IEEE EDUCATION SOCIETY SECTION

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 June 2025, accepted 26 July 2025, date of publication 15 August 2025, date of current version 22 August 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3599357

== RESEARCH ARTICLE

Theory Inspires, but Examples Engage: A
Mixed-Methods Analysis of Worked Examples
From CoderBot in Programming Education

RENATO DE SOUZA GARCIA™'!, JOAO EMILIO ANTONIO VILLA“?,

ANDRE LUIZ MENDES MIRANDA', GILLEANES THORWALD ARAUJO GUEDES"',
ANA CAROLINA ORAN “2, PAULO SILAS SEVERO DE SOUZA"',

RICARDO FERREIRA VILELA “3, PEDRO HENRIQUE DIAS VALLE “4,

AND WILLIAMSON SILVA 5

!Federal University of Pampa, Alegrete 97546-550, Brazil

2Federal University of Amazonas, Manaus 69067-005, Brazil

3State University of Campinas (UNICAMP), Campinas 13083-970, Brazil
4University of Sao Paulo, Sdo Paulo 05508-220, Brazil

SFederal University of Cariri, Juazeiro do Norte 63048-080, Brazil

Corresponding author: Williamson Silva (williamson.silva@ufca.edu.br)

This work was supported in part by CAPES, Brazil, under Finance Code 001, and in part by the CAPES Transformative Agreement.

ABSTRACT Programming has become increasingly important in our society. However, the learning
process presents significant challenges, particularly for novice students of introductory courses. From
the students’ perspective, programming concepts are often perceived as complex and challenging to
understand. Chatbots have emerged as promising and effective pedagogical agents, offering continuous
support and personalized feedback throughout the programming learning process. In this paper, we present
CoderBot, a pedagogical agent grounded in Example-Based Learning designed to assist novice students
in comprehending programming concepts using correct and erroneous practical examples. To evaluate the
self-efficacy and acceptance of CoderBot in the classroom, we conducted an exploratory study involving
103 undergraduate students from several regions of our country, all of whom were enrolled in introductory
programming courses. The quantitative findings highlight the ease of use associated with CoderBot, along
with noticeable improvements in students’ understanding of programming concepts and increased levels of
motivation and self-confidence. Moreover, the qualitative results indicate that CoderBot holds the potential
to be an effective pedagogical agent for supporting programming instruction, particularly in terms of clarity,
accessibility, and ongoing assistance. However, the findings also suggest the need for further expansion
of the available examples and improvements in the clarity of responses to realize the tool’s educational
potential fully. These results offer valuable insights into integrating chatbots within academic environments,
underscoring the role such tools can play in enhancing the learning experience for programming students.

INDEX TERMS Programming education, pedagogical agents, coderbot, example-based learning, empirical

study, self-efficacy, acceptance.

I. INTRODUCTION

Coding skills have become indispensable for technology

professionals and individuals seeking to enhance their

The associate editor coordinating the review of this manuscript and technical competencies [1]. This trend is reflected in
approving it for publication was Ka Wai Gary Wong . the increasing number of students enrolling in Science,

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
VOLUME 13, 2025 For more information, see https://creativecommons.org/licenses/by/4.0/

145007

20

21

23

24

https://orcid.org/0009-0008-9811-6058
https://orcid.org/0009-0008-3156-8383
https://orcid.org/0000-0001-5457-2600
https://orcid.org/0000-0002-6446-7510
https://orcid.org/0000-0003-4945-3329
https://orcid.org/0000-0001-5242-4938
https://orcid.org/0000-0002-6929-7557
https://orcid.org/0000-0003-1849-2675
https://orcid.org/0000-0003-1269-0734

25

26

27

28

29

40

41

42

43

44

45

46

47

48

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

Technology, Engineering, and Mathematics programs [2].
However, learning to program often presents significant
challenges, particularly in the early stages of the course [1].
Consequently, approval rates in introductory programming
courses are historically low [3], contributing to high retention
and dropout rates [4]. Instructors report difficulties in
effectively teaching these concepts [5], which may stem from
students’ lack of prior exposure to programming, limited
experience with practical coding tasks, lack of motivation,
and insufficient individualized support [6].

In response to these challenges, conversational agents like
chatbots have emerged as promising educational tools, partic-
ularly in programming education. Chatbots offer students the
opportunity to progress more autonomously, resolve specific
doubts [7], [8], and receive immediate feedback — a critical
advantage in reducing their reliance on direct instructor
support [9], [10]. This instant feedback enhances the learning
process by facilitating real-time correction and reflection.
Additionally, chatbots provide personalized, motivational
feedback, enabling students to engage in programming
practice through interactive exercises and learning at their
pace [11].

Despite these benefits, many chatbots currently used
in programming education suffer from notable limitations,
including outdated or inappropriate datasets, which can
compromise the accuracy of the information provided [12].
Excessive formality in language and a lack of pedagog-
ical focus often create barriers for novice learners [13].
Furthermore, many chatbots prioritize technical productivity
over educational value, providing ready-made solutions
rather than fostering the development of logical reasoning
and computational thinking [4]. This emphasis on syntax
over conceptual understanding can demotivate students as
they struggle with the rigid demands of programming
language structure [14]. Thus, there is an apparent demand
for more adaptable and intuitive educational chatbots that
prioritize the learning needs of beginners and support their
programming skills development in a more accessible and
didactic manner [4].

In this context, this paper introduces CoderBot, an educa-
tional agent designed to support the teaching of programming
concepts through Example-Based Learning (EBL). CoderBot
employs correct and erroneous practical examples to enhance
students’ comprehension of programming tasks. EBL was
selected as the theoretical foundation of CoderBot due to
its alignment with Cognitive Load Theory, which posits that
learners require structured instructional models to effectively
internalize and understand new content [15]. CoderBot,
therefore, emerges as an innovative educational technology
that promotes novel teaching and learning methodologies for
both instructors and students while improving the quality and
efficiency of the learning experience.

The study described in this paper involved 103 under-
graduate students from several regions of our country, all
enrolled in introductory programming courses. The study
evaluated both the acceptance of the CoderBot technology

145008

and the students’ perceived self-efficacy. The Technology
Acceptance Model (TAM) [16] was adopted to assess tech-
nology acceptance, while self-efficacy was measured using a
domain-specific self-efficacy questionnaire [17]. In addition
to quantitative measures, students provided open-ended
responses, which were analyzed using coding procedures to
interpret the qualitative data. This mixed-methods approach
allowed for a comprehensive understanding of the students’
perceived challenges and benefits, demonstrating CoderBot’s
potential as an effective and accessible tool for supporting
programming education.

This paper is organized as follows. Section II presents
the main concepts associated with this paper and the related
work. Section III describes our proposal. Section IV describes
the planning of the exploratory study. Section VI discusses
our lessons learned and the new version of our proposal.
Finally, Section VIII presents the study’s final considerations.

Il. BACKGROUND AND RELATED WORK

As technology advances and the demand for diversified
learning options grows, the need for innovative educational
tools such as chatbots has become increasingly apparent [18].
As valuable educational resources, Chatbots allow students
to regulate their learning pace while providing continu-
ous access to study materials. By empowering students
to take ownership of their learning journey, these tools
enhance their learning experience [11]. Recent research
underscores that these technologies support the learning
process, improve effectiveness, and foster active student
engagement [11], [19]. Chatbots integrated into applications,
websites, and messaging platforms assist users in performing
tasks, clarifying concepts, and offering tailored support,
guidance, and solutions based on individual needs [11].
In addition to providing constructive feedback, chatbots
facilitate self-assessment and enhance the development of
skills and competencies, making learning more intuitive and
collaborative [11], [20]. However, despite these numerous
advantages, it is essential to emphasize that chatbots were
designed to aid — rather than replace—instructors, who
remain indispensable in the educational process [11].

In this context, several studies have investigated the
transformative role of chatbots in education, highlighting
their potential to enhance both learning experiences and
student engagement. For example, Hobert [21] developed and
evaluated a chatbot named Coding Tutor, which provides
individualized support by offering explanations, tips, and
feedback on students’ source code. A usability study involv-
ing 40 undergraduate students of an information systems
course revealed that the chatbot was perceived as a valuable
complement to traditional programming instruction, mainly
when instructor assistance was not readily available.

Similarly, Igbal Maliket et al. [22] developed a chatbot
to assist programming students with their tasks and learning
processes. Their study analyzed the influence of the chatbot
on student performance, measured by final course grades.

VOLUME 13, 2025

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

IEEE Access

Results indicated that the chatbot effectively aided students
in grasping fundamental programming concepts and in
identifying common semantic and syntactic errors.

Carreira et al. [23] introduced Pyo, a chatbot to support
novice programmers focusing on the Python program-
ming language. Pyo provides personalized assistance to
help students better understand programming concepts and
identify mistakes in their code. The authors reported that
students found Pyo highly beneficial in complementing their
learning process, particularly in providing individualized
support, facilitating conceptual understanding, and helping
them resolve coding errors. The authors stated that positive
interactions with Pyo helped students overcome common
difficulties faced by novice programmers.

