptional repressor and component of HDAC complexes; abundantly
expressed in the brain [206]

1Community
2 Node category; Bold indicates genes present in both E and L networks, but belonging to different communities.

doi:10.1371/journal.pone.0128174.t002
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Table 3. High-hubs, hubs, VIPs and community in Early and/or Late CO networks.

Early Late

Gene Comm1 Cat2 K0 K1 Comm Cat K0 K1 Gene function/product [reference]

DPYD B Hub 240 1361 Dihydropyrimidine dehydrogenase involved in pyrimidine catabolism and
modulation of beta-alanine production [146]

STX6 B Hub 213 1072 t-SNARE family member that regulates intracellular membrane
trafficking [149]

DST B Hub 185 994 Cytoskeletal-associated protein essential for maintaining neuronal
cytoskeleton organization [150]

BDP1 C Hub 216 1342 Aliase: TFIIIB. Subunit of the TFIIIB transcription initiation complex;
essential component of human TFIIIC activity [195,110]

ZNF417 C VIP 75 2171 Zinc finger protein (Gene ID: 147687)

ZNF429 C VIP 41 1821 DNA-binding protein associated with analgesic onset in humans [207]

MCTS1 C VIP 40 1788 Aliase: MCT1.Carboxylate transporter; its deficiency was observed in
human epileptogenic hippocampus [115]

GRLF1 C High-
hub

408 2221 Aliase: ARHGAP35. Rho-GTPase involved in the promotion of neurite
outgrowth [119]

ANKS1B C High-
hub

117 2494 Aliase: AIDA1.Postsynaptic scaffolding protein linking signal events
occurring at neuronal synapse with global changes in gene expression
[118]

PCF11 C High-
hub

115 2443 3’-end processing factor enhancing RNA polymerase II nascent RNA
degradation and transcriptional termination [120]

C6orf25 D Hub 217 1182 Aliase: G6bB. Inhibitory platelet receptor bearing ITAM and ITIM motifs;
modulates microglia-neuron interaction[126, 127]

PNPLA7 D Hub 181 862 Patatin-like 7hospholipase involved in lipid/energy homeostasis and
axonal and synaptic integrity [129, 130,127]

C20orf149 D VIP 36 2384 Aliase: PPDPF. Pancreatic progenitor cell differentiation and proliferation
factor (gene ID 79144)

RPL6 D VIP 46 2092 Ribosomal protein L6 regulates HDM2—p53 pathway in response to
ribosomal stress [124]

LOC142937 D VIP 34 1837 Uncharacterized gene products BC008131 (Gene ID: 142937)

DTWD2 D VIP 41 1837 Prothymosin alpha involved in response to oxidative stress and
neuronal survival [125]

ZNF664 D High-
hub

135 2800 Zinc finger protein 664 (Gene ID: 144348)

ZNF546 D High-
hub

136 2144 Zinc finger protein 546 (Gene ID: 339327)

DNAJB2 D High-
hub

123 1747 Aliase: HSP70. heat-shock protein expressed in hippocampal neurons;
stress marker of TLE [121]

MTR D High-
hub

130 1728 Regulation of homocysteine, an excitatory amino acid, protecting
hippocampal neurons against oxidative stress [122, 123]

LOC402176 E Hub 179 697 Aliase: RPL21. Ribosomal protein L21 (Gene ID: 6144)

ASPA H Hub 220 1150 Aspartoacylase, catabolizes NAA (N-acetyil-L-aspartic acid) in
oligodendrocytes; responsive to glutamatergic activity [144]

SMA4 H VIP 79 2299 Aliase: SMN1. SMN protein that modulates neuronal survival [132]

RAD54L2 H VIP 39 1793 Aliase: ARIP4. Chromatin remodeling factor; modulates excitation/
inhibition balance in hippocampal neurons towards seizure inhibition
[133]

ELF2 H VIP 28 1737 E1f transcription factor;promotes cell survival under cytokine stress
[134]

ATF4 H High-
hub

139 2142 Transcription factor mediating neuronal resistance against oxidative
stress [136, 137]

LENG1 H High-
hub

125 2109 Leukocyte receptor cluster (LRC) member 1 [140]

(Continued)
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Table 3. (Continued)

Early Late

Gene Comm1 Cat2 K0 K1 Comm Cat K0 K1 Gene function/product [reference]

YKT6 H High-
hub

123 1970 Conserved SNARE essential for ER-Gogi transport, highly expressed in
neurons and enriched in hippocampus [141]

SERPINB2 H High-
hub

130 1840 Synaptic activity-induced neuroprotection against seizure-induced brain-
damage [143]

RPL34 J Hub 171 529 Ribosomal protein L34, a Cdk5 inhibitor [151]

RBMX S Hub 152 764 RNA binding motif protein involved in the promotion of neurite growth
[154]

MLXIP B Hub 318 3089 Aliase: MondoA. glucose sensing transcription factor involved in
glucose homeostasis [178]

ZIC5 C Hub 291 3523 C2H2-type zinc finger protein involved in neuronal development and
inhibition of neuronal differentiation via Notch [208]

S100B C VIP 74 5192 Astrocyte-derived cytokine; promotes neurite outgrowth; increases
intracellular calcium in hippocampal neurons [155]

GUSBL2 C VIP 78 4968 Aliase: GUSBP4. Glucuronidase beta pseudogene 4 (Gene ID: 375513)

