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Properties of solutions of a class of hypocomplex
vector fields

Camilo Campana∗, Paulo L. Dattori da Silva† and A. Meziani

Abstract

A Cauchy type integral operator is associated to a class of integrable vector fields
with complex coefficients. Properties of the integral operator are used to deduce
Hölder solvability of semilinear equations Lu = F (x, y, u) and a strong similarity
principle between the solutions of the equation Lu = au + bu and those of the
equation Lu = 0.

1 Introduction

This paper explores the extent to which properties of the Cauchy-Riemann operator
∂/∂z extend to planar complex vector fields. The class of vector fields amenable to possess
such properties is within the so called “hypocomplex” vector fields. In the plane these
vector fields have first integrals that are local homeomorphisms. Any such vector field
L with C∞ coefficients is solvable in the C∞ category: if f ∈ C∞(U) then there exists
u ∈ C∞(U) satisfying the equation

Lu = f. (1)

In fact, L is also hypoelliptic. It is also proved (see [1] or [5]) that if f ∈ Lp then (1)
has solutions in Lp. However, in general the solution u cannot be expected to be more
regular than the right hand side. Indeed, in [1] the authors give an example of a C∞

hypocomplex vector field L and a function f ∈ L∞(R2) such that (1) does not have L∞

solutions in any neighborhood of 0 ∈ R2.
In this paper we isolate a class of hypocomplex vector fields, with properties analogous

to those of ∂/∂z. This class consist of those vector fields L, defined in a bounded domain
Ω, that are locally equivalent to a multiple of the vector field

∂/∂y − i|y|σp∂/∂x, σp > 0, (2)

∗Supported by FAPESP (grants 2013/26463-7 and 2013/08452-8).
†Partially supported by CNPq (grants 306076/2012-8 and 478542/2013-5) and FAPESP (grants

2012/03168-7 and 2014/06515-5).
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in a neighborhood of each point p where L fails to be elliptic. In this case, we prove that
if f ∈ Lp(Ω), with p > 2 + σ and σ = max{σp}, then all solutions u of (1) are in Cα(Ω),
where α = (2− q − τ)/q, with τ = σ/(σ + 1) and q = p/(p− 1). This result is obtained
through the study of the integral operator

TZf(x, y) =
1

2πi

∫
Ω

f(ξ, η)

Z(ξ, η)− Z(x, y)
dξdη, (3)

where Z : Ω → C is a global first integral of L. This result is then applied to show that
the semilinear equation

Lu = F (x, y, u) (4)

has Hölder continuous solution for a class of functions F . As a consequence we obtain a
strong similarity principle for the solutions of the equation

Lu = Au+Bu, (5)

with A,B ∈ Lp(Ω). That is, any solution of (5) is in Cα(Ω) and satisfies u = H(Z)es,
where H is a holomorphic function defined in Z(Ω) and s ∈ Cα.

It should be noted that analogous questions were investigated in [10] for vector field
(2) with σ ∈ 2Z+ and where f ∈ L∞ (resp, A,B ∈ L∞). The approach and motivation
for this paper are related to [1], [2], [3], [4], [7], [8], [9], [10], [13], and many others. This
paper is organized as follows. After the necessary preliminaries of section 2 and technical
Lemmas of section 3, we study properties of the integral operator TZ in section 4 and
5. In particular, we prove that TZf solves (1) for any f ∈ L1(Ω), TZf ∈ Lq(Ω) for any
1 ≤ q < 2 − τ , and TZf ∈ C(2−q−τ)/q(Ω) if f ∈ Lp(Ω) with p > 2 + σ. In section 6 we
study the semilinear equation and deduce the similarity principle.

This work was done when the first and second authors were visiting the Department
of Mathematics & Statistics at Florida International University. They are grateful and
would like to thank the members of the host institution for the support they provided
during the visit.

2 Preliminaries

Let
L = A(x, y)∂/∂x+B(x, y)∂/∂y

be a complex vector field defined in a region Ω̃ ⊂ R2, where A and B are C-valued Hölder
continuous functions in Ω̃, |A| + |B| > 0 in Ω̃. Let Ω be an open set such that Ω ⊂ Ω̃.
Hypocomplex vector fields were introduced (see [1] or [12]) as those vector fields that are
locally integrable and such that any solution of Lu = 0 can be written locally as h◦Z with
h holomorphic and Z a first integral. It turns out that in the case of vector fields in the
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plane, this is equivalent to requiring that any first integral of L is a local homeomorphism.
In this paper, we consider a vector field L to be hypocomplex on Ω if for every p ∈ Ω there
exists a C1+ε function (for some ε > 0) Z : U → C defined in an open set U , p ∈ U , such
that dZ 6= 0, LZ = 0, and Z : U → Z(U) is a homeomorphism. The set where L fails to
be elliptic is given by

Σ = {p ∈ Ω; Lp ∧ Lp = 0} = {p ∈ Ω; Im(AB)(p) = 0},

where L = A(x, y)∂/∂x+ B(x, y)∂/∂y is the complex conjugate of L. We will refer to Σ
as the characteristic set of L (Σ is in fact the base projection of the characteristic set of
the first order differential operator L).

The class of vector fields under study in this paper are those vector fields that satisfy
the following conditions:

(i) L is hypocomplex in Ω

(ii) The characteristic set Σ ⊂ Ω is a C1+ε curve nontangent to L

(iii) For every p ∈ Σ, there exists an open set U , with p ∈ U , such that Σ∩U is given by
a defining C1+ε function ρ(x, y) such that =(AB)(x, y) = |ρ(x, y)|σg(x, y), for some
continuous function g in U satisfying g(x, y) 6= 0 for all (x, y) ∈ U .

It should be noted that these conditions are invariant under C1+ε change of variables.
The following Proposition gives a local normal form for vector fields satisfying the above
conditions.

Proposition 2.1. Suppose that L satisfies (i), (ii), and (iii). Then, for every p ∈ Σ,
there exist an open neighborhood U such that U\Σ consists of two connected components
U+ and U−, and local coordinates (x+, t+) (respectively (x−, t−)) centered at p such that
L is a multiple of the following vector field in U+ (respectively U−):

Lσ = ∂/∂t± − i|t±|σ∂/∂x±, (6)

with first integral

Zσ(x, t) = x± + i
t±|t±|σ

σ + 1
(7)

Proof: Since L is hypocomplex and Σ is smooth then we can assume that there is in a
neighborhood of p ∈ Σ, such that the set Σ ∩ U is given by {y = 0} and that the first
integral has the form Z(x, y) = x + iϕ(x, y), with ϕ real-valued (see [1], [12]). Thus L is
a multiple of the Hamiltonian

Zx∂/∂y − Zy∂/∂x
and condition (iii) implies that

∂ϕ

∂y
(x, y) = |y|σψ(x, y),
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with ψ a C0 function, and ψ(0, 0) 6= 0. Then,

ϕ(x, y) =

∫ y

0

|s|σψ(x, s) ds + β(x) = ϕ̃(x, y) + β(x),

for some C1+ε-function β. With respect to the new variables

x = x, t = sgn(ϕ̃)|ϕ̃(x, y)(1 + σ)|
1

1+σ

the expression of Z becomes

Z(x, t) = x+ i

(
t|t|σ

σ + 1
+ β(x)

)
.

