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Properties of solutions of a class of hypocomplex
vector fields

Camilo Campana* Paulo L. Dattori da Silval and A. Meziani

Abstract
A Cauchy type integral operator is associated to a class of integrable vector fields
with complex coefficients. Properties of the integral operator are used to deduce
Holder solvability of semilinear equations Lu = F(z,y,u) and a strong similarity
principle between the solutions of the equation Lu = au + bu and those of the
equation Lu = 0.

1 Introduction

This paper explores the extent to which properties of the Cauchy-Riemann operator
0/0% extend to planar complex vector fields. The class of vector fields amenable to possess
such properties is within the so called “hypocomplex” vector fields. In the plane these
vector fields have first integrals that are local homeomorphisms. Any such vector field
L with C* coefficients is solvable in the C* category: if f € C*°(U) then there exists
u € C*™(U) satistying the equation

Lu = f. (1)
In fact, L is also hypoelliptic. It is also proved (see [1] or [5]) that if f € L” then (1)
has solutions in L”. However, in general the solution u cannot be expected to be more
regular than the right hand side. Indeed, in [1] the authors give an example of a C'*
hypocomplex vector field L and a function f € L°(R?) such that (1) does not have L>
solutions in any neighborhood of 0 € R2.

In this paper we isolate a class of hypocomplex vector fields, with properties analogous
to those of 0/0z. This class consist of those vector fields L, defined in a bounded domain
Q2, that are locally equivalent to a multiple of the vector field

/0y — tly|0/0x, o, >0, (2)
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in a neighborhood of each point p where L fails to be elliptic. In this case, we prove that
if f e LP(Q2), with p > 2+ 0 and 0 = max{o,}, then all solutions u of (1) are in C*(Q2),
where « = (2—q —7)/q, with 7 = 0/(0 + 1) and ¢ = p/(p — 1). This result is obtained
through the study of the integral operator

1 f(&n)
T2fo) = o | dedn, 3
) = 5ni Jo 2w - Z(ay) @)
where Z : 2 — C is a global first integral of L. This result is then applied to show that
the semilinear equation

Lu = F(z,y,u) (4)

has Holder continuous solution for a class of functions F. As a consequence we obtain a
strong similarity principle for the solutions of the equation

Lu = Au + B, (5)

with A, B € LP(Q2). That is, any solution of (5) is in C'*(2) and satisfies u = H(Z)e®,
where H is a holomorphic function defined in Z(2) and s € C*.

It should be noted that analogous questions were investigated in [10] for vector field
(2) with o € 2Z, and where f € L™ (resp, A, B € L*). The approach and motivation
for this paper are related to [1], [2], [3], [4], [7], [8], [9], [10], [13], and many others. This
paper is organized as follows. After the necessary preliminaries of section 2 and technical
Lemmas of section 3, we study properties of the integral operator T in section 4 and
5. In particular, we prove that Ty f solves (1) for any f € L(Q), Tzf € L9(Q) for any
1<q<2—7,and Tyf € C?a=7/9(Q) if f € LP(Q) with p > 2 + 0. In section 6 we
study the semilinear equation and deduce the similarity principle.

This work was done when the first and second authors were visiting the Department
of Mathematics & Statistics at Florida International University. They are grateful and
would like to thank the members of the host institution for the support they provided
during the visit.

2 Preliminaries

Let
L = A(z,y)0/0x + B(x,y)0/9y

be a complex vector field defined in a region 2 C R2, where A and B are C-valued Holder
continuous functions in Q, |A| + [B| > 0 in Q. Let Q be an open set such that Q ¢ Q.
Hypocomplex vector fields were introduced (see [1] or [12]) as those vector fields that are
locally integrable and such that any solution of Lu = 0 can be written locally as ho Z with
h holomorphic and Z a first integral. It turns out that in the case of vector fields in the
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plane, this is equivalent to requiring that any first integral of L is a local homeomorphism.
In this paper, we consider a vector field L to be hypocomplex on € if for every p € € there
exists a C''¢ function (for some € > 0) Z : Y — C defined in an open set U, p € U, such
that dZ #0, LZ =0, and Z : U — Z(U) is a homeomorphism. The set where L fails to
be elliptic is given by

S={pe® Ly, AL, =0} = {p € Q; Im(AB)(p) = 0},

where L = A(z,y)0/0x + B(z,y)0/0y is the complex conjugate of L. We will refer to ¥
as the characteristic set of L (¥ is in fact the base projection of the characteristic set of
the first order differential operator L).

The class of vector fields under study in this paper are those vector fields that satisfy
the following conditions:

(i) L is hypocomplex in Q
(ii) The characteristic set ¥ C Q is a C'*¢ curve nontangent to L

(iii) For every p € X, there exists an open set U, with p € U, such that XN is given by
a defining C'*¢ function p(x,y) such that S(AB)(z,y) = |p(x,y)|"g(z,y), for some
continuous function g in U satisfying g(x,y) # 0 for all (z,y) € U.

It should be noted that these conditions are invariant under C'**¢ change of variables.
The following Proposition gives a local normal form for vector fields satisfying the above
conditions.