BMPR2 C VIP 72 4907 Bone morphogenetic protein receptor 2; involved in astrocyte
development and survival/differentiation of GABAergic and
dopaminergic neurons [165]

MBNL1 C VIP 62 4837 Regulatory splicing factor involved in the splicing of the microtubule-
associated protein Tau [169]

MANBA C VIP 68 4764 Glycosyl hydrolase 2 family (Gene ID: 4126)

RSC1A1 C VIP 55 4723 Regulates neuronal expression of the Na+-D-glucose cotransporter
SGLT1; increased in the hippocampus during epileptic seizures [172]

FGF7 C VIP 61 4568 Fibroblast growth factor 7; essential for inhibitory synapse formation in
the hippocampus [173]

DFFB C High-
hub

444 5575 Aliase: DFF40. Triggering of DNA fragmentation, an early event in
apoptotic neuronal cell death after brain injury [175, 176]

LARP4 C High-
hub

311 5039 La-related protein 4; interacts with poly(A)-binding protein and promotes
mRNA homeostasis [177]

EIF1 C High-
hub

257 3987 Eukaryotic translation initiation factor 1 [178]

PTPRZ1 C High-
hub

291 3935 Receptor-type protein tyrosine phosphatase; it's concentration is
increased in the hippocampus of MTLE patients [174]

G3BP2 D Hub 269 3168 Ras-GTPase activating protein; contributes to stress granule formation
[180]; expression levels altered in TLE [181]

FTSJ1 D Hub 268 3447 RNA methyltransferase expressed in the hippocampus; associated to
seizures [182]

RMND5B F Hub 297 2551 Aliase: GID2. E3 ubiquitin ligase involved in the catabolic-induced
degradation of gluconeogenic enzymes [157]

TSEN2 F VIP 87 5225 tRNA splicing endonuclease complex subunit; associated with seizures
[159]

SLC6A1 F VIP 95 4821 Aliase: GAT1. GABA transporter 1; a major GABA transporter in the
brain [156]; hippocampal expression increased in TLE patients [153]

TTL G High-
hub

287 4647 Tubulin-tyrosine-ligase; involved in neuronal organization and control of
neurite extensions [184]

PPFIBP1 G High-
hub

255 4425 Liprin-family scaffold protein regulating cell adhesion, cell migration and
synapse development [185]

1Community
2 Node Category

doi:10.1371/journal.pone.0128174.t003
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Fig 3. Community analysis for E-DE network. The communities are indicated by different colors (A). Highly connected nodes (B) occupy central positions
and their correspondent GO gene symbols are depicted in different colors corresponding to their hierarchical level: blue for hubs, red for VIPs, and green for
high-hubs. In amplification B node size is not related to node degree.

doi:10.1371/journal.pone.0128174.g003
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Fig 4. Community analysis for L-DE network. The communities are indicated by different colors (A). Highly connected nodes (B-C) occupy central
positions and their correspondent GO gene symbols are depicted in different colors corresponding to their hierarchical level: blue for hubs, red for VIPs, and
green for high-hubs. In the amplifications B-C node size is not related to node degree.

doi:10.1371/journal.pone.0128174.g004
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Fig 5. Community analysis for CO networks. The communities are indicated by different colors for E-CO
(A) and for L-CO (B). Fig 5C shows the number of nodes per community in each of the CO networks
(indicated by red and blue bars for E-CO and L-CO, respectively).

doi:10.1371/journal.pone.0128174.g005
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and TUBB2A—related to microtubule function and structure. FOHD1 coordinates actin fila-
ment and microtubule alignment to mediate cell elongation [67], being possibly involved in
hippocampal neuronal polarization [68, 69]. There is a loss of normal neuronal polarization in
temporal lobe epilepsy [70]. TUBB2A codes for beta tubulin, which is a major component of
hippocampal microtubules [71, 72].

Community B includes three genes acting in several epilepsy pathways. C19orf28 (aliase
MFSD12) is a hub and its gene product (protein pp3501) mediates sodium butyrate (HDAC in-
hibitor) inhibition of Sirtuin-2 (HDAC III)-mediated hippocampal synaptic plasticity [73, 74].
Sirtuin-2 expression is decreased in mesial temporal lobe epilepsy (MTLE) [75]. ZDHHC23

Fig 6. CGCS summarizing the relationships among the communities. CGCS is depicted for E-DE (A), L-DE (B), E-CO (C) and L-CO (D) networks. The
edge width is proportional to the fraction of edges linking distinct communities. The node size is proportional to the number of nodes in each community. In
each of the four networks only the top nine communities in number of nodes (A to I) were considered for this analysis, except for communities J and S in the
E- CO network (C), since these communities contain relevant hubs.

doi:10.1371/journal.pone.0128174.g006
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(aliase NIDD) is a VIP and codes for a DHHC-containing protein involved in: i) regulation of
cell surface expression of calcium-activated potassium (BK) channels [76]; ii) regulation of NO
signaling pathways at postsynaptic sites [77]; iii) control of neuronal hiperexcitability via BK
channels [78]. Interestingly, a seizure—related down regulation of BK channel protein levels
was described in the pilocarpine model of temporal lobe epilepsy [79], indicating a role for BK
and NIDD in MTLE. The high hub KRT14, codes for keratin 14 and modulates Notch signaling
[80]. Notch signaling is up-regulated in temporal lobe epilepsy (reviewed in [81]).