Let D be a small disc centered at 0 such that Σ divides D into two semi discs D+ =
{t > 0} and D− = {t < 0}. Note that Z(D+) and Z(D−) are simply connected in
C sharing a boundary curve γ = {(x, β(x))}. Since γ is C1+ε-curve, then we can find
conformal mappings

H± : Z(D±) −→ H±(Z(D±)) ⊂ C
sending the boundary curve γ into the real axis and H± extends as a C1-diffeomorphism
to a full neighborhood of 0. The function Z±(x, t) = H±(Z(x, t)) is then a first integral of

L in D± satisfying =Z±(x, 0) = 0. It follows that =Z±(x, t) =
t|t|σ

σ + 1
ψ̃(x, t)1+σ for some

function ψ̃(x, t) (with ψ̃(0, 0) > 0). With respect to the new coordinates

x± = <Z±(x, t), t± = tψ̃(x, t)

the vector field L becomes a multiple of the desired vector field Lσ given in the Proposition.
�

Remark 2.2. Note that if L is C∞, locally integrable and, of constant type along each
connected component of Σ, then it satisfies (iii) (see [1], [12]). Indeed, in this case if Σj is
connected component of Σ and L is of constant type nj along Σj, then it can be shown (as
in [10]) that for each point p ∈ Σj coordinates (x±, t±) can found in which the expression
of L is as in the Proposition 2.1.

Remark 2.3. The vector field (of infinite type)

L =
∂

∂t
− ie

− 1
|t|

t2
∂

∂x
,

is of class C∞, with characteristic set Σ = {t = 0}. Also, L is hypocomplex with (global)
first integral

Z(x, t) = x+ i
t

|t|
e−

1
|t| .

However, the condition (iii) is not satisfied, since e−
1
|t| 6= O(|t|σ), for any σ > 0.
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We close this section with the following Proposition.

Proposition 2.4. Let L be a hypocomplex vector field with local first integrals defined
in an open set Ω̃ ⊂ R2. Then for any open set Ω ⊂⊂ Ω̃, L has a global first integral on
Ω. More precisely, there exists C1+ε function

Z : Ω −→ Z(Ω) ⊂⊂ C

such that Z is a homeomorphism, LZ = 0 and dZ 6= 0.

Proof: Since L is hypocomplex, then for every p ∈ Ω there exists a C1+ε-first integral
Zp defined in an open set Up ⊂ Ω̃ with p ∈ Up. The collection {Up, Zp}p∈Ω defines a
structure of a Riemann surface on the open set

⋃
p∈Ω Up, since the transition functions

hpq = Zp ◦ Z−1
q are holomorphic functions on Zq(Up ∩ Uq). The existence of a global

first integral Z follows from the Uniformization Theorem of the planar Riemann surfaces⋃
p∈Ω Up (see [11]). �

Remark 2.5. Note that hypocomplexity of L also implies that if v satisfies Lv = 0 in an
open set O ⊂ Ω, then v = h ◦ Z, where h is a holomorphic function defined in Z(O).

3 Some Lemmas

We prove some technical Lemmas that will be used in the following sections.

Lemma 3.1 ([10], Lemma 3.1). Let 0 < δ < R, 0 < τ < 1, m > 0, and 0 ≤ γ < R.
Then, there exists a constant C(τ) > 0 such that∫ R

δ

∫ 2π

0

dθdr

|γ + r sin θ|τrm+1
≤ C(τ)

δm+τ
.

Lemma 3.2. Let R > 0, 0 < τ < 1, γ ∈ R, and 1 < q < 2 − τ . Then, there exists a
constant M(q, τ) > 0 such that

I =

∫ 2π

0

∫ R

0

drdθ

|γ + r sin θ|τrq−1
≤M(q, τ)R2−τ−q.

Proof: To prove the Lemma it is enough consider γ ≥ 0. If γ = 0 then

I =

∫ 2π

0

∫ R

0

drdθ

|r sin θ|τrq−1
=

∫ 2π

0

dθ

| sin θ|τ

∫ R

0

dr

rτ+q−1
= C(τ)

R2−τ−q

2− τ − q
,

where

C(τ) =

∫ 2π

0

dθ

| sin θ|τ
<∞.
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Now, suppose γ > 0. Let r = ργ. We have

I = γ2−τ−q
∫ 2π

0

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1

.
= γ2−τ−q J. (8)

To estimate J , we consider two cases: 0 < γ < R and γ ≥ R.

Assume that 0 < γ < R. We can write

J =

∫ π

0

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1
+

∫ 2π

π

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1

.
= J1 + J2.

For θ ∈ [0, π] we have sin θ ≥ 0; consequently, ρ sin θ+1 ≥ ρ sin θ and ρ ∈ [0, R/γ]. Hence,

J1 ≤
∫ π

0

∫ R
γ

0

dρdθ

|ρ sin θ|τρq−1
≤ C(τ)

2− τ − q

(
R

γ

)2−τ−q

.

Next, we will estimate J2. Let π < θ0 < 3π/2 such that − sin θ0 = γ/2R. We can write

J2 =

∫ θ0

π

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1
+

∫ 3π
2

θ0

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1

+

∫ 3π−θ0

3π
2

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1
+

∫ 2π

3π−θ0

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1

.
= J2,1 + J2,2 + J2,3 + J2,4.

Let ϕ = −θ + 3π. We have

J2,3 =

∫ 3π−θ0

3π
2

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1
=

∫ 3π
2

θ0

∫ R
γ

0

dρdϕ

|ρ sinϕ+ 1|τρq−1
= J2,2.

Also,

J2,4 =

∫ 2π

3π−θ0

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1
=

∫ θ0

π

∫ R
γ

0

dρdϕ

|ρ sinϕ+ 1|τρq−1
= J2,1.

Let us estimate J2,1. Note that

0 ≤ − sin θ ≤ γ

2R
<

1

2
, for 0 ∈ [π, θ0];

consequently, for θ ∈ [π, θ0] and 0 < ρ < R/γ, we have

ρ| sin θ| < 1

2
< 1 + ρ sin θ.
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Hence,

J2,1 ≤
∫ θ0

π

∫ R
γ

0

dρdθ

ρτ | sin θ|τρq−1
≤ C(τ)

4(2− τ − q)

(
R

γ

)2−τ−q

.

Let us estimate J2,2. Let ϕ = θ and t = ρ sin θ + 1. We have

J2,2 =

∫ 3π
2

θ0

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1
=

∫ 3π
2

θ0

∫ R
γ

sinϕ+1

1

1

sinϕ

dtdϕ

|t|τ
(
t−1
sinϕ

)q−1

=

∫ 3π
2

θ0

| sinϕ|q−2
(∫ 1

R
γ

sinϕ+1

dt

|t|τ |t− 1|q−1

)
dϕ

≤
∫ 3π

2

θ0

| sinϕ|q−2
(∫ 1

−R
γ

dt

|t|τ |t− 1|q−1

)
dϕ. ≤ C(q, τ)

(
R

γ

)2−τ−q

,

for some constant C(q, τ) > 0.
Hence, by the calculations above, we can find a constant C1(q, τ) > 0 such that

J ≤ C1(q, τ)

(
R

γ

)2−τ−q

. (9)

Now, assume that γ ≥ R. In this case, there exists a constant C(q, τ) > 0 such that

J=

∫ 2π

0

∫ R
γ

0

dρdθ

|ρ sin θ + 1|τρq−1
≤
∫ 2π

0

∫ R
γ

0

dρdθ

|1− ρ|τρq−1
≤ C(q, τ)

(
R

γ

)2−τ−q

(10)

Finally, estimates (8), (9) and (10) show that there exists a constant M(q, τ) > 0 such
that

I ≤M(q, τ)R2−τ−q.

