
IEEE EDUCATION SOCIETY SECTION

Received 20 June 2025, accepted 26 July 2025, date of publication 15 August 2025, date of current version 22 August 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3599357

Theory Inspires, but Examples Engage: A
Mixed-Methods Analysis of Worked Examples
From CoderBot in Programming Education
RENATO DE SOUZA GARCIA 1, JOÃO EMILIO ANTONIO VILLA 1,
ANDRE LUIZ MENDES MIRANDA1, GILLEANES THORWALD ARAUJO GUEDES 1,
ANA CAROLINA ORAN 2, PAULO SILAS SEVERO DE SOUZA 1,
RICARDO FERREIRA VILELA 3, PEDRO HENRIQUE DIAS VALLE 4,
AND WILLIAMSON SILVA 5
1Federal University of Pampa, Alegrete 97546-550, Brazil
2Federal University of Amazonas, Manaus 69067-005, Brazil
3State University of Campinas (UNICAMP), Campinas 13083-970, Brazil
4University of São Paulo, São Paulo 05508-220, Brazil
5Federal University of Cariri, Juazeiro do Norte 63048-080, Brazil

Corresponding author: Williamson Silva (williamson.silva@ufca.edu.br)

This work was supported in part by CAPES, Brazil, under Finance Code 001, and in part by the CAPES Transformative Agreement.

ABSTRACT Programming has become increasingly important in our society. However, the learning
process presents significant challenges, particularly for novice students of introductory courses. From
the students’ perspective, programming concepts are often perceived as complex and challenging to
understand. Chatbots have emerged as promising and effective pedagogical agents, offering continuous
support and personalized feedback throughout the programming learning process. In this paper, we present
CoderBot, a pedagogical agent grounded in Example-Based Learning designed to assist novice students
in comprehending programming concepts using correct and erroneous practical examples. To evaluate the
self-efficacy and acceptance of CoderBot in the classroom, we conducted an exploratory study involving
103 undergraduate students from several regions of our country, all of whom were enrolled in introductory
programming courses. The quantitative findings highlight the ease of use associated with CoderBot, along
with noticeable improvements in students’ understanding of programming concepts and increased levels of
motivation and self-confidence. Moreover, the qualitative results indicate that CoderBot holds the potential
to be an effective pedagogical agent for supporting programming instruction, particularly in terms of clarity,
accessibility, and ongoing assistance. However, the findings also suggest the need for further expansion
of the available examples and improvements in the clarity of responses to realize the tool’s educational
potential fully. These results offer valuable insights into integrating chatbots within academic environments,
underscoring the role such tools can play in enhancing the learning experience for programming students.

INDEX TERMS Programming education, pedagogical agents, coderbot, example-based learning, empirical
study, self-efficacy, acceptance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ka Wai Gary Wong .

I. INTRODUCTION 20

Coding skills have become indispensable for technology 21

professionals and individuals seeking to enhance their 22

technical competencies [1]. This trend is reflected in 23

the increasing number of students enrolling in Science, 24

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 145007

https://orcid.org/0009-0008-9811-6058
https://orcid.org/0009-0008-3156-8383
https://orcid.org/0000-0001-5457-2600
https://orcid.org/0000-0002-6446-7510
https://orcid.org/0000-0003-4945-3329
https://orcid.org/0000-0001-5242-4938
https://orcid.org/0000-0002-6929-7557
https://orcid.org/0000-0003-1849-2675
https://orcid.org/0000-0003-1269-0734


