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A B S T R A C T   

Air pollution is one of the main environmental problems in metropolitan areas. Negative impacts 
to human health are intensified when poor air quality conditions persist for many consecutive 
days, with gradual accumulation of pollutants in the atmosphere. Persistent air quality deterio-
ration events are typically associated with occurrence of stagnant atmospheric conditions and 
reach the regional scale. In this study, data-driven models were developed to forecast the 
occurrence of persistent air pollution events of inhalable particulate matter (PM10) and ozone 
(O3) in the metropolis of Sao Paulo, Brazil. On average, 8 events per year were observed between 
2005 and 2022, comprising 73 event days per year. The logistic regression method was used in a 
supervised learning framework. Daily timeseries of surface weather variables were used as pre-
dictors. In the case of PM10, a consistent long-term decrease in the number events impacted the 
model performance. The PM10 model benefited from the restriction of the training set to recent 
years, with a significant increase in the model accuracy despite the reduction in the volume of 
data. The final models correctly reproduced the seasonal distribution of events, with overall 
accuracies of 0.92 and 0.87 for O3 and PM10, respectively, in 2022. Despite the fact that persistent 
exceedance events are relatively rare, the models were able to detect 81% and 97% of the event 
days in 2022, respectively for O3 and PM10. Daily maximum temperature was an important 
predictor, increasing the event odds by 483% (O3) and 84% (PM10). The classification models 
developed in this study can successfully forecast the occurrence of regional air pollution events 
concerning both primary and secondary air pollutants, which have different drivers for accu-
mulation in the atmosphere. The models require simple input data and low computational re-
sources, aiming to stimulate future usage by the general public and decision-makers, in order to 
mitigate exposure to harmful air pollutant concentrations.   

1. Introduction 

Air quality deterioration is one of the most relevant environmental problems in metropolitan areas. The combination of high 
population densities and gathering of air pollution emission sources frequently leads to a vast exposure to air pollutant concentrations 
above the standards, with negative impacts on health and quality of life (Molina et al., 2020; Gurjar et al., 2008). The association 
between poor air quality and cardio-respiratory diseases is clearly depicted in the literature (Anderson, 2009; Brook et al., 2010). 
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Globally, review studies have shown that a 10 μg/m3 increase in the concentration of fine particulate matter is associated with 
increased mortality risks due to cardiovascular disease (excess risk of 11%) and due to non-malignant respiratory diseases (excess risk 
of 3%) (Hoek et al., 2013). The Global Burden of Diseases Study attributed 7.6% of the total global mortality in 2015 to the long-term 
exposure to ambient air pollution (Cohen et al., 2017). 

Exceedances of air quality standards are recurrent in megacities like New Delhi, Los Angeles and Sao Paulo (de Andrade et al., 2017; 
Parrish et al., 2011; Singh et al., 2021). Inhalable particulate matter (PM10) and ozone (O3) are air pollutants that frequently exceed air 
quality standards in the aforementioned megacities. While PM10 is mostly primary, i.e., directly emitted by air pollution sources, O3 is 
a secondary pollutant, being produced in the atmosphere by photochemical reactions. In the Brazilian megacity of Sao Paulo, vehicles 
are the dominant source of air pollutants. Vehicles in Sao Paulo are fueled by a blend of fossil and biofuels like ethanol and biodiesel, 
resulting in a peculiar hydrocarbon composition and unique effects to the atmospheric chemistry (Kumar et al., 2016; Salvo and 
Geiger, 2014). Emission control measures succeeded on reducing primary air pollutant concentrations in Sao Paulo in the last decades, 
but challenges remain for the control of secondary air pollutants and unregulated emission sources (de Andrade et al., 2017). 

In many countries, the regulation of emission sources is lenient, so that the air quality standards preconized by the World Health 
Organization are frequently not met (Gómez Peláez et al., 2020). However, the strength of emission sources is not the only factor that 
controls the accumulation of pollutants in the atmosphere. Weather conditions modulate air pollutant concentrations by affecting their 
dispersion, removal and photochemical production rates. While emission sources can be regulated, weather conditions are not under 
control, so that mitigation measures must be taken to avoid exposure to harmful concentrations in periods of unfavorable air pollution 
dispersion. 

Unfavorable dispersion conditions are typically observed under the influence of high-pressure atmospheric systems, leading to dry 
and stagnant conditions following air pollution accumulation (Tai et al., 2010; Zhang et al., 2016; Oliveira et al., 2022). Mesoscale 
circulations driven by topography and land cover can also play a role (Ribeiro et al., 2018; Ning et al., 2019). Moreover, dry conditions 
increase the risk of vegetation fires, resulting in a positive feedback for air quality deterioration (Martins et al., 2018; Chen et al., 
2017). Previous studies in the megacity of São Paulo identified synoptic weather patterns that favor the accumulation of air pollutants, 
like pre-frontal conditions and the influence of the South Atlantic Subtropical Anticyclone (SASA) (Oliveira et al., 2022; Sánchez- 
Ccoyllo and Andrade, 2002). High-pressure systems and atmospheric stagnation are regional scale phenomena, so that poor air quality 
conditions associated with their influence typically extend throughout whole metropolitan areas and may persist for several days. 
Acute exposure to high concentrations of air pollutants aggravates cardio-respiratory diseases in vulnerable sectors of the population 
(e.g., Brook et al., 2010). Previous studies have shown increased morbidity and hospital admissions following periods of intense and 
persistent air pollution episodes (Szyszkowicz et al., 2018; Zhang et al., 2014). 