Proposition 2.1. Suppose that L satisfies (i), (ii), and (iii). Then, for every p € X,
there exist an open neighborhood U such that U\ consists of two connected components
U™ and U™, and local coordinates (x,¢") (respectively (z7,¢7)) centered at p such that
L is a multiple of the following vector field in U™ (respectively U™):
Ly = 0/0tF —i[t¥]70/02™, (6)
with first integral
Z,(x,t) = 2 + A (7)
o, t) =2 +i—n
oc+1
Proof: Since L is hypocomplex and ¥ is smooth then we can assume that there is in a
neighborhood of p € ¥, such that the set ¥ N is given by {y = 0} and that the first
integral has the form Z(z,y) = x 4 ip(z,y), with ¢ real-valued (see [1], [12]). Thus L is
a multiple of the Hamiltonian

Z,0/0y — Z,0/0x
and condition (iii) implies that

15)
a—j(x,w = [y["¢(x, ),



with ¢ a C° function, and (0, 0) # 0. Then,

)
ol = [ Il s)ds + Bla) = p(a.p) + 5(a),
0
for some C'*¢-function 3. With respect to the new variables

Ny~ 1
=, t=sgn(p)[p(z,y)(l+o0)[T
the expression of Z becomes

L]

Z(x,t)=x+1 (o—+1 +ﬁ(x)) :

Let D be a small disc centered at 0 such that ¥ divides D into two semi discs DT =

{t > 0} and D~ = {t < 0}. Note that Z(D') and Z(D~) are simply connected in

C sharing a boundary curve v = {(z, 8(x))}. Since « is C''"*-curve, then we can find

conformal mappings

H*: Z(D¥) — H*(Z(D*)) cC

sending the boundary curve v into the real axis and H* extends as a C'-diffeomorphism

to a full neighborhood of 0. The function Z*(x,t) = H*(Z(x,t)) is then a first integral of
tit|” -~

L in D* satisfying $Z%(z,0) = 0. It follows that SZ*(z,t) = %1&(33,25)”“ for some
o

function ¢ (x,t) (with ¢(0,0) > 0). With respect to the new coordinates

ot = RZE(x,t), 5 =td(x,t)

the vector field L becomes a multiple of the desired vector field L, given in the Proposition.
O

Remark 2.2. Note that if L is C*, locally integrable and, of constant type along each
connected component of 3, then it satisfies (iii) (see [1], [12]). Indeed, in this case if ¥; is
connected component of ¥ and L is of constant type n; along 3;, then it can be shown (as
in [10]) that for each point p € 3; coordinates (z*,¢*) can found in which the expression
of L is as in the Proposition 2.1.

Remark 2.3. The vector field (of infinite type)
9 T
o e o

is of class C'*°, with characteristic set ¥ = {t = 0}. Also, L is hypocomplex with (global)
first integral

L

T
Z(x,t) =x+i—e M.

il

1
However, the condition (iii) is not satisfied, since e 11 % O(|t|?), for any o > 0.
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We close this section with the following Proposition.

Proposition 2.4. Let L be a hypocomplex vector field with local first integrals defined
in an open set 2 C R2. Then for any open set Q CC €, L has a global first integral on
Q). More precisely, there exists C''™¢ function

Z:Q — Z(Q)ccC
such that Z is a homeomorphism, LZ = 0 and dZ # 0.

Proof: Since L is hypocomplex, then for every p € Q there exists a C'*“first integral
Z, defined in an open set U, C Q with p € U,. The collection {Up, Zp}peq defines a
structure of a Riemann surface on the open set Upeﬁ Up, since the transition functions
hoq = Zy o Zg' are holomorphic functions on Zq(U, N Uy). The existence of a global
first integral Z follows from the Uniformization Theorem of the planar Riemann surfaces

Upeﬁ U, (see [11]). O

Remark 2.5. Note that hypocomplexity of L also implies that if v satisfies Lv = 0 in an
open set O C €2, then v = h o Z, where h is a holomorphic function defined in Z(O).

3 Some Lemmas

We prove some technical Lemmas that will be used in the following sections.

Lemma 3.1 ([10], Lemma 3.1). Let 0 < 0 < R, 0 <7 <1, m >0, and 0 < 7 < R.
Then, there ezists a constant C(1) > 0 such that

/ / dbdr < C(7)

|7+7"sin6’|77‘m+1 — 5m+7"
Lemma 3.2. Let R >0,0<7<1,veR, and1 < q < 2—171. Then, there exists a
constant M(q,7) > 0 such that

2 R
drdf
I:/ / " < M(q,7)R* 1.
o Jo |y+rsing|rret

Proof: To prove the Lemma it is enough consider v > 0. If v = 0 then

I /2” / drdg /2” df /R I _ o R 7
|rsin@rra=t — J, [sin@| J, rrtet 7—2—7'—q’

2m
C’(T):/ ,d—6<oo.
0

| sin 0|7

where
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Now, suppose v > 0. Let r = py. We have

2w B
3 dpdf
[ =T / / £ =T (8)
0 0

lpsin® + 1|7 pa—1

To estimate J, we consider two cases: 0 <~y < R and v > R.

Assume that 0 < v < R. We can write

R R
"7 dpdf /2”/7 dpd .
J = - J J .
/0 /0 lpsin® + 1|7 pa—1 + )y lpsind+ 1 prt 1+ J2

For 0 € [0, 7] we have sin 6 > 0; consequently, psinf+1 > psinf and p € [0, R/v]. Hence,

iy o Cfr) (RY*

Ji < - < — .

o Jo lpsind|Tpit T 2—7—q\y

Next, we will estimate J,. Let m < 6y < 37/2 such that —sinfy, = v/2R. We can write
o /90 /5‘ dpdf . / /’3 dpdd
) o lpsind 1t T o Jy o lpsing + 1pr

. /%—90 /’i dpdb N /% /5 dpdd
s=Jo o |psing@+17p7 1 Jar g Joo |psing + 1]7pe!

= Jo1+ Joo+ Joz+ Jou.