The remaining communities and respective high hierarchy genes are described in Table 2.
Here is worth to mention here community H, which harbors GTF3C1 (aliase TFIIIC) a gene
that regulates the rearrangement of nuclear architecture allowing the coordinated expression of
activity-dependent neuronal genes [82]. This gene controls the expression of BAIAP2, which is
high hub in E-DE community C.

In synthesis, it is possible to say that communities C and I, which share the strongest connec-
tion weights, include genes closely related to neural excitability and febrile seizures mechanisms,
with relevance for SCN9A and KCCN3, implicated in febrile seizures and synaptic excitability,
followed by the regulators of synaptic excitability (RNT2, BAIAP2 and B3GALTN1) and by
MTA1, the enhancer of HDAC2 and a Valproate target. Several of the high hierarchy genes in
A and B communities are also related to neuronal excitability, or to genomic mechanisms favor-
ing this mechanism. The implications of these results for the development and onset age of
MTLE in patients with febrile seizure history will be discussed later in this paper.

L-DE network. This network (Fig 4A–4C) has 10 gene communities, of which 5 (Table 3)
contain high hierarchy nodes (hubs, VIPs or high-hubs). Here the strongest connection
weights are centered in module C, which also contains most of the VIPs and high-hubs of the
L-DE network, which are involved in relevant epilepsy mechanisms, as follows.

Two community C VIPs, RTN2 and CACN1C, are significantly linked to neuronal excitabil-
ity. RTN2, also a VIP in E-DE network module C, is a regulator of the glutamate transporter
EAAC1 [48]; the dysregulation of EAAC1 was reported in animal models of epilepsy and in
the hippocampus of TLE patients [49]. CACNA1C encodes the alpha 1C subunit of the L-type
voltage-gated calcium channel Cav1.2 which plays relevant roles in: i) synaptic activity-depen-
dent gene expression [83] ii) regulation of neurotransmitter release in hippocampal interneu-
rons [84]; iii) control of neurite extension [85]. Here is very important to note that Cav1.2
calcium channels are temperature- sensitive and support the intrinsic firing of pyramidal neu-
rons during hyperthermia, thus providing a target for the treatment of febrile seizures [86].

The VIPs RING1, TCEA2, FDXR, LAMA5, and the high-hub TESC, are associated to mecha-
nisms of stress response and brain homeostasis. RING1 promotes transcriptional activation/si-
lencing via Polycomb [87]. TCEA2, codes for a SII class transcription elongation factor that
plays an important role in preventing cell death due to oxidative DNA damage [88]. FDXR
codes for the sole human ferredoxin reductase; it is involved in the maintenance of cytosolic
and mitochondrial iron homeostasis [89], and in cell sensitization to oxidative stress and apo-
ptosis in TLE [90, 91]. LAMA5 codes for a component of hippocampal laminin matrix essential
for its dynamic structure and for neuronal survival under stress conditions, such as excitotoxi-
city [92]. TESC codes for a Ca2+ binding calcineurin B-like protein involved in rapid hippo-
campal network adaptation to recurring synchronous activity [93].

The other high hierarchy genes community C with functions associated to epilepsy-related
mechanisms are: i) the VIP CALM3, that encodes a calcium signal transducer involved in the
NFKB activation pathway [94], which is dysregulated in hippocampal tissues of TLE patients
[95]; ii) the high-hub EFHD2; its gene product is a conserved calcium binding protein that regu-
lates F-actin access to cofilin [96], influencing actin cytoskeleton remodeling and the excitability
of epileptic hippocampus [97], as well as astrogial loss following status epilepticus [98]; iii) the
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VIP RACGAP1 a constituent of the IQGAP1—filamin-A—RacGAP1 pathway that coordinates
directional cell migration [99], which is frequently aberrant in epileptic hippocampus [70, 100].

Although strongly connected with community C, community F (Fig 6B) does not harbor
high hierarchy genes within the k0 and k1 cut-off values adopted for L-DE network (see Fig
1D). A scatter plot of node degrees for module F genes and the high hierarchy genes of L-DE
appear in S2 Fig Among the module F highly connected genes are: i) CNTNAP1, which encodes
contactin associated protein1, a member of the contactin-PTPRZ1 complex that regulates the
traffic and synaptic content of AMPA glutamate receptor subunit GluA1 in hippocampal neu-
rons [101]; ii) CCNE1, a Sirtuin-2 regulator [102] and iii) PKIG which encodes a protein kinase
involved in endothelial barrier function [103]. Remarkably, GluA1 hippocampal expression is
altered during status epilepticus [101, 104], MTLE patients show reduced hippocampal expres-
sion of Sirtuin-2 [75], and endothelial barrier function is altered in epilepsy [105].

The other significant connections of community C (Fig 6B) occur with community A—where
are located SNX25 and ARPC5L, markers of intractable epilepsy—and with communities H and
B which harbor, respectively, the genesMTA1 (a high-hub in E-DE community I, functionally
described above) and RBPL1, regulators of two epilepsy-associated genes (HDAC2 and PAX6,
targets of the antiepileptic drug Valproate). The hub SNX25 codes for Sorting Nexin 25, a PX do-
main protein which modulates TGF-beta signaling pathway and is involved in epileptogenesis
and TLE development [106]. SNX25 is a biomarker of intractable epilepsy, being overexpressed
in TLE patients [106]. ARPC5L encodes an Arp2/3 complex protein involved in actin polymeri-
zation [107] and in the control of neurite outgrowth of hippocampal neurons [108]. Arp2/3 ex-
pression is increased in the temporal lobe cortex of intractable epilepsy patients [109]. RLBP1
encodes the retinaldehyde binding protein 1, a retinoic acid (RA) signalling molecule. It is note-
worthy that RA-signalling promotes the expression of PAX6 [110], which is a candidate gene for
epilepsy [111] and whose expression on neuronal cells may be altered by Valproate [112].

