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Inference of entropy production for periodically driven systems
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The problem of estimating entropy production from incomplete information in stochastic thermodynamics
is essential for theory and experiments. Whereas a considerable amount of work has been done on this topic,
arguably, most of it is restricted to the case of nonequilibrium steady states driven by a fixed thermodynamic
force. Based on a recent method that has been proposed for nonequilibrium steady states, we obtain an estimate
of the entropy production based on the statistics of visible transitions and their waiting times for the case of
periodically driven systems. The time dependence of transition rates in periodically driven systems produces
several differences in relation to steady states, which is reflected in the entropy production estimation. More
specifically, we propose an estimate that does depend on the time between transitions but is independent of the
specific time of the first transition, thus it does not require tracking the protocol. Formally, this elimination of
the timedependence of the first transition leads to an extra term in the inequality that involves the rate of entropy
production and its estimate. We analyze a simple model of a molecular pump to understand the relation between
the performance of the method and physical quantities such as energies, energy barriers, and thermodynamic
affinity. Our results with this model indicate that the emergence of net motion in the form of a probability current
in the space of states is a necessary condition for a relevant estimate of the rate of entropy production.
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I. INTRODUCTION

Stochastic thermodynamics [1–3] is a modern theoretical
framework that generalizes thermodynamics to systems that
can be small, i.e., made of only a few degrees of freedom,
and out of equilibrium. The success of this theory is also due
to the fact that such small systems have become accessible
in experiments. Examples include single molecules such as
molecular motors, colloids and quantum dots [4]. A main
observable of interest in stochastic thermodynamics is the rate
of entropy production, which quantifies the thermodynamic
cost of an out-of-equilibrium system.

It is often the case in an experiment that not all states of the
mesoscopic system are accessible. Therefore, the inference
of properties of the system, such as its rate of entropy pro-
duction, from partial information is a fundamental theoretical
problem in stochastic thermodynamics. In particular, while
well-controlled experiments with full information about the
system have provided beautiful connections between modern
theory and experiments [5–10], connecting stochastic ther-
modynamics with less-controlled experiments in molecular
biophysics remains a major challenge, which is closely related
to the problem of inferring properties of the system from
partial information.

Much work on the problem of inferring the entropy
production and related observables has been done. The ther-
modynamic uncertainty relation [11–13] has been used to
infer entropy production and related observables from the
fluctuations of a current [14–19]. The rate of entropy pro-
duction can also be estimated from the Kullback-Leibler

divergence between the probability of a coarse-grained trajec-
tory and the probability of the respective reversed trajectory
[20–23]. Another approach to estimating the entropy produc-
tion is to assume that the visible dynamics correspond to a
hidden Markov process and use the observable data to infer
the underlying Markov process [24–26]. More generally, the
related topic of coarse graining in stochastic thermodynamics
has been widely studied [27–36]. Most of these works on the
estimation of entropy production are suitable for steady states,
however, some works have recently addressed time-dependent
cases [37–41].

Particularly important for this work is a method to estimate
the rate of the entropy production from the statistics of the se-
quences and times between a few visible transitions proposed
independently in two recent papers [42,43]. This approach is
promising as it is reasonable to expect that the statistics of
the time between transitions, i.e., the intertransition time, is
accessible in an experiment. These two references concentrate
on systems in nonequilibrium steady states, which are driven
by constant thermodynamic forces.

In contrast to nonequilibrium steady states, periodically
driven systems are driven by an external periodic protocol.
Examples of periodically driven systems include cyclic heat
engines [44–49] and artificial molecular machines [50–58].
It is known that periodically driven systems and nonequilib-
rium steady states can display substantial differences [59,60],
therefore, the inference method for steady states from [42,43]
prompts the following questions. How is the method extended
to periodically driven systems? What are the differences in the
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application of the method between steady states and periodi-
cally driven systems?

In this paper, we provide answers to these questions. We
show that the rate of entropy production can be inferred from
the statistics of sequences and intertransition times between a
few visible transitions in periodically driven systems. We find
several important differences in relation to steady states. Since
transition rates are time-dependent, the statistics of transition
pairs depend on the intertransition time and the initial time
of the first transition. We overcome this issue by developing
an estimator that only depends on the intertransition time.
The formal elimination of this dependence on the time of the
first transition leads to an inequality between the estimator
and the real rate of entropy production that contains an extra
term. We also find an estimator that depends on both the
intertransition time and the time of the first transition. Even
though this bound provides a better estimate of the rate of
entropy production, compared to the one that only depends
on intertransition times, in practice, it requires one histogram
of intertransition times per each considered initial time, which
can be computationally expensive.