Finally, Kasinathan et al. [24] developed TicTad, a chatbot
designed to support students with learning difficulties or
those interested in learning the C# language. TicTad provides
an interactive and practical approach to memorizing concepts,
reducing the time and effort required compared to traditional
learning methods. Tested by 30 beginner students, TicTad
received positive feedback, with participants describing it as
both fun and educational. The study concluded that TicTad
met its target users’ needs by creating an engaging and
supportive learning environment for learning C#.

Although prior studies highlight the potential of chatbot
programming education, a significant gap remains in how
pedagogical theories, such as EBL and Cognitive Load
Theory are systematically integrated into their design. Most
existing tools emphasize functionality, code generation,
or basic guidance but lack structured pedagogical strategies
to scaffold novice learners’ understanding.

In this context, we propose the CoderBot, a pedagogical
agent that aims to bridge this gap by explicitly embedding
EBL and Cognitive Load Theory into its architecture.
It employs correct and incorrect worked examples, structured
via pedagogically grounded templates, to support step-
by-step reasoning and error reflection—techniques known
to foster deep conceptual understanding while managing
cognitive load. To illustrate how CoderBot differs from other
tools in the field, Table 1 compares key features of CoderBot
with representative educational chatbots (e.g., PyO, Coding
Tutor, TicTad) and generative Al-based assistants (e.g., GPT,
Copilot, Gemini).

The comparison covers dimensions such as:

« Pedagogical Model: Describes the underlying theoret-
ical and pedagogical framework that guides the tool’s
instructional design for programming education;

« Use of Cognitive Load Theory: Specifies whether the
tool explicitly incorporates principles from Cognitive
Load Theory to reduce extraneous load and optimize
learners’ mental effort during task execution;

o Correct vs Incorrect Examples: Indicates whether the
tool provides both correct and incorrect code examples
to promote learning through guided error analysis and
reflection;

VOLUME 13, 2025

« Personalization: Assesses the tool’s ability to tailor its
content, feedback, or learning pathways to individual
student profiles, considering prior knowledge, progress,
or learning preferences;

« Handling of Complex Questions: Evaluates the tool’s
capacity to address complex or open-ended program-
ming problems that extend beyond basic or predefined
instructional scenarios;

o Feedback Type: Characterizes the form and depth of
feedback provided by the tool, such as contextualized
error messages, step-by-step explanations, or natural
language dialogue;

o Open-ended Input Support: Determines the extent to
which the tool allows students to input queries in natural
language, as opposed to using only fixed options or
structured commands; and,

« Platform: Specifies the deployment environment or
interface through which the tool is accessed, such as
web applications, desktop software, IDE extensions,
or cloud-based APIs.

Table 1 highlights that, despite the increasing avail-
ability of educational chatbots and Al-powered assistants
in programming education, most existing tools prioritize
technical support over pedagogical intentionality. These
tools often lack structured instructional design and fail to
explicitly incorporate learning theories that scaffold novice
learners’ conceptual development. In contrast, CoderBot
offers pedagogically grounded scaffolding aligned with
students’ cognitive processes, explicitly operationalizing
Example-Based Learning and Cognitive Load Theory. Rather
than functioning as a general-purpose assistant, CoderBot
emerges as a purpose-built educational ally—designed to
foster meaningful, theory-driven learning experiences in pro-
gramming instruction. This comparative analysis reinforces
CoderBot’s unique position within the current landscape,
addressing unmet pedagogical needs in a domain still
dominated by function-oriented tools.

liIl. CODERBOT

The CoderBot is a pedagogical agent developed to assist
students in learning programming by enhancing both instruc-
tional efficiency and engagement. We designed CoderBot to
benefit both instructors and students. CoderBot facilitates the
understanding of programming content through a practical
and interactive approach. We grounded CoderBot on princi-
ples of EBL [25], [26], [27]. CoderBot streamlines instruction
by minimizing information overload, allowing students to
concentrate on the problem’s essential aspects [27].

EBL, when aligned with the principles of Cognitive Load
Theory, effectively leverages demonstration to guide students
in mastering specific tasks or skills [26]. By observing a
task successfully executed, students develop confidence in
their ability to replicate similar outcomes, which fosters a
positive belief in their capabilities [25]. This approach helps
reduce cognitive load by providing a structured framework

145009

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

206

217

218

219

220

221

238

239

240

241

242

244

245

246

248

249

250

251

253

254

255

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

TABLE 1. Comparison of CoderBot, Educational Chatbots, and generative Al Tools in programming education.

Feature / Tool

Pedagogical
Model

Use of Cognitive
Load Theory
Correct vs Er-
rouneous Exam-
ples

CoderBot

EBL with worked ex-
amples

Explicit, via
structured templates
Yes, both provided

PyO [23]

Vygotskian
perspective

Acknowledged, but
not central

Yes, provides correct
answers and guidance
for errors

Coding Tutor [21]

ICAP Framework
(Interactive,
Constructive,

Active, Passive)
and Scaffolding

Not addressed

Yes, provides
feedback on errors
and solution guidance

Adaptive scaffolding

Medium (can respond
to open questions and
guide step-by-step)
Conversational
feedback (text and

TicTad [24]

Expert system and Ac-
tive

Not addressed

Yes, provides correct
code examples and
creation guidance

Based on user history
an learning styles
Basic structured
prompts

Text, voice (text-to-
speech), code exam-

Generative Al (GPT,

Gemini, Copilot)
Generative (few-shot
prompting)

Implicit only

Ad hoc (no pedagogical
structure)

Adaptive through context
and memory
High — natural language

NL explanation (varied)

Personalization Planned via worked | Limited, future work
examples templates

Handling Limited (template- | Introductory focus

of Complex | based)

Questions

Feedback Type Localized and | Textual explanations
explanatory and examples

Open-ended In- | No (menu-based) Yes

put

Platform Web-based Web-based

compiler errors) ples, images
Yes Yes Yes
Web-based Desktop application | API / Cloud-based tools,

(Verbot-based) IDE extensions

focused on achieving the expected result, which benefits
comprehension and understanding of the content taught in the
classroom.

While students learn programming, they can leverage
CoderBot as an active support to assist them in solving exer-
cises and developing critical programming skills. In addition,
CoderBot, as a pedagogical agent, provides both practical
correct and incorrect code examples, demonstrating effective
strategies for tackling specific programming problems.
By examining the correct examples, CoderBot guides the
students in developing computational thinking, helping them
understand the underlying logic of tasks and the steps needed
for problem-solving [28], [29].

This interactive, example-driven approach—central to
EBL — greatly aids students in bridging theory with
practice, facilitating a clearer understanding of program-
ming concepts [29]. Employing correct examples offers
numerous benefits: it reduces cognitive load, strength-
ens content retention, and enhances students’ confidence.
Additionally, these examples enable students to focus
intensively on each concept, fostering self-sufficiency in
problem-solving.

Erroneous examples, conversely, play an important role in
inviting students to think more deeply about content. When
provided with erroneous code, students must diagnose the
problems, try to understand them, explain them, and fix
them appropriately [30], which cultivates critical thinking and
analytical skills. As a result, students develop a set of thinking
and scoring skills and have the potential to learn better and
enjoy a more stimulating—and thus more effective—learning
environment. According to studies conducted by [31],
presenting erroneous examples is effective because it forces
students to focus on why such a code doesn’t work. It further

145010

engages students in developing a deeper understanding of
programming basics.

In this context, we integrated CoderBot into a Web portal,
enabling the presentation of correct code examples with
detailed steps and erroneous ones, challenging students to
identify problems in the code, and providing immediate
feedback. Below, we will present more details about Coder-
Bot and its use. An essential part of this integration was
the incorporation of a standardized Worked Example (WE)
template into CoderBot. We develop the template based on
the needs observed among instructors for structured and
consistent teaching materials [32]. The close collaboration
between the template’s designers and CoderBot’s developers
was key to ensuring an effective integration. Through this
process, we adapted the template to suit the interactive and
dynamic nature of CoderBot, providing clear instructional
elements such as problem descriptions, expected outcomes,
reflective prompts, testing strategies, and guided feedback.
This incorporation allows CoderBot to offer a cohesive and
pedagogically sound learning experience. The structured
template ensures consistency across different topics. At the
same time, we ergonomically designed the selection of
elements to display, aiming to avoid visual clutter for
students, and were informed by recommendations from
instructors involved in the Worked Examples Template
for Programming Education study [32]. By combining the
strengths of the WE template with CoderBot’s interactive
features, the platform not only supports more effective
lesson planning for instructors but also fosters deeper student
engagement with the material.

CoderBot’s functionalities are structured to address the
needs of both students and instructors. CoderBot offers
students a selection of topics and content areas, presenting

VOLUME 13, 2025

277

284

285

286

287

288

289

290

293

294

295

296

297

299

300

301

303

304

305

306

307

308

309

310

311

313

314

315

316

317

318

319

320

322

323

324

326

327

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

IEEE Access

Home Chat

Pesquisadores

|
Coder

Desperte o potencial dos programadores
com o CoderBot - A chave para o sucegso.