Given the impacts of persistent air quality deterioration events on human health, it is important to develop tools for their prediction 
in the short term, so that measures can be taken to mitigate exposure to harmful air pollutant concentrations. Real-time air quality 
forecasting can be pursued using deterministic (process-based) and statistical (data-driven) models. Deterministic models represent 
explicitly the major physical and chemical processes that influence air pollutant concentrations, being able to forecast spatial and 
temporal resolved concentrations (Zhang et al., 2012; Longo et al., 2013). To provide accurate forecasts, deterministic models require 
sophisticated prior knowledge, detailed information on emissions and meteorological fields and demand high performance computer 
systems. Statistical models, on its turn, explore relationships between air quality and weather variables, developing predictive models 
based on ordinary regression and classification techniques and machine learning methods, requiring less domain expertise and fewer 
computational resources. Statistical models are able to capture complex site-specific relationships between air pollutants and weather, 
often reaching higher accuracy compared to deterministic models (Zhang et al., 2012; Li et al., 2022). Whatever the methods applied, 
air quality forecasting models aim to provide timely information to protect the health of inhabitants through early warnings and 
control measures. 

Statistical models for air quality are frequently used for explanatory purposes, i.e., aiming to investigate the relative importance of 
drivers and processes. A myriad of previous studies investigated the impact of weather variables on air pollutant concentrations using 
statistical models (e.g., Schuch et al., 2019; Porter et al., 2015; Tai et al., 2010). Other studies developed data-driven models to forecast 
air pollutant concentrations based on weather variables, usually showing a satisfactory performance for moderate concentrations, but 
failing to predict critical pollution episodes (Cordova et al., 2021; Zhang et al., 2012). The current study takes a different approach, by 
focusing on the prediction of regional-scale air pollution events, which are typically driven by stagnant weather conditions and have 
important consequences to human health. 

The main objective of this study is to forecast the occurrence of persistent regional-scale air quality deterioration events based on 
surface weather variables, using a data-driven approach. Unlike previous studies, statistical models were developed to predict the 
occurrence air pollution events that persist for many days, instead of predicting pollutant concentrations. An assessment of persistent 
air quality deterioration events in the metropolis of Sao Paulo, Brazil, is presented, showing their temporal distribution between 2005 
and 2022 and associations with meteorological conditions. Another unique aspect of the current study in the consideration of species 
with different drivers for accumulation in the atmosphere: PM10, which is mostly a primary air pollutant, and O3, a secondary air 
pollutant. The models developed here require simple input data and low computational resources, aiming to facilitate a future usage by 
the general public and decision-makers. 
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Fig. 1. Map of the MASP showing the location of the CETESB 17 air quality monitoring stations selected for this study and of the IAG/USP weather station.  
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2. Materials and methods 

2.1. Study area and datasets 

The Metropolitan Area of Sao Paulo (MASP) is located in the Southeastern Brazil, extending through 8047 km2 with a population of 
21.9 million inhabitants and a fleet of 7.1 million vehicles (IBGE, 2023). The MASP is a global city, acting as an important hub in the 
global system of finance and trade (Parnreiter, 2019). Its vehicle fleet is singular because of the blend of gasoline and ethanol used as 
fuel, with singular impacts on the atmospheric chemistry and on the formation of secondary pollutants like O3 (Salvo and Geiger, 
2014). Climate is classified as subtropical humid (Cwa in Koppen’s classification) (Alvares et al., 2013), characterized by a wet summer 
between December and February (1991–2020 climatological precipitation in the range 231–292 mm/month) and by a dry winter 
between June and August (32–60 mm/month) (INMET, 2023). 

Data from 17 air quality monitoring stations in the MASP were used in this study (Fig. 1). The stations were selected based on the 
data coverage between 2005 and 2022 and on the localization of the stations, aiming to represent air quality conditions in the whole 
MASP. Table S1 in the supplementary material lists the air quality monitoring stations used in the current study. Hourly data on the 
concentration of PM10 and O3 were acquired through the Sao Paulo State environmental agency website (CETESB, 2023). Moving 
averages of 24 h and 8 h were calculated for PM10 and O3, respectively. The daily maximum moving average concentration was used to 
identify days with exceedance of the World Health Organization standards: 45 μg.m− 3 for PM10 and 100 μg.m− 3 for O3 (WHO, 2021). 
The resulting daily dataset on exceedances in each air quality monitoring station was used to identify persistent exceedance events 
(PEE), as will be described in the following section. 

Surface weather variables were used as predictors in the models. Data from the weather station of the IAG/USP (World Meteo-
rological Organization station # 83,004) was used in this study from 2005 to 2022. Daily statistics on the following surface weather 
variables were used: temperature relative humidity, surface pressure, wind speed and direction, global solar irradiation, sunshine 
duration and precipitation (Table 1). Daily dominant wind direction data was provided in 17 categories, including the 4 cardinal 
directions, the 4 intercardinal directions, 8 subdivisions and 1 category for calm conditions, when the wind direction is undetermined. 
The IAG/USP weather station has been characterized in previous studies and is representative of the MASP weather conditions, at least 
concerning measurements of temperature, precipitation and relative humidity (Sugahara et al., 2012; Yamasoe et al., 2021). Since 
atmospheric stability is an important driver for the accumulation of atmospheric pollutants, two turbulence-related variables were 
included in this study: the planetary boundary layer height (PBLH) and the friction velocity (Ustar), acquired from the ECWMF/ERA5 
global reanalysis (European Centre for Medium-Range Weather Forecasts), with a spatial resolution of 0.25o (Hersbach et al., 2020). 
The daily data retrieved from ERA5 correspond to instant values at 12:00 local time interpolated from the original grid to the study 
region (23.45–23.70 S; 46.40–46.80 W). We opted for the reanalysis data due to the absence of a daily data product based on in situ 
observations covering the whole study period. 