The overall picture that emerged from the analysis of community relationships in L-DE is
somewhat different from that obtained for E-DE. There is a quite dissimilar functional scenario
and also different key players (excepting for RTN2, B4GALT2 andMTA1). Here community C
—which centers the strongest connection weights,—harbors most of the VIPs and high-hubs,
what indicates that this community is essential for keeping L-DE network stability and func-
tionality. Contrarily to the C-I excitability axis in E-DE, only part of the genes in L-DE commu-
nity C, such as CACNA1C and RNT2, is associated to neuronal excitability. In fact, a sizable
number of genes are related to stress response and brain homeostasis, and others to different
epilepsy-associated mechanisms, including those related to cytoskeleton and cell migration.
The communities F and A, both strongly connected with community A, harbor genes involved
in different biological process with relevancy for epilepsy, like CNTAP1, a regulator of GluA1,
and the two markers of intractable epilepsy, SNX25 and ARPCL5. The community detection
data for L-DE and E-DE networks will be considered comparatively in the Discussion section.

E-CO network. The complete gene coexpression network for the E group encompasses 24
gene communities of which only 7 contain high hierarchy nodes (Figs 2B and 5A) with high
network centrality (S1 Video). In this network the strongest connection weights involve com-
munities D and C, followed by communities H and B (Fig 6C). It is noteworthy that communi-
ties C, D and H concentrate all the VIPs and high-hubs of E-CO network. The summarized
functional description of all high hierarchy genes contained in E-CO appears in Table 3.

Community C includes five high hierarchy genes related to brain homeostasis and regula-
tion of neuronal gene expression: BDP1,MCTS1, ANKS1B, GRLF1 and PCF11. BDP1 (aliase
TFIIIB) is a hub and codes for a subunit of the TFIIIB transcription initiation complex, being
an essential component of human TFIIIC activity [113, 114]. TFIIIC regulates the coordinat-
ed expression of activity-dependent neuronal genes, such as BAIAP2 [82], a high-hub in
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E-DE community C. The VIPMCTS1 (aliaseMCT1) codes for a carboxylate transporter and
its deficiency was observed in human epileptogenic hippocampus [115].MCTS1 is involved
in TLE (and especially in MTLE) by influencing brain energy homeostasis, mitochondrial
function GABAergic and glutamatergic transmission and flux of lactate through the brain
[116, 117]. ANKS1B (aliase AIDA1), a high-hub, codes for a postsynaptic scaffolding protein
that links persistent signal events occurring at neuronal synapse with global changes in gene
expression [118]. The high-hubs GRLF1 (aliase ARHGAP35) and PCF11 codes, respectively,
for a Rho-GTPase involved in the promotion of neurite outgrowth [119] and for a 3’-end pro-
cessing factor that enhances RNA polymerase II nascent RNA degradation and transcription-
al termination [120].

The high hierarchy genes of community D are mostly involved in responses to stress and
neuronal survival. Two high-hubs, DNJB2 andMTR have relevant roles in this task. DNJB2
(aliase HSP70), codes for a heat-shock protein expressed in hippocampal neurons. HSP70 is a
well-known stress marker of TLE; its expression before insult improves neuronal survival
[121].MTR codes for the enzyme 5-methyltetrahydrofolate-homocysteine methyltransferase.
This enzyme regulates the brain levels of homocysteine, an excitatory amino acid, protecting
hippocampal neurons against oxidative stress [122, 123]. Two VIPs are also involved in re-
sponses to stress: RPL6 whose gene product is ribosomal protein L6, a regulator of the HDM2
—p53 pathway in response to ribosomal stress [124]; and DTWD2, coding for prothymosin
alpha, a highly acidic nuclear protein of the alpha-thymosin family involved in response to oxi-
dative stress and neuronal survival [125]. Finally, two hubs, C6orf25 and PNPLA7, are also re-
lated to protective roles. C6orf 25 (aliase G6bB) encodes an inhibitory platelet receptor bearing
ITAM and ITIM motifs and it is involved in the modulation of microglia-neuron interaction
[126, 127, 128]. PNPLA7 codes for a patatin-like phospholipase, structurally similar to
PNPLA6, involved in lipid and energy homeostasis [129] and possibly involved in axonal and
synaptic integrity [130, 131].

Community H encompasses set of three VIPs, four high-hubs and one hub, all exerting im-
portant roles in neuroprotection, modulation of neuronal excitability, and seizure inhibition.
These genes are in the following described according to their hierarchic category and
biological functions

VIPs: SMA4 (aliase SMN1) codes for the survival motor neuron (SMN) protein and modu-
lates neuronal survival cooperating with PP4R2 (a regulatory subunit of phosphatase 4) [132].
RAD54L2 (aliase ARIP4) encodes a chromatin remodeling factor that interacts with serine/
threonine kinase DIRK1A (minibrain kinase) modulating excitation/inhibition balance in hip-
pocampal neurons towards seizure inhibition [133]. ELF2 codes for an E1f transcription factor
and promotes cell survival under cytokine stress (a condition present in MTLE) by increasing
valosin-containing protein (VCP) expression [134]. Here is interesting to note that hippocam-
pal valosin is vulnerable to oxidative stress in excitotoxin-induced neuronal injury [135].