The estimator of the entropy production involves two dif-
ferent distributions of the intertransition time, one associated
with the original forward protocol and the other associated
with the time-reversed protocol.This is in contrast to steady
states that only involve one distribution. Hence, the applica-
tion of the method requires two experiments, one with the
forward protocol and another with the time-reversed protocol.

A simple three-state model with time-dependent energies
and energy barriers [61] is used as a proof of concept. We
obtain the following results with this model. First, for a uni-
cyclic network of states, while a similar method gives the
exact value of the entropy production for steady states [42,43],
our estimate only provides a lower bound on the rate of en-
tropy production for periodically driven systems. Second, in
contrast to steady states, periodically driven systems can have
entropy production in the absence of a net current in the space
of states. For this case of absence of net motion, the estimator
for entropy production gives a numerical result compatible
with zero, which suggests that net motion is an essential
feature for our estimator to provide information about the rate
of entropy production.

An analytical procedure to calculate the distribution of
the probability density of the intertransition time for steady
states was introduced in [42,43,62]. This procedure maps
the problem of calculating the intertransition time distri-
bution into the problem of calculating the time-dependent
probability of an absorbing state of a certain auxiliary
process. We generalize this procedure to a periodically
driven system, providing a pathway to obtain our estimator
analytically.

The paper is organized as follows. In Sec. II, we in-
troduce the key quantities analyzed here and define the
three-state model. Our numerical results showing the appli-
cation of the method to the specific model are shown in
Sec. III. The inequality that involves the rate of entropy
production, its estimator, and an extra term is proved in
Sec. IV. The analytical method to determine the intertransi-
tion time distribution is discussed in Sec. V. We conclude in
Sec. VI.

FIG. 1. Upper panel: periodic protocol for the three-state model.
The energy Fe and the energy barrier B rotate clockwise in each third
part of the period. Lower panel: example of a stochastic trajectory
with transitions between states and waiting times.

II. OBSERVABLE TRANSITIONS, INTERTRANSITION
TIME STATISTICS AND INFERENCE

OF ENTROPY PRODUCTION

A. Markov processes with time-periodic transition rates

Here, we consider Markov processes with a finite number
of discrete states denoted by i and j. The time-dependent
transition rate from state i to state j is denoted wi j (t ). This
transition rate is time periodic with period T , i.e., wi j (t ) =
wi j (t + T ). The probability to be in state i at time t is written
as Pi(t ) and follows the master equation

d

dt
Pi(t ) =

∑
j �=i

[Pj (t )w ji(t ) − Pi(t )wi j (t )]. (1)

We are interested in the long time limit t → ∞, for which
the distribution Pi(t ) becomes time periodic with period T .
This long-time limit solution of the master equation is de-
noted by Pi(t ) for the remainder of this paper. In stochastic
thermodynamics, we restrict to rates with the property that if
wi j (t ) �= 0 then w ji(t ) �= 0.

The rate of entropy production is given by [2]

σ ≡ 1

T

∫ T

0
dt

∑
i, j

Pi(t )wi j (t ) ln
wi j (t )

w ji(t )
. (2)

This physical quantity can be expressed as the sum of terms
that are a product of thermodynamic flux and the respec-
tive thermodynamic affinity with the use of the generalized
detailed balance relation [46,61]. We discuss this expression
for the entropy production for the particular model we intro-
duce in the following section.

B. Model definition

As a proof of concept, we consider the following model
for a molecular pump depicted in Fig. 1. A similar model,
with a stochastic protocol instead of the deterministic protocol
considered here, has been analyzed in [61]. The model has
three states, which we label as i = 1, 2, 3. There is one energy
Fe and one energy barrier B, while the remaining energies and
energy barriers are zero. The periodic protocol is piecewise,
with the period divided into three parts. For the first part, cor-
responding to 0 < t < T/3, the energy of state 1 is E1(t ) = Fe

and the energy barrier between states 3 and 1 is B31(t ) = B.
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The other two energies and two energy barriers are 0. For the
second part, corresponding to T/3 < t < 2T/3, E2(t ) = Fe,
and B12(t ) = B, and the other energies and energy barriers
are zero. For the third part, corresponding to 2T/3 < t < T ,
E3(t ) = Fe, and B23(t ) = B, and the other energies and energy
barriers are zero.