�

Lemma 3.3. Let R > 0, γ ≥ 0, 0 < τ < 1, 1 ≤ q < 2− τ , and 0 ≤ ϕ ≤ π. Then, there
exists a constant C(q, τ) > 0 such that

H =

∫ 2π

0

∫ R

0

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
≤ C(q, τ). (11)

Proof: We will divide the proof in two cases: γ = 0 and γ > 0.

Case 1: γ = 0. In this case we can write

H =

∫ 2π

0

∫ R

0

drdθ

| sin(θ + ϕ)|τrq+τ−1|reiθ − 1|q
= H1 +H2 +H3,
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with

H1 =

∫ 2π

0

∫ 1
2

0

drdθ

| sin(θ + ϕ)|τrq+τ−1|reiθ − 1|q
,

H2 =

∫ 2π

0

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τrq+τ−1|reiθ − 1|q
,

H3 =

∫ 2π

0

∫ R

3
2

drdθ

| sin(θ + ϕ)|τrq+τ−1|reiθ − 1|q
.

For 0 < r <
1

2
we have |reiθ − 1| ≥ 1

2
. Hence, we can find C1(q, τ) > 0 such that

H1 ≤ 2q
∫ 2π

0

∫ 1
2

0

drdθ

| sin(θ + ϕ)|τrq+τ−1
≤ C1(q, τ).

For
1

2
< r <

3

2
we have

(2

3

)τ+q

<
1

rτ+q
< 2τ+q, and so

H2 ≤ 2τ+q

∫ 2π

0

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τ |reiθ − 1|q

= 2τ+q

4∑
j=1

∫ jπ
2

(j−1)
2

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τ |reiθ − 1|q
.
= 2τ+q

4∑
j=1

H2,j.

Let 0 < θ0 < π/2 such that

1− θ2

2
< cos θ < 1− θ2

4
, for 0 < θ < θ0.

Then

H2,1 =

∫ θ0

0

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τ |reiθ − 1|q
+

∫ π
2

θ0

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τ |reiθ − 1|q
=H1

2,1 +H2
2,1.

For 0 < θ < θ0 and 1/2 ≤ r ≤ 3/2 we have

(r − 1)2 + θ2

4
≤ (r − 1)2 +

θ2

4
≤ (r − 1)2 + r

θ2

2
≤ |reiθ − 1|2

and, consequently,
1

|reiθ − 1|2
≤ 4

(r − 1)2 + θ2
.
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Hence,

H1
2,1 ≤ 2q

∫ θ0

0

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τ [(r − 1)2 + θ2]
q
2

.
= 2qJ.

Suppose that 0 ≤ ϕ ≤ π/2. Then, 0 < θ+ϕ < π/2 + θ0 < π and | sin(θ+ϕ)| ≥ C|θ+ϕ|,
for some constant C > 0. Hence,

CτJ ≤
∫ θ0

0

∫ 3
2

1
2

drdθ

|θ + ϕ|τ [(r − 1)2 + θ2]
q
2

≤
∫
D((0,1);1)

drdθ

|θ + ϕ|τ [(r − 1)2 + θ2]
q
2

=

∫ 1

0

∫ 2π

0

dρdt

|ϕ+ ρ sin t|τρq−1
≤M(q, τ),

where the last inequality is obtained by Lemma 3.2. Similar estimate can obtained in the
case π/2 < ϕ ≤ π. Therefore,∫ θ0

0

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τ |reiθ − 1|q
≤ 2qM(q, τ)

Cτ
. (12)

For θ0 < θ < π
2

we have

|reiθ − 1|2 ≥ 1− cos θ ≥ 1− cos θ0

and

H1
2,1 =

∫ π
2

θ0

∫ 3
2

1
2

drdθ

| sin(θ + ϕ)|τ |reiθ − 1|q

≤ 1

(1− cos θ0)
q
2

∫ π
2

θ0

dθ

| sin(θ + ϕ)|τ
≤ C1(τ)

(1− cos θ0)
q
2

,

(13)

for some constant C1(τ) > 0. It follows from (12) and (13), that

H2,1 ≤
2qM(q, τ)

Cτ
+

C1(τ)

(1− cos θ0)
q
2

. (14)

To estimate H2,2, we start by using a change of variable θ = α + π in the integral to
obtain

H2,2 =

∫ 2π

3π
2

∫ 3
2

1
2

drdα

| sin(α + ϕ)|τ |reiα + 1|q
.

Note that |reiα + 1| ≥ r cosα + 1 ≥ 1, for 3π/2 ≤ α ≤ 2π; hence,

H2,2 ≤
∫ 2π

3π
2

dα

| sin(α + ϕ)|τ
= C2(τ) <∞. (15)
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Similar estimates can be obtained for H2,3 and H2,4. Therefore, we can find a constant
C2(q, τ) > 0 such that H2 ≤ C2(q, τ).

The estimation of H3 is obtained as follows. Since r > 3/2, then |reiθ − 1| ≥ |r− 1| =
r − 1 ≥ r/3 and

H3 ≤ 3q
∫ 2π

0

∫ R

3
2

drdθ

| sin(θ + ϕ)|τr2q+τ−1

≤ 3qC3(τ)

∫ R

3
2

dr

r2q+τ−1
≤ 3q C3(τ)

2q + τ − 2

(2

3

)2q+τ−2

,

where C3(τ) is a positive constant. This completes the proof of (11) in the case γ = 0.

Case 2: γ > 0. In this case, H (given by (11)) can be rewritten in the form H = H1 +H2,
where

H1 =

∫ 2π

0

∫ γ

0

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
,

H2 =

∫ 2π

0

∫ R

γ

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
.

To estimate H1, we consider three cases depending on the values of γ.

First case: 0 < γ ≤ 1

2
. In this case, since 0 < r < 1/2, we have |reiθ − 1| ≥ 1− r ≥ 1/2.

Hence, by Lemma 3.2,

H1 ≤ 2q
∫ 2π

0

∫ γ

0

drdθ

|γ + r sin(θ + ϕ)|τrq−1
≤ 2qM(q, τ).

Second case:
1

2
< γ ≤ 3

2
. We write H1 = H1,1 +H1,2, where

H1,1 =

∫ 2π

0

∫ 1
2

0

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
,

H1,2 =

∫ 2π

0

∫ γ

1
2

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
.