CoderBot

temas abaixo:

Q

B

Finalizar a sess@o

- Contetdos de Fungoes

0la! §Y Sou o CoderBot & , e estou aqui para te auxiliar na aprendizagem de programagéo M por meio de exemplos. Escolha um dos

Ei , eu posso te ajudar com os temas abaixo, basta efetuar um click no botdo desejado:

Soma de Dois Numeros) Calculo do Fomrim) Verificag@io de Namero Primo) Inversdo de Smng) Contagem de Canscontes)

Somatério de Interva \a)

Cdlculo de Porcentmgem) Célculo do \MC) Conversdo de Valor para Catagdc)

Conversao de Temperatura em C) Voltar ao menu)

FIGURE 1. (a) Home screen e (b) CoderBot chat interface.

correct and incorrect code examples aligned with the chosen
content. This approach allows students to study self-directed,
reinforcing their understanding of programming concepts
through immediate, practical examples. For instructors,
CoderBot includes a customizable interface that enables
them to adapt examples according to their classes’ unique
requirements, enhancing the tool’s pedagogical relevance.
This study focuses specifically on the student experi-
ence, emphasizing the design of CoderBot’s interface to
provide an intuitive, accessible, and engaging learning
environment.

On the Home screen (Figure 1), students are presented
with a brief introduction to CoderBot and an overview of
its available content. This introductory layout provides a
clear entry point for students to familiarize themselves with
CoderBot’s functionalities and navigate its resources effec-
tively. Upon accessing CoderBot’s chat screen (Figure 1),
students are greeted with a welcome message and provided

VOLUME 13, 2025

with two options: “Functions” and “End Session.” When
the ““Functions” button is selected, a set of code examples is
presented (for example, ““‘Sum of two numbers” or “‘Factorial
calculation”), enabling students to choose the topic they wish
to explore.

Once a topic is selected, students encounter an exercise
statement with options to view a correct or erroneous
example. When choosing a correct example, they are shown
accurate code with a step-by-step guide on how to reach
the solution (Figure 2). By viewing the correct examples,
we expected students to develop computational thinking,
understand the logic behind the questions, and follow
structured steps to solve the problems [28], [29].

If they choose an erroneous example, Students are
prompted to identify the line containing the mistake from
multiple options. Selecting the correct line triggers a
congratulatory message, a clear explanation of the error, and
the correct solution (Figure 3).

145011

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

356

357

358

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

Exemplo Inc

rreto) Voltar ao "‘.erm) Finalizar s

| Ok, abaixo temos os passos para construgéo do cédigo correto.

Passos:

[PASSO 1]. Definir a assinatura da fungao, indicando que ela aceita dois parémetros.

[PASSO 2]. Dentro da fungao, adicionar os dois nimeros.
[PASSO 3]. Retornar a soma dos dois nimeros.

1 #include <stdio.h>
2
3
4
5
6
7
8
9
0

n

Ver outro Exemplo Q) Exempilo Incorreto X) Voltar ao menu) Finalizar a sessdo)

FIGURE 2. Correct example provided by CoderBot.

linha 3

nao sei identificar

v/

_/d]

Parabéns! Vocé acertou
Identificando o erro: O erro esta na forma como a fungGo retorna a soma. A sclugao incorreta esta subtraindo os ndmeros em vez
somda-los.

Veja abaixo uma proposta de solugdo correta:

[PASSO 1]. Definir a assinatura da fungdo, indicando que ela aceita dois parametros.

[PASSO 2]. Dentro da fungéo, adicionar os dois nimeros.
[PASSO 3]. Retornar a soma dos dois nimeros.

1 #include <stdio.h>

L (int nu
1 nUMerol + numer

int main() {

nt resu

©®NOTbhwN

Exemplo Correto) Ver outro Exemplo Q) Voltar ao menu) Finalizar a sessiic)

FIGURE 3. Selecting the Correct option in an erroneous example in CoderBot.

If a student chooses an incorrect line, a message
highlights the problem, explains the error, and provides
the corrected code along with a step-by-step solution
(Figure 4). This process, grounded in reflective practice,
encourages students to analyze errors critically, understand
why they occur, and effectively correct them [30]. This
enhances student learning and provides a more stimulating
and effective environment for teaching. Thus, CoderBot
promotes a reflective and participatory approach to the
learning process. Additionally, CoderBot offers flexibility
for both instructors and students. Instructors can customize
materials based on course requirements, while students can
engage with content at their preferred pace. This structure

145012

fosters a participatory and reflective approach, reinforcing
the learning process through structured guidance and active
engagement.

IV. EXPLORATORY STUDY

We performed an empirical study to evaluate CoderBot and
to gain insight into students’ perceptions of its role as a
pedagogical tool in teaching programming.

A. SUBJECTS

This study involved 103 students enrolled in introductory
programming courses at several higher education institutions
(HEI) in our country, more specifically at: Federal University

VOLUME 13, 2025

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

38

382

383

384

385

386

387

388

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

IEEE Access

A resposta estd incorreta. NGo desanime, eu irei te ajudar a identificar corretamente.
Identificando o erro: O erro esta na forma como a fungdo retorna a soma. A solugéo incorreta esté subtraindo os nUmeros em vez de

soma-los.

Veja abaixo uma proposta de solugéio correta:

[PASSO 1]. Definir a assinatura da fungdo, indicando que ela aceita dois pardmetros.

[PASSO 2]. Dentro da fungéo, adicionar os dois nimeros.
[PASSO 3]. Retornar a soma dos dois niimeros.

#include <stdio.h>

C t nu
numerol + numeroz;

g bk w M

int main() {

int resultado = somarNumeros):
printf(" \n", resultado);

6
7
8
9

Exemplo Correto) Ver outro Exemplo Q) Voltar ao menu) Finalizar a Sessdo)

FIGURE 4. Selecting the Incorrect option in an erroneous example in CoderBot.

TABLE 2. Overview of study participants.

\ Inst. | Major | Instr. | Course Name | Concepts | #Students |
UNIPAMPA Computer Science D1 Algorithms and Programming for Computing | Functions 8
UNIPAMPA Software Engineering D2 Algorithms and Programming Arrays 11

IFMS 2 Technology in Systems Analysis and Development D3 Computer Programming Lists 15
IFMS Technology in Systems Analysis and Development D4 Programming Language I Arrays 18
UFAM Software Engineering D5 Algorithms and Data Structures 1 Functions 51

of Pampa (UNIPAMPA), Federal University of Amazonas
(UFAM), Federal Institute of Parda (IFPA), and Federal
Institute of Mato Grosso do Sul (IFMS). Table 2 presents
more specific demographic details. To gather representative
data, we focused on students from foundational programming
courses. We contacted the instructors responsible for these
courses to coordinate the study’s implementation. In total,
we engaged five instructors, reaching out to them to
understand the content they were covering, the current stage
of their course, and their availability for scheduling the
experiment.

B. PLANNING

To facilitate the execution of the study, we employed
Google Workspace tools. The instruments developed for the
experiment included: (i) a consent form, a key instrument
in the experiment, designed to ensure confidentiality and
participant anonymity; (ii) a characterization questionnaire
aimed at gathering detailed information about the student’s
knowledge and background in programming; (iii) study

VOLUME 13, 2025

documentation, including the experimental script, the Coder-
Bot link, a list of exercises, and detailed instructions for
the experiment; and (iv) a post-use evaluation questionnaire
featuring open-ended questions to capture the students’
perceptions of CoderBot. To ensure validity, two independent
researchers peer-reviewed all study artifacts.

C. EXECUTION

We initially conducted a pilot study with two students
to confirm that the experimental design met its objec-
tives. The pilot’s results were satisfactory, and the team
found that no significant changes were needed for the
artifacts.

We emailed the course instructors, outlining the study’s
objectives and providing comprehensive guidelines. Once
the instructors agreed to participate, one of the researchers
coordinated directly with them to schedule the experiment.
The email correspondence emphasized the importance of
instructor involvement, ensuring they actively assisted stu-
dents during the experiment.

145013

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

436

437

438

439

440

441

442

443

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

On the scheduled day, we conducted the study with the
participating students. We integrated the experiment into the
practical assessment activities in the course syllabus. During
the session, the instructors acted as moderators, guiding the
students through the tasks. Initially, students were asked to
sign a consent form, agree to participate in the study, and
allow their data to be analyzed. All participants willingly
consented and signed the forms.

Next, students completed a characterization form, which
included questions about their previous programming experi-
ence. The majority indicated that they had limited or no prior
experience as they were in the early stages of their course-
work. The moderators then provided training on CoderBot,
covering its features and usage. We instructed the students to
use CoderBot as a support tool for their programming tasks.
Afterward, we distributed the programming exercises, and
students used CoderBot to assist in solving the problems.
The average time to complete the exercises was 136 minutes,
with a minimum time of 40 minutes and a maximum time of
150 minutes, demonstrating the feasibility of using CoderBot
in a classroom setting.

Upon completing the activities, students responded to a
survey to measure their acceptance of CoderBot and per-
ceived self-efficacy. We based our acceptance questionnaire
on the Technology Acceptance Model (TAM) [16] (Table 3),
which evaluates three indicators: perceived usefulness (the
extent to which the student believes that CoderBot improves
academic performance); perceived ease of use (the degree to
which students feel CoderBot can be used without difficulty);
and perceived intention to use (the likelihood that the student
will continue to use CoderBot in the future). Responses
were recorded on a five-point Likert scale, ranging from
“Strongly Disagree” to “Strongly Agree”, with a neutral
option available.