2.2. Definition of persistent exceedance events (PEE) 

Periods of persistent air quality deterioration were identified between 2005 and 2022 in the MASP using the method proposed by 
Oliveira et al. (2022). The so-called persistent exceedance events (PEE) differ from ordinary exceedance counts because they occur 
simultaneously at multiple air quality monitoring stations and persist for many days. Therefore, PEE pertain to the regional scale, 
potentially impacting the health of millions of inhabitants in the metropolis. The daily timeseries on exceedances of PM10 and O3 in 17 
air quality monitoring stations were used to identify the occurrence of PEE based on the following criteria: 

Table 1 
Description of variables in the dataset developed for this study. The dataset consists in daily timeseries between 2005 and 2022, comprising 6574 
days.   

Abbreviation Description Metric Unity Data 
provider 

Target 
variables 

PM10 PEE Binary variables for event and non-event 
days 

– – This work 
O3 PEE – – This work 

Predictors 

SUM, FAL, WIN, 
SPR 

Seasons (categorical) SUM (DJF), FAL (MAM), WIN (JJA), SPR 
(SON) 

– – 

PBLH Planetary boundary layer height Hourly estimate at 12:00 local time m ERA5 
Ustar Friction velocity Hourly estimate at 12:00 local time m/s ERA5 
WS Wind speed Daily mean m/s IAG/USP 
WD Wind direction (categorical) Predominant direction – IAG/USP 
Insol Sunshine duration Daily integration hours IAG/USP 
Irrad Global solar irradiance Daily integration W/m2 IAG/USP 

Precip Precipitation Daily accumulation mm/ 
day 

IAG/USP 

Press Surface pressure Daily mean mbar IAG/USP 
Tmean Temperature Daily mean oC IAG/USP 
Tmax Temperature Daily maximum oC IAG/USP 
RH Relative humidity Daily mean % IAG/USP  
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i. Exceedance in >50% of the air quality monitoring stations;  
ii. Exceedances lasting for at least 5 consecutive days for PM10 and 3 consecutive days for O3. 

Data was processed using scripts developed in R programming language. Compared to the original dataset on PEE provided by 
Oliveira et al. (2022), the current study provides the following updates and improvements: inclusion of data from 7 additional air 
quality monitoring stations in the MASP; extension of the study period from 2005 to 2017 to 2005–2022; update of the WHO air quality 
standards, released in the year of 2021. 

The application of the criteria described above resulted in a timeseries of binary values showing the occurrence (1) or absence (0) of 
PEE on a particular day, separately for PM10 and O3. Those timeseries were used to train and test models aiming to predict the 
occurrence of PEE, as will be presented in the next section. Also, statistics were provided for the duration of the PM10 and O3 events, as 
well as the interannual and seasonal frequency of occurrence. 

2.3. Logistic models 

Multivariate classification models were developed aiming to predict the occurrence of persistent exceedance events (target vari-
able) based on surface weather conditions (predictors). In this study, logistic models were developed using weather variables as 
predictors, obtaining the probability p of a given day to be part of a persistent exceedance event. Logistic models are defined by the 
following equation: 

ln
(

p
1 − p

)

= b0 + b1x1 +…+ bnxn (1)  

where p is the probability of occurrence, xi are the predictor variables and bi are the coefficients associated with each predictor, 
obtained by fitting the model to the observed data. The exponential of a coefficient bi provides the odds ratio (ORi) of an event day for a 
unit increase in the correspondent predictor xi, given that the other predictors are fixed: 

ORi = ebi (2) 

The odds ratio value is explanatory, since it measures the effect of a given predictor on the increase (OR > 1) or decrease (OR < 1) of 
PEE odds. For more details, refer to Section 3 in the supplementary material. 

The input data initially consisted in a timeseries containing 6163 lines, corresponding to each day in the period 2005–2021, 
excluding the missing data (<1%). The dataset was randomly divided into train (80%) and test (20%) subsets. The models were built 
based on the train subset, under a supervised learning framework. In addition to the test subset, data from the year of 2022 was taken 
aside for the final model evaluation. After obtaining the model coefficients, Eq. (1) was applied to the remaining 20% of the data (test 
set), providing the probability of a particular day to be classified as an event-day. Whenever the calculated probability was above the 
cutoff (refer to Section 3 in the supplementary material), that particular day was classified as an event-day. The model performance 
was evaluated by comparing the classification provided by the model against the observed data. Three metrics were used to evaluate 
the model performance. The sensitivity of a prediction measures how able the model was to detect the positive events, being defined as: 

Sens =
TP

TP + FN
(3) 

The specificity of a prediction measures the ability of the model to correctly predict the negative events, defined as: 

Spec =
TN

TN + FP
(4) 

Finally, accuracy is defined as the percentual ratio of correct responses (i.e., TP + TN): 

A =
TP + TN

N
(5)  

where N is the number of days in the subset. 
The dataset contained 13 variables, including the target variable (occurrence of PM10 PEE) followed by the predictors: 10 nu-

merical weather variables and 2 categorical variables for wind direction and season (Table 1). A similar dataset was built for O3 PEE. 
Numerical variables were normalized by subtracting the mean and dividing by the standard deviation. 

Different configurations were tested in the development of the predictive models for PM10 and O3 events. The choice of the best set 
of predictors was based on the stepwise feature selection method combined with a multicollinearity analysis using the variance 
inflation factor (VIF), adopting the Akaike Information Criterion (AIC). The final version of the models included only the statistically 
significant predictors (p < 0.05) after the removal of multicollinearity. Tests were also performed with subsets of the data to evaluate 
the impact of imbalance on model performance. The dataset is imbalanced because the positive events were relatively rare during the 
study period, with a prevalence of 15% for PM10 event days and 5% for O3 event days. Four different model setups with different 
subsets of the original dataset were tested for each pollutant (Tables S2 and S3). The first model setup contained data from all seasons, 
with the prevalence values reported above. The following model setups used subsets of the data in order to artificially increase the 
prevalence of PEE (refer to Section 1 in the supplementary material). In the results section, only the best model configurations will be 
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presented. 