Note that estimation of H1,1 is given by the previous case.
For H1,2 we have

H1,2 ≤ 2q−1

∫ 2π

0

∫ γ

1
2

drdθ

|γ − r|τ |reiθ − 1|q

= 2q−1

4∑
j=1

∫ jπ
2

(j−1)π
2

∫ γ

1
2

drdθ

|γ − r|τ |reiθ − 1|q
= 2q−1

4∑
j=1

Hj
1,2.
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To estimate H1
1,2 we write

H1
1,2 =

∫ θ0

0

∫ γ

1
2

drdθ

|γ − r|τ |reiθ − 1|q
+

∫ π
2

θ0

∫ γ

1
2

drdθ

|γ − r|τ |reiθ − 1|q
,

with 0 < θ0 < π/2 such that 1 − θ2/2 < cos θ < 1 − θ2/4 for 0 < θ < θ0. Note that this
choice of θ0 implies that |reiθ − 1| > 1− cos θ0 for θ ≥ θ0. Hence,

H1
1,2 ≤ 2q

∫ θ0

0

∫ γ

1
2

drdθ

|γ − r|τ ((r − 1)2 + θ2)
q
2

+
π
2
− θ0

(1− cos θ0)
q
2

1

1− τ
.

Now, by using polar coordinates r = 1 + ρ sinφ, θ = ρ cosφ in the integral, and using
Lemma 3.2, we obtain∫ θ0

0

∫ γ

1
2

drdθ

|γ − r|τ ((r − 1)2 + θ2)
q
2

≤
∫ 1

0

∫ 2π

0

dϕdρ

|γ − 1− ρ sinϕ|τρq−1
≤M(q, τ).

Hence, we can find a constant C1(q, τ) > 0 such that H1
1,2 ≤ C1(q, τ). Proceeding as

above, we can find a constant C2(q, τ) > 0 such that H4
1,2 ≤ C2(q, τ).

For H2
1,2, we have

H2
1,2 =

∫ 2π

3π
2

∫ γ

1
2

drdθ

|γ − r|τ |reiθ + 1|q
≤
∫ 2π

3π
2

∫ γ

1
2

drdθ

|γ − r|τ
≤ π

2(1− τ)
,

since |reiθ + 1| ≥ 1 for 3π
2
≤ θ ≤ 2π. Analogous estimates can be used to show that

H3
1,2 ≤

π

2(1− τ)
. Therefore, we can find a constant C3(q, τ) > 0 such that H1 ≤ C3(q, τ).

Third case: γ >
3

2
. In this case we write H1 = H1,1 +H1,2, where

H1,1 =

∫ 2π

0

∫ 3
2

0

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
,

H1,2 =

∫ 2π

0

∫ γ

3
2

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
.

Estimate for H1,1 follows from the previous case. For H1,2, note that since r ≥ 3/2 we
have |reiθ − 1| ≥ r/2 and

H1,2 ≤ 2q
∫ 2π

0

∫ γ

3
2

drdθ

|γ + r sin(θ + ϕ)|τr2q−1
= C(q, τ) <∞.
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Now we estimate H2. Recall that

H2 =

∫ 2π

0

∫ R

γ

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
.

As done for H1 we consider three cases:

First case:
3

2
≤ γ < R. Since r >

3

2
implies |reiθ − 1| ≥ r

3
, we have

H2 ≤ 3q
∫ 2π

0

∫ R

γ

drdθ

|γ + r sin(θ + ϕ)|τr2q−1
= 3q

∫ 2π

0

∫ R

γ

drdθ

|γ + r sin θ|τr2q−1
.

Hence, the estimative for H2 follows from Lemma 3.1.

Second case:
1

2
≤ γ <

3

2
. In this case we can write H2 = H2,1 +H2,2, where

H2,1 =

∫ 3π
2

−π
2

∫ 3
2

γ

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
= H1

2,1 +H2
2,1,

H2,2 =

∫ 2π

0

∫ R

3
2

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q

and,

H1
2,1 =

∫ π
2

−π
2

∫ 3
2

γ

drdθ

|γ + r sin θ|τrq−1|rei(θ−ϕ) − 1|q
,

H2
2,1 =

∫ 3π
2

π
2

∫ 3
2

γ

drdθ

|γ + r sin θ|τrq−1|rei(θ−ϕ) − 1|q
.

Note that estimation of H2,2 is given by the previous case.
To estimate H1

2,1, note that since 1/2 ≤ γ < r < 3/2 we have 1/3 < γ/r < 1. Let
θ1 ∈ (−π/2,−α0) be such that −γ/r = sin θ1, where sinα0 = 1/3. We have then

1

|γ + r sin θ|τ
=

|θ − θ1|τ

rτ | sin θ − sin θ1|τ
1

|θ − θ1|τ
≤ A(τ)

rτ | cos θ1|τ
1

|θ − θ1|τ
,

for some constant A(τ) > 0; hence, substituting cos θ1 by
√
r2 − γ2/r we obtain

1

|γ + r sin θ|τ
≤ A(τ)

(r2 − γ2)
τ
2

1

|θ − θ1(r)|τ
.
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Therefore,

H1
2,1 ≤ 2q−1A(τ)

∫ π
2

−π
2

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |θ − θ1(r)|τ |rei(θ−ϕ) − 1|q

= 2q−1A(τ)

∫ π
2
−ϕ

−π
2
−ϕ

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |θ − θ1(r) + ϕ|τ |reiθ − 1|q

≤ 2q−1A(τ)
4∑
j=1

∫ (j−3)π
2

(j−4)π
2

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |θ − θ1(r) + ϕ|τ |reiθ − 1|q

= 2q−1A(τ)
4∑
j=1

H1,j
2,1 .

We have

H1,1
2,1 =

∫ 0

−π
2

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |θ − π − θ1(r) + ϕ|τ |reiθ + 1|q

.

For −π/2 ≤ θ ≤ 0 we have |reiθ + 1| ≥ 1 + r cos θ ≥ 1 and

H1,1
2,1 ≤

∫ 0

−π
2

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |θ − π − θ1(r) + ϕ|τ

≤ C(τ),

for some constant C(τ) > 0. Similarly H1,2
2,1 ≤ C̃(τ), for some C̃(τ) > 0.

To estimate H1,3
2,1 , let 0 < θ0 < α0/2 such that

1− θ2

2
< cos θ < 1− θ2

4
, for − θ0 ≤ θ ≤ 0.

Note that −θ0 ≤ θ ≤ 0 implies

θ − θ1(r) + ϕ ≥ −θ0 − θ1(r) + ϕ ≥ α0 −
α0

2
+ ϕ ≥ α0

2
.

Moreover, for −π/2 ≤ θ ≤ −θ0 we have

|reiθ − 1|2 ≥ 1− cos θ0.

Hence,

H1,3
2,1 ≤

(
2

α0

)τ ∫ 0

−θ0

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |reiθ − 1|q

+

(
1

1− cos θ0

) q
2
∫ −θ0
−π

2

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |θ − θ1(r) + ϕ|τ

≤
(

2

α0

)τ ∫ 0

−θ0

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |reiθ − 1|q

+ C1(τ, q),
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for some constant C1(τ, q) > 0. Note that for r > 1/2 and −θ0 ≤ θ ≤ 0 we have

|reiθ − 1|2 ≥ (r − 1)2 + θ2

4
;

hence, since r ≥ γ ≥ 1/2 implies r2 − γ2 ≥ r − γ, we have∫ 0

−θ0

∫ 3
2

γ

drdθ

(r2 − γ2)
τ
2 |reiθ − 1|q

≤ 2q
∫ 0

−θ0

∫ 3
2

γ

drdθ

(r − γ)
τ
2 ((r − 1)2 + θ2)

q
2

≤ 2q
∫
D((0,1);1)

drdθ

(r − γ)
τ
2 ((r − 1)2 + θ2)

q
2

= 2q
∫ 1

0

∫ 2π

0

drdθ

|1− γ + ρ sinα| τ2 ρq−1
≤ C2(τ, q),

where the last estimate follows from Lemma 3.2. Therefore, we can find a constant
C3(τ, q) > 0 such that H1,3

2,1 ≤ C3(τ, q). Similar arguments can be used to estimate H1,4
2,1

and H2
2,1. Therefore, we can find a constant C(τ, q) > 0 for which H2,1 ≤ C(τ, q).