Here, we set Boltzmann’s constant and temperature to kB =
T = 1, where T represents temperature and not period only in
this equation, throughout. The transition rates for this model
are given by

wii+1(t ) = keEi (t )−Bii+1(t ), (3)

and

wi+1i(t ) = keEi+1(t )−Bii+1(t ). (4)

Due to periodic boundary conditions, for i=3, we set i+1 = 1.
The parameter k sets the speed of the rates.

We now discuss the sources of entropy production in this
model. Work is exerted on the system due to the time depen-
dence of the energies. The entropy production is equal to the
average work and can be written as

σ = FeJe, (5)

Je = 1

T

3∑
i=1

[Pi+1(iT/3) − Pi(iT/3)]. (6)

This expression for σ is equivalent to Eq. (2) [61]. It can be
understood as follows. Let us consider the term i = 1 in the
summation, corresponding to the time T/3 of the protocol. At
this time if the system is at state 1, with probability P1(T/3), it
will lose an energy Fe since the energy of the system changes
from Fe to 0. If the system is at state 2, with probability
P2(T/3), it will gain an energy Fe. The same reasoning applies
to i = 2 and i = 3.

The energy barrier B does not appear in the expression
for σ explicitly. It appears only implicitly as it affects the
probabilities Pi(t ). Even if B = 0, the rate of entropy pro-
duction can be nonzero. However, an energy barrier B is a
necessary condition to create net motion in the clockwise
direction, as explained in the literature on “no-pumping the-
orems” [50–52]. This net motion is quantified by the average
current

J = 1

T

∫ T

0
dt

3∑
i=1

Jii+1(t )

3
. (7)

In other words, when B = 0, J also vanishes. However, even
with J = 0, the periodically driven system remains out of
equilibrium when Fe �= 0, resulting in positive entropy pro-
duction. This behavior contrasts sharply with steady-state
systems, where nonzero entropy production is always asso-
ciated with currents. As shown below, the presence of this
net motion quantified by J in periodically driven systems is
essential for our estimate of the rate of the entropy produc-
tion. If J = 0 our estimate is much smaller than the entropy
production in general, providing little to no information.

We also consider the case of the presence of a fixed
thermodynamic affinity F that would drive the system to
a nonequilibrium steady state in the absence of a periodic

protocol. The transition rates are modified to

wii+1(t ) = keEi (t )−Bii+1(t )−F/3, (8)

and

wi+1i(t ) = keEi+1(t )−Bii+1(t ), (9)

where the negative sign in −F/3 in the first equation implies
that a positive F leads to a force in the counter-clockwise
direction.

In the presence of this fixed affinity F the entropy produc-
tion in Eq. (2) becomes

σ = FeJe − FJ, (10)

where J is the current in Eq. (7). This general expression
for the entropy production in terms of currents Je and J and
affinities F and Fe has been obtained in [61]. The minus
sign in the term FJ comes from the fact that F points in
the counterclockwise direction and J points in the clockwise
direction.

This model can also operate as an engine when the term
FeJe is positive and the term −FJ is negative. In this regime Fe

together with the energy barrier B creates a clockwise current
that does work against the counterclockwise force F [53,61].
We also analyze the estimator of the entropy production in this
regime.

C. Intertransition time

An example of a stochastic trajectory is shown in Fig. 1.
This trajectory is a sequence of transitions and waiting times
between transitions. We denote a jump, or transition, from
state i to state j as � = i j. The reversed jump from j to i is
denoted by �̄. The set of visible transitions is denoted by L.
For instance, for the three-state model, we have a total of six
possible transitions, two between each pair of states. If we
only have access to the two transitions between the pair of
states 1 and 2, then two of the six transitions are part of the
set L.