Let ¢ = —0 + 3m. We have

[T /’3 dpdf B / /5 dpdyp _
237 [ psinf + 1|7pi=t — J, psing + 1[7pe=1 — 7F%
2 0 o 0

Jys = / " / T dpdd /90 /5 dpdp
2 3m—60p JO |/)Sin9+1‘qu_1 o - 0 ’psingo_i_llqu—l 2,1-

Let us estimate .J5;. Note that

Also,

. 1
0< —sinf < %% < 3 for 0 € [m,6);

consequently, for 6 € [r,60y] and 0 < p < R/, we have

1
plsind| < 5 < 1+ psind.
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Hence,

0o % 2-7—q
Ty < / / .dpd(‘) < C(71) E .
" Jx Joo pTlsindTprt T AR -7 —q) \y

Let us estimate Jyo. Let ¢ = 0 and ¢t = psin€ + 1. We have

T8 dpdf Tsingtl g dtdy
J2’2 - . T —1
6 Jo |psing+1[7pt 0 smg0| ¢ < )
sin ¢
3 1

2 dt
[ ( [ e
/90 %sinaerl ’t|7|t - 1|qi1

3T

* L R\* 7
< inpl?( [ o )dp. < C =
< [ o o (3

for some constant C'(g,7) > 0.
Hence, by the calculations above, we can find a constant C}(q,7) > 0 such that

J< Ci(g7) (5)2_7_(1. ()

Now, assume that v > R. In this case, there exists a constant C'(¢,7) > 0 such that

2T Eid 27 2—7—q
5 dpdb dpdb R
J= / / P / / < C(q,7) (—) (10)
o Jo |psin®+ 1fmpet [1—pl7pot ot

Finally, estimates (8), (9) and (10) show that there exists a constant M (g, 7) > 0 such
that

I < M(q7)R*71.
O

Lemma 3.3. Let R>0,7v>0,0<7<1,1<q<2—71,and 0 < ¢ < 7. Then, there
exists a constant C(q,7) > 0 such that

" rdrdf
" ‘ 11
/0 /0 |y + rsin(0 + @) |7re|rei? — 1]a — < C(g, 7). (11)

Proof: We will divide the proof in two cases: v =0 and v > 0.

Case 1: 7 = 0. In this case we can write

27
drdf
/o /0 |sin(6 + ¢)|[TratT—1]reif — 1|4 1+ Hy + Hs,
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with

- drdf
B / / |sin(f + @) |Tratm=1|re? — 1]9°
[ drdd
B / / |sin(0 + o) |[TratT=1|rei® — 1]’

_/%/ drdf
B s |sin(@ + @) |TretT rei — 1a

1 ‘ 1
For 0 <r < 5 e have |re?? — 1| > 7 Hence, we can find C1(q,7) > 0 such that

drd6
q
=2 / / | sin(6 + p)[TratTt < Gilg,m).
T+q

1 3 1
For 3 <r< 5 we have (5) < e < 277 and so

%<Tﬂ/‘/ drdo
| sin(0 + )| |re — 1]a

drdf -
2T+q 2T+q H .
Zﬁ] 1>/ |sin(0 4 @)|7|re?® — 1|9 ; >

Let 0 < 6y < /2 such that

62 62
1—;<cos€<1—z, for 0 <6 < 6.

Then

N

Yoz drd6 3 drdd
H —= - . :Hl H2 )
// [sin(0+ )| [re? — 1[s +// sin(0 - o) lre® — 12 T

For 0 < 0 < 6y and 1/2 <r < 3/2 we have

1) 42 0’ 0 |
&——%i——§@—1V+Zf§U—1f+r§§ﬂmw—H2

and, consequently,
1

- < .
lre? — 112 = (r —1)2 4+ 62




Hence,

et <y/%/‘ drd? Yy
2= | sin(0 + @)|[(r — 1)2 + 62]3 '

Suppose that 0 < ¢ < 7/2. Then, 0 < 0+ p < /246y < 7 and [sin(0 + )| > C|0+ ¢|,
for some constant C' > 0. Hence,

. /9/ drdf / drdf
Cc7J < - < .
0 J1 [0+ ¢|T[(r—1)>+ 62 p(o,1:1) |0+ @7[(r —1)2 + 62]2

1 p27
dpdt
:// p S M(q7T>7
0 Jo e+ psint|mpit

where the last inequality is obtained by Lemma 3.2. Similar estimate can obtained in the
case m/2 < ¢ < m. Therefore,

% drdf 2¢ M
|sm (04 p)|7|re? — 1]a CcT

For 6y < 0 < 5 we have

lre?® — 1> > 1 — cos@ > 1 — cosb

. _/ / drdo
21 00 | sin(f + ¢)|7|re? — 1|2

and

(13)
g / @ Gil)
—(1- cos&o)i 0o |SI(0+ )" = (1 —cosby)z’
for some constant C(7) > 0. It follows from (12) and (13), that
29 M
H271 S <Q7 7—) + C].(T) (14)

cr (1 —cosby)?

To estimate Hj o, we start by using a change of variable § = o + 7 in the integral to

obtain
2
drdoz
Hy, = / / __
|sin(a+ ¢)|7|ref + 1|2

Note that |re’® + 1] > rcosa + 1 > 1, for 37/2 < o < 27; hence,

H </2Wd—&—0(7’)<oo (15)
2= [ Tsinfa+ o |

9



Similar estimates can be obtained for Hs3 and Hj4. Therefore, we can find a constant
Cs(g, ) > 0 such that Hy < Cy(q, 7).
The estimation of Hj is obtained as follows. Since r > 3/2, then |re? — 1] > |r — 1| =

r—12>r/3 and
drdf
Hy < 3¢
’ / / | sin(0 + @)|7r2atT=1

R q 2q+1-2
§3q03(7)/ dr __ 3 Cs(7) (2) a |

r2atm—1 = 2+ 7 —2\3
where C5(7) is a positive constant. This completes the proof of (11) in the case v = 0.

Case 2: 7 > 0. In this case, H (given by (11)) can be rewritten in the form H = H; + Ho,

where
/27r /“’ rdrdf
Hl - . - )
o Jo |y+rsin(@+p)|[Trijrei — 1

"o /Qﬂ /R rdrdf
2 0o Jy |y + rsin(f + )| ri|re® — 1]a°

To estimate Hy, we consider three cases depending on the values of ~.