Third case: 0 < γ ≤ 1

2
. In this case

H2 =

∫ 2π

0

∫ 1
2

γ

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
+

∫ 2π

0

∫ R

1
2

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
.

The second integral can be estimate as before. Hence, it is enough to estimate the first
integral. Since r < 1/2 implies |reiθ − 1| ≥ |r − 1| ≥ 1/2, we have∫ 2π

0

∫ 1
2

γ

rdrdθ

|γ + r sin(θ + ϕ)|τrq|reiθ − 1|q
≤ 2q

∫ 2π

0

∫ 1
2

0

drdθ

|γ + r sin(θ + ϕ)|τrq−1
,

which can be estimated applying Lemma 3.2.
This completes the proof of the case γ > 0 and of the Lemma. �

4 An Integral Operator

Let L be a vector field defined in an open set Ω̃ ⊂ R2 and Ω be a relatively compact
subset of Ω̃ (Ω ⊂ Ω̃) with ∂Ω piecewise of class C1. Suppose that L satisfies conditions
(i), (ii), and (iii). Let

Z : Ω→ Z(Ω) ⊂ C (16)

be a global first integral of L of class C1+ε as in Proposition 4. As noted in section 2, L
is a multiple of the Hamiltonian of Z. In fact, we will assume that

L = Zx
∂

∂y
− Zy

∂

∂x
. (17)
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For f ∈ L1(Ω), define the integral operator

TZf(x, y) =
1

2πi

∫
Ω

f(ξ, η)

Z(ξ, η)− Z(x, y)
dξdη. (18)

Since L satisfies condition (iii), then for every Σj, connected component of Σ, there exists
σj > 0 such that (7) holds. Let

σ = maxσj. (19)

We have the following theorem:

Theorem 4.1. Let σ be given by (19) and let f ∈ Lp(Ω), with p > 2 + σ. Then, there
exists a constant M(p, σ,Ω) > 0 such that the operator TZ satisfies

|TZf(x, y)| ≤M(p, σ,Ω)||f ||p, ∀ (x, y) ∈ Ω.

Proof: Let (x, y) ∈ Ω. Then

|TZf(x, y)| ≤ 1

2π

∫
Ω

|f(ξ, η)|
|Z(ξ, η)− Z(x, y)|

dξdη ≤ ||f ||p
2π

(∫
Ω

dξdη

|Z(ξ, η)− Z(x, y)|q
) 1
q

where q = p/(p − 1). Since Z is a C1+ε-diffeomorphism outside of the characteristic set
Σ, then it follows from the normalization given in Proposition 2.1 and use of partition of
unity that in order to have∫

Ω

dξdη

|Z(ξ, η)− Z(x, y)|q
≤M(p, σ,Ω)

it is enough to have the inequality when Ω is replaced by Ω ∩ U , when U is a open set
where the normalization holds. For the purpose of estimating the integral, there is no loss
of generality in assuming that the vector field can be transformed into the normal form
Lσ in the open set U rather than in each connected component U+ and U− of U\Σ (since
the diffeomorphisms extend across the boundary by Proposition 2.1).

Let w ∈ Σj ⊂ Σ. There exists a C1-diffeomorphism

Φ : D(0, δ)→ Uw = Φ(D(0, δ)) ⊂ R2

with Φ(0) = w, and a holomorphic function H defined on Z(Uw), with H ′(ζ) 6= 0 for
ζ ∈ Z(Uw), such that

Z ◦ Φ(s, t) = H(Zj(s, t)),

where Zj(s, t) = s+ i
t|t|σj

1 + σj
.

Hence for (x, y) ∈ Uw∫
Ω∩Uw

dξdη

|Z(ξ, η)− Z(x, y)|q
≤
∫
D(0,δ)

|DΦ(s, t)|dsdt
|H(Zj(s, t))−H(Zj(s◦, t◦))|q
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≤ max |DΦ(s, t)|
min |H ′(ζ)|q

∫
D(0,δ)

dsdt

|Zj(s, t)− Zj(s◦, t◦)|q
.

By using the change of variables ξ = s and η =
t|t|σj

1 + σj
we obtain

(1 + σj)
τj

∫
D(0,δ)

dsdt

|Zj(s, t)− Zj(s◦, t◦)|q
=

∫
Zj(D(0,δ))

dξdη

|η|τ |ζ − z|q

≤
∫
D(z,d)

dξdη

|η|τ |ζ − z|q
,

where ζ = ξ + iη, z = Zj(s
◦, t◦), and d = diam(Zj(D(0, δ))).

Now, the use of polar coordinates (r, θ) given by ξ = rcosθ+<(z) and η = r sin θ+=(z)
and of Lemma 3.3 give∫

D(z,d)

dξdη

|η|τ |ζ − z|q
=

∫ 2π

0

∫ d

0

drdθ

|r sin θ + =(z)|τrq−1
≤M(q, τ) d2−τ−q.

�

Proposition 4.2. Let σ be given by (19) and let f ∈ L1(Ω). Then, Tf ∈ Lq(Ω), for any
1 ≤ q < 2− σ/(σ + 1).

Proof: Let f ∈ L1(Ω) and let g ∈ Lp(Ω), with p > 2 + σ. It follows from Lemma 3.2
that the function

g1(x, y) =

∫
Ω

|g(ξ, η)| dξdη

|Z(ξ, η)− Z(x, y)|
is bounded. Hence, fg1 ∈ L1(Ω). By applying Fubini’s Theorem we obtain∫

Ω

|f(x, y)|g1(x, y)dxdy =

∫
Ω

|f(x, y)|
(∫

Ω

|g(ξ, η)| dξdη

|Z(ξ, η)− Z(x, y)|

)
dxdy

=

∫
Ω

|g(ξ, η)|
(∫

Ω

|f(x, y)| dxdy

|Z(ξ, η)− Z(x, y)|

)
dξdη

=

∫
Ω

|g(ξ, η)|f1(ξ, η)dξdη,

where

f1(ξ, η) =

∫
Ω

|f(x, y)| dxdy

|Z(x, y)− Z(ξ, η)|
.