R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

Technology, Engineering, and Mathematics programs [2].25

However, learning to program often presents significant26

challenges, particularly in the early stages of the course [1].27

Consequently, approval rates in introductory programming28

courses are historically low [3], contributing to high retention29

and dropout rates [4]. Instructors report difficulties in30

effectively teaching these concepts [5], which may stem from31

students’ lack of prior exposure to programming, limited32

experience with practical coding tasks, lack of motivation,33

and insufficient individualized support [6].34

In response to these challenges, conversational agents like35

chatbots have emerged as promising educational tools, partic-36

ularly in programming education. Chatbots offer students the37

opportunity to progress more autonomously, resolve specific38

doubts [7], [8], and receive immediate feedback — a critical39

advantage in reducing their reliance on direct instructor40

support [9], [10]. This instant feedback enhances the learning41

process by facilitating real-time correction and reflection.42

Additionally, chatbots provide personalized, motivational43

feedback, enabling students to engage in programming44

practice through interactive exercises and learning at their45

pace [11].46

Despite these benefits, many chatbots currently used47

in programming education suffer from notable limitations,48

including outdated or inappropriate datasets, which can49

compromise the accuracy of the information provided [12].50

Excessive formality in language and a lack of pedagog-51

ical focus often create barriers for novice learners [13].52

Furthermore, many chatbots prioritize technical productivity53

over educational value, providing ready-made solutions54

rather than fostering the development of logical reasoning55

and computational thinking [4]. This emphasis on syntax56

over conceptual understanding can demotivate students as57

they struggle with the rigid demands of programming58

language structure [14]. Thus, there is an apparent demand59

for more adaptable and intuitive educational chatbots that60

prioritize the learning needs of beginners and support their61

programming skills development in a more accessible and62

didactic manner [4].63

In this context, this paper introduces CoderBot, an educa-64

tional agent designed to support the teaching of programming65

concepts through Example-Based Learning (EBL). CoderBot66

employs correct and erroneous practical examples to enhance67

students’ comprehension of programming tasks. EBL was68

selected as the theoretical foundation of CoderBot due to69

its alignment with Cognitive Load Theory, which posits that70

learners require structured instructional models to effectively71

internalize and understand new content [15]. CoderBot,72

therefore, emerges as an innovative educational technology73

that promotes novel teaching and learning methodologies for74

both instructors and students while improving the quality and75

efficiency of the learning experience.76

The study described in this paper involved 103 under-77

graduate students from several regions of our country, all78

enrolled in introductory programming courses. The study79

evaluated both the acceptance of the CoderBot technology80

and the students’ perceived self-efficacy. The Technology 81

Acceptance Model (TAM) [16] was adopted to assess tech- 82

nology acceptance, while self-efficacy was measured using a 83

domain-specific self-efficacy questionnaire [17]. In addition 84

to quantitative measures, students provided open-ended 85

responses, which were analyzed using coding procedures to 86

interpret the qualitative data. This mixed-methods approach 87

allowed for a comprehensive understanding of the students’ 88

perceived challenges and benefits, demonstrating CoderBot’s 89

potential as an effective and accessible tool for supporting 90

programming education. 91

This paper is organized as follows. Section II presents 92

the main concepts associated with this paper and the related 93

work. Section III describes our proposal. Section IV describes 94

the planning of the exploratory study. Section VI discusses 95

our lessons learned and the new version of our proposal. 96

Finally, Section VIII presents the study’s final considerations. 97

II. BACKGROUND AND RELATED WORK 98

As technology advances and the demand for diversified 99

learning options grows, the need for innovative educational 100

tools such as chatbots has become increasingly apparent [18]. 101

As valuable educational resources, Chatbots allow students 102

to regulate their learning pace while providing continu- 103

ous access to study materials. By empowering students 104

to take ownership of their learning journey, these tools 105

enhance their learning experience [11]. Recent research 106

underscores that these technologies support the learning 107

process, improve effectiveness, and foster active student 108

engagement [11], [19]. Chatbots integrated into applications, 109

websites, and messaging platforms assist users in performing 110

tasks, clarifying concepts, and offering tailored support, 111

guidance, and solutions based on individual needs [11]. 112

In addition to providing constructive feedback, chatbots 113

facilitate self-assessment and enhance the development of 114

skills and competencies, making learning more intuitive and 115

collaborative [11], [20]. However, despite these numerous 116

advantages, it is essential to emphasize that chatbots were 117

designed to aid — rather than replace—instructors, who 118

remain indispensable in the educational process [11]. 119