TABLE 3. TAM Questionnaire items.

Perceived Usefulness

PU1 - Using CoderBot improves my performance when solving
programming problems.

PU2 - Using CoderBot improves my productivity when solving
exercises.

PU3 - CoderBot makes my job easier while learning to program.
PU4 -1 find CoderBot useful in helping me learn programming.
Perceived Ease of Use

PEU1 - CoderBot was clear and easy to understand for me.
PEU2 - Using CoderBot didn’t require much mental effort.
PEU3 - I think CoderBot is an easy to use chatbot.

PEU4 - I find it easy to remember how to perform tasks using
CoderBot.

Perceived Intention to Use

PIU1 - Assuming I have access to CoderBot, I plan to use it in the
future to support my learning to code.

PIU2 - Given that T have access to CoderBot, I foresee that I would
use it in the future to learn programming.

PIU3 - I plan to use CoderBot to help me solve exercises next
month.

TAM Items

The self-efficacy questionnaire was also administered
based on the framework proposed by [17]. This questionnaire

145014

assessed the following indicators (Table 4): satisfaction
(perceived pleasure in using and usefulness of CoderBot);
usability (perceived ease of using CoderBot); benevolence
(user’s perception of CoderBot’s accurate and intentional
actions, considering the user’s interests); and credibility
(perception of CoderBot’s ability and experience). The
students recorded their responses on a five-point Likert scale,
ranging from ““Very Dissatisfied” to ““Very Satisfied.”

TABLE 4. Self-efficacy questionnaire items.

Satisfaction

S1 - How much did you enjoy using the CoderBot?

S2 — How useful was the CoderBot to you in assessing the risk
of recidivism?

S3 — How would you rate your overall satisfaction with the
CoderBot?

Usability

U1 - How easy was the CoderBot for you to use?

U2 — How understandable did the CoderBot provide the answers?
U3 - How acceptable is the time spent asking the CoderBot
questions?

Benevolence

B1 - Did you feel the CoderBot correctly understood your ques-
tions?

B2 - Did you feel that the answers provided by the CoderBot
were clear?

B3 — Was the interaction with the CoderBot pleasant?
Credibility

C1 - Should the CoderBot be integrated into training practices?
C2 - Should the CoderBot be mandatory for use in training?
C3 - Did you feel the CoderBot was credible?

Self-Efficacy Items

D. ANALYSIS OF RESULTS

The data collected were analyzed using both quantitative
and qualitative methods. We tabulated the questionnaire
responses for the quantitative analysis and utilized descriptive
statistics to calculate maximum, minimum, mean, and
standard deviation values. We also used R Studio software
to generate stacked bar charts, which facilitated the visual-
ization and interpretation of the results.

We also performed a specific analysis of student comments
collected from the questionnaires. We followed a structured
coding procedure to interpret these qualitative data. The
qualitative analysis aimed to code, categorize, and synthesize
data to identify the difficulties and benefits students perceived
after using CoderBot. We adopted a four-step qualitative
analysis procedure designed by [33].

We read all the student comments in the first step. This
was an important step in obtaining a broad view of the data
provided by students during the CoderBot experimentation
period. We also performed a filtering process to remove
comments with no answers or out-of-context answers that
addressed aspects unrelated to CoderBot. In the second
step, we performed open coding, in which we created
codes (concepts relevant to understanding the perception
of CoderBot) from the participants’ responses (quotes).
In the third step, we performed axial coding, grouping the
codes according to their properties and forming concepts
representing subcategories and categories. Finally, in the

VOLUME 13, 2025

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

IEEE Access

PU1 7% 7% 83%
PUZ 8% 1I1.7% 7%
PU3 % 1|ﬂ:‘x. B0%
PU4 5% 6% B0%
PEU1 8% 1*&7‘% Bd%
PEUZ 7% 1'&‘% 23%
PEU3 3% 3% 7% 80%
FEU4 % 1Iﬂ:‘x, 8% 85%
PIU1 18% l 15% I 55%
PIUZ2 17% l 14% B4%
PIU3 22% . 15% 50%
100 50 100
Percentage
Response . Strongly Disagree Disagree Meutral . Agree . Strongly Agree

FIGURE 5. Acceptance perceived by students.

fourth step, we performed a complete evaluation of the
final analysis to verify the consistency of the results. One
researcher conducted the qualitative study and subsequently
discussed it with other researchers who were experienced
in qualitative methods. This collaborative approach helped
to mitigate bias and improve the reliability of the findings.
The insights gained from this analysis contributed to refining
CoderBot for future iterations.

V. RESULTS

A. QUANTITATIVE ANALYSIS

The results of students’ perceptions of CoderBot, evaluated
through the TAM, are presented in Figure 5.

Findings related to Perceived Usefulness (PU1, PU2,
PU3, and PU4) indicated that 83% of the students agreed
that CoderBot improves their performance in solving pro-
gramming problems (PU1). Student E34 noted: “CoderBot
helped because it showed examples of how to answer quick
questions that could take hours to solve.” Additionally,
80% of the students agreed that CoderBot could be an
educational tool in learning programming (PU4). Student
E83 remarked: “It helps in learning programming because
it brings practical examples seen during classes, making
the student understand the programming logic proposed by
the exercises.” This evidence indicates that CoderBot was
well received by the students as a valuable educational tool,
reinforcing its perceived effectiveness and utility as a support
for programming instruction.

The analysis of Perceived Ease of Use (PEU1, PEU2,
PEU3, and PEU4) revealed an agreement of over 85%,
underscoring that most students found CoderBot accessible
and intuitive to use. For example, in item PEU3, E17
stated: “using CoderBot was easy, helping to solve simple
exercises and, at times, exercises of medium difficulty.”

VOLUME 13, 2025

Therefore, including CoderBot in teaching does not present
significant difficulties for students. This positive perception
is reflected in other items, especially PEU4, which obtained
85% agreement among students. Students E40 and ES2 also
reported that CoderBot is intuitive. Therefore, incorporating
CoderBot into programming education does not pose signif-
icant usability challenges for students.

Regarding Perceived Intention to Use (PIU1, PIU2 and
PIU3), while over 56% of students responded positively,
a considerable proportion remained neutral (24.7% on
average) or disagreed (19% on average).

Student P66 stated: “‘the range of data for demonstration
examples is small, but it showed the initial path to solving
the questions.” Similarly, E33 suggested: “for learning
purposes, it would be important to add comments to the
codes to help understand them.” These insights reveal that,
although CoderBot has gained general acceptance, there
are opportunities for improvement in its functionality and
breadth. The observed variability in responses suggests that
the current limitations may be due to CoderBot not yet being
in its final version, highlighting potential areas for further
refinement.

Figure 6 presents the results of students’ Perceived
Self-Efficacy when using CoderBot.

For the Satisfaction indicator (S1, S2, and S3),
we observed that a majority of students (average of 68%)
expressed satisfaction with CoderBot. For example, E81
reinforced that the CoderBot “helped to give direction
to each question, which saves time, that’s great.” In
addition, 68% of students agreed that they liked CoderBot,
with E18 commenting: ‘“‘even though the exercise doesn’t
require exactly the function that CoderBot has, it’s easy
to use as a basis to adapt to the real problem of the
question.”

145015

512

513

514

515

516

517

518

519

520

521

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

51 a% lm 24% 68%
52 14% . 9% 25% 61%
83 T *‘% 18% To%
U1 2% 1k7% 81%
Uz 8% *B% 16% T76%
U3 5% '+% 25% 70%
B1 16% . 10% 3% 53%
B2 1% .?% 2% 67%
B3 9% 9% 14I% 7%
c1 3% 3% 1?I% 80%
c2 0% - 18% 33% 38%
C3 3% 3% 26% 7%
100 50 50 100
Percentage
Response . Very Dissatisfied Dissatisfied Meutral . Satisfied . Very Satisfied

FIGURE 6. Self-efficacy perceived by students.

Regarding Usability (U1, U2, and U3), this indicator
received an average agreement of 79%, the highest among
the self-efficacy indicators. Notably, item Ul obtained an
agreement from 91% of students, demonstrating the ease
with which students could navigate and utilize CoderBot
effectively. These findings collectively suggest that CoderBot
provides a good user experience, contributing to positive
perceptions of satisfaction and usability.

In the Benevolence indicator, positive agreement averaged
65%. Item B3, which assessed whether interaction with
CoderBot was pleasant, achieved the highest results, with
77% agreement. For example, E23 stated: “using CoderBot,
I was able to improve my understanding of programming
codes. lIts interface is intuitive and simplifies interaction,
making it easy to use.”’ However, item B1, which evaluated
whether CoderBot accurately understood the questions,
showed a significant level of neutrality (31%). EO1 high-
lighted a limitation, commenting that “although CoderBot
has been very helpful, its current state is considerably limited,
especially with more complex questions.”