3. Results and discussion 

3.1. Characterization of persistent exceedance events of PM10 and O3 

Between 2005 and 2022, 117 PEE were detected for PM10 and 89 for O3. PM10 events lasted longer, persisting along 5 to 24 
consecutive days, while O3 events lasted between 3 and 13 consecutive days (Fig. S3). On average, there were 4 PM10 events/year in 
the MASP, comprising 55 event days per year. In the case of O3, 4 events/year were observed, comprising 18 event days per year. In 
event days, median PM10 and O3 concentrations were approximately 80% higher compared to non-event days. Tables S6 and S7 in the 
supplementary material show the complete list of events. Fig. 2 shows the distribution of the daily maximum of moving average 
concentrations of PM10 and O3, considering data from 17 air quality monitoring stations. In event days during the peak season, >75% 
of concentration records exceeded the air quality standards preconized by WHO. Brazilian air quality standards, both in National and 

Fig. 2. Distribution of concentrations in event and non-event days for a) PM10 daily maximum of 24 h moving average in the winter b) O3 daily 
maximum of 8 h moving average in the spring. The boxplots contain data from 17 air quality stations between 2005 and 2022. Horizontal lines show 
the concentration standards recommended by the WHO and legislated by Brazilian governmental agencies in national and state levels. 

Fig. 3. Distribution of the number of persistent exceedance events for PM10 and O3 grouped by month (top) and along the years (bottom) during the 
period of study (2005–2022). 
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State levels, are less restrict compared to WHO’s. As a consequence, the official statistics on air pollution exceedances may not assure 
air quality safety conditions, considering the WHO guidelines. Please note that the classification as a non-event day does not guarantee 
clean air quality conditions in the whole MASP. Localized and short-lived air pollution episodes can still occur in non-event days. 

PM10 events were more frequent in the austral winter (June–August), despite they occurred all through the year (Fig. 3). On the 
other hand, O3 events predominated in the austral spring (September–November) and were rarely observed during the winter. The 
seasonal behavior of events is in accordance with the typical variability of PM10 and O3 concentrations in the MASP. During the austral 
winter, the Brazilian southeast region, including the MASP, is affected by the climatological zonal expansion of the South Atlantic 
Subtropical Anticyclone (SASA), favoring the occurrence of dry and stable atmospheric conditions (Reboita et al., 2019). The winter 
dry conditions winter hinder air pollution dispersion and removal in the MASP, especially in the case of air pollutants of predominant 
primary origin like PM10, NO2 (nitrogen dioxide) and CO (carbon monoxide) (Carvalho et al., 2015). The occurrence of PEE of PM10 in 
the MASP is typically associated with pre-frontal conditions, characterized by subsidence, low wind speeds and dry conditions, leading 
to a progressive accumulation of air pollutants (Oliveira et al., 2022). 

In the case of O3, the stable atmospheric conditions typical of the winter were not sufficient to trigger the occurrence of persistent 
exceedance events, as is evident in Fig. 3 (top). O3 is a secondary air pollutant, being photochemically produced in the atmosphere and 
having as precursors nitrogen oxides (NOx) and volatile organic compounds (VOCs) (Schuch et al., 2019; Targino et al., 2019). Oliveira 
et al. (2022) have shown that stable atmospheric conditions are necessary but not sufficient to drive the accumulation of O3 con-
centrations in the regional scale. They showed that the occurrence of O3 PEE were associated with greater anomalies and absolute 
values of temperature and radiation compared to the conditions observed during the PM10 PEE. 

Hence, the atmospheric conditions that favor the occurrence of PM10 and O3 events in the MASP have common features related to 
atmospheric stability, but distinct aspects concerning conditions for photochemical production. Fig. S4 shows significant differences in 
the daily maximum temperature observed during event and non-event days, with higher values in the event days of PM10 and O3. 
Likewise, other surface weather variables showed significant differences between event and non-event days. Relative humidity was 
significantly lower during PM10 events, while irradiation was above the 3rd quartile during O3 events (Fig. S4). It indicates that 
synoptic and mesoscale atmospheric conditions that favor the occurrence of regional air quality deterioration events in the MASP are 
captured in the variability of surface weather variables. The interplay between PEE occurrence and surface weather conditions 
motivated the development of predictive models for air quality deterioration events, to be discussed in the next section. 

Nevertheless, it is important to point out that atmospheric conditions are not the only driver for the occurrence of PEE. The 
variability of air pollutant emissions also plays an important role. Fig. 3 (bottom) shows that PM10 events were more frequent in the 
past, considering the period of study. This is in accordance with the long term decreasing trend on PM10 concentrations in the MASP, 
typically ranging between − 1 to − 3 μg.m− 3.y− 1 since the 1990’s (Carvalho et al., 2015). Long term reductions in PM10 and other 
primary pollutants concentrations in the MASP were attributed to successful programs implemented by National and State govern-
mental agencies that gradually constrained the emission of pollutants by stationary and mobile sources (de Andrade et al., 2017). 
According to the emission inventory of the Sao Paulo State Environmental Agency, vehicular emissions of PM decreased from 2500 to 
920 ton/year in the MASP from 2006 to 2022 (CETESB, 2023). The decreasing trend in PM10 concentrations was followed by the 
occurrence of PM10 PEE (Fig. 3). That is, similar weather conditions resulted in a higher frequency of PM10 events in the past compared 
to nowadays. 