The distribution P�′,τ+t0|�,t0 is the probability density that
a transition �′ occurs at time τ + t0 given that transition �

occurred at the initial time t0 and that no other visible tran-
sition in L occurs before τ + t0, where τ is the intertransition
time. This dependence on the time of the first transition t0
is a consequence of the time-dependent transition rates. An
important fact about P�′,τ+t0|�,t0 is its dependence on the set
of visible transitions L, which is illustrated in Fig. 2 for a
particular example. In this figure, there are three transitions
and two intertransition times if only the transitions between
states 1 and 2 are visible and there are four transitions and
three intertransition times if the transitions between states 2
and 3 are also part of L. To simplify notation we do not write
this dependence explicitly in P�′,τ+t0|�,t0 .

Our objective here is to infer the rate of entropy produc-
tion from sequences and intertransition time statistics of a
few visible transitions. Calculating the histogram associated
with P�′,τ+t0|�,t0 from a trajectory can be a hard task since it
depends on the intertransition time τ and the initial time t0.
A more practical method would be to only keep track of the
intertransition times in the trajectory, without keeping track of
the time for the first transition. In practice, if we only keep
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FIG. 2. Sequence of intertransition times for L = {1 → 2, 2 →
1} and for L = {1 → 2, 2 → 1, 2 → 3, 3 → 2}. For this particular
trajectory, there are two intertransition times for the first case and
three intertransition times for the second case.

track of the intertransition times, we will average out over all
possible initial times t0. This average is over the probability
Pt0|�, which is the conditional probability density of sampling
time t0 ∈ [0, T ] given that transition � occurred. Based on this
reasoning we consider the quantity

ψ�′|�(τ ) ≡ T −1
∫ T

0
dt0P�′,τ+t0|�,t0Pt0|�. (11)

In other words, the quantity ψ�′|�(τ ) is particularly convenient
from a practical perspective. If we simply count the number
of transitions within a certain time interval for the pair �′|� in
a trajectory, without accounting for the initial time of the first
transition, we obtain the histogram associated with ψ�′|�(τ ).

The conditional probability density Pt0|� can be written in
terms of the transition rates wi j (t0) and the long time limit
probability Pi(t0) that is the solution of the master equation. If
we denote � = i j, then

Pt0|� = Pi(t0)wi j (t0)∫ T
0 dt0Pi(t0)wi j (t0)

. (12)

In Sec. V we provide a method to calculate P�′,τ+t0|�,t0 and,
consequently, ψ�′|�(τ ) analytically.

D. Reversed protocol

In order to estimate the entropy production from a few
visible transitions in periodically driven systems we also need
the statistics of the intertransition time associated with the re-
versed protocol. The mathematical definition for the reversed
protocol is given by the following equation for the transition
rates:

w
†
i j (t0) ≡ wi j (T − t0). (13)

Physically, for the model in Fig. 1, the reversed protocol
corresponds to the sequence of pictures showing the position
of the energy and energy barrier in reverse order.

In order to calculate the probability density for the inter-
transition time associated with the reversed protocol ψ

†
�′|�(τ ),

we also need to generate a trajectory with the reversed pro-
tocol. From a practical perspective, in order to estimate the
rate of entropy production with our method there is a need
to generate trajectories from two experiments, one with the
forward protocol and another with the backward protocol.

E. Inference of entropy production from the statistics
of the intertransition time

Our estimator for average rate of entropy production σ is
given by

σ̂ = K
∑

�,�′∈L

∫ ∞

0
dtψ�′ |�(τ )P� ln

ψ�′|�(τ )

ψ
†

�|�′ (τ )
, (14)

where the activity K is the average number of visible transi-
tions in L per time and P� is the probability that an observable
transition is �, irrespective of the time of its occurrence. These
quantities, K and P�, can be written in terms of the long-time
solution of the master equation Pi(t0), they are given by

K = T −1
∫ T

0
dt0

∑
i j∈L

Pi(t0)wi j (t0), (15)

and

P� = K−1T −1
∫ T

0
dt0Pi(t0)wi j (t0), (16)

where � = i j. We can obtain this estimate from a trajectory
(and a second trajectory with the reversed protocol) where we
can only observe a few visible transitions and the intertran-
sition times. The activity K is evaluated by simply counting
the total number of transitions and dividing by the total time,
P� can be obtained by counting the number of transitions �

and dividing by the total number of transitions, ψ�′|�(τ ) can
be obtained from a histogram of the intertransition times from
the trajectory, and, finally, ψ

†

�|�′ (τ ) can be similarly obtained

with the only difference that the reverse protocol is applied.