In this context, several studies have investigated the 120

transformative role of chatbots in education, highlighting 121

their potential to enhance both learning experiences and 122

student engagement. For example, Hobert [21] developed and 123

evaluated a chatbot named Coding Tutor, which provides 124

individualized support by offering explanations, tips, and 125

feedback on students’ source code. A usability study involv- 126

ing 40 undergraduate students of an information systems 127

course revealed that the chatbot was perceived as a valuable 128

complement to traditional programming instruction, mainly 129

when instructor assistance was not readily available. 130

Similarly, Iqbal Maliket et al. [22] developed a chatbot 131

to assist programming students with their tasks and learning 132

processes. Their study analyzed the influence of the chatbot 133

on student performance, measured by final course grades. 134

145008 VOLUME 13, 2025



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

Results indicated that the chatbot effectively aided students135

in grasping fundamental programming concepts and in136

identifying common semantic and syntactic errors.137

Carreira et al. [23] introduced Pyo, a chatbot to support138

novice programmers focusing on the Python program-139

ming language. Pyo provides personalized assistance to140

help students better understand programming concepts and141

identify mistakes in their code. The authors reported that142

students found Pyo highly beneficial in complementing their143

learning process, particularly in providing individualized144

support, facilitating conceptual understanding, and helping145

them resolve coding errors. The authors stated that positive146

interactions with Pyo helped students overcome common147

difficulties faced by novice programmers.148

Finally, Kasinathan et al. [24] developed TicTad, a chatbot149

designed to support students with learning difficulties or150

those interested in learning the C# language. TicTad provides151

an interactive and practical approach tomemorizing concepts,152

reducing the time and effort required compared to traditional153

learning methods. Tested by 30 beginner students, TicTad154

received positive feedback, with participants describing it as155

both fun and educational. The study concluded that TicTad156

met its target users’ needs by creating an engaging and157

supportive learning environment for learning C#.158

Although prior studies highlight the potential of chatbot159

programming education, a significant gap remains in how160

pedagogical theories, such as EBL and Cognitive Load161

Theory are systematically integrated into their design. Most162

existing tools emphasize functionality, code generation,163

or basic guidance but lack structured pedagogical strategies164

to scaffold novice learners’ understanding.165

In this context, we propose the CoderBot, a pedagogical166

agent that aims to bridge this gap by explicitly embedding167

EBL and Cognitive Load Theory into its architecture.168

It employs correct and incorrect worked examples, structured169

via pedagogically grounded templates, to support step-170

by-step reasoning and error reflection—techniques known171

to foster deep conceptual understanding while managing172

cognitive load. To illustrate how CoderBot differs from other173

tools in the field, Table 1 compares key features of CoderBot174

with representative educational chatbots (e.g., PyO, Coding175

Tutor, TicTad) and generative AI-based assistants (e.g., GPT,176

Copilot, Gemini).177

The comparison covers dimensions such as:178

• Pedagogical Model: Describes the underlying theoret-179

ical and pedagogical framework that guides the tool’s180

instructional design for programming education;181

• Use of Cognitive Load Theory: Specifies whether the182

tool explicitly incorporates principles from Cognitive183

Load Theory to reduce extraneous load and optimize184

learners’ mental effort during task execution;185

• Correct vs Incorrect Examples: Indicates whether the186

tool provides both correct and incorrect code examples187

to promote learning through guided error analysis and188

reflection;189

• Personalization: Assesses the tool’s ability to tailor its 190

content, feedback, or learning pathways to individual 191

student profiles, considering prior knowledge, progress, 192

or learning preferences; 193

• Handling of Complex Questions: Evaluates the tool’s 194

capacity to address complex or open-ended program- 195

ming problems that extend beyond basic or predefined 196

instructional scenarios; 197

• Feedback Type: Characterizes the form and depth of 198

feedback provided by the tool, such as contextualized 199

error messages, step-by-step explanations, or natural 200

language dialogue; 201

• Open-ended Input Support: Determines the extent to 202

which the tool allows students to input queries in natural 203

language, as opposed to using only fixed options or 204

structured commands; and, 205

• Platform: Specifies the deployment environment or 206

interface through which the tool is accessed, such as 207

web applications, desktop software, IDE extensions, 208

or cloud-based APIs. 209

Table 1 highlights that, despite the increasing avail- 210

ability of educational chatbots and AI-powered assistants 211

in programming education, most existing tools prioritize 212

technical support over pedagogical intentionality. These 213

tools often lack structured instructional design and fail to 214

explicitly incorporate learning theories that scaffold novice 215

learners’ conceptual development. In contrast, CoderBot 216

offers pedagogically grounded scaffolding aligned with 217

students’ cognitive processes, explicitly operationalizing 218