The distribution of persistent exceedance events for PM10 and O3 along the years is clearly decoupled (Fig. 3, bottom), signalizing 
that different processes drive the accumulation of these pollutants in the atmosphere. While the PM10 events showed a significant 
decreasing trend, the number of O3 events oscillated without a clear tendency. Previous studies also reported the absence of significant 
long term trends in the concentration of O3 in the MASP (Schuch et al., 2019; Carvalho et al., 2015). Tropospheric O3 photochemical 
production depends on weather conditions, abundancy and variety of chemical precursors (NOx and VOCs) in a non-linear way. 
According to Santolaya et al. (2019), about 50% of the temporal variability of O3 concentrations in the MASP can be explained by 
weather conditions. Changes in precursor emissions can also affect O3 concentrations. Previous studies reported impacts in O3 con-
centrations due to a shift from ethanol to gasoline between 2010 and 2012 in the MASP, associated with changes in VOC emission 
patterns (Salvo and Geiger, 2014). 

3.2. Predictive models for PM10 and O3 events 

Given that the behavior of surface weather variables showed a clear association with persistent air quality deterioration events in 

Table 2 
Metrics for evaluation of the model performance for the prediction of PM10 and O3 PEE for the train set (supervised learning), for the test set (initial 
evaluation) and for a subset including data only for the year of 2022 (final evaluation).    

PM10 PEE   O3 PEE   

Train set Test set 2022 set Train set Test set 2022 set 

Accuracy 0.82 0.81 0.79 0.90 0.91 0.92 
Sensitivity 0.88 0.84 1.00 0.81 0.85 0.81 
Specificity 0.81 0.80 0.79 0.91 0.91 0.92 
AUC 0.91 – – 0.94 – – 
Cutoff probability 0.136 – – 0.128 – –  

L.V. Rizzo and A.G.B. Miranda                                                                                                                                                                                    



Urban Climate 55 (2024) 101876

8

the MASP, classification models were developed to predict their occurrence and to investigate the relative importance of predictors. 
Logistic models were developed separately for PM10 and O3 events, initially using the same set of precursors (. 

Table 1). As explained in the methods section, different subsets of predictors and configurations were tested until reaching the final 
version of the models. Refer to Tables S2 and S3 for a comparison of the performance of different model configurations. The O3 model 
was improved by the exclusion of data from the austral winter, when rare events were observed (Fig. 3a). It reduced the imbalance 
between positive and negative event days, increasing the prevalence of O3 event days from 5% to 8%, resulting in the highest accuracy 
among the tested configurations (Table S3). On the other hand, the PM10 model did not benefit from prevalence increase using subsets 
of data (Table S2), so that data from the four seasons were used in this case. 

Table 2 shows metrics to evaluate the overall performance of the PM10 and O3 models. The accuracy of the models (Eq. (5)) 
considering the test set was 0.81 and 0.91, respectively for PM10 and O3 (Table 2), showing that both models had a suitable perfor-
mance in the prediction of PEE. No signs of overfitting were observed, since the accuracy was similar in the train and test sets. The 
sensitivity was close to 0.85 in both models, indicating a satisfactory ability to correctly predict event days, despite the data imbalance. 
The specificity, i.e., the model skill to correctly predict non-event days, was lower for the PM10 model compared to the O3 model, 
showing a tendency of the PM10 model to overestimate the number of event-days. 

Fig. 4 shows the percentage of correct predictions, false positives (i.e., incorrect classification of a day as an event-day) and false 
negatives (i.e., incorrect classification of a day as a nonevent-day), aggregated by year, for the PM10 and O3 models. Note that the 
percentage of false positives increased along the years for the PM10 model (Fig. 4a). This can be explained by the long-term decreasing 
trends in PM10 concentrations and PEE in the MASP. The model was trained with data randomly picked in the period 2005–2021. In the 

Fig. 4. Performance of model predictions for the occurrence of PM10 (a) and O3 (b) events in each year, considering the test set and data from the 
whole year of 2022. The percentage of correct predictions correspond to the model accuracy for the identification of event and non-event days. 

Fig. 5. Final evaluation of models for the prediction of PM10 (left) and O3 (right) event days in the year of 2022.  
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first years of the time series, the PM10 events were more frequent, so that the model was biased toward positive outcomes. The 
thresholds on weather variables may have changed along the years in the case of PM10 events, so that similar weather conditions 
produced a different number of event days at the present time compared to the past. Changes in the PM10 emission patterns also 
affected the model performance in 2020, when PM10 concentrations decreased due to mobility restrictions due to the COVID-19 
pandemics (Rudke et al., 2021). The O3 model, on its turn, was less sensitive to changes in the emission patterns. The O3 model 
also produced false positives, but in a smaller proportion and without a clear long-term trend (Fig. 4b). 

Fig. 5 shows the performance of the models separated by month for the year of 2022. Data from 2022 was totally new for the 
models, since the training stage did not include any data from this year. The PM10 model produced many false positives, overestimating 
the number of event days, particularly in the winter. It can be explained by the biased training of the PM10 model with data that do not 
represent the current air quality conditions in the MASP. In the past, PM10 concentrations were higher, so that even moderate stagnant 
weather conditions were enough to trigger a PM10 persistent exceedance event. Nowadays, similar weather conditions may not trigger 
an event, since the concentrations have decreased. The overestimation was more intense in the winter, because this season is more 
prone to stagnant weather conditions in the MASP. Also, there were changes in in the seasonal distribution of PM10 events. While in the 
long-term PM10 events were detected all through the year (Fig. 3), in last 7 years (2016–2022) the events were concentrated between 
June and September (Fig. S6). The PM10 model was improved using a train dataset restricted to recent years (2016–2021), despite the 
decrease in the volume of data available for the model learning (refer to Section 5 in the supplementary material). There was a sig-
nificant improvement in the PM10 model predictions, reducing the overestimation of event days during the winter (Fig. S7). Restricting 
the model training to recent years resulted in 87% of correct classifications into event and non-event days in 2022, with a sensitivity of 
94% and a specificity of 85%, which is a promising result. 