III. RESULTS FOR CASE STUDY

In this section, we show our numerical study of en-
tropy production and the estimator for the model defined in
Sec. II B. We observed the estimate σ̂ below the real rate
of entropy production σ in all our numerical results within
this model. However, the formal inequality connecting both
quantities contains an extra term X and reads σ � σ̂ − X ,
where the extra term fulfills X � 0. This inequality is proved
in the next section. In Figs. 3 and 4, we also illustrate it by
plotting σ̂ − X , which can be negative.

The numerical results shown in the figures in this
section were obtained via Monte Carlo simulation with dis-
cretized time, where the time step, which is much shorter than
the characteristic time of the fastest jump, is small enough
such that no relevant difference is observed by taking a smaller
time step. The statistics of sequences of visible jumps and
their intertransition times were obtained by analyzing their
frequency from long enough trajectories such that the empir-
ically measured quantities presented reasonable convergence.
The parameter k, which sets the time scale of the transition
rates in Eqs. (8) and (9), and the period T are set to k = 10
and T = 1. We here consider that only the transitions between
states 1 and 2 are visible, i.e., L = {1 → 2, 2 → 1}.

A. Energy, energy barrier, and entropy production estimate

In Fig. 3, we show results for the fixed external affinity
F = 0. In Fig. 3(a), the energy barrier is B = 0, which leads
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FIG. 3. Entropy production σ , its estimate σ̂ , and its lower bound
σ̂ − X as functions of (a) the energy Fe for B = 0 and (b) the energy
barrier B for Fe = 2.

to a net current J = 0, as discussed in Sec. II. Even though
the current J does not appear in the formula for σ in Eq. (10),
it seems to play a fundamental role for the estimate σ̂ . For
B = 0, we see that the estimate σ̂ is numerically compatible
with 0 and, therefore, does not provide any useful information
about the rate of entropy production σ . Hence, the emergence
of a current J , which is not necessary for a nonzero entropy
production σ in periodically driven systems, seems to be a
necessary condition for a meaningful estimate σ̂ .

The case of a nonzero energy barrier is shown in
Fig. 3(b). Here, we see that the estimate σ̂ is nonzero for
B > 0 that leads to the emergence of a nonzero current J .
From the results in Fig. 3, we observe that even for unicyclic
networks the estimate σ̂ is not equal to the entropy produc-
tion σ . This situation is in contrast to steady states, where a
similar estimate becomes equal to the entropy production for
unicyclic networks [42,43].

FIG. 4. Entropy production σ = FJ + FeJe, its estimate σ̂ , and
its lower bound σ̂ − X as functions of (a) the energy Fe for B = 0
and (b) the energy barrier B for Fe = 3.

In summary, our results for the case of F = 0 lead to two
main conclusions. First, it seems that the emergence of a
current J is a relevant condition for the usefulness of σ̂ as an
estimator. Second, even in a unicyclic network, the estimate σ̂

is not equal to the exact rate of entropy production σ .

B. Role of external fixed affinity F

We now consider the case of a nonzero fixed affinity F . In
Fig. 4(a), we compare the estimate σ̂ for the energy barrier
B = 0 with the rate of entropy production σ , and its two
contributions in Eq. (10). As we can see in the figure, σ̂

seems to follow the term −FJ and does not capture much
information about the contribution due to the work term JeFe,
reinforcing the connection between the estimator and the net
current.

In Fig. 4(b), we show our results for B �= 0. Here, we can
see that the estimate σ̂ is sensitive to the work term JeFe, even
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in the regime where −JF becomes negative. In this regime,
the system operates as an engine with work exerted against the
internal force F . Therefore, the results in Fig. 4, together with
the need for net motion, suggest that the presence of energy
barriers seems to be a necessary condition for the estimate σ̂

to capture information on the work term FeJe of the rate of
entropy production σ .