The Credibility indicator received the lowest overall
agreement (average 62.5%). Item C1, which queried whether
CoderBot should be integrated into programming instruc-
tion, was met with 80% agreement. E18 pointed out that
“CoderBot helped solve some exercises due to the simplicity
of the explanation and the structured examples.”” However,
item C2 showed significant neutrality (33%), with E48
commenting that: “CoderBot is very understandable and
practical; however, it doesn’t explain what beginners need to
know, which is why I hesitate to rely on it solely for classroom
content.” These insights indicate that enhancing explanations
of code logic within CoderBot could improve its instructional
effectiveness, especially for beginners.

145016

B. QUALITATIVE ANALYSIS

In our qualitative analysis, we identified four main cate-
gories reflecting various perspectives on CoderBot’s impact:
(i) CoderBot’s Contribution to Learning Improvement,
(ii) Support from Examples in CoderBot for Conceptual
Understanding, (iii) Limitations in CoderBot’s Learning
Support, and (iv) Suggested Enhancements for CoderBot.

The first category, CoderBot’s Contribution to Learning
Improvement, addresses how CoderBot facilitated the
learning process and highlights specific support areas.

Within the subcategory CoderBot Enhanced Language
Comprehension, several students commented on how Coder-
Bot aided their understanding of the programming language
used in the exercises. For instance, EO1 shared a positive
experience: “CoderBot was instrumental in completing exer-
cises and deepening my understanding of the C language.”
Similarly, E31, who had experience in another programming
language, remarked: “I am familiar with another program-
ming language, which is not C, and CoderBot helped me to
get a quick start with C syntax and structure.”

Students also noted that CoderBot’s impact on the
problem- solving skills. Regarding this, EO8 expressing:
“It simplified the exercises by structuring my thought
process. The well-written code clarified the logic behind each
question” . Further, E83 highlighted that CoderBot enhanced
their understanding of programming logic: “CoderBot aids
in learning programming by providing practical examples in
Introduction to Programming and Data Structures courses.
This helps students grasp the programming logic behind each
exercise.”

The subcategory CoderBot’s Role in Problem-Solving
Support captured feedback on how CoderBot facilitated
problem-solving and exercise development. E16 shared,

VOLUME 13, 2025

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

IEEE Access

“CoderBot offers insights into tackling problems,”) while
E14 observed, “CoderBot could help me solve problems,
even though it was not the exact problem I was having, but
the tool showed me step-by-step how to solve the bigger
problem”. Additionally, we noted that CoderBot helped
beginners in programming, with students highlighting the
support provided to those just starting to learn programming.
As E67 noted “CoderBot is an invaluable resource for
those new to programming.” E60 agreed, stating: “It helped
with fundamental questions, and for beginners, it’s quite
beneficial”.

Under the subcategory Didactic Clarity in CoderBot’s
Explanations, students highlighted the clarity and instruc-
tional effectiveness of CoderBot’s explanations. E57 com-
mented that CoderBot provides a “clear and direct content
that makes it easy to follow. The step-by-step breakdown of
code execution helped me understand each line.” E73 echoed
this sentiment: “It was much clearer to visualize the code, and
in terms of learning, it helped me a lot; with the step-by-step
instructions, it is easier to understand each line.” This shows
that CoderBot’s clarity facilitated learning, particularly in
step-by-step guidance.

Lastly, CoderBot as a Tool for Reinforcement and Recall is
the subcategory highlighting how CoderBot supports students
in recalling previously learned material. E82 mentioned:
“Using CoderBot helped me improve; I was able to remember
how to use Array (I learned it last semester), and I confess
that it clarified many things for me”. E15 also reflected:
“It was beneficial for some questions, for example, when I
needed to recall some algorithms that I had already done on
the list, like the summation ones”.

The second emerging category was CoderBot’s Use
of Examples to Enhance Understanding. This category
includes feedback from students who reported that the exam-
ples provided by CoderBot facilitated their comprehension of
programming exercises.

A prominent subcategory was CoderBot’s Use of Correct
and Erroneous Examples. Based on the results, we observed
that this approach enriched students’ understanding of
problem-solving processes. As student E49 noted, Coder-
Bot’s presentation of “a correct and erroneous way to do the
exercise” helped them learn “which path not to take when
developing the code.” This insight highlights the pedagogical
value of exposing students to both correct and erroneous
examples during the explanation of an exercise, allowing
them to understand correct and erroneous approaches clearly.
Another important subcategory that we identified was
CoderBot presents Detailed Step-by-Step Solutions. Students
highlighted that the detailed solution of the exercises by
CoderBot helped them better understand how to solve the
questions. Student E57 mentioned that “the step-by-step
code execution topics helped me understand how each
command line works.” Similarly, E73 noted: “With the step-
by-step, it was easier to understand each line, it was much
clearer to visualize the code, and it helped me a lot in
learning.”

VOLUME 13, 2025

The comments contained in this third subcategory report
that thanks to the simplified way the exercise solutions were
presented in the explanation CoderBot presents a simple
explanation of code examples so they could better understand
and absorb the content in question. This is exemplified by
the comment from E18, who said he could solve the exercise
codes due to the clear and simplified explanation provided by
CoderBot: “CoderBot helped solve some exercises due to the
explanations’ simplicity and the examples’ structure.”

Finally, there were reports that the examples helped to
start the code, indicating that the examples helped students
take the first step in solving the exercises. For example, E76
mentioned that CoderBot helped start to solve the question,
providing an idea of how to start, which motivated the student
to develop the question: “CoderBot was useful in starting
the code by giving a brief idea of how the code could be
made.” Student E66 suggested that more examples of each
exercise could be made available. However, it acknowledged
that with the examples present, he could find an initial path
to solving the questions: “The range of data for examples in
the demonstration is small, but it showed the initial path to
solving the questions.”

Our analysis found that while many students positively
perceived CoderBot, some encountered challenges in using it
effectively. The emerging category, Challenges in Learning
with CoderBot, highlights why certain students found the
tool less helpful than anticipated.

One of the perceived difficulties was that CoderBot
required excessive reading, which was burdensome for some
learners. Student E02 expressed: “my initial impression is
that the CoderBot requires a lot of reading and little typing”,
highlighting that they could use other available tools to
achieve the same function, suggesting CoderBot’s text-heavy
interface felt limiting. This perception implies that excessive
reading requirements may hinder students who prefer a more
hands-on approach.

Another challenge was that effective use of CoderBot
seemed to require prior programming knowledge. Student
E37 commented: “If the user has little programming
knowledge, it would not help much with solving the problem.”
Similarly, E52 added: “It is intuitive and straightforward for
those who already know a little about programming; as I am
still in the beginning stages, I need help understanding the
intersection, list, pointers, and more specific features.” These
remarks indicate that students at the initial stage of learning
may struggle with the exercises proposed by CoderBot due to
insufficient foundational knowledge.

Students also reported that CoderBot sometimes complica-
ted the resolution of activities instead of assisting, leading to
increased confusion. EQ5 stated: “in some questions in the
exercise, it ended up complicating the process of developing
the question.” S75 corroborated: “sometimes, it made the sim-
plest logic more confusing.” These comments suggest that, for
some learners, CoderBot introduced additional complexity
rather than clarity. In this regard, E38 remarked: “it did not
help much because when I did not understand the logic,

145017

668

669

670

671

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

724

725

726

727

732

733

734

735

736

737

738

739

740

741

743

744

745

746

747

748

749

750

751

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

I needed an explanation,” implying that CoderBot’s content
alone was insufficient to clarify the underlying programming
logic. Adding to this, E88 commented: “Coderbot provides
ready-made codes with few comments. It should focus
more on the logic behind the questions, as understanding
programming logic is more important than the coding itself.”
These observations indicate a need for more detailed and
explanatory examples. Complementing these points, P71
mentioned: “It helped in some cases. However, it was not so
clear in code in others.” Thus, due to the lack of clarity in the
examples presented, some students experienced difficulties
when attempting to develop the exercises.

The final emerging category, Suggested Improvements
for CoderBot, explores and captures students’ recommen-
dations for enhancing feedback from students who proposed
enhancements to make CoderBot more effective.

One of the main points highlighted was the need for
more practical examples to assist in learning and exercise
development. Student E29 expressed that CoderBot should
display more programming examples with possible solutions:
“I think it should have more examples and show more ways
to solve the same question. I do not remember which, but in
some of the questions, it used Boolean, and others did not
require it. So, I think having at least three examples of each
concept would be appropriate if it is more complex.” E77
added: “the availability of examples could be higher for more
diverse problems; Coderbot will fall behind other chatbots.”
These comments suggest that a greater variety of examples
could improve the tool’s utility, usability, and versatility.

Another point raised was the limitation of CoderBot’s
features. EO1 commented: “As much as it has been beneficial,
its current state is considerably limited, especially regarding
more complex questions.” E41 added that the tool was helpful
but limited: “It helped with basic questions, but it is still
a limited system.” E46 proposed adding a button to copy
and paste the example code displayed in CoderBot to save
students’ time: “A button to copy the code would save time
and let you edit only what’s needed.” This feedback indicates
the need for additional features to increase flexibility in using
CoderBot.

Students also emphasized the need for more detailed
comments within the code examples. E88 observed that
“CoderBot provides ready-made code with minimal com-
ments. It should focus more on explaining the logic behind
the examples since understanding logic is more critical than
the syntax itself.” Including detailed comments could enhance
students’ comprehension of the code examples, particularly
for beginners.