Example-Based Learning and Cognitive Load Theory. Rather 219

than functioning as a general-purpose assistant, CoderBot 220

emerges as a purpose-built educational ally—designed to 221

foster meaningful, theory-driven learning experiences in pro- 222

gramming instruction. This comparative analysis reinforces 223

CoderBot’s unique position within the current landscape, 224

addressing unmet pedagogical needs in a domain still 225

dominated by function-oriented tools. 226

III. CODERBOT 227

The CoderBot is a pedagogical agent developed to assist 228

students in learning programming by enhancing both instruc- 229

tional efficiency and engagement. We designed CoderBot to 230

benefit both instructors and students. CoderBot facilitates the 231

understanding of programming content through a practical 232

and interactive approach. We grounded CoderBot on princi- 233

ples of EBL [25], [26], [27]. CoderBot streamlines instruction 234

by minimizing information overload, allowing students to 235

concentrate on the problem’s essential aspects [27]. 236

EBL, when aligned with the principles of Cognitive Load 237

Theory, effectively leverages demonstration to guide students 238

in mastering specific tasks or skills [26]. By observing a 239

task successfully executed, students develop confidence in 240

their ability to replicate similar outcomes, which fosters a 241

positive belief in their capabilities [25]. This approach helps 242

reduce cognitive load by providing a structured framework 243

VOLUME 13, 2025 145009



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

TABLE 1. Comparison of CoderBot, Educational Chatbots, and generative AI Tools in programming education.

focused on achieving the expected result, which benefits244

comprehension and understanding of the content taught in the245

classroom.246

While students learn programming, they can leverage247

CoderBot as an active support to assist them in solving exer-248

cises and developing critical programming skills. In addition,249

CoderBot, as a pedagogical agent, provides both practical250

correct and incorrect code examples, demonstrating effective251

strategies for tackling specific programming problems.252

By examining the correct examples, CoderBot guides the253

students in developing computational thinking, helping them254

understand the underlying logic of tasks and the steps needed255

for problem-solving [28], [29].256

This interactive, example-driven approach—central to257

EBL — greatly aids students in bridging theory with258

practice, facilitating a clearer understanding of program-259

ming concepts [29]. Employing correct examples offers260

numerous benefits: it reduces cognitive load, strength-261

ens content retention, and enhances students’ confidence.262

Additionally, these examples enable students to focus263

intensively on each concept, fostering self-sufficiency in264

problem-solving.265

Erroneous examples, conversely, play an important role in266

inviting students to think more deeply about content. When267

provided with erroneous code, students must diagnose the268

problems, try to understand them, explain them, and fix269

them appropriately [30], which cultivates critical thinking and270

analytical skills. As a result, students develop a set of thinking271

and scoring skills and have the potential to learn better and272

enjoy a more stimulating—and thus more effective—learning273

environment. According to studies conducted by [31],274

presenting erroneous examples is effective because it forces275

students to focus on why such a code doesn’t work. It further276

engages students in developing a deeper understanding of 277

programming basics. 278

In this context, we integrated CoderBot into a Web portal, 279

enabling the presentation of correct code examples with 280

detailed steps and erroneous ones, challenging students to 281

identify problems in the code, and providing immediate 282

feedback. Below, we will present more details about Coder- 283

Bot and its use. An essential part of this integration was 284

the incorporation of a standardized Worked Example (WE) 285

template into CoderBot. We develop the template based on 286

the needs observed among instructors for structured and 287

consistent teaching materials [32]. The close collaboration 288

between the template’s designers and CoderBot’s developers 289

was key to ensuring an effective integration. Through this 290

process, we adapted the template to suit the interactive and 291

dynamic nature of CoderBot, providing clear instructional 292

elements such as problem descriptions, expected outcomes, 293

reflective prompts, testing strategies, and guided feedback. 294

This incorporation allows CoderBot to offer a cohesive and 295

pedagogically sound learning experience. The structured 296

template ensures consistency across different topics. At the 297

same time, we ergonomically designed the selection of 298

elements to display, aiming to avoid visual clutter for 299

students, and were informed by recommendations from 300

instructors involved in the Worked Examples Template 301

for Programming Education study [32]. By combining the 302

strengths of the WE template with CoderBot’s interactive 303

features, the platform not only supports more effective 304

lesson planning for instructors but also fosters deeper student 305

engagement with the material. 306

CoderBot’s functionalities are structured to address the 307

needs of both students and instructors. CoderBot offers 308

students a selection of topics and content areas, presenting 309

145010 VOLUME 13, 2025



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

FIGURE 1. (a) Home screen e (b) CoderBot chat interface.