IV. PROOF OF THE BOUND AND THE EMERGENCE
OF THE EXTRA TERM

A. First bound σL

A full trajectory of the Markov process with all transitions
visible is denoted by γt f , where t f is the total time of the
trajectory. We are interested in the limit t f → ∞. The rate
of entropy production is given by the relative entropy between
the probability of a trajectory P[γt f ] and its time reverse under
reversed protocol P†[γ †

t f
] [2], where the superscript in P†

means the probability associated with the reversed protocol
and the superscript in γ

†
t f

means the reverse of the trajectory
γt f . This formula is written as

σ = lim
t f →∞

1

t f

∑
γt f

P[γt f ] ln
P[γt f ]

P†[γ †
t f

]
. (17)

Formally, the sum over all trajectories
∑

γt f
corresponds to a

functional integration.
Let θ be a coarse-graining map such that �t f = θγt f , it can

represent arbitrary coarse graining. Here, we consider the re-
moval of hidden transitions and only a subset of transitions L
remain visible. This map is noninjective (many-to-one) since
the trajectory details are contracted, thus many full trajectories
γt f can give rise to the same coarse-grained trajectory �t f .
For the probability of the coarse-grained trajectory �, we can
write

P[�] =
∑

γ∈θ−1�

P[γ ]. (18)

We consider a time-reversal operation that commutes with
the coarse-graining map, (θγ )† = θ (γ †) =: �†, which is
achieved by noticing that transitions � are replaced by �̄ in
the time-reversed trajectory. A lower bound on entropy pro-
duction rate σ , accessible from the statistics of the visible
transition that pertain to L, is defined as

σL ≡ lim
t f →∞

1

t f

∑
�t f

P[�t f ] ln
P[�t f ]

P†[�†
t f

]
, (19)

which fulfills

σ � σL, (20)

due to the log-sum inequality.
The coarse-grained trajectory �t f is a sequence of visible

transitions �i ∈ L that take place at times ti. If the trajectory
has N visible transitions then i = 1, 2, . . . , N . The probability
of a given trajectory � reads

P[�] = P�1,t1

N∏
i=2

P�i,ti|�i−1,ti−1 , (21)

FIG. 5. The quantities of Fig. 4(a) and σL.

where P�i,ti|�i−1,ti−1 is the conditional probability of transition �i

being observed at ti given that transition �i−1 occurred at ti−1,
provided no other visible transitions in L occurred in between.
A similar expression is valid for P†[�†], which is

P†[�†] = P†
�̄N ,t f −tN

N−2∏
i=0

P†
�N−i−1,t f −tN−i−1|�N−i,t f −tN−i

. (22)

Even though we are interested only in the limit of t f → ∞,
these two expressions for the probability of a trajectory are
valid for any finite t f .

We now obtain an expression for the lower bound on the
entropy production in Eq. (19) using the expressions for the
probability of a trajectory in Eq. (21) and in Eq. (22), which
reads

σL = lim
t f →∞

K

t f

∑
�′,�∈L

∫ t f

t
dt ′

∫ t f

0
dtP�′,t ′;�,t ln

P�′,t ′ |�,t
P†

�,t f −t |�′,t f −t ′
,

(23)

where P�′,t ′;�,t = P�′,t ′|�,tP�,t is the joint distribution. In this
expression, since we are considering the limit t f → ∞, the
contribution of the boundary term in ln(P[�t f ]/P†[�†

t f
]),

which is ln(P�1,t1/P†
�̄N ,t f −tN

), goes to zero.

The expression in (23) can be further simplified for a time-
periodic system with period T . This simplification reads

σL = K

T

∑
�′,�∈L

∫ ∞

0
dτ

∫ T

0
dt0P�′,τ+t0;�,t0 ln

P�′,τ+t0|�,t0
P†

�,τ+t∗
0 |�′,t∗

0

,

(24)

where t∗
0 = T − [(τ + t0) mod T ]. In Fig. 5 we show that σL

can provide a better estimate of σ in comparison to σ̂ , where
σL was calculated using the analytical methods of Sec. V.
However, in practice, it is much more difficult to obtain this
estimator from a trajectory generated in a simulation or exper-
iment. The main difference is that, for each pair of transitions,
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this quantity requires one histogram for each initial time t0 in
the period, while σ̂ uses only one histogram.