1 .
First case: 0 < v < 3" In this case, since 0 < r < 1/2, we have |re? — 1| >1—r > 1/2.
Hence, by Lemma 3.2,

2n drdf
H, < 2q/ / r < 29M(q, 7).

|y + rsin(0 + p)|7re-t —

w

Second case: — <y < —. We write H; = Hy7 + H1 2, where

o /2” /% rdrdd
b o Jo |y+rsin@+ p)|rare? — 1|’

" _/2”/7 rdrdf
2=y @ prre? — 1

Note that estimation of H; ; is given by the previous case.
For H,, we have

2m drdd
H12 < 94— 1/ / r A
= Tlre? = 11

g drdf S
— 99-1 : — 94-1 H .
Z G=ix /é |y —r|7|re? — 1] ]2_; 1,2

1
2

[\3

N

m
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To estimate H; ., we write

. bo drdf z o drdf
HLQ - T 0 q + T 0 q’
o Jy ly=rltlre® =1 Jo Ji |y —r[Tre? =1

with 0 < 6y < m/2 such that 1 — 62?/2 < cosf < 1 —6%/4 for 0 < 6 < 6. Note that this
choice of 6y implies that |re? — 1| > 1 — cosf, for § > 6,. Hence,

% T
H112<2q/0/ d?“d@ q+ 5—90 i 1 .
20D S =l (=12 ) (L —cos)i o7

Now, by using polar coordinates r = 1 + psin¢, § = pcos¢ in the integral, and using
Lemma 3.2, we obtain

Oo drdf dedp
/ / 7. 2 q / / 1 q—1 —M(Q’ )
o Ji |y —rT((r—1)2 +62)3 [y = 1= psing|7p

Hence, we can find a constant Cy(g,7) > 0 such that H{, < Ci(q,7). Proceeding as
above, we can find a constant Cy(g,7) > 0 such that H{, < C5(q, 7).
For H},, we have

2 _/27r /'y drdf / / drdf ™
27 e Sy = Tlre? + 1) =207

since |re® + 1| > 1 for 37“ < # < 2mw. Analogous estimates can be used to show that

H}, < ﬁ Therefore, we can find a constant Cs(g, 7) > 0 such that H; < Cs(q, 7).
’ -7

3
Third case: y > 3 In this case we write Hy; = H; ; + H 2, where

B /2“ / rdrdf
L 0 0 |7+7“Sin(‘9+99)|77"q|7‘6i9_1|q7

i _/2”/7 rdrdf
o s v+ rsin@ 4 @) refre? — 1o

Estimate for H,; follows from the previous case. For Hj s, note that since r > 3/2 we
have |re?® — 1| > r/2 and

drdf
Hy, <24 _ |
v / / \’Y+7“sm 9—|—S0)|T7«2q71 C(Qﬂ') < 00

11



Now we estimate Hy. Recall that

"o /QW/R rdrdf
2 o Joy |y A rsin(@ 4 @)|[mrajre? — 1|2

As done for H; we consider three cases:

3 3 , T
First case: 3 <~ < R. Since r > 3 implies \rew — 1] > =, we have

3
/2“/ drdd B /27 drdf
Iy + rsin(f + @)|7r2a-1 |y + rsin@|7r2a-1

Hence, the estimative for Hs follows from Lemma 3.1.

1 3
Second case: 3 <y < 3 In this case we can write Hy = Hy ;1 + Hy 2, where

rdrdf
A = H! H2
/g/ |7 + Tsm 0 + gp)|77~Q|7~619 _ ]_|q 2,1 T a1,

rdrdf
Hyo = . =
s |y +rsin(0+ ¢)|7ri|re? — 1|

and,

- _/’5 / drdf
o -3/ |y + rsin @7 re-1re@—») — 1|a’

2 _/ / drdf
> = Jy |y + rsin @|7ra-1rei@=») — 1ja’

Note that estimation of Hj, is given by the previous case.
To estimate H, , note that since 1/2 < v < r < 3/2 we have 1/3 < v/r < 1. Let
0, € (—m/2, —ap) be such that —v/r = sin 6, where sinag = 1/3. We have then

1 B |0 — 6047 L A(T) 1
|y +rsind|T  r7|sing —sin6|7 |0 — 617 ~ r7|cos 0|7 |0 — 01|

for some constant A(7) > 0; hence, substituting cosf; by /72 — +2/r we obtain

1 < A(T) 1
|y +rsind|” = (r2 =422 |0 — 0, (r)|]"

12



Therefore,
drdf

H211 < 207 A(T /;'[y )20 — 60, (r)|7|rei®—9) — 1]a
_ o AGr /4’/ drdf
iy )30 = 01(r) + | |ret® — 1]
e drdf

< 271 A(r / / :
Z - )H10 = 6u(r) + el e — 1]

=207 A(T ZH;{

drdf

We have
0 r3
mi-[ | z —
s _g . (7,,2_ry2>2’9_77—91(r)+¢’T|T620+1|q
For —7/2 <0 <0 we have |re? + 1| > 1 +rcosf > 1 and
0
i< [ / & <o),
)30 — 7 = 01(r) + ol

for some constant C( ) > 0. Similarly H2112 < C(1), for some C(7) > 0.

To estimate H2 1y let 0 < 0y < ap/2 such that
2 92

1—9—<COSQ<1—Z -0, <0<0.

for

Note that —6y < 6 < 0 implies
o o
0—0:(r)+ ¢ > —60—91(7“)+902a0—70+g02 70.

Moreover, for —m/2 < 6 < —6, we have
lre®® — 1> > 1 — cos .