Hence |g|f1 ∈ L1(Ω). Since g ∈ Lp(Ω) is arbitrary, it follows from the converse of the
Hölder inequality (see, for instance, [14]; also, [6]) that f1 ∈ Lq(Ω), for q = p/(p − 1).
Note that p > 2 + σ implies 1 < q < 2− σ/(σ+ 1). Also, note that |Tf | ≤ f1. Therefore,
Tf ∈ Lq(Ω), for any 1 < q < 2− σ/(σ + 1). �

The following Lemma is a direct consequence of Green’s Theorem.
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Lemma 4.3. Let w ∈ C(Ω) ∩ C1(Ω). Then∫
Ω

Lw dxdy = −
∫
∂Ω

w dZ(x, y). (20)

Proposition 4.4. Let w ∈ C(Ω) ∩ C1(Ω). Then, for all (x, y) ∈ Ω, we have

w(x, y) =
1

2πi

∫
∂Ω

w(α, β)

Z(α, β)− Z(x, y)
dZ(α, β) +

1

2πi

∫
Ω

Lw(α, β)

Z(α, β)− Z(x, y)
dαdβ.

Proof: Let (x0, y0) ∈ Ω fixed. Set z0 = Z(x0, y0) and let ε > 0 such that Dε ⊂ Z(Ω),
where Dε = D(z0, ε). Define Kε = Z−1(Dε) and Ωε = Ω \Kε. Let

f(x, y) =
w(x, y)

Z(x, y)− z0

.

We have f ∈ C(Ωε) ∩ C1(Ωε). Hence, by (20),∫
Ωε

Lw(x, y)

Z(x, y)− z0

dxdy = −
∫
∂Ωε

w(x, y)

Z(x, y)− z0

dZ(x, y)

= −
∫
∂Ω

w(x, y)

Z(x, y)− z0

dZ(x, y) +

∫
∂Kε

w(x, y)

Z(x, y)− z0

dZ(x, y);

(21)

Since ∫
∂Kε

f(x, y)dZ(x, y) =

∫
Z(∂Kε)

(f ◦ Z−1)(ζ)dζ =

∫
∂Bε

w̃(ζ)

ζ − z0

dζ,

where w̃ = w ◦ Z−1, then by using polar coordinates ζ = z0 + εeiθ, θ ∈ [0, 2π], we obtain∫
∂Dε(z0)

w̃(ζ)

ζ − z0

dζ =

∫ 2π

0

w̃(z0 + εeiθ)

εeiθ
iεeiθdθ → 2πiw̃(z0), as ε→ 0.

Therefore, ∫
∂Kε

w(x, y)

Z(x, y)− z0

dZ(x, y)→ 2πiw(x0, y0), as ε→ 0. (22)

On the other hand, as done in the proof of Theorem 4.1,

(x, y) 7→ 1

Z(x, y)− z0

∈ Lq(Ω) ⊂ L1(Ω).

Hence, ∫
Ωε

Lw(x, y)

Z(x, y)− z0

dxdy →
∫

Ω

Lw(x, y)

Z(x, y)− z0

dxdy, as ε→ 0. (23)

The Proposition follows from (21), (22) and (23). �
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Theorem 4.5. If f ∈ L1(Ω) then TZf satisfies L(TZf) = f in Ω.

Proof: Let f ∈ L1(Ω). By Proposition 4.2, TZf ∈ Lq(Ω), 1 < q < 2− σ/(σ + 1). Hence,
by applying Proposition 4.4 we have, for φ ∈ C∞0 (Ω)

〈L(TZf), φ〉 = −
∫

Ω

TZf(x, y)Lφ(x, y)dxdy

= − 1

2πi

∫
Ω

(∫
Ω

f(ξ, η)

Z(ξ, η)− Z(x, y)
dξdη

)
Lφ(x, y)dxdy

=

∫
Ω

f(ξ, η)

(
− 1

2πi

∫
Ω

Lφ(x, y)

Z(x, y)− Z(ξ, η)
dxdy

)
dξdη

=

∫
Ω

f(ξ, η)φ(ξ, η)dξdη = 〈f, φ〉 .

Therefore, L(TZf) = f in Ω. �

Example 4.6. For p ≤ 2 + σ, there exist f ∈ Lp(Ω) such that equation Lu = f has no
bounded solutions. Indeed, for the standard vector field L = ∂t − i|t|σ∂x, the function
v : Ω→ C defined by v(x, t) = ln | ln |Z(x, t)|| is not bounded but solves Lv = f with

f(x, t) =
−i|t|σ

Z(x, t) ln |Z(x, t)|
∈ Lp(Ω), for any 1 ≤ p ≤ 2 + σ.

That f ∈ Lp with p ≤ 2 + σ follows from the fact that

∫ a

0

dr

rs| ln r|p
< ∞ if and only

if s ≤ 1. For general vector fields, similar examples can be produced thanks to the
normalization near points on Σ.

Remark 4.7. Cauchy type integral operators were used in [8] and [9] in connection with
other types of vector fields.

5 Hölder continuity of solutions

In this section we prove that the solutions of Lu = f are Hölder continuous if f ∈ Lp,
with p > 2 + σ. Let Σ1, · · · ,ΣN be the connected components of Σ and σ1, · · · , σN be

respectively the types of L along Σ1, · · · ,ΣN . Recall that σ = max
1≤j≤N

{σj}, τ =
σ

σ + 1
, and

for p > 2 + σ and q =
p

p− 1
we have q < 2− τ .

Theorem 5.1. Let f ∈ Lp(Ω), with p > 2 + σ. Let q and τ be as given above. If u

satisfies Lu = f in Ω, then u ∈ Cα(Ω) with α =
2− q − τ

q
.
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Proof: Since L is hypocomplex, it follows from Theorem 4.5 that if u solves Lu = f in
Ω, then u = TZf +H(Z), where TZ is the integral operator defined in section 4 and H is
a holomorphic function defined on Z(Ω). Thus to prove the Theorem, we need only prove
that TZf ∈ Cα(Ω).

Let f ∈ Lp(Ω), with p > 2 + σ, and let (x0, y0), (x1, y1) ∈ Ω. Set z1 = Z(x1, y1) and
z0 = Z(x0, y0). Then

|TZf(x1, y1)− TZf(x0, y0)| ≤ |z1 − z0|
2π

∫
Ω

|f(α, β)|dαdβ
|Z(α, β)− z1||Z(α, β)− z0|

≤ |z1 − z0|
2π

||f ||pJ
1
q ,

where

J =

∫
Ω

dαdβ

|Z(α, β)− z1|q|Z(α, β)− z0|q
. (24)

To prove the Theorem, it is enough to show that

J ≤ C1|z1 − z0|2−2q−τ + C2, (25)

for some constants C1, C2 > 0.
For each j = 1, · · · , N , let Vj be a tubular neighborhood of Σj such that Vj ∩ Vk = ∅

for j 6= k and such that

Vj =

Mj⋃
k=1

Vjk, j = 1, · · · , N,

where each Vjk is an open subset where L can be transformed into the standard vector
field Lσj , with first integral

Zj(s, t) = s+ i
t|t|σj

1 + σj

on each side V ±jk of the characteristic curve Σ ∩ Vjk (see Proposition 2.1). Hence, we can
assume that there exists a diffeomorphisms of class C1

Φ±jk : D±(0, R)→ V ±jk

such that Z ◦Φ±jk = H±jk ◦Zj, where H±jk is a holomorphic function defined in Zj(D±(0, R))

and has a C1 extension up to the boundary. Moreover, H ′jk(ζ) ≥ Cjk > 0 on D±(0, R).
Since L is elliptic outside Σ, then we can use partition of unity to reduce the prob-

lem of proving (25) into that of proving the inequality when Ω is replaced by V ±jk , with

(x0, y0), (x1, y1) ∈ V ±jk . In fact for the estimation of the integral, there is no loss of gener-
ality in assuming that L can be transformed into the standard vector in Vjk and not only
in each V ±jk separately.