correct and incorrect code examples aligned with the chosen310

content. This approach allows students to study self-directed,311

reinforcing their understanding of programming concepts312

through immediate, practical examples. For instructors,313

CoderBot includes a customizable interface that enables314

them to adapt examples according to their classes’ unique315

requirements, enhancing the tool’s pedagogical relevance.316

This study focuses specifically on the student experi-317

ence, emphasizing the design of CoderBot’s interface to318

provide an intuitive, accessible, and engaging learning319

environment.320

On the Home screen (Figure 1), students are presented321

with a brief introduction to CoderBot and an overview of322

its available content. This introductory layout provides a323

clear entry point for students to familiarize themselves with324

CoderBot’s functionalities and navigate its resources effec-325

tively. Upon accessing CoderBot’s chat screen (Figure 1),326

students are greeted with a welcome message and provided327

with two options: ‘‘Functions’’ and ‘‘End Session.’’ When 328

the ‘‘Functions’’ button is selected, a set of code examples is 329

presented (for example, ‘‘Sum of two numbers’’ or ‘‘Factorial 330

calculation’’), enabling students to choose the topic they wish 331

to explore. 332

Once a topic is selected, students encounter an exercise 333

statement with options to view a correct or erroneous 334

example. When choosing a correct example, they are shown 335

accurate code with a step-by-step guide on how to reach 336

the solution (Figure 2). By viewing the correct examples, 337

we expected students to develop computational thinking, 338

understand the logic behind the questions, and follow 339

structured steps to solve the problems [28], [29]. 340

If they choose an erroneous example, Students are 341

prompted to identify the line containing the mistake from 342

multiple options. Selecting the correct line triggers a 343

congratulatory message, a clear explanation of the error, and 344

the correct solution (Figure 3). 345

VOLUME 13, 2025 145011



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

FIGURE 2. Correct example provided by CoderBot.

FIGURE 3. Selecting the Correct option in an erroneous example in CoderBot.

If a student chooses an incorrect line, a message346

highlights the problem, explains the error, and provides347

the corrected code along with a step-by-step solution348

(Figure 4). This process, grounded in reflective practice,349

encourages students to analyze errors critically, understand350

why they occur, and effectively correct them [30]. This351

enhances student learning and provides a more stimulating352

and effective environment for teaching. Thus, CoderBot353

promotes a reflective and participatory approach to the354

learning process. Additionally, CoderBot offers flexibility355

for both instructors and students. Instructors can customize356

materials based on course requirements, while students can357

engage with content at their preferred pace. This structure358

fosters a participatory and reflective approach, reinforcing 359

the learning process through structured guidance and active 360

engagement. 361

IV. EXPLORATORY STUDY 362

We performed an empirical study to evaluate CoderBot and 363

to gain insight into students’ perceptions of its role as a 364

pedagogical tool in teaching programming. 365

A. SUBJECTS 366

This study involved 103 students enrolled in introductory 367

programming courses at several higher education institutions 368

(HEI) in our country, more specifically at: Federal University 369

145012 VOLUME 13, 2025



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

FIGURE 4. Selecting the Incorrect option in an erroneous example in CoderBot.

TABLE 2. Overview of study participants.