Hence,
drd&

B < //
= (@) L] wa

drdf

(1—c0590) /g / (r2—=~2)210 — 61(r) + |
d do
S < ) / / i ) +Cl(T7Q)7
00 )z|re — 19

13




for some constant C(7,q) > 0. Note that for r > 1/2 and —6y < 6§ < 0 we have

(r—1)*+6*
4 b)

hence, since r > v > 1/2 implies > — 4% > r — v, we have

/ / drd& / / drdf
0oy |T€u9 0oy rr - % T - 1)2 + 92)%
/ drdf
Do) (r—7)2((r—1)2+6%)%

21
// drd6 < Cy(r.q),
1=+ psinal?pi—!

where the last estimate follows from Lemma 3.2. Therefore, we can find a constant
Cs(7,q) > 0 such that Hzlf < C3(7,¢q). Similar arguments can be used to estimate H;f
and HQQJ. Therefore, we can find a constant C(7,¢q) > 0 for which Hy; < C(7,q).

lre® — 1 >

1
Third case: 0 <~y < 7 In this case

I _/Zﬁ/é rdrdf N /2” rdrd
o o Jy |y +rsin(@+p)[Trifre? — 19 0o J1i |y + rsin(0 + ) |7ri|re? — 1]a°

The second integral can be estimate as before. Hence, it is enough to estimate the first
integral. Since r < 1/2 implies |re? — 1| > |r — 1| > 1/2, we have

/2” /é rdrdf /2” / drdf
o Jy |y A rsin(@ 4 @)|rafre? — 1|‘1 - |y + 7sin(0 + )| 7ra-1’

which can be estimated applying Lemma 3.2.
This completes the proof of the case v > 0 and of the Lemma. 0

4 An Integral Operator

Let L be a vector field defined in an open set  C R? and Q be a relatively compact
subset of Qc Q) with 00 piecewise of class C''. Suppose that L satisfies conditions
(i), (ii), and (iii). Let

Z:Q—Z(Q)ccC (16)

be a global first integral of L of class C''™ as in Proposition 4. As noted in section 2, L
is a multiple of the Hamiltonian of Z. In fact, we will assume that

B, B,
L=Zvg. = 2 (17)

14



For f € L'(), define the integral operator

T0f(n,y) = 5 / i %(ég(x’y)dédn- (18)

Since L satisfies condition (iii), then for every X;, connected component of ¥, there exists
o; > 0 such that (7) holds. Let

0 = Mmaxo;. (19)
We have the following theorem:

Theorem 4.1. Let o be given by (19) and let f € LP(2), with p > 2+ 0. Then, there
exists a constant M (p,o,Q) > 0 such that the operator Ty satisfies

Tz f(x,y)| < M(p, o, ||, V(z,y) €
Proof: Let (z,y) € Q. Then

o (&) 111 dédn g
Tttel < 5 [ e g < ot ([ e - 7o)

where ¢ = p/(p — 1). Since Z is a C'T-diffeomorphism outside of the characteristic set
Y2, then it follows from the normalization given in Proposition 2.1 and use of partition of
unity that in order to have

dedy
/Q |Z(§m) — Z(x,y)| < M(p,0,9)

it is enough to have the inequality when € is replaced by 2 NU, when U is a open set
where the normalization holds. For the purpose of estimating the integral, there is no loss
of generality in assuming that the vector field can be transformed into the normal form
L, in the open set U rather than in each connected component U™ and U~ of U\ X (since
the diffeomorphisms extend across the boundary by Proposition 2.1).

Let w € 3; C ¥. There exists a C''-diffeomorphism

®: D(0,6) = U, = ®(D(0,6)) C R?

with ®(0) = w, and a holomorphic function H defined on Z(U,), with H'(¢) # 0 for
¢ € Z(Uy), such that
70 ®(s,1) = H(Zy(s,1)),
L[t
1+ 0j .

where Z;(s,t) = s+
Hence for (z,y) € U,

/ dédn < / |D®(s,t)|dsdt
QNUyw |Z(§,77) - Z(I7y)|q N D(0,6) |H(Zj<87t)) - H(Zj<so7t0))|q

15




max | D®(s, t)| dsdt
min [H'(C)|7 Jpo,s) |Z;(s,t) — Z;(s°,t°)|7

t[t]*

By using the change of variables ¢ = s and n = T1o we obtain
0j
. dsdt d&dn
(1 + O'.)TJ / — / . —
7 Ipwos) 12(s,t) — Zi(s°,t°) |4 D)) INITI¢ — 2]

[t
D(z,d) |77|T|<_Z|q

where ¢ =& +in, z = Z;(s°,t°), and d = diam(Z;(D(0,6))).
Now, the use of polar coordinates (r, #) given by & = rcosf+R(z) and n = rsin 0+J(z)
and of Lemma 3.3 give

_ d&dn / / drd& -
<M T4,
/zd ’77| ’C_Z’q ’7’51[19 )‘TT’q 1 — (qu)d
]

Proposition 4.2. Let o be given by (19) and let f € L'(Q2). Then, Tf € L%(Q), for any
1<g<2—-0/(c+1).

Proof: Let f € L'(Q) and let g € LP(Q2), with p > 2 + . It follows from Lemma 3.2
that the function
d€dn

(z,y) / 9(& )
9Dz - 2y
is bounded. Hence, fg; € L'(2). By applying Fubini’s Theorem we obtain

L1t tsdy = [ 18l ( [ lat6 e 50 ) ddy

z/ﬂ\g(&n)l (/QIf(lny)l|Z(£’n§lgidyz<m7y)|)dfdn

z/ﬂlg(f,n)lfl(é,n)dfdn,

where

B N dxdy
R e T

Hence |g|fi € LY(Q). Since g € LP(Q) is arbitrary, it follows from the converse of the

Holder inequality (see, for instance, [14]; also, [6]) that f; € L%(Q), for ¢ = p/(p — 1).

Note that p > 2+ ¢ implies 1 < ¢ <2 —0/(0+1). Also, note that |T'f] < f;. Therefore,

Tfe L), forany 1 <g<2—0/(c+1). O
The following Lemma is a direct consequence of Green’s Theorem.