Another aspect discussed was the addition of new features
to improve the user experience and usability of CoderBot. P85
suggested improvements to the chat interface and a feature
to change the response language: “the chat interface could
be better, and an option to switch response language would
be useful.” E72 also emphasized the need for descriptions of
commands adopted in the examples: “Some commands lack
explanations. It would be nice if there were a description of

145018

the commands. If it is for beginners, each command should
at least have a description.” These recommendations indicate
that improvements to CoderBot’s interface and features could
make it more accessible and valuable for users at all levels.

VI. DISCUSSIONS

We describe an exploratory study to identify students’ percep-
tions of CoderBot for programming education, specifically
facilitating novice learners’ understanding of programming
fundamentals. Grounded in Example-Based Learning princi-
ples, CoderBot adopted correct and erroneous code examples
to guide students in developing accurate code and recognizing
potential errors in the code, functioning as a structured
learning facilitator. Through personalized and structured
examples, CoderBot supports cognitive map construction,
promotes reflective learning, and fosters an interactive,
participatory approach to programming education.

Our qualitative student feedback analysis reveals strengths
and challenges, offering insights that extend previous
research on educational chatbots. The study revealed four
categories of perceptions toward CoderBot. In the first cat-
egory (CoderBot’s Contribution to Learning Improvement),
students highlighted how CoderBot supported their pro-
gramming studies. Reports indicate that CoderBot facilitated
understanding of the C programming language (adopted by
one instructor during the experiment), improving comprehen-
sion of syntax, structure, and logical flow in programming
tasks. The clarity in the presentation of the exercises
helped students understand the logic of the questions.
CoderBot provided foundational support for some students
and enhanced their grasp of key concepts through clear, step-
by-step explanations. Moreover, CoderBot proved beneficial
in helping students revisit and reinforce previously learned
content, thus consolidating their understanding of critical
concepts.

The second category underscored the role of CoderBot’s
examples in enhancing the comprehension of programming
exercises. Coderbot provides correct and incorrect examples
and clear steps for problem-solving, helps promote critical
thinking, and encourages learning from mistakes. Students
noted that the detailed explanations and simplified language
improved content assimilation, while the initial examples
encouraged student engagement in the exercises. In addition,
we realized that a clear and practical explanation of the
examples, with step-by-step explanations, was significant
for understanding the exercises. These results highlight the
importance of correctly integrating a clear, complete, and
varied pedagogical approach in teaching programming.

Contrasting with the first category, the third category
(Challenges in Learning with CoderBot) indicated that,
despite CoderBot’s benefits, it also presents some chal-
lenges for students. In this sense, students’ feedback
identified excessive reading requirements, the need for
prior knowledge, and insufficient clarity, in some examples,
as significant barriers. Also, some students reported that
CoderBot sometimes complicated rather than facilitated their

VOLUME 13, 2025

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

813

814

815

816

817

818

819

824

826

827

828

829

830

831

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

IEEE Access

activity completion. These results highlight the need for
improvements in CoderBot, specifically to make it more
accessible and efficient for all levels of education and to
improve its effectiveness.

Students also provided constructive feedback and sug-
gestions for improving CoderBot, particularly highlighting
its current limitation in addressing complex, open-ended
programming questions. Compared to more advanced conver-
sational agents like ChatGPT, students perceived CoderBot
as less adaptable and more restricted in its responses — a
limitation also attributed to the need for more diverse and
context-rich examples. This constraint primarily stems from
CoderBot’s current architecture, which relies on a predefined,
template-based dataset and rule-based interactions, limiting
its ability to interpret nuanced queries or generate dynamic
explanations. To address these limitations, students suggested
enhancements such as expanding the variety of examples per
topic, including explanatory comments within code, enabling
copy-to-clipboard functionality, supporting language switch-
ing, and offering command-specific explanations. These
insights point to the importance of making CoderBot more
flexible, responsive, and pedagogically rich. In response to
this feedback, our development roadmap includes the integra-
tion of Large Language Models (LLMs) in future iterations
of CoderBot. This enhancement is expected to increase
its capability to process and respond to complex, context-
dependent queries through natural language generation. The
integration will combine the pedagogical scaffolding of the
current template-driven structure with the adaptability and
semantic reasoning enabled by LLMs—striking a balance
between instructional control and conversational flexibility.
This evolution will make CoderBot a more intelligent
and versatile educational companion, capable of delivering
structured guidance while supporting richer and more person-
alized learning experiences.

The qualitative evidence suggests that CoderBot has strong
potential as an educational pedagogical agent, particularly
regarding clarity, accessibility, and ongoing support. From
this, we can affirm that CoderBot emerges as an emerging
educational technology, which demonstrates that it is possible
to integrate pedagogical approaches, such as Example-
Based Learning, during the design process of a chatbot
as a conversational agent. This leads to further research
on Al-driven education since the content taught will be
communicated to students more clearly and accurately.
Besides that, the results of this study help to further
tailor educational research approaches in computer science
education on a set of feedback mechanisms promoting
personalized and adaptive instruction of computer science for
learners by addressing the preferred learning modality of the
students we studied in this paper. This is because we require
notable educational chatbots ‘designed to be plastic’ in terms
of richness and differentiation of feedback for heterogeneous
classrooms, where students have different backgrounds and
vastly different prior knowledge. In our view, this trend
renders educational chatbots in their modern form an adjunct

VOLUME 13, 2025

pedagogical tool and a central pedagogical resource in the
instruction of STEM courses.

CoderBot’s architecture and findings provide a foundation
for exploring adaptive learning algorithms, dynamic content
delivery, and real-time error correction in computer science
education. This study highlights the value of integrating struc-
tured feedback mechanisms and customizable instructional
content in chatbots, setting a precedent for designing tools
that can support novice programmers in both formal and
informal learning environments. Moving forward, this work
will inform research on the role of chatbots in computer
science education, particularly in creating accessible learning
tools that can adapt to various student needs and cognitive
preferences, fostering a more inclusive and practical pro-
gramming education experience.

VII. THREATS TO VALIDITY

As in all empirical studies, some threats could affect the
validity of the results. In this section, we discuss the threats
to the validity of our findings [34], [35].

Internal Validity. The time available to the students could
influence the results. However, we controlled this threat using
exercises that could be constructed in the stipulated period.
Each session lasted for two classes (duration of 1h40 per
class). The exercises used to carry out the activities could
have affected the study if the students did not understand the
scenario. This threat was minimized using exercises based on
actual problems. Also, the requirements of this scenario were
explicit, such as simulating some exercises carried out in the
classroom.

External Validity. As researchers, we know student behav-
ior during activities could result in participant reactivity.
However, in this case, the students understood that they were
performing a graded practical assignment, which was already
part of the course syllabus, as performed by Hay et al. [36].
So, this bias may not have influenced our results.

Conclusion Validity. The number of participants could
be better statistically. However, sample size is a known
problem in studies of Computer Science Education [33],
[37]. We conducted our study in a specific teaching context.
Therefore, it may not explain the whole reality. However, this
exploratory study is essential as initial evidence regarding
the CoderBot in programming education. If other researchers
have the same teaching context, they can replicate this
empirical study. According to Carver et al. [38], when studies
are replicated and achieve the same or similar results as the
original study, it gives greater validity to the findings.

Construct Validity. Regarding the application of a question-
naire used to collect student perceptions, we emphasize that
this threat cannot be considered a risk to the validity of results
since these questionnaires have already been validated and
used in other studies [16], [17]. We also capture the students’
perceptions using open-ended answers. Open-ended answers
are usually more challenging when collecting subjective
data. However, students are more comfortable providing
real insights on a particular topic [35]. There is a risk

145019

891

892

893

894

895

896

897

898

899

900

901

903

904

905

906

907

908

909

910

911

912

913

914

915

916

918

919

920

921

922

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

994
995
996
997
998
999
1000
1001

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

of not recording all the relevant information. We avoided
this by reviewing the answers with three more experienced
researchers in programming education. Besides, we con-
ducted a pilot to assess if the script would reach its goal.

VIIl. FINAL CONSIDERATIONS
This paper introduces CoderBot, a pedagogical agent
grounded in EBL that helps novice programmers learn
through well-structured and personalized examples. To eval-
uate CoderBot’s effectiveness, we conducted an exploratory
study with undergraduate students from introductory pro-
gramming courses. Findings reveal that CoderBot was
well-received by students, with feedback indicating that it is
an engaging and user-friendly tool for learning programming.
Also, high levels of agreement in the Satisfaction and Usabil-
ity indicators. The Perceived Self-Efficacy suggests that
CoderBot successfully supports students in their educational
journey. Nonetheless, variability in responses related to the
Credibility indicator reveals areas for improvement, with
students noting a need for greater diversity and depth in
examples and additional explanatory comments in the code.
In addition to the improvements mentioned by students,
further research endeavors could enhance CoderBot’s role
as a comprehensive programming education tool. Future
work will also focus on integrating Artificial Intelligence
driven by Large Language Models into CoderBot to enable
a more sophisticated interpretation of student struggles
and adaptable interaction patterns. We will plan additional
experimental studies with instructors to evaluate their per-
ception of CoderBot’s impact on teaching practices, and with
students using an updated version of CoderBot to assess their
performance and comprehension across varied pedagogical
settings.