High-hubs: ATF4 codes for a transcription factor mediating neuronal resistance against oxi-
dative stress [136, 137]. Interestingly, ATF4 expression is regulated by ELF2 [138], a VIP in
this community (see above) Moreover, ATF4 is involved in the differential control of hippo-
campal GABABR1a and GABABR1b Subunit Gene Expression through Alternative Promoters
[139]. LENG1 codes for the leukocyte receptor cluster (LRC) member 1 with uncharacterized
function in brain [140]. YKT6 codes for an evolutionary conserved SNARE essential for
ER-Gogi transport, highly expressed in neurons and enriched in hippocampus [141]. YKT6 is
co-upregulated with S100B (a VIP in L-CO network, module C) upon seizures [142]. SER-
PINB2 is one of the nine hippocampal core genes for synaptic activity-induced neuroprotection
against seizure-induced brain-damage [143]. These genes are collectively termed Activity-regu-
lated Inhibitor of Death (AID) genes. All AID genes are activated by calcium signaling [143].
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Hub: ASPA codes for aspartoacylase, an enzyme that catabolizes NAA (N-acetyil-L-aspartic
acid) in oligodendrocytes and is responsive to glutamatergic activity [144]. Decreased NAA
levels in hippocampal CA3 are characteristic of MTLE [145].

Community B contains three hubs and their biological functions are detailed here. DPYD
codes for dihydropyrimidine dehydrogenase, an enzyme involved in pyrimidine catabolism
which also modulates the production of beta-alanine, a neuromodulator of inhibitory trans-
mission in the brain [146]. Altered function of DYPD is associated with seizures [147] and in-
tellectual disability [148]. STX6 codes for syntaxin 6, a t-SNARE family member that regulates
intracellular membrane trafficking [149]; DST, encodes a large multidomain cytoskeletal-asso-
ciated protein essential for maintaining neuronal cytoskeleton organization [150].

Finally, also depicted in Fig 6C are communities J and S, where two relevant hubs are locat-
ed. Community J harbors the hub RPL34, which encodes ribosomal protein L34, a Cdk5 inhibi-
tor [151]. Cdk5 is a mediator of neuronal death and survival [152] and is involved in cell
degeneration in hippocampal neurons after an excitotoxic injury [153]. Community S has the
hub RBMX, a gene coding for a RNA binding motif protein involved in the promotion of neur-
ite growth [154]. Neurite growth is a hallmark of TLE [155].

Altogether, E-CO network most connected communities encompass genes predominantly
related to compensatory pathways in epilepsy (seizure inhibition, neuronal survival and re-
sponses to stress conditions). These genes are concentrated in communities C, D and H, which
also contain all VIPs and high-hubs in this network, pointing out for the role of those genes in
supporting network stability. This issue will be further developed in the Discussion section.

L-CO network. The complete gene coexpression network for the L group has 16 gene
communities) of which only 5 contain high hierarchy nodes (Fig 2D) with high network cen-
trality (S2 Video). In this network the strongest weight connections are centered in community
F and between the communities C and D (Fig 6D). Community F contains two VIPs and one
hub whose altered expression is associated with pro-epileptic effects. The most relevant of
these gene is SLC6A1 (aliase GAT1), which codes for GABA transporter 1 (GAT1), a major
GABA transporter in the brain [156]. In the epileptogenic sclerotic hippocampus of MTLE pa-
tients the expression of GAT1 is decreased in CA3 but it is increased along granule cell den-
drites [157]; inhibitors of GAT1 have been studied and developed for epilepsy control [158].
The other VIP is this community is TSEN2, whose gene product is a tRNA splicing endonucle-
ase complex subunit whose mutations are associated with seizures and pontocerebellar hypo-
plasia [159]. The hub is RMND5B (aliase GID2), a gene that encodes an E3 ubiquitin ligase
involved in the catabolic-induced degradation of gluconeogenic enzymes [160]. Gluconeogene-
sis occurs in astrocytes and is pro-epileptic [161].

Community C concentrates most of the VIPs and high-hubs in L-CO network. In this com-
munity all the VIPs with known biological functions are associated to seizure activity/severity,
or with vulnerability to epilepsy. S100B is a well-known MTLE marker, which codes for an as-
trocyte-derived cytokine that promotes neurite outgrowth and increases the levels of intracellu-
lar calcium in hippocampal neurons [155, 162]. S100B coded protein is a marker of astroglial
activation: its hippocampal levels were found to be higher at the side of seizure onset in patients
with refractory MTLE [163] and its plasma concentration was reported to be elevated in MTLE
patients [164]. BMPR2 encodes the bone morphogenetic protein (BMP) receptor 2, involved in
astrocyte development and survival and differentiation of GABAergic and dopaminergic neu-
rons [165]. BMPR2 was found to be strongly expressed in the hippocampal formation of
human and rat adult brain [166, 167] and it is upregulated in rat adult hippocampus during
neuroplasticity or repair upon brain injury [168].MBNL1 codes for a regulatory splicing factor
involved in the splicing of the microtubule-associated protein tau [169]. Elevated brain tau lev-
els are associated with seizure severity [170].MAMBA encodes a member of the glycosyl
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hydrolase 2 family. The encoded protein localizes to the lysosome where it is the final exoglyco-
sidase in the pathway for N-linked glycoprotein oligosaccharide catabolism. Mutations in this
gene cause beta-mannosidosis, including severe forms with neonatal onset epilepsy [171].
RSC1A1 gene product regulates the neuronal expression of the Na+-D-glucose cotransporter
SGLT1, which is increased in the hippocampus during epileptic seizures [172]. FGF7 codes for
the fibroblast growth factor 7 (FGF7), which is essential for inhibitory synapse formation in the
hippocampus. Mice with deficiency in this gene display mossy fiber sprouting and increased
neurogenesis, becoming vulnerable to epilepsy [173].