19



Set Φjk(s`, t`) = (x`, y`), ` = 0, 1. We have

Jjk =

∫
Vjk

dαdβ

|Z(α, β)− Z(x1, y1)|q|Z(α, β)− Z(x0, y0)|q

=

∫
D(0,R)

| detDΦjk(s, t)|dsdt
|Hjk(Zj(s, t))−Hjk(Zj(s1, t1))|q|Hjk(Zj(s, t))−Hjk(Zj(s0, t0))|q

Hence,

Jjk ≤Mjk

∫
D(0,R)

dsdt

|(Zj(s, t)− Zj(s1, t1)|q|Zj(s, t)− Zj(s0, t0)|q
.
= MjkQjk,

where

Mjk =
maxD(0,R){| detDΦjk(s, t)|}

minZ(D(0,R)) |H ′jk(ζ)|q
.

By using the change of variables ξ = s and η =
t|t|σj
σj + 1

we have

Qjk =
1

(σj + 1)τj

∫
Zj(D(0,R))

dξdη

|η|τj |ζ − w1|q|ζ − w0|q
,

where w` = Zj(s`, t`), ` = 0, 1. We can assume, without loss of generality, that η0 > 0
and w1 − w0 = |w1 − w0|eiϕ, with 0 ≤ ϕ ≤ π. We have

Qjk ≤
1

(σj + 1)τj

∫
D(w0;d)

dξdη

|η|τj |ζ − w1|q|ζ − w0|q

=
1

(σj + 1)τj

∫
D(0;d)

dξdη

|η0 + η|τj |ζ − (w1 − w0)|q|ζ|q
,

where d = diam(Zj(D(0, R))). After using the change of variables ζ = |w1 − w0|µ, with
µ = a+ ib and w1 − w0 = |w1 − w0|eiϕ, we obtain

Qjk ≤
1

(σj + 1)τj

∫
D
(

0; d
|w1−w0|

) |w1 − w0|2−τ−2q

| η0
|w1−w0| + b|τ |µ− eiϕ|q|µ|q

dadb.

Finally, the polar coordinates µ = ζeiϕ, ζ = reiθ and γ = η0/|w1 − w0| and the use of
Lemma 3.3 allow us to obtain the estimate

Qjk ≤
|w1 − w0|2−τj−2q

(σj + 1)τj

∫ 2π

0

∫ d
|w1−w0|

0

rdrdθ

|γ + r sin(θ + ϕ)|τjrq|reiθ − 1|q
dξdη

≤ C(q, τj)

(σj + 1)τj
|w1 − w0|2−τj−2q,
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To finish the proof, note that

|w1 − w0| = |H−1
jk (Z(x1, y1))−H−1

jk (Z(x0, y0))| ≥ Ajk|Z(x1, y1)− Z(x0, y0)|,

for some constant Ajk > 0, since Hjk is a biholomorphism. Hence,

Qjk ≤ Ãjk|Z(x1, y1)− Z(x0, y0)|2−τj−2q ≤ Ãjk|Z(x1, y1)− Z(x0, y0)|2−τ−2q.

Therefore, we can find a constant M(q, τ,Ω) > 0 such that

|TZf(x1, t1)− TZf(x0, t0)| ≤ ‖f‖pM(q, τ,Ω)|Z(x1, t1)− Z(x0, t0)|
2−τ−q
q

This completes the proof. �

6 A semilinear equation and a similarity principle

In this section we consider the semilinear equation

Lu = F (x, y, u), (26)

where L is the hypocomplex vector field as in the previous sections defined in an open set
Ω̃ ⊂ R2.

Let Ω be a relatively compact open subset of Ω̃ and let Ψ ∈ Lp(Ω;R+), p > 2 + σ.
We define the space FαΨ to be the set of functions F : Ω× C→ C satisfying

• F (., ζ) ∈ Lp(Ω), for every ζ ∈ C;

• |F (x, t, ζ1)− F (x, t, ζ2)| ≤ Ψ(x, t)|ζ1 − ζ2|α, 0 < α ≤ 1, for all ζ1, ζ2 ∈ C.

Throughout this section, we will assume that q is the Hölder conjugate of p, that σ is

given by (19), τ =
σ

σ + 1
, and β =

2− q − τ
q

.

Theorem 6.1. Let F ∈ Fαh . Then:

1. If 0 < α < 1, equation (26) has a solution u ∈ Cβ(Ω).

2. If α = 1, for every (x, t) ∈ Ω, there exist an open subset U ⊂ Ω, with (x, t) ∈ U , such
that equation (26) has a solution u ∈ Cβ(U). If, moreover, the constant M(p, σ,Ω)
appearing in Theorem 4.1 satisfies M(p, σ,Ω)||Ψ||p < 1, then (26) has a solution in
Cβ(Ω).
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Proof: Let C(Ω) be the Banach space of continuous functions in Ω with norm

||u||∞ = sup{|u(x, t)| ; (x, t) ∈ Ω}.

For a fixed M > 0, let CM(Ω) be the closed subset of C(Ω) given by

CM(Ω) = {u ∈ C(Ω) ; ||u||∞ ≤M}.

Suppose that 0 < α < 1. Then, for M sufficiently large, we have that

M(p, σ,Ω){||Ψ||pMα + ||F (·, 0)||p} ≤M, (27)

where M(p, σ,Ω) is given by Theorem 4.1.
Consider the operator P : CM(Ω)→ CM(Ω) defined by

Pu(x, y) = TZ(F (x, y, u(x, y))) ,

where TZ is given by (18). The operator P is well-defined. Indeed, for F ∈ FαΨ and
u ∈ CM(Ω) we have

||F (·, u)||p ≤ ||Ψ||pMα + ||F (·, 0)||p , (28)

and it follows from (27), (28), and Theorem 4.1 that for u ∈ CM(Ω), we have

|Pu(x, y)| ≤M(p, σ,Ω){||Ψ||pMα + ||F (·, 0)||p} ≤M . (29)

Moreover, for (x1, y1), (x2, y2) ∈ Ω, we have

|Pu(x1, y1)− Pu(x2, y2)| ≤ |TZ(F (·, u))(x1, y1)− TZ(F (·, u))(x2, y2)|
≤ C(p, σ,Ω)||F (·, u)||p|(x1, y1)− (x2, y2)|β

≤ C(p, σ,Ω){||Ψ||pMα + ||F (·, 0)||p}|(x1, y1)− (x2, y2)|β ,

where C(p, σ,Ω) is given by Theorem 5.1.
For C = C(p, σ,Ω){||Ψ||pMα + ||F (·, 0)||p}, define ΛM,C as the set of all functions

v ∈ CM(Ω) satisfying

|v(x1, y1)− v(x2, y2)| ≤ C|(x1, y1)− (x2, y2)|β, ∀(x1, y1), (x2, y2) ∈ Ω.

ΛM,C is a nonempty convex subset of CM(Ω). Also, as a consequence of Ascoli-Arzelá’s
Theorem, ΛM,C is compact. Moreover, Pu ∈ ΛM,C , for all u ∈ CM(Ω).