16



Lemma 4.3. Let w € C(Q) N CY(SY). Then

/QLw drdy = —/mde(w,y). (20)

Proposition 4.4. Let w € C(Q) N C*(Q). Then, for all (z,y) € €, we have

1 w(a, B) 1 Lw(a, B) o
w(z,y) = i /89 Z(a, B) — Z(x,y)dz(a’m i 2mi /Q Z(a,B) = Z(x,y) dodp.

Proof: Let (z¢,y0) € € fixed. Set zp = Z(x0,10) and let € > 0 such that D, C Z(Q),
where D, = D(zg,¢). Define K, = Z71(D,) and Q. = Q\ K,. Let

We have f € C(Q.) N CY(). Hence, by (20),

Lw(z,y) L w(z,y) .

(l‘,y)—ZQ xuy)_ZO

(21)
o w(z,y) . w(z,y) ).
B /aﬂ Z(xay)—zodz( ’y>+/z«)1<€ Z(%?J)—Zodz< ,y),

Since
w(¢)

OB ¢ — 2o

/ f (e y)dZ(z,y) = / (f 0 27 1)(Q)dC = .
0K, Z(aKG)

where 1 = w o Z~!, then by using polar coordinates ¢ = z, + ee'?, 0 € [0, 2], we obtain

27r~

/ il (7 +9€€ ice?df — 2mib(zy), as e — 0.
ODc(z0) S ee’
Therefore,
w(z,y) :
—————dZ(x,y) — 2mw(xg,yp), as € — 0. 22
/mzm)_% () = 2wz, ) (22)

On the other hand, as done in the proof of Theorem 4.1,

(x,y) — 2y — € LYQ) Cc L'(9).
Hence,
/ _Lw(zy) dq:dy—>/ Lw(z y dxdy, as €— 0. (23)
Z(z,y) — 2o — 2y
The Proposition follows from (21), (22) and (23). O
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Theorem 4.5. If f € L*(Q) then Ty f satisfies L(Tzf) = f in Q.

Proof: Let f € L*(Q2). By Proposition 4.2, Ty f € LY(Q), 1 < ¢ <2 —0/(c +1). Hence,
by applying Proposition 4.4 we have, for ¢ € C§°(Q)

(L(T2f),6) = — / Ty f (e, y) Lo, y)dedy

5 ( 7 ) dfdn) Lo(z,y)dzdy
1 Ld)(x )
/f &,n) 2—m o) —ZEn dxdy) dé&dn

/f €, n)p(E,n)dedn = <f o).

Therefore, L(Tzf) = f in . O

Example 4.6. For p < 2 + o, there exist f € LP(2) such that equation Lu = f has no
bounded solutions. Indeed, for the standard vector field L = 0, — i|t|?0,, the function
v : Q — C defined by v(z,t) = In|In|Z(z,t)|| is not bounded but solves Lv = f with

—ilt|”

flz,t) = —— € [P(Q), forany 1<p<2+4o0.

(1) Z(x,t) In|Z(x,t)| ()
“d

That f € LP with p < 2 + o follows from the fact that / |17“ E < oo if and only
o TélInr

if s < 1. For general vector fields, similar examples can be produced thanks to the
normalization near points on ..

Remark 4.7. Cauchy type integral operators were used in [8] and [9] in connection with
other types of vector fields.

5 Holder continuity of solutions

In this section we prove that the solutions of Lu = f are Hoélder continuous if f € LP,
with p > 24+ 0. Let Xq,--- ,Xy be the connected components of ¥ and o¢,--- ,0n5 be
o

and

respectively the types of L along >, --- ;¥ . Recall that o = 12%}1{\7{%}’ T = s

forp>2+aandq:ilWehaveq<2—7'.
p_

Theorem 5.1. Let f € LP(Q), with p > 2+ 0. Let q and 7 be as given above. If u
9 _ g
satisfies Lu = f in ), then u € C*(Q) with o = i Sy

18



Proof: Since L is hypocomplex, it follows from Theorem 4.5 that if u solves Lu = f in
Q, then u =Ty f + H(Z), where Ty is the integral operator defined in section 4 and H is
a holomorphic function defined on Z(€2). Thus to prove the Theorem, we need only prove
that T, f € C*(Q).

Let f € LP(Q), with p > 2+ 0, and let (2o, %), (z1,%1) € Q. Set 2 = Z(x1, 1) and
20 = Z(0,Y0). Then

dad
T2 f (1, 91) — T2 f (o, o) ZO‘/ |Z(a, B) —Z1||)|Z(a 6) B) — 2|

| Zo‘ 1
< T||f||pJq,

where

B dadp
J/S; ‘Z(a,ﬁ)—Zl|q|Z(a7ﬁ)_z0|q' (24)

To prove the Theorem, it is enough to show that
J S 01|Zl — ZO|2_2q_T + 02, (25)

for some constants C, Cy > 0.
For each j = 1,---, N, let V; be a tubular neighborhood of 3; such that V; NV, = ()
for 7 # k and such that

V;:U‘/;ka jzlv"'an

where each Vj;, is an open subset where L can be transformed into the standard vector
field Ly, with first integral
t[¢|7

1+O'j

Zi(s,t) =s+1

on each side V]j,: of the characteristic curve ¥ N Vj; (see Proposition 2.1). Hence, we can
assume that there exists a diffeomorphisms of class C!

o5 DH(0,R) =V,

such that Z oCIDik = Hﬁ o Z;, where H3; 5% is a holomorphic function defined in Z;(D=(0, R))

and has a C' extension up to the boundary. Moreover, H},(¢) > Cj > 0 on D*(0, R).
Since L is elliptic outside ¥, then we can use partition of unity to reduce the prob-

lem of proving (25) into that of proving the inequality when (2 is replaced by Vﬁg, with

(0, Y0), (x1,11) € Vﬁ; In fact for the estimation of the integral, there is no loss of gener-
ality in assuming that L can be transformed into the standard vector in Vj; and not only
in each ka[ separately.
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Set @y (s¢,t0) = (x4, y¢), £ = 0,1. We have
oo / dadp
T 12, B) = Z(wr, 9[9[ Z(a, B) — Z(wo, yo)|?