ACKNOWLEDGMENT

The authors acknowledge the use of Grammarly and
ChatGPT-40 to support the writing and revision process
of this manuscript. ChatGPT-40 was employed to improve
spelling, grammar, vocabulary, and overall style, as well as
to assist in drafting and refining sections of the text. They
also utilized ChatGPT 4.0 to speed up the writing of Python
code to create the graphics. They carefully examined, tested,
and often corrected all suggestions, whereby we take full
responsibility for the form and content of the article.

REFERENCES

[1] C.G.B. Morais, “Ensino e aprendizagem de programacao: Estudo de caso
no ensino superior,” Tech. Rep., 2022.

[2] C. Papakostas, C. Troussas, A. Krouska, and C. Sgouropoulou, “A rule-
based chatbot offering personalized guidance in computer programming
education,” in Proc. Int. Conf. Intell. Tutoring Syst., 2024, pp. 253-264.

[3] G. Alves, A. Rebougas, and P. Scaico, “Coding dojo como pratica
de aprendizagem colaborativa para apoiar o ensino introdutério de
programacdo: Um estudo de caso,” in Proc. Anais do Workshop sobre
Educagcao em Computagdo (WEI), Jul. 2019, pp. 276-290.

[4] J. Penney, J. F. Pimentel, I. Steinmacher, and M. A. Gerosa, “Anticipating
user needs: Insights from design fiction on conversational agents for com-
putational thinking,” in Proc. Int. Workshop Chatbot Res. Design, 2024,
pp. 204-219.

145020

[5]

[6]

[71

[8]

[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

A. V. Robins, “Novice programmers and introductory programming,”
in The Cambridge Handbook of Computing Education Research, 2019,
pp. 327-376.

L. G. Dantas, ‘““‘Um protdtipo de um sistema para fornecer dicas para tarefas
de programagio em disciplinas de programacao introdutdria,” Tech. Rep.,
2020.

F. Clarizia, F. Colace, M. Lombardi, F. Pascale, and D. Santaniello,
“Chatbot: An education support system for student,” in Proc. Int. Symp.
Cyberspace Saf. Secur., 2018, pp. 291-302.

S. Ruan, L. Jiang, J. Xu, B. J.-K. Tham, Z. Qiu, Y. Zhu, E. L. Murnane,
E. Brunskill, and J. A. Landay, “QuizBot: A dialogue-based adaptive
learning system for factual knowledge,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., May 2019, pp. 1-13.

P. Smutny and P. Schreiberova, “Chatbots for learning: A review
of educational chatbots for the Facebook messenger,” Comput.
Educ., vol. 151, Jul. 2020, Art.no. 103862. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360131520300622

P. K. Bii, “Chatbot technology: A possible means of unlocking
student potential to learn how to learn,” Educ. Res., vol. 4, no. 2,
pp. 218-221, 2013.

M. D. L. Roca, M. M. Chan, A. Garcia-Cabot, E. Garcia-Lopez, and
H. Amado-Salvatierra, “The impact of a chatbot working as an assistant in
a course for supporting student learning and engagement,” Comput. Appl.
Eng. Educ., vol. 32, no. 5, p. 22750, Sep. 2024.

J. Correia, M. C. Nicholson, D. Coutinho, C. Barbosa, M. Castelluccio,
M. Gerosa, A. Garcia, and I. Steinmacher, “Unveiling the potential of a
conversational agent in developer support: Insights from mozillas pdf.js
project,” Tech. Rep., 2024.

A. P. Chaves, “Desenho de linguagem de chatbots: Influéncia da
variagdo da linguagem na experiéncia do usudrio com chatbot assis-
tente de turismo,” in Proc. Anais Estendidos do XVIII Simpdsio
Brasileiro de Sistemas Colaborativos (SBSC Estendido), May 2023,
pp. 42-47.

J. Edwards, J. Ditton, D. Trninic, H. Swanson, S. Sullivan, and C. Mano,
“Syntax exercises in CS1,” in Proc. ACM Conf. Int. Comput. Educ. Res.,
Aug. 2020, pp. 216-226.

R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, “Learning from
examples: Instructional principles from the worked examples research,”
Rev. Educ. Res., vol. 70, no. 2, pp. 181-214, 2000.

V. Venkatesh and F. D. Davis, “A theoretical extension of the technology
acceptance model: Four longitudinal field studies,” Manage. Sci., vol. 46,
no. 2, pp. 186-204, Feb. 2000.

A.-P. Raiche, L. Dauphinais, M. Duval, G. De Luca, D. Rivest-Hénault,
T. Vaughan, C. Proulx, and J.-P. Guay, ‘‘Factors influencing acceptance and
trust of chatbots in juvenile offenders’ risk assessment training,” Frontiers
Psychol., vol. 14, Jun. 2023, Art. no. 1184016.

G. Ilieva, T. Yankova, S. Klisarova-Belcheva, A. Dimitrov, M. Bratkov,
and D. Angelov, “Effects of generative chatbots in higher education,”
Information, vol. 14, no. 9, p. 492, Sep. 2023.

A. C. S. da Sousa and R. L. Fecchio, “Chatbots no apoio a educagdo
superior: Revisdo de literatura,” Tech. Rep., 2021.

J. E Pane, E. D. Steiner, M. D. Baird, L. S. Hamilton, and J. D. Pane, How
Does Personalized Learning Affect Student Achievement? Santa Monica,
CA, USA: RAND Corporation, 2017.

S. Hobert. (2019). Say Hello to ‘Coding Tutor’! Design and Evaluation of a
Chatbot-Based Learning System Supporting Students to Learn to Program.
[Online]. Available: https://api.semanticscholar.org/CorpusID:209149824
S. 1. Malik, M. W. Ashfque, R. M. Tawafak, G. Al-Farsi, N. A. Usmani, and
B. H. Khudayer, “A chatbot to facilitate student learning in a programming
1 course: A gendered analysis,” Int. J. Virtual Pers. Learn. Environ.,
vol. 12, no. 1, pp. 1-20, Sep. 2022.

G. Carreira, L. Silva, A. J. Mendes, and H. G. Oliveira, “Pyo, a chatbot
assistant for introductory programming students,” in Proc. Int. Symp.
Comput. Educ. (SIIE), Nov. 2022, pp. 1-6.

V. Kasinathan, A. Mustapha, S. Siow, and M. Hopman, ‘“TicTad:
A chatterbot for learning visual C# programming based on expert
system,” Indonesian J. Electr. Eng. Comput. Sci., vol. 11, no. 2, p. 740,
2018.

X. Huang, ““Example-based learning: Effects of different types of examples
on student performance, cognitive load and self-efficacy in a statistical
learning task,” Interact. Learn. Environ., vol. 25, no. 3, pp. 283-294,
Apr. 2017.

VOLUME 13, 2025

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
111
1112
1113
1114
1115
1116
1117
1118
1119
1120

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

IEEE Access

[26] T. Van Gog and N. Rummel, “Example-based learning,” in Inter-
national Handbook of the Learning Sciences. Evanston, IL, USA:
Routledge, 2018. [Online]. Available: https://www.routledgehandbooks.
com/doi/10.4324/9781315617572-20

[27] J. Sweller, J. J. G. van Merrienboer, and F. G. W. C. Paas, “Cognitive
architecture and instructional design,” Educ. Psychol. Rev., vol. 10, no. 3,
pp. 251-296, Sep. 1998.

[28] B. Jury, A. Lorusso, J. Leinonen, P. Denny, and A. Luxton-Reilly, “Evalu-
ating LLM-generated worked examples in an introductory programming
course,” in Proc. 26th Australas. Comput. Educ. Conf., Jan. 2024,
pp. 77-86.

[29] O. Chen, E. Retnowati, B. K. Y. Chan, and S. Kalyuga, “The effect of
worked examples on learning solution steps and knowledge transfer,”
Educ. Psychol., vol. 43, no. 8, pp. 914-928, Sep. 2023.

[30] C.S. GroBe and A. Renkl, “Finding and fixing errors in worked examples:
Can this foster learning outcomes?” Learn. Instruct., vol. 17, no. 6,
pp. 612634, Dec. 2007.

[31] D.M. Adams, B. M. McLaren, K. Durkin, R. E. Mayer, B. Rittle-Johnson,
S. Isotani, and M. van Velsen, “Using erroneous examples to improve
mathematics learning with a web-based tutoring system,” Comput. Hum.
Behav., vol. 36, pp. 401-411, Jul. 2014.

[32] A.L.M. Miranda, R. Garcia, G. M. Lunardi, R. Vilela, P. H. D. Vale, and
W. Silva, “Projeto e Avaliagdo de um template de worked examples para
o ensino de Programac@o,” in Proc. Anais do XXXIV Simpdsio Brasileiro
de Informdtica na Educagdo (SBIE), Nov. 2023, pp. 1673—-1684. [Online].
Available: https://sol.sbc.org.br/index.php/sbie/article/view/26788

[33] W. Silva, I. Steinmacher, and T. Conte, ‘“Students’ and instructors’
perceptions of five different active learning strategies used to teach
software modeling,” IEEE Access, vol. 7, pp. 184063-184077, 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8765700/2

[34] K. Petersen and C. Gencel, “Worldviews, research methods, and their
relationship to validity in empirical software engineering research,” in
Proc. Joint Conf. 23rd Int. Workshop Softw. Meas. 8th Int. Conf. Softw.
Process Product Meas., Oct. 2013, pp. 81-89.