B. Elimination of t0

The estimate σ̂ , that only depends on the intertransition
times, arises from the use of a log-sum inequality in t0. The
extra term is defined as

X ≡ K

T

∑
�′,�∈L

∫ ∞

0
dτ

∫ T

0
dt0P�′,τ+t0;�,t0 ln

Pt0|�
P†

t∗
0 |�′

� 0. (25)

From this definition of X and (24), using the log-sum inequal-
ity in t0 we obtain

σL + X � σ̂ , (26)

where σ̂ is our estimate given by Eq. (14). Since σ � σL we
obtain

σ � σ̂ − X. (27)

The extra term X fulfills the inequality

X � 0, (28)

which is obtained from Eqs. (12) and (25), and the log-sum
inequality in t0. The term X can be calculated from a trajectory
(and another one with the reversed protocol) in the following
way. First, we obtain the distributions Pt0|� from a trajectory
with forward protocol and P†

t0|� from a trajectory with the
reversed protocol. Then, we can run over all transitions in
a visible trajectory � with forward protocol, with its proba-
bility represented in Eq. (21), and compute ln(Pti|�i/P†

t f −ti|�i
)

whenever a visible transition �i happens at time ti. If the
probabilities are empirically inferred from the same trajectory,
correlations can give rise to convergence issues, thus it is
better to use independent trajectories. Note that there is no
need to calculate a distribution that depends on two times
in order to calculate X from a trajectory, which was a main
practical issue with the tighter estimate σL.

In summary, our estimate σ̂ is not connected to σ by a
formal inequality to our knowledge. However, within our nu-
merics restricted to one case study σ̂ is below σ . This evidence
is not enough to make a conjecture but it leaves the possibility
of an inequality open. If we consider σ̂ − X as an estimate,
then we do have a formal inequality.

V. ANALYTICAL METHOD TO DETERMINE
THE INTERTRANSITION TIME DISTRIBUTION

Our estimator σ̂ depends on the intertransition time proba-
bility density ψ�′|�(τ ), which can be obtained from histograms
of observable trajectories. We show how to calculate this dis-
tribution analytically for a periodically driven system. Similar
to a procedure for steady states from [42,43,62], we map the
problem of determining ψ�′|�(τ ) onto a survival probability
problem of an auxiliary Markov process with absorbing states.
The difference here is that the transition rates are time depen-
dent, which makes the procedure more involved.

The formal solution of the master equation (1) is

Pi(t ) =
∑

j

[
T

{
exp

∫ t

t0

dsW(s)

}]
j,i

Pini
j (t0), (29)

where t0 is the initial time, Pini the initial distribution, and
T {exp •} denotes the time-ordered matrix exponential. The
stochastic matrix W(t ) has elements [W(s)]i j = w ji(s) for
i �= j and [W(s)]ii = −∑

j ωi j (s). The long time solution
Pi(t ) of the master equation can be obtained with Floquet
theory [63].

To calculate the intertransition time distribution ψ�′|�(t ) we
define an auxiliary process that has absorbing states. This
auxiliary process has an extra number of states that equals
the number of transitions in L, the set of visible transitions.
All extra states are absorbing. For instance, if the transition
� = 1 → 2 ∈ L then the transition from 1 to 2 does not go to
state 2 in this new auxiliary process. Instead, it goes to a new
absorbing state denoted � = 1 → 2. The stochastic matrix
associated with this auxiliary process is denoted Waux(t ).

As an example, we consider the three-state model. The
stochastic matrix associated with the original process reads

W(t ) =
⎡
⎣−r1(t ) w21(t ) w31(t )

w12(t ) −r2(t ) w32(t )
w13(t ) w23(t ) −r3(t )

⎤
⎦, (30)

where ri(t ) = ∑
j wi j (t ). For L = {1 → 2, 2 → 1}, the

stochastic matrix for the auxiliary process reads

Waux(t ) =

⎡
⎢⎢⎢⎢⎣

−r1(t ) 0 w31(t ) 0 0
0 −r2(t ) w32(t ) 0 0

w13(t ) w23(t ) −r3(t ) 0 0
0 w21(t ) 0 0 0

w12(t ) 0 0 0 0

⎤
⎥⎥⎥⎥⎦, (31)

where the fourth state is associated with 2 → 1 and the fifth
state is associated with 1 → 2.