The high-hubs in community C are either involved in mechanisms related to epilepsy path-
ogenesis (DFF40 and PTPRZ1) or in the control of gene expression and translation initiation
(LARP4, EIF1). PTPRZ1 encodes a member of the receptor protein tyrosine phosphatase family
whose concentration is increased in the hippocampus of MTLE patients [174]. This receptor is
involved damaged-induced gliosis and neuronal reorganization in the hippocampus of MTLE
patients [174]. DFFB (aliase DFF40) codes for a caspase-activated deoxyribonuclease (CAD)/
DNA fragmentation factor 40 (DFF40) involved in the triggering of DNA fragmentation, an
early event in apoptotic neuronal cell death after brain injury [175, 176]. LARP4 gene product,
the La-related protein 4, interacts with poly(A)-binding protein and promotes mRNA homeo-
stasis [177]. EIF1 codes for the eukaryotic initiation factor 1, which integrates the scanning
mechanism of eukaryotic translation initiation [178]

Community D has only two hubs: G3BP2, which codes for a Ras-GTPase activating protein
that contributes to stress granule formation following cellular stress [179, 180] and has its ex-
pression levels altered in TLE [181] and FTSJ1, whose gene product is a RNAmethyltransferase
expressed in the hippocampus and associated to intellectual disabilities and seizures [182]

The remaining communities containing high hierarchy genes in L-CO network are: B,
which has the second largest number of nodes but harbors just one hub,MLXIP (aliaseMon-
doA), which codes for a glucose sensing transcription factor involved in glucose homeostasis
[183]; and G, containing two high-hubs, TTL that encodes a tubulin-tyrosine-ligase with a vital
role in neuronal organization and control of neurite extensions [184], and PPFIBP1 whose
gene product is a liprin-family scaffold protein regulating cell adhesion, cell migration and syn-
apse development [185].

The general picture of L-CO network is rather different of that depicted in E-CO, where the
genes related to compensatory pathways predominated in the communities with strongest
weight connections. Here the communities with the most relevant relationships harbor several
genes related to pro-epileptic effects, seizure related mechanisms and vulnerability to epilepsy
(SLC6A1, S100B, RSCA1 and PTPRZ1), and just a few ones acting on compensatory mechanisms
(BMPR2) or homeostasis (MLXIP). These different scenarios for CO networks will be discussed
latter, considering the late and early onset forms of MTLE with a history of febrile seizures.

In both E- and L-CO networks the community with the largest number of nodes, i.e. com-
munity A (Fig 6C and 6D), was devoid of high-hierarchy genes, with most of their nodes well
below of the k0 and k1 cut-off values (Fig 2B and 2D) adopted for these networks.

Interactome network analysis
An interactome analysis was performed in order to validate GCN results. Only the high hierar-
chy genes (hubs, VIPs or high-hubs) were considered in this analysis. MINT and IntAct data-
bases were selected for data generation, which resulted in interactomes with 106 nodes and 222
edges for the E-DE group and 187 nodes and 690 edges for L-DE (Fig 7A and 7B); 161 nodes
and 318 edges for E-CO and 215 nodes and 454 edges for L-CO (Fig 8A and 8B). The nodes
(proteins) of interactomes corresponding to genes present in gene coexpression networks—
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Fig 7. Interactome for DE networks. Interactome for E-DE (A) and L-DE (B) selected hubs (depicted in
blue), VIPs (depicted in red) and high-hubs (depicted in green) using MINT and IntAct databases. Node size
is related to node degree (number of links). Links in red represent the first and second node connections,
centered in all hubs, VIPs and high-hubs for E-DE and in all hubs, VIPs and high-hubs, except TUBB for
L-DE. Node shapes and border colors represent biological processes, as follows: parallelogram for
apoptosis; parallelogram with pink border for ubiquitination; octagon for autophagy; circle with pink or green
or yellow border stand for cell processes or cytoskeleton or transcriptional regulation respectively; diamond
for inflammation; triangle with red border stand for ion channel; rectangle with green or red or pink stand for
neurodegeneration or neuroprotection or response to oxidative stress respectively; hexagon for neuronal
development; vee for synaptic transmission.

doi:10.1371/journal.pone.0128174.g007
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Fig 8. Interactome for CO networks. Interactome for E-CO (A) or L-CO (B) selected hubs (depicted in blue),
VIPs (depicted in red) and high-hubs (depicted in green) using MINT and IntAct databases. Node size is
related to node degree (number of links). Links in red represent the first and second node connections, for
E-CO, or first, second and third node connections, for L-CO, centered in all hubs, VIPs and high-hubs, except
FTSJ1 for L-CO. Node shapes and border colors represent biological processes, as follows: parallelogram for
apoptosis; parallelogram with pink border for ubiquitination; octagon for autophagy; circle with pink or green
or yellow border stand for cell processes or cytoskeleton or transcriptional regulation respectively; diamond
for inflammation; triangle for ion binding; triangle with red border stand for ion channel; rectangle for neuroglia
processes; rectangle with red or pink stand for neuroprotection or response to oxidative stress respectively;
hexagon for neuronal development; vee for synaptic transmission.