The O3 model had a better performance compared to PM10, although it also produced false positives and has missed a couple of 
event days (false negatives). O3 events did not show a long-term trend (Fig. 3). As a consequence, the train dataset from the 2005–2021 
period had a greater diversity of weather conditions and event outcomes, providing better conditions for model learning in the case of 
O3. 

Overall, the results show that regional air pollution events can be satisfactorily predicted based on surface weather variables, both 
for primary (PM10) and secondary (O3) air pollutants. The models were able to predict >80% of the event days in 2022. This is a 
notable achievement, given that regional air pollution events result from the complex interplay between weather conditions, emission 
patterns, atmospheric removal processes and chemistry. The current discussion also shows the influence of long-term trends (non- 
stationarity) on the performance of data-based models. Machine leaning classification methods could better overcome the challenges 
posed by the non-stationarity of PM10 events, if associated with training set modification and ensemble strategies (Hoens et al., 2012). 

The models developed here require ordinary surface weather variables typically available in meteorological stations and weather 
forecast products. The models could be published online in a dashboard, assimilating weather forecast predictions in real time, 
providing information for the general public on the short-term probability of poor air quality conditions. As such, the simple models 
developed in this study could assist decision makers in taking timely actions to reduce exposition during extreme air pollution events, 
either through warning and advice for the exposed population or through temporary restriction of emissions. The models could also 
support the strategic planning of health services, since critical air pollution events may result in increased demand for care, leading to 
work overload and financial impacts (Elliot et al., 2016). 

Among the limitations of the models, they are site-specific and cannot be generalized to other areas. Nevertheless, the methodology 
can be applied to other urban areas, given that relatively long time series of air pollutant concentrations and surface meteorological 
variables are available. The models developed here may fail in periods of atypical emission patterns, since they were built over the 
relationships between air pollution and weather conditions that occurred in the past. 

3.3. Interpretation of model predictors 

More than accurate predictions, the models developed here can provide insights about the relative importance of predictors 

Table 3 
Set of predictors in the PM10 model, including: the standard deviation of observations (σ), the odds ratio (OR) and respective confidence interval 
(2.5–97.5%), the model coefficient and the corresponding p-value.   

Unity σ OR 2.5% 97.5% Coefficient p-value 

Intercept – – 0.07 0.05 0.09 − 2.68 < 10− 3 

Fall* – – 0.70 0.51 0.97 − 0.35 0.031 
Summer* – – 0.12 0.06 0.20 − 2.14 < 10− 3 

Winter* – – 3.32 2.37 4.69 1.20 < 10− 3 

Ustar m/s 0.11 0.81 0.70 0.93 − 0.21 0. 002 
WS m/s 1.76 0.51 0.46 0.60 − 0.65 < 10− 3 

Irrad W/m2 6.16 0.53 0.43 0.66 − 0.63 < 10− 3 

Precip mm/day 11.13 0.58 0.38 0.82 − 0.54 0.006 
Press mbar 3.47 1.48 1.28 1.73 0.39 < 10− 3 

Tmax oC 4.63 1.84 1.53 2.24 0.61 < 10− 3 

RH % 8.58 0.32 0.27 0.34 − 1.13 < 10− 3  

* In comparison to Spring. 
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contributing to the occurrence of a regional air pollution event. The model coefficients obtained for the PM10 and O3 models are shown 
in Table 3 and Table 4, respectively, represented as odds ratios (Eq. (2)). Season was one of the most important predictors for both 
models. The chance of occurrence of a PM10 event day was 3.32 times greater in winter compared to spring (Table 3). In the case of O3 
events, the chance was 6.81 times greater in spring compared to fall (Table 4), which is consistent with the seasonal variability of 
events (Fig. 3). As expected, temperature had positive effects on the occurrence of PM10 and O3 events. An isolated increase in the daily 
maximum temperature by one standard deviation (4.63 ◦C) would increase the chance of occurrence of an event by 84% and 483%, 
respectively for PM10 and O3. This result suggest that persistent air quality deterioration events can be more frequent under global 
warming scenarios, as reported in the literature (Lacressonnière et al., 2016). 

In the case of O3, solar irradiation also contributed to increase the chance of events. On the other hand, weather variables like 
relative humidity and wind speed had a negative impact on the chance of events. For example, an isolated increase in RH by one 
standard deviation (8.58%) would decrease the chance of occurrence of an event day by 68% and 48%, respectively for PM10 and O3. 
Ustar, which is a proxy for atmospheric mixing and turbulence intensity, was also an important predictor, decreasing the chance of air 
quality deterioration events. Other predictors listed in Table 1 (Tmean, Insol, PBLH, WD) were not included in any of the models, either 
because of collinearity or because they did not reach statistical significance. The sign of the contribution of each weather variable is in 
agreement with the physical mechanisms that drive the accumulation of pollutants in the lower atmosphere (Oliveira et al., 2022; 
Sánchez-Ccoyllo and Andrade, 2002). 