The operator P is continuous. Indeed, for u, v ∈ CM(Ω), we have

|Pu(x, y)− Pv(x, y)| ≤ |TZ(F (·, u)− F (·, v))(x, y)|
≤M(p, σ,Ω)||F (·, u)− F (·, v)||p
≤M(p, σ,Ω)||Ψ||p||u− v||α∞;
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hence, the restriction P : ΛM,C → ΛM,C is continuous. Therefore, Shauder fixed point
Theorem, implies that there exists u ∈ ΛM,C such that Pu = u. The fixed point

u = T (F (·, u)) ∈ Cβ(Ω)

satisfies Lu(x, y) = F (x, y, u(x, y)).

Next, suppose that α = 1. In this case, for every (x, y) ∈ Ω we can find an open
U ⊂ Ω, with (x, y) ∈ U , such that

M(p, σ,U)||Ψ||p < 1.

If M > 0 is taken sufficiently large, (27) holds when Ω is replaced by U . The same
argument as the one used when α < 1, shows the existence of u ∈ Cβ(U) satisfying (26)
in U .

�
As a direct consequence of the Theorem 6.1, we have the following Corollary.

Corollary 6.2. Let a, b, f ∈ Lploc(R2), with p > 2 + σ. Every (x, y) ∈ R2 has an open
neighborhood U ⊂ R2 such that equation

Lu = au+ bu+ f

has a solution u ∈ Cβ(U).

Now, consider F given by

F (x, y, u) = g(x, y)H(x, y, u) + f(x, y) (30)

where f, g ∈ Lp(Ω), p > 2 + σ, and H : Ω × C → C is continuous and bounded, with
||H||∞ < K for some positive constant K.

Theorem 6.3. Let F be given by (30). Then, equation Lu = F (x, y, u) has a solution
u ∈ Cβ(Ω).

Proof: Consider the operator P : C(Ω)→ C(Ω) defined by

Pu(x, y) = TZ(gH(·, u) + f)(x, y).

Since H(·, u) ∈ L∞(Ω) we have gH(·, u) + f ∈ Lp(Ω). It follows from Theorem 4.1, that
for every (x, y) ∈ Ω we have

|Pu(x, y)| ≤M(p, σ,Ω)||gH(·, u) + f ||p
≤M(p, σ,Ω){||g||p||H(·, u)||∞ + ||f ||p}
≤M(p, σ,Ω){||g||pK + ||f ||p}

.
= M .
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Moreover, it follows from Theorem 5.1, that for (x1, y1), (x2, y2) ∈ Ω and u ∈ C(Ω) there
is C(p, σ,Ω) > 0 such that

|Pu(x1, y1)− Pu(x2, y2)| ≤ |TZ(gH(·, u) + f)(x1, y1)− TZ(gH(·, u) + f)(x2, y2)|
≤ C(p, σ,Ω)||gH(·, u) + f ||p|(x1, y1)− (x2, y2)|β

≤ C(p, σ,Ω){||g||pK + ||f ||p}|(x1, y1)− (x2, y2)|β.

Let C = C(p, σ,Ω){||g||pK + ||f ||p} and ΛM,C be the set of all functions v ∈ C(Ω),
with ||v||∞ ≤M , and satisfying

|v(x1, y1)− v(x2, y2)| ≤ C|(x1, y1)− (x2, y2)|β, ∀(x1, y1), (x2, y2) ∈ Ω.

As in the proof the previous Theorem, ΛM,C is a nonempty convex compact subset of
C(Ω). Moreover, Pu ∈ ΛM,C , for all u ∈ C(Ω).

The operator P : ΛM,C → ΛM,C is continuous. Indeed, since H is uniformly continuous
on the compact set U = Ω × {ζ ∈ C; |ζ| ≤ M}, then given ε > 0 there exists δ > 0 such
that

|H(x, y, ζ1)−H(x, y, ζ2)| < ε

M(p, σ,Ω){||g||p + 1}
,

for all (x, y) ∈ Ω and |ζ1 − ζ2| < δ. Hence, for u, v ∈ ΛM,C with ||u− v||∞ < δ, we have

|Pu(x, y)− Pv(x, y)| ≤ |TZ(g{H(·, u)−H(·, v)(x, y)})|
≤M(p, σ,Ω)||g{H(·, u)−H(·, v)}||p
≤M(p, σ,Ω)||g||p||H(·, u)−H(·, v)||∞
≤M(p, σ,Ω)||g||p

ε

M(p, σ,Ω){||g||p + 1}
< ε.

Therefore, by Shauder Fixed Point Theorem, P has a fixed point in ΛM,C that satisfies
the conclusion of the Theorem. �

The classical similarity principle for generalized analytic functions was invesitigated
in [2] and in [7] for solutions of complex vector fields. As a consequence of Theorem 5.1
and Theorem 6.3 we give here a strong version of the similarity principle for the operator
L:

Theorem 6.4. Let a, b ∈ Lp(Ω), p > 2 + σ, σ > 0. Then for every u ∈ L∞(Ω) solution
of equation

Lu = au+ bu (31)

there exists a holomorphic function h defined in Z(Ω) and a function s ∈ Cβ(Ω) such that

u(x, y) = h(Z(x, y))es(x,y), ∀(x, y) ∈ Ω. (32)

Conversely, for every holomorphic function h in Z(Ω) there is s ∈ Cβ(Ω) such that the
function u given by (32) solves (31).
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Proof: The proof is an adaptation of that found in [10]-Theorem 4.1. In order to keep
this work as self-contained as possible we will repeat the arguments here.

Suppose that u ∈ L∞(Ω) and that u is not identically zero. Since L is smooth and
elliptic in Ω \ Σ we know that L is locally equivalent to a multiple of Cauchy-Riemann
operator ∂/∂z in Ω \ Σ (see, for instance, [1]). The classical similarity principle (see [4]
and [13]) applies and the function u has the representation (32) in the neighborhood of
each point (x, y) /∈ Σ. Hence, u has isolated zeros in Ω \Σ. Define the function φ in Ω by
φ = u/u at the points where u is not zero and by φ = 0 at the points where u = 0 and on
Σ. Note that φ ∈ L∞(Ω). It follows that a+ bφ ∈ Lp(Ω). Consider the equation

Ls = −(a+ bφ). (33)

By Theorem 5.1 this equation has a solution s ∈ Cβ(Ω). Define v = ues. A simple
calculation shows that Lv = 0. Then, v can be factored as v = h ◦Z, with h holomorphic
on Z(Ω). This proves the first part of the Theorem.

Next, let h be a holomorphic function in Z(Ω). Define the function ϕ in Z(Ω) by
ϕ = h/h at the points where h is not zero and by ϕ = 0 at the points where h = 0. Then
ϕ̃ = ϕ ◦ Z ∈ L∞(Ω). Consequently, bϕ̃ ∈ Lp(Ω), p > 2 + σ. Hence, by Theorem 6.3,
equation

Ls = a+ bϕ̃es−s

has a solution s ∈ Cβ(Ω). It follows at once that u given by

u(x, y) = h(Z(x, y))es(x,y), (x, y) ∈ Ω,

solves (31) in Ω.
�
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