doi:10.1371/journal.pone.0128174.g008
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and previously categorized as hubs, VIPs or high-hubs—appear colored in blue, red or green,
respectively. Node size is related to node degree (number of links). Links in red represent the
first and second node connections, centered in all hubs, VIPs and high-hubs, except for TUBB,
a VIP in L-DE, and FTSJ1, a hub in L-CO, two ubiquitously distributed proteins. A functional
description of the interactome nodes for all DE and CO networks based on Gene Ontology (bi-
ological process) and PubMed databases is presented in S1, S2, S3 and S4 Tables.

Discussion
Community detection analysis of modular transcriptional repertoires for DE and CO gene
coexpression networks, and the subsequent CGCS data analysis, revealed distinct molecular
pathways for early- and late-onset forms of MTLE associated with childhood febrile seizures,
as discussed below. Moreover, network connectivity is lower in both E networks when com-
pared to the corresponding L networks, thus indicating that the hippocampal CA3 region of
patients with early-onset FS-MTLE present a higher degree of dysregulation in cells’ functional
organization [29, 32, 43]. Interactome analysis for experimentally verified protein-protein in-
teractions confirmed the relevance of most high-hierarchy genes in E and L networks.

In the E-DE network coarse-grained community structure shows communities C and I as
the ones with strongest connection weights. This C-I “axis”, described earlier in this paper, har-
bors high hierarchy genes with relevant roles in febrile-driven epilepsy and MTLE, such as
SCN9A, RTN2 and BAIAP2, in community C, and B3GALTN1, KCN3 andMTA1 in communi-
ty I. This synaptic excitability “axis” is seconded by the axis A-B, whose high hierarchy genes
are also related to pro-epileptic roles, as SYN2 and NIDD (ZDHHC23). All this gene set is di-
rectly or indirectly involved with the molecular hallmarks of febrile seizures and epilepsy,
namely: calcium and potassium channels, glutamate, NMDA receptors, HCN channels and
HDACs [13]. Therefore on can conclude that E-DE network may well represent the “ground
zero” of FS impact in hippocampal CA3.

The E-CO network, adopting the former analogy, would depict the derived “shock-waves”
of FS impact on hippocampal CA3 cells. Indeed, the E-CO community with the strongest con-
nection weights is community C, followed by communities D and H. The majority of the genes
in the C-D-H interconnected communities are related to compensatory effects in epilepsy (sei-
zure inhibition, neuronal survival and stress responses), what is in accordance with the concept
that early onset epilepsies, although impacting more severely the ictal hippocampus, are associ-
ated to compensatory mechanisms [8]. Interestingly, this concept emerged from fMRI studies
using network (graph theory) computational studies for assessing brain connectivity [6, 7, 8].
Hence, we can conclude that FS and FSE cause a perturbation in genomic and brain networks,
determining “adaptive” rearrangements in both. The disease can be viewed as the breakdown
of functional modules causing network reorganization. This issue will be further
addressed below.

The L-DE network represents the “ground zero” of late-onset FS-MTLE, i.e., the GCN in-
ferred from differentially expressed genes in the CA3 region of a hippocampus damaged by fe-
brile IPI in early childhood but where temporal lobe epilepsy onset occurred after a long latent
period (see Table 1). Here community C centers the strongest connection weights and also har-
bors most of the network’s VIPs and high hubs, what indicates its importance for network sta-
bility and functionality. The connection between C and F communities (Fig 6B) is the
equivalent of the E-DE synaptic excitability C-I “axis”. Accordingly, the C-F “axis’ also harbors
genetic and molecular hallmarks of epilepsy, such as: i) in community C the L-type calcium
channel gene CACNA1, RTN2, a regulator of EAAC1 (also a VIP in E-DE network), the calci-
um binding/signaling genes TESC, CALM3, EFHD2; ii) in community F the gene CTNAP1,
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regulator of the glutamate receptor subunit GluA1. Moreover, as described before, other signif-
icant connections of community C—the communities A, H, and B—include several genes in-
volved in epilepsy processes, like SXN25 and ARPC5L, markers of intractable epilepsy. Since
L-DE high hierarchy genes, as a whole, are involved neuronal excitability or playing roles in
other epilepsy-related processes, this network is functionally similar to E-DE. However, it re-
flects distinctive adaptive response to febrile seizures, probably related to late-onset
MTLE development.

Contrarily to the observed for E-CO network, L-CO communities with strongest weighted
connections harbor more high hierarchy genes related to pro-epileptic effects, or vulnerability
to epilepsy, than to compensatory mechanisms. This finding, fully described in the Results sec-
tion, is in accordance to the concept that early-onset epilepsies are associated with compensato-
ry mechanisms, because the younger brain is more plastic, whereas in late-onset developed
epilepsies the mature injured brain is less able to generate adaptive compensatory mechanisms
[8, 186].