4. Conclusion 

Persistent air quality deterioration events are relatively frequent in the subtropical megacity of Sao Paulo, with a prevalence of 55 
PM10 event days per year and 18 O3 event days per year, on average. Short-term forecast models were developed to predict the 
occurrence of PM10 and O3 persistent exceedance events. Results show that regional air pollution events can be satisfactorily predicted 
based on a simple set of surface weather variables, both for primary (PM10) and secondary (O3) air pollutants. The models were able to 
predict >80% of the event days in 2022. This is a notable achievement, given that extreme concentrations are relative rare and that 
regional air pollution events result from the complex interplay between weather conditions, emission patterns, and chemistry. Given 
the decreasing long-term trend in the number of PM10 events, restriction of the training data to recent years significantly improved the 
performance of the PM10 model. Daily maximum temperature was an important predictor, such that an isolated increase of 4 ◦C 
increased the chance of events by 84% and 483%, respectively for PM10 and O3. This result suggests that extreme air pollution events 
could become more frequent under global warming if the current emission patterns continue. The short-term forecast models 
developed here are simple to use and do not require expertise in atmospheric sciences. If available online, the models could assist 
decision makers in taking timely actions to reduce exposition during extreme air pollution events, either through warning and advice 
for the exposed population, temporary restriction of emissions, or planning health care services. 
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Set of predictors in the O3 model, including: the standard deviation of observations (σ), the odds ratio (OR) and respective confidence interval 
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Unity σ OR 2.5% 97.5% Coefficient p-value 

Intercept – – 0.0015 0.0008 0.0029 − 6.48 < 10− 3 

Spring* – – 6.81 3.87 12.51 1.92 < 10− 3 

Summer* – – 3.05 1.71 5.66 1.11 < 10− 3 

Ustar m/s 0.11 0.52 0.40 0.67 − 0.65 < 10− 3 

WS m/s 1.76 0.40 0.31 0.53 − 0.90 < 10− 3 

Irrad W/m2 6.16 1.93 1.43 2.61 0.66 < 10− 3 

Press mbar 3.47 1.50 1.15 1.96 0.40 0.003 
Tmax oC 4.63 5.83 4.06 8.50 1.76 < 10− 3 

RH % 8.58 0.52 0.41 0.64 − 0.66 < 10− 3  

* In comparison to Fall. 
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influence the work reported in this paper. 
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https://doi.org/10.1127/0941-2948/2013/0507. 

Anderson, H.R., 2009. Air pollution and mortality: A history. Atmos. Environ. 43, 142–152. https://doi.org/10.1016/j.atmosenv.2008.09.026. 
Brook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Hong, Y., Luepker, R.V., Mittleman, M.A., Peters, A., Siscovick, D., 

Smith, S.C., Whitsel, L., Kaufman, J.D., 2010. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american 
heart association. Circulation 121, 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1. 

Carvalho, V.S.B., Freitas, E.D., Martins, L.D., Martins, J.A., Mazzoli, C.R., de Andrade, M.F., 2015. Air quality status and trends over the metropolitan area of São 
Paulo, Brazil as a result of emission control policies. Environ. Sci. Pol. 47, 68–79. https://doi.org/10.1016/j.envsci.2014.11.001. 

CETESB, 2023. https://cetesb.sp.gov.br/ar/qualar/ last access: 1 June.  
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y.F., 

Pereira, G., Ding, A., Huang, X., Dumka, U.C., 2017. A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci. Total 
Environ. 579, 1000–1034. https://doi.org/10.1016/j.scitotenv.2016.11.025. 

Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Morawska, L., Iii, C.A.P., Shin, H., Straif, K., Shaddick, G., 
Thomas, M., Van Dingenen, R., Van Donkelaar, A., Vos, T., Murray, C.J.L., Forouzanfar, M.H., 2017. Estimates and 25-year trends of the global burden of disease 
attributable to ambient air pollution : an analysis of data from the global burden of diseases study 2015. Lancet 6736, 1–12. https://doi.org/10.1016/S0140-6736 
(17)30505-6. 
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Longo, K.M., Freitas, S.R., Pirre, M., Marécal, V., Rodrigues, L.F., Panetta, J., Alonso, M.F., Rosário, N.E., Moreira, D.S., Gácita, M.S., Arteta, J., Fonseca, R., 
Stockler, R., Katsurayama, D.M., Fazenda, A., Bela, M., 2013. The chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for 
integrated air quality and weather forecasting and research. Geosci. Model Dev. 6, 1389–1405. https://doi.org/10.5194/gmd-6-1389-2013. 

Martins, L.D., Hallak, R., Alves, R.C., de Almeida, D.S., Squizzato, R., Moreira, C.A.B., Beal, A., da Silva, I., Rudke, A., Martins, J.A., 2018. Long-range transport of 
aerosols from biomass burning over southeastern South America and their implications on air quality. Aerosol Air Qual. Res. 18, 1734–1745. https://doi.org/ 
10.4209/aaqr.2017.11.0545. 

L.V. Rizzo and A.G.B. Miranda                                                                                                                                                                                    

https://doi.org/10.1016/j.uclim.2024.101876
https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/10.1016/j.atmosenv.2008.09.026
https://doi.org/10.1161/CIR.0b013e3181dbece1
https://doi.org/10.1016/j.envsci.2014.11.001
https://cetesb.sp.gov.br/ar/qualar/
https://doi.org/10.1016/j.scitotenv.2016.11.025
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1038/s41598-021-03650-9
https://doi.org/10.1016/j.atmosenv.2017.03.051
https://doi.org/10.1016/j.envpol.2016.04.026
https://doi.org/10.1016/j.envpol.2016.04.026
https://doi.org/10.1016/j.envsci.2020.09.009
https://doi.org/10.1016/j.atmosenv.2007.10.048
https://doi.org/10.1016/j.atmosenv.2007.10.048
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1186/1476-069X-12-43
https://doi.org/10.1007/s13748-011-0008-0, 1 April
https://doi.org/10.1007/s13748-011-0008-0, 1 April
https://cidades.ibge.gov.br/
https://portal.inmet.gov.br/normais
https://doi.org/10.1016/j.atmosenv.2016.05.059
https://doi.org/10.1016/j.atmosenv.2016.05.059
https://doi.org/10.1007/s10584-016-1619-z
https://doi.org/10.1007/s10584-016-1619-z
https://doi.org/10.1016/j.envsoft.2022.105329
https://doi.org/10.5194/gmd-6-1389-2013
https://doi.org/10.4209/aaqr.2017.11.0545
https://doi.org/10.4209/aaqr.2017.11.0545


Urban Climate 55 (2024) 101876

12

Molina, L.T., Zhu, T., Wan, W., Gurjar, B., 2020. R.: impacts of megacities on air quality: challenges and opportunities. In: Oxford Research Encyclopedia of 
Environmental Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.5. 