The conditional distribution P�′,τ+t0|�,t0 is related to the
time-dependent solution of this auxiliary process. Let’s denote
a generic state of the auxiliary process by a. The probability
of being in state a at time t is denoted by Qa(t ). The condition
that � and t0 are given in the conditional probability P�′,τ+t0|�,t0
is reflected in the initial probability of this auxiliary process.
The time for the transition rates for this initial condition is

FIG. 6. Comparison between analytical method and numerics for
the intertransition time distribution ψ�′ |�(τ ) for the three-state model.
The transitions are � = �′ = 12.
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t0. If the transition � = i → j, then the initial state of the
auxiliary process is j, i.e., the initial probability density of the
auxiliary process Qini

a (t0) is a delta function that is one only
for the state corresponding to j and zero otherwise. Hence,
we obtain P�′,τ+t0|�,t0 = ∂τ Qa(τ + t0), where the state a is the
absorbing state corresponding to the transition �′ and

Qa(τ + t0) =
∑

b

[
T

{
exp

∫ τ+t0

t0

dsWaux(s)

}]
b,a

Qini
b (t0).

(32)

The intertransition time distribution ψ�′|�(τ ) can be calculated
by evaluating Qa(τ + t0) from the above equation for all
t0 ∈ [0, T ], taking its derivative and then applying Eq. (11).
In Fig. 6, we show the agreement between the intertransition
time distribution obtained analytically from this method and
numerically from a single trajectory.

VI. CONCLUSION

We proposed a method for the inference of entropy pro-
duction from the statistics of the intertransition times of a few
visible transitions in periodically driven systems. If sufficient
data is available, the estimator σL, which depends on both the
intertransition time and the initial time of the first transition
estimator, provides the tightest bound to the rate of entropy
production. The more accessible estimator σ̂ is obtained by
eliminating the need to track the initial time. It is related
to the rate of entropy production σ with a formal inequality
that requires the extra term X . While our numerics indicate
the possibility of the inequality σ � σ̂ , this result remains
restricted to our case study. The formal inequality we obtained
here is σ � σ̂ − X . The emergence of this extra term and
the necessity to generate two trajectories, one with forward
protocol and another with backward protocol, are two main
differences between the inference of entropy production for
steady states and periodically driven systems.

We applied our estimators to a simple three-state model for
a molecular pump leading to two general lessons. First, even
in a unicyclic system, the estimate does not equal the exact
rate of entropy production. This result shows a key difference
in relation to steady states, for which the estimate does equal
the exact entropy production in unicyclic systems [42,43].
Second, the emergence of a net current in periodically driven
systems, which is not a necessary condition for a nonzero
entropy production, seems to be a necessary condition for

σ̂ to provide a meaningful estimate of the rate of entropy
production. We observed that when the net current is zero
the estimate is often numerically compatible with zero and
does not capture any information about the real rate of entropy
production. It would be interesting to investigate in which
regimes the estimator σ̂ is exactly zero, for instance in the
case of no pumping. For cases with an emergent current, such
as a molecular pump with a nonzero energy barrier or for a
nonzero thermodynamic affinity, the method can provide a
good estimate of the rate of entropy production. Hence, the
method we propose here is a good candidate to estimate the
rate of entropy production in physical systems with a nonzero
net current such as molecular pumps and should not give much
information for systems with a zero net current, such as heat
engines.

A recent independent study [64] on the same topic of in-
ference of entropy production in periodically driven systems
came to our knowledge after we completed this work. Their
approach is complementary to ours: They propose an estima-
tor based on intertransition time statistics similar to σ̂ , in the
form of a numerical conjecture, that has the advantage of only
depending on statistics associated with the forward trajectory.
Our work shows that, at the expense of running trajectories
with the reverse protocol, a formal inequality between the
estimator, extra term X , and real rate of entropy production
can be proven. Moreover, it would be interesting to compare
the performance of our present bounds with the bound for pe-
riodically driven systems associated with the thermodynamic
uncertainty relation from [41], which depends on a single
current. Such a comparison can be meaningful if the visible
transitions are the ones related to a single current.

From a mathematical perspective, it would be interesting to
prove whether the inequality σ � σ̂ , observed to hold within
our numerics, is indeed correct. Interesting directions for fu-
ture work include the study of inference of entropy production
for the case of cyclic stochastic protocols, the investigation of
other methods that do not require access to a trajectory with
backward protocol, and a rigorous classification of physical
systems for which the method can provide a good estimate.
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