Imaging studies (structural and functional MRI) and graph theory models of brain connec-
tivity led to significant progress in understanding the pathophysiology of temporal lobe epilep-
sy, [6, 8, 187]. Essentially, these studies showed that TLE is a network disease, i.e. a system
disorder that alters local and distributed brain networks [6, 188]. Similarly to the application of
complex network analysis to the study of gene-gene and protein-protein interactions, graph
theory modeling of brain networks allows a quantitative description of the topological organi-
zation of brain connectivity based on network property measures, where nodes represent brain
regions interconnected by edges. In this context, communities, or modules, are groups of high-
ly connected nodes within the brain networks, modularity describes hierarchical organization,
and network hubs are the nodes with greater degree centrality, i.e., those mediating most of the
short path lengths between nodes. According to their community insertion and connectivity
profile, hubs mediate intra- or inter module connectivity [6, 26, 188].

Complex network analyses of human brain connectivity revealed that the hippocampal for-
mation has a concentration of densely linked nodes with very high degree centrality [189]. In-
creased clustering, an indicator of low connectivity, and alterations in the distribution of
network hubs were detected in patients with refractory MTLE comparatively to normal con-
trols [190]. Moreover, it was found, by comparing brain connectivity parameters of early- and
late-onset MTLE patients who underwent resting-state fMRI scan, that late-onset patients had
lower connectivity and higher modularity [8], thus indicating a certain degree of modular in-
teraction disorganization in late-onset cases. These MRI data have a striking similarity with
our findings on community structure analysis of transcriptional networks in early- and late-
onset MTLE: i) comparative alterations in modularity/connectivity and hub and modular dis-
tributions; ii) evidences that in late MTLE development the brain is less able to generate
adaptive mechanisms.

Altogether, gene coexpression and MRI networks studies on MTLE show that this disease,
as other chronic non-communicable diseases, stems from environmentally-induced perturba-
tions of complex intra and intercellular networks, probably modulated by the individual’s ge-
nomic makeup. Network reorganization following these perturbations may be kept stable for
long periods due to epigenetic mechanisms acting just after the insult, and/or just after epilepsy
onset [18, 19]. In fact, it was shown in kainic acid mouse model of epilepsy that genome-wide
methylation status change after status epilepticus and in epileptic tolerance [191], thus contrib-
uting to regulate gene expression (and to reorganize gene-gene interaction networks) in the sei-
zure-damaged hippocampus.

The complex network analyses performed in this study allowed a broad and more detailed
view of genomic and molecular mechanisms involved in early and late-onset MTLE, in
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comparison to analyses centered solely on differentially expressed genes. Network centrality in
DE and CO networks, is consistent with the network disease model, where a group of nodes
whose perturbation (e.g. febrile IPI) leads to a disease phenotype occupies a central position in
the network [4, 28, 192].

Most importantly, our data on hippocampal CA3 gene coexpression networks are in agree-
ment with previous fMRI data showing that early onset epilepsies, although impacting more se-
verely the ictal hippocampus, are associated to compensatory mechanisms, while in late MTLE
development the brain is less able to generate adaptive mechanisms. This is very significant if
one considers that the identification of windows of opportunity for antiepileptogenic interven-
tions depends on a better understanding of the mechanisms occurring during the seizure-free
interval, or latent period, in MTLE [23]. On the other hand, the probability of exerting thera-
peutic effects through the modulation of particular genes will be higher if these genes are highly
interconnected in transcriptional networks [4, 2, 193]. In epilepsy—a disease affecting more
than 50 million people around the world and where 30% of the patients do not respond to the
available antiepileptic drugs—this systems biology approach seems to be mandatory for discov-
ering new multi-target drugs, since hitting a single target does not treat complex diseases. In
conclusion, a network-based approach to intractable epilepsy would be probably more effective
than the “silver bullets” sought at the beginning of medical genomics.

Supporting Information
S1 Fig. Epilepsy duration and age at surgery. Scatter-plot of epilepsy duration (Figure A) and
age at surgery (Figure B), in years, for early and late-onset MTLE patients and t-test p-value.
(TIF)

S2 Fig. Node distribution and categorization for F community in the L-DE network. Scatter
plots of node degree (k0) vs concentric node degree (k1) measures of GO annotated genes in
L-DE. Hubs (blue), VIPs (red) and high-hubs (green), identified by their gene symbols. The
nodes from community F are identified by orange dots/gene symbols.
(TIF)

S1 Table. Early DE interactome. Functional description of interactome nodes linked in first
and second levels; centered in hubs, high-hubs and VIPs.
(PDF)

S2 Table. Late DE interactome. Functional description of interactome nodes linked in first
and second levels; centered in hubs, high-hubs and VIPs.
(PDF)

S3 Table. Early CO interactome. Functional description of interactome nodes linked in first
and second levels; centered in hubs, high-hubs and VIPs.
(PDF)

S4 Table. Late CO interactome. Functional description of interactome nodes linked in first
and second levels; centered in hubs, high-hubs and VIPs.
(PDF)

S1 Video. Complete transcriptional interaction network for early-onset MTLE based on
Pearson’s correlation of 9,578 GO annotated genes.High-hubs, Hubs and VIPs are identified
by their gene symbols. Communities are indicated by different colors.
(MP4)
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S2 Video. Complete transcriptional interaction network for late-onset MTLE based on
Pearson’s correlation of 11,321 GO annotated genes.High-hubs, Hubs and VIPs are identi-
fied by their gene symbols. Communities are indicated by different colors.
(MP4)
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