Ning, G., Yim, S.H.L., Wang, S., Duan, B., Nie, C., Yang, X., Wang, J., Shang, K., 2019. Synergistic effects of synoptic weather patterns and topography on air quality: a 
case of the Sichuan Basin of China. Clim. Dyn. 53, 6729–6744. https://doi.org/10.1007/s00382-019-04954-3. 

Oliveira, M.C.Q.D., Drumond, A., Rizzo, L.V., 2022. Air pollution persistent exceedance events in the Brazilian metropolis of Sao Paulo and associated surface weather 
patterns. Int. J. Environ. Sci. Technol. 19, 9495–9506. https://doi.org/10.1007/s13762-021-03778-1. 

Parnreiter, C., 2019. Global cities and the geographical transfer of value. Urban Stud. 56, 81–96. https://doi.org/10.1177/0042098017722739. 
Parrish, D.D., Singh, H.B., Molina, L., Madronich, S., 2011. Air quality progress in north American megacities: A review. Atmos. Environ. 45, 7015–7025. https://doi. 

org/10.1016/j.atmosenv.2011.09.039. 
Porter, W.C., Heald, C.L., Cooley, D., Russell, B., 2015. Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile 

regression. Atmos. Chem. Phys. 15, 10349–10366. https://doi.org/10.5194/acp-15-10349-2015. 
Reboita, M.S., Ambrizzi, T., Silva, B.A., Pinheiro, R.F., da Rocha, R.P., 2019. The South Atlantic subtropical anticyclone: present and future climate. Front. Earth Sci. 

7, 1–15. https://doi.org/10.3389/feart.2019.00008. 
Ribeiro, F.N.D., Oliveira, A.P.D., Soares, J., Miranda, R.M.D., Barlage, M., Chen, F., 2018. Effect of sea breeze propagation on the urban boundary layer of the 

metropolitan region of Sao Paulo, Brazil. Atmos. Res. 214, 174–188. https://doi.org/10.1016/j.atmosres.2018.07.015. 
Rudke, A.P., Martins, J.A., de Almeida, D.S., Martins, L.D., Beal, A., Hallak, R., Freitas, E.D., Andrade, M.F., Foroutan, H., Baek, B.H., De, T.T., 2021. How mobility 

restrictions policy and atmospheric conditions impacted air quality in the state of São Paulo during the COVID-19 outbreak. Environ. Res. 198 https://doi.org/ 
10.1016/j.envres.2021.111255. 

Salvo, A., Geiger, F.M., 2014. Reduction in local ozone levels in urban São Paulo due to a shift from ethanol to gasoline use. Nat. Geosci. 7, 450–458. https://doi.org/ 
10.1038/NGEO2144. 

Sánchez-Ccoyllo, O.R., Andrade, M.F., 2002. The Influence of Meteorological Conditions on the Behavior of Pollutants Concentrations in São Paulo, Brazil. Environ. 
Pollut. vol. 116, 257–263. 

Santolaya, C., Oliveira, M.C.Q.D., Rizzo, L.V., Miraglia, S.G.E.K., 2019. Contribution of chemical and meteorological factors to tropospheric ozone formation in Sao 
Paulo. Rev. Bras. Ciências Ambient. 90–104 https://doi.org/10.5327/Z2176-947820190577. 

Schuch, D., de Freitas, E.D., Espinosa, S.I., Martins, L.D., Carvalho, V.S.B., Ramin, B.F., Silva, J.S., Martins, J.A., de Fatima Andrade, M., 2019. A two decades study on 
ozone variability and trend over the main urban areas of the São Paulo state, Brazil. Environ. Sci. Pollut. Res. 26, 31699–31716. https://doi.org/10.1007/s11356- 
019-06200-z. 

Singh, V., Singh, S., Biswal, A., 2021. Exceedances and trends of particulate matter (PM2.5) in five Indian megacities. Sci. Total Environ. 750, 141461 https://doi.org/ 
10.1016/j.scitotenv.2020.141461. 

Sugahara, S., da Rocha, R.P., Ynoue, R.Y., da Silveira, R.B., 2012. Homogeneity assessment of a station climate series (1933-2005) in the metropolitan area of São 
Paulo: instruments change and urbanization effects. Theor. Appl. Climatol. 107, 361–374. https://doi.org/10.1007/s00704-011-0485-x. 

Szyszkowicz, M., Kousha, T., Castner, J., Dales, R., 2018. Air pollution and emergency department visits for respiratory diseases: A multi-city case crossover study. 
Environ. Res. 163, 263–269. https://doi.org/10.1016/j.envres.2018.01.043. 

Tai, A.P.K., Mickley, L.J., Jacob, D.J., 2010. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for 
the sensitivity of PM2.5 to climate change. Atmos. Environ. 44, 3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060. 

Targino, A.C., Harrison, R.M., Krecl, P., Glantz, P., de Lima, C.H., Beddows, D., 2019. Surface ozone climatology of south eastern Brazil and the impact of biomass 
burning events. J. Environ. Manag. 252, 1–12. https://doi.org/10.1016/j.jenvman.2019.109645. 

WHO, 2021. Executive summary. In: World HEALTH Organization Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, 
Sulfur Dioxide and Carbon Monoxide. 
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