_/ | det D@ (s,t)|dsdt
po.r) 1Hik(Z;(s,1)) — Hj(Z;(s1, 1)) Hju(Z;(5,1)) — Hjr(Z;(s0, t0))|?

Hence,

dsdt
<M / = MyQir,
ik " Voo 1(Zi(s,t) = Zi(s1,00) |1 Z; (s, t) — Z;(s0, o) Qi

where
maxp(o,r) {| det DPjx(s,t)|}
mingpo,r)) | Hj(C)]7

[£]7

My, =

we have

By using the change of variables £ = s and n =
J

= | ey
’ (05 +1)7 )7, (po,ry) 1M71¢ —w1|7]¢ —wole’

where wy, = Zj(s¢,tg), £ = 0,1. We can assume, without loss of generality, that ny > 0
and w; — wy = |w; — wple’?, with 0 < ¢ < 7. We have

0, <1 / dedn
T (o4 1) D(wo:d) 17|77 |¢ — w1]?|¢ — wp|?
1 d&dn

(o 1) /D(O;d) 1m0 4+ 1]7|¢ = (wy — wo)|9|¢|7°

where d = diam(Z;(D(0, R))). After using the change of variables ( = |w; — wp|p, with
p=a+iband w; —wy = |w; — wp|e’?, we obtain

e (o; +1)7 D(O W) |\w1 o) + 0|71 — ere||ple

Finally, the polar coordinates u = (e, ¢ = re?? and v = ny/|w; — wp| and the use of
Lemma 3.3 allow us to obtain the estimate

le woP 72 /2’7 /w ol rdrdf
o< 4 déd
@ = |y + rsin(0 + @)|7rd|re? — 1|¢ &eln

(o;+1)7

0|2—7'j—2q7

20



To finish the proof, note that
wi = wol = |H; (Z(x1,31)) — Hyy (Z(x0,90))| = Ajul Z (w1, 91) = Z (0, 90,
for some constant A;; > 0, since Hjj, is a biholomorphism. Hence,
Qi < Al Z(w1,91) = Z(wo,50) 77720 < Al Z (w1, 90) — Z (o, yo) P72,

Therefore, we can find a constant M(q, 7,€) > 0 such that

2—7—q

Tz f(x1,t1) — Tz f (2o, to)| < N flpM(q, 7, 0| Z(21,t1) — Z(20,t0)|

This completes the proof. O
6 A semilinear equation and a similarity principle

In this section we consider the semilinear equation
Lu = F(z,y,u), (26)

where L is the hypocomplex vector field as in the previous sections defined in an open set
Q c R

Let Q be a relatively compact open subset of Q and let ¥ € LP(Q;RL), p > 2+ 0.
We define the space Fg to be the set of functions F': Q x C — C satisfying

o F(.,¢) € LP(Q2), for every (¢ € C;
o |F(z,t,¢1) — F(x,t,()| < W(x, )¢ — G|*, 0<a <1, forall ¢, € C.
Throughout this section, we will assume that ¢ is the Holder conjugate of p, that o is

2 g —
,andﬁzL.
q

o
iven by (19), 7 =
given by (19), T |

Theorem 6.1. Let F' € F;'. Then:
1. If 0 < a < 1, equation (26) has a solution u € CA(Q).

2. Ifa =1, for every (x,t) € Q, there exist an open subsetU C , with (x,t) € U, such
that equation (26) has a solution u € C?(U). If, moreover, the constant M(p, o, <))

appearing in Theorem 4.1 satisfies M (p, o, Q)||V||, < 1, then (26) has a solution in
Ch(9).
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Proof: Let C(Q) be the Banach space of continuous functions in € with norm

[lulloo = sup{Ju(z, t)] ; (x,) € Q2}.
For a fixed M > 0, let C;(Q) be the closed subset of C(Q) given by
Cu(Q) ={u € C(Q) ; |lullo < M}
Suppose that 0 < a < 1. Then, for M sufficiently large, we have that
M (p, o, D{|[W[|,M* +[|[F (-, 0)[[,} < M, (27)

where M (p,0,() is given by Theorem 4.1.
Consider the operator P : Cy(§2) — Cp(Q2) defined by

Pu(z,y) =Tz (F(z,y,u(z,y))),

where T is given by (18). The operator P is well-defined. Indeed, for F' € F§ and
u € Cy(§2) we have
1ECa)lly < [[W]], M+ [[F( 0y, (28)

and it follows from (27), (28), and Theorem 4.1 that for u € Cy;(Q2), we have
|Puz,y)| < M(p, o, QX[ V][, M* +[|F(-,0)||,} < M. (29)
Moreover, for (z1,v1), (z2,%2) € Q, we have

|Pu(ey, 1) = Pulza, y2)| < [Tz(F (- u))(@1,41) = Tz(F(, ) (22, 42))|
< Clp, o, QUEC, )llpl(z1,91) = (22,2)|”
< Cp, . D{I[PI,M* + |[FC, 0l (@1, 91) — (w2, 92)17,
where C(p, o, () is given by Theorem 5.1.

For g: C(p, o, D{||¥||,M* + ||F(-,0)||,}, define Ay as the set of all functions
v e Cy(Q) satisfying

[v(21,y1) — v(22, 42)| < C|(21,51) — ($27y2)|ﬁa V(@1,91), (22, 92) € QL.