[35] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering. Cham,
Switzerland: Springer, 2012.

[36] L. R. Hay, R. O. Nelson, and W. M. Hay, ‘“Methodological problems in
the use of participant observers,” J. Appl. Behav. Anal., vol. 13, no. 3,
pp. 501-504, Sep. 1980.

[37] W.A.F.Silva, I. E. Steinmacher, and T. U. Conte, “Is it better to learn from
problems or erroneous examples?” in Proc. IEEE 30th Conf. Softw. Eng.
Educ. Training (CSEE&T), Nov. 2017, pp. 222-231. [Online]. Available:
http://ieeexplore.ieee.org/document/8166706/

[38] J.C. Carver, N. Juristo, M. T. Baldassarre, and S. Vegas, “Replications of
software engineering experiments,” Empirical Softw. Eng., vol. 19, no. 2,
pp. 267-276, Apr. 2014.

RENATO DE SOUZA GARCIA received the
bachelor’s degree in computer science from the
State University of Mato Grosso do Sul (Dourados
Campus) and the M.Sc. degree from the Graduate
Program in Informatics, Federal University of
Pampa (UNIPAMPA). He is currently pursuing the
Ph.D. degree with the Institute of Mathematics and
Statistics, University of Sao Paulo (IME-USP).
He is a Professor at the Federal Institute of Educa-
tion, Science, and Technology of Mato Grosso do
Sul. He is a member of the NIPETI Research Group (Interdisciplinary Center
for Research, Study, and Development in Information Technology). With
previous experience as a Software Developer, as well as a strong academic
background, he integrates research, teaching, and community outreach
to drive advancements in information systems, software engineering, and
software development. His research interests include computer science
education, informatics in education, experimental software engineering,
information systems, as well as conversational agents, chatbots, artificial
intelligence, and machine learning.

VOLUME 13, 2025

JOAO EMILIO ANTONIO VILLA received the
bachelor’s degree in software engineering from
the Federal University of Pampa (UNIPAMPA),
where he is currently pursuing the master’s degree
in software engineering. He is an Instructor at
SENAC Alegrete, teaching Python programming
and software development courses. He also has
experience as a teaching and research fellowships
in higher education. He has been actively involved
in academic and outreach projects, including
CoderBot, an educational chatbot developed to support programming
education. This project resulted in empirical studies and scientific publi-
cations in the field of computing education. He has also contributed as a
Volunteer in outreach programs, such as Programa C and Tramas at the
Federal University of Pampa, aiming to promote educational initiatives and
technology dissemination. With a solid technical background in front-end,
UX design, Java, React.js, and Python, and an interest in interdisciplinary
applications of technology, he integrates academic research, teaching, and
software development to explore innovative approaches for enhancing
programming education and user experience in intelligent systems. His
research interests include software engineering, computing education, web
development, chatbots, and usability and user experience (UX).

ANDRE LUIZ MENDES MIRANDA is cur-
rently pursuing the degree in software engineer-
ing with the Universidade Federal do Pampa
(UNIPAMPA). He works at Venda ERP, a white
label ERP company, where he began as a Full-
Stack Intern, developing chatbots and solutions for
the white label ecosystem. Later, he transitioned to
360Chat, a customer support platform, contribut-
ing to its development and enhancement. With
a strong background in full-stack development,
he has experience in automation scripts, API integrations, CI/CD pipelines,
and gRPC-based microservices. His expertise includes React,.NET, Java,
and Go, with a keen interest in optimizing software workflows and
automation. Beyond his professional work, he is passionate about education
and technology. He has participated in an extension program focused
on teaching children programming logic, which sparked his interest in
computing education. Since then, he has contributed to academic research
and publications on the subject. He is involved in a startup project,
working on an expanding application while exploring team organization
strategies, Kanban methodologies, and team management. His research
interests include software engineering, chatbots, and educational technology,
aiming to integrate technical expertise with user-centered innovations to
enhance software development practices and user experience.

GILLEANES THORWALD ARAUJO GUEDES
received the bachelor’s degree in informatics
from the University Campaign Region (Universi-
dade da Regido da Campanha)—URCAMP, Bage
Campus, and the M.Sc. and Ph.D. degrees in
computer science from the Graduate Program in
Informatics, Federal University of Rio Grande
do Sul (UFRGS). Currently, he is an Adjunct
Professor with the Federal University of Pampa

A (UNIPAMPA) and a member and the Coordinator
of the Graduate Program in Software Engineering (PPGES-UNIPAMPA).
His research interests include requirements engineering, software design,
modeling with UML, software process, software verification and validation,
domain-specific modeling languages (DSMLs), and agent-oriented software
engineering (AOSE).

145021

IEEE Access

R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

ANA CAROLINA ORAN received the bachelor’s
degree in systems analysis from the Centro de
Ensino Superior Fucapi, the M.Sc. degree in
computer science from the Federal University of
Pernambuco (UFPE), and the Ph.D. degree in
informatics from the Graduate Program in Infor-
matics, Federal University of Amazonas (UFAM).
Currently, she is a Professor with UFAM and a
member of the Graduate Program in Informatics
(PPGI-UFAM). She is part of the Usability and
Software Engineering (USES) Research Group and actively contributes to
research projects focused on enhancing software development practices and
supporting the local software industry in the Amazon region. With previous
experience as a Software Developer and a Requirements Analyst, as well as a
strong academic background, she integrates research, teaching, and practical
innovation to foster technological and human-centered advancements in
software engineering. Her research interests include software engineering,
requirements engineering, usability and user experience (UX), developer
experience (DX), agile methodologies, and software testing.

PAULO SILAS SEVERO DE SOUZA received the
master’s and Ph.D. degrees in computer science
from the Pontifical Catholic University of Rio
Grande do Sul (PUCRS), Brazil. Currently, he is a
Professor of software engineering with the Federal
University of Pampa (UNIPAMPA). He has expe-
rience in software development, holding multiple
software deposits at Brazilian National Institute
of Industrial Property (INPI). Additionally, he has
a strong research background, having published
over 50 articles in prestigious venues, including IEEE COMMUNICATIONS
LEetTERS, Future Generation Computer Systems, IEEE Access, Measurement,
Journal of Network and Computer Applications, and The Journal of
Supercomputing, where he also serves as a Regular Reviewer. His research
interests include DevOps, cloud computing, and related paradigms.

RICARDO FERREIRA VILELA received the bach-
elor’s degree in computer science from the Federal
University of Gois (UFG), the M.B.A. degree in
people management from ESALQ-USP, and the
M.Sc. and Ph.D. degrees in computer science and
computational mathematics from the University
of Sao Paulo (ICMC-USP). Currently, he is an
Assistant Professor with the School of Technol-
ogy, University of Campinas (FT-UNICAMP).
His research interests include software quality,
experimental software engineering, software testing, search-based software
testing, test automation, and chatbots. He is a member of Brazilian Computer
Society (SBC).

PEDRO HENRIQUE DIAS VALLE received the
bachelor’s degree in computer science from the
Federal University of Gois (UFG), the M.B.A.
degree in project management from ESALQ-USP,
and the M.Sc. and Ph.D. degrees in computer
science and computational mathematics from the
University of Sdo Paulo (ICMC-USP). Currently,
he is an Assistant Professor with the Institute
of Mathematics and Statistics, University of Sdo
Paulo (IME-USP). His research interests include
computer science education, informatics in education, software quality,
experimental software engineering, software testing, software architecture,
interoperability, educational games, conversational agents, chatbots, and
artificial intelligence. He is a member of Brazilian Computer Society (SBC).

WILLIAMSON SILVA received the bachelor’s
degree in systems analysis and development from
the Federal Institute of Education, Science, and
Technology of Roraima (Boa Vista Campus) and
the M.Sc. and Ph.D. degrees in informatics from
the Graduate Program in Informatics, Federal
University of Amazonas (UFAM). Currently, he is
an Adjunct Professor with the Federal University
of Cariri. With a solid academic background
and an interdisciplinary approach, he actively
contributes to the academic community, seeking advancements in the fields
of computing education and software engineering. His research interests
include computer science education, informatics in education, requirements
engineering, software quality, experimental software engineering, informa-
tion systems, usability and user experience, as well as conversational agents,
chatbots, artificial intelligence, and machine learning. He was a member
of the Steering Committee of the Special Commission on Information
Systems (CESI) (2022-2023, 2023-2024, and 2024-2025) and the Steering
Committee of the Special Commission on Informatics in Education
(2024-2025), both committees of Brazilian Computer Society (SBC). He is
also part of the Interest Group on Active Methodologies linked to the Special
Commission on Computer Education.

Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) - ROR identifier: 00xOma614

145022

VOLUME 13, 2025