Ajsc is a nonempty convex subset of Cj(Q2). Also, as a consequence of Ascoli-Arzeld’s
Theorem, Ay is compact. Moreover, Pu € Ay ¢, for all uw € Cp(2).
The operator P is continuous. Indeed, for u,v € Cy;(€2), we have

|Pu(z,y) — Po(z,y)| < [Tz(F(- u) = F(-,0))(x,y)|
< M(p, o, Q|[F(u) = F(0)llp
< M(p, o, QW] lu — o] |5
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hence, the restriction P : Ayr o — A is continuous. Therefore, Shauder fixed point
Theorem, implies that there exists u € Ay ¢ such that Pu = w. The fixed point

u="T(F(-,u)) € C°(Q)

satisfies Lu(z,y) = F(z,y,u(x,y)).

Next, suppose that @ = 1. In this case, for every (z,y) € Q we can find an open
U C Q, with (x,y) € U, such that

M(p, 0, )| ¥]], < 1.

If M > 0 is taken sufficiently large, (27) holds when 2 is replaced by ¢ . The same
argument as the one used when o < 1, shows the existence of u € C#(U) satisfying (26)
inU.
O
As a direct consequence of the Theorem 6.1, we have the following Corollary.

Corollary 6.2. Let a,b, f € L} (R?), with p > 2+ 0. Fvery (z,y) € R? has an open

loc

neighborhood U C R? such that equation
Lu=au+bu+ f
has a solution u € C*(U).
Now, consider F' given by
Fa,y,u) = g(z,y)H(z,y,u) + f(2,y) (30)

where f,g € LP(Q), p > 2+ 0, and H : Q2 x C — C is continuous and bounded, with
||H||o < K for some positive constant K.

Theorem 6.3. Let I be given by (30). Then, equation Lu = F(z,y,u) has a solution
u € CP(Q).

Proof: Consider the operator P : C(Q2) — C(f) defined by

Since H(-,u) € L>(S2) we have gH (-,u) + f € LP(Q). It follows from Theorem 4.1, that
for every (z,y) € Q we have

|Pu(z,y)| < M(p, o, Q)|[gH(-,u) + fll
< M(p, 0, D9l H (- w)lloo + 1If11p}
<M

(2, 0, {9l K + ([ f1lp} = M -
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Moreover, it follows from Theorem 5.1, that for (z1,1), (72,92) € Q and u € C(Q) there
is C'(p,0,€) > 0 such that

|Pu(zy, y1) — Pulza, ya)| < [Tz(gH (- u) + f) (@, 91) = Tz(gH (5 w) + [)(22, 40
< Cp, o, DNgH (- w) + [llpl(z1,91) = (w2,2)]”
< Cp, o, DAl K + 111} (@1, 91) — (22, 92)1°.

Let C = C(p, o, D{||gll, K + [|f|l,} and Ay be the set of all functions v € C(Q),
with ||v]| < M, and satisfying

lv(z1,y1) — v(@2,y2)| < Cl(z1,41) — (22, 92)°, V(z1,31), (22, 92) € Q.

As in the proof the previous Theorem, A/ is a nonempty convex compact subset of

C(€2). Moreover, Pu € Ay ¢, for all u € C(€Q).
The operator P : A MC = Apr,c is continuous. Indeed, since H is uniformly continuous
on the compact set U = Q x {¢ € C;|¢| < M}, then given € > 0 there exists § > 0 such

that
€

M(p, o, D{llgll, + 1}
for all (z,y) € Q and |¢; — (3| < §. Hence, for u,v € Ay with ||[u — v||e < §, we have

< M(p, o, Q)||g{H(-;u) = H(-,0)}]p
< M(p, o, Q)|gllpl[H (- u) = H(- 0)][o
€
< M(p, 0. )||gl <e
pM(p7 g, Q){Hng + 1}
Therefore, by Shauder Fixed Point Theorem, P has a fixed point in Ay ¢ that satisfies
the conclusion of the Theorem. U
The classical similarity principle for generalized analytic functions was invesitigated
in [2] and in [7] for solutions of complex vector fields. As a consequence of Theorem 5.1

and Theorem 6.3 we give here a strong version of the similarity principle for the operator
L:

’H(x7y7C1) - H(xay>C2>| <

Theorem 6.4. Let a,b € LP(Q2), p > 2+ 0, 0 > 0. Then for every u € L>®(Q) solution
of equation
Lu = au+bu (31)

there exists a holomorphic function h defined in Z(Q) and a function s € CP(Q) such that
u(@,y) = h(Z(w,y))e’ ™, V(z,y) € Q. (32)

Conversely, for every holomorphic function h in Z () there is s € CP(Q) such that the
function u given by (32) solves (31).
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Proof: The proof is an adaptation of that found in [10]-Theorem 4.1. In order to keep
this work as self-contained as possible we will repeat the arguments here.

Suppose that v € L>*(€2) and that u is not identically zero. Since L is smooth and
elliptic in Q2 \ ¥ we know that L is locally equivalent to a multiple of Cauchy-Riemann
operator /0% in 2\ X (see, for instance, [1]). The classical similarity principle (see [4]
and [13]) applies and the function u has the representation (32) in the neighborhood of
each point (z,y) ¢ X. Hence, u has isolated zeros in Q \ X. Define the function ¢ in 2 by
¢ = u/u at the points where u is not zero and by ¢ = 0 at the points where u = 0 and on
Y. Note that ¢ € L>(2). It follows that a + bp € LP(2). Consider the equation

Ls = —(a + bg). (33)

By Theorem 5.1 this equation has a solution s € C?(Q). Define v = ue®. A simple
calculation shows that Lv = 0. Then, v can be factored as v = ho Z, with h holomorphic
on Z(2). This proves the first part of the Theorem.

Next, let h be a holomorphic function in Z(2). Define the function ¢ in Z(2) by
¢ = h/h at the points where h is not zero and by ¢ = 0 at the points where h = 0. Then
© =¢@oZ € L*(QN). Consequently, bp € LP(Q2), p > 2+ 0. Hence, by Theorem 6.3,
equation

Ls =a+ bpe’*
has a solution s € C#(Q). It follows at once that u given by
ulz,y) = h(Z(x,9))e" ™, (2,y) € Q,

solves (31) in .
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