of Pampa (UNIPAMPA), Federal University of Amazonas370

(UFAM), Federal Institute of Pará (IFPA), and Federal371

Institute of Mato Grosso do Sul (IFMS). Table 2 presents372

more specific demographic details. To gather representative373

data, we focused on students from foundational programming374

courses. We contacted the instructors responsible for these375

courses to coordinate the study’s implementation. In total,376

we engaged five instructors, reaching out to them to377

understand the content they were covering, the current stage378

of their course, and their availability for scheduling the379

experiment.380

B. PLANNING381

To facilitate the execution of the study, we employed382

Google Workspace tools. The instruments developed for the383

experiment included: (i) a consent form, a key instrument384

in the experiment, designed to ensure confidentiality and385

participant anonymity; (ii) a characterization questionnaire386

aimed at gathering detailed information about the student’s387

knowledge and background in programming; (iii) study388

documentation, including the experimental script, the Coder- 389

Bot link, a list of exercises, and detailed instructions for 390

the experiment; and (iv) a post-use evaluation questionnaire 391

featuring open-ended questions to capture the students’ 392

perceptions of CoderBot. To ensure validity, two independent 393

researchers peer-reviewed all study artifacts. 394

C. EXECUTION 395

We initially conducted a pilot study with two students 396

to confirm that the experimental design met its objec- 397

tives. The pilot’s results were satisfactory, and the team 398

found that no significant changes were needed for the 399

artifacts. 400

We emailed the course instructors, outlining the study’s 401

objectives and providing comprehensive guidelines. Once 402

the instructors agreed to participate, one of the researchers 403

coordinated directly with them to schedule the experiment. 404

The email correspondence emphasized the importance of 405

instructor involvement, ensuring they actively assisted stu- 406

dents during the experiment. 407

VOLUME 13, 2025 145013



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

On the scheduled day, we conducted the study with the408

participating students. We integrated the experiment into the409

practical assessment activities in the course syllabus. During410

the session, the instructors acted as moderators, guiding the411

students through the tasks. Initially, students were asked to412

sign a consent form, agree to participate in the study, and413

allow their data to be analyzed. All participants willingly414

consented and signed the forms.415

Next, students completed a characterization form, which416

included questions about their previous programming experi-417

ence. The majority indicated that they had limited or no prior418

experience as they were in the early stages of their course-419

work. The moderators then provided training on CoderBot,420

covering its features and usage. We instructed the students to421

use CoderBot as a support tool for their programming tasks.422

Afterward, we distributed the programming exercises, and423

students used CoderBot to assist in solving the problems.424

The average time to complete the exercises was 136 minutes,425

with a minimum time of 40 minutes and a maximum time of426

150 minutes, demonstrating the feasibility of using CoderBot427

in a classroom setting.428

Upon completing the activities, students responded to a429

survey to measure their acceptance of CoderBot and per-430

ceived self-efficacy. We based our acceptance questionnaire431

on the Technology Acceptance Model (TAM) [16] (Table 3),432

which evaluates three indicators: perceived usefulness (the433

extent to which the student believes that CoderBot improves434

academic performance); perceived ease of use (the degree to435

which students feel CoderBot can be used without difficulty);436

and perceived intention to use (the likelihood that the student437

will continue to use CoderBot in the future). Responses438

were recorded on a five-point Likert scale, ranging from439

‘‘Strongly Disagree’’ to ‘‘Strongly Agree’’, with a neutral440

option available.441

TABLE 3. TAM Questionnaire items.

The self-efficacy questionnaire was also administered442

based on the framework proposed by [17]. This questionnaire443

assessed the following indicators (Table 4): satisfaction 444

(perceived pleasure in using and usefulness of CoderBot); 445

usability (perceived ease of using CoderBot); benevolence 446

(user’s perception of CoderBot’s accurate and intentional 447

actions, considering the user’s interests); and credibility 448

(perception of CoderBot’s ability and experience). The 449

students recorded their responses on a five-point Likert scale, 450

ranging from ‘‘Very Dissatisfied’’ to ‘‘Very Satisfied.’’ 451

TABLE 4. Self-efficacy questionnaire items.

D. ANALYSIS OF RESULTS 452

The data collected were analyzed using both quantitative 453

and qualitative methods. We tabulated the questionnaire 454

responses for the quantitative analysis and utilized descriptive 455

statistics to calculate maximum, minimum, mean, and 456

standard deviation values. We also used R Studio software 457

to generate stacked bar charts, which facilitated the visual- 458

ization and interpretation of the results. 459

We also performed a specific analysis of student comments 460

collected from the questionnaires. We followed a structured 461

coding procedure to interpret these qualitative data. The 462

qualitative analysis aimed to code, categorize, and synthesize 463

data to identify the difficulties and benefits students perceived 464

after using CoderBot. We adopted a four-step qualitative 465

analysis procedure designed by [33]. 466

We read all the student comments in the first step. This 467

was an important step in obtaining a broad view of the data 468

provided by students during the CoderBot experimentation 469

period. We also performed a filtering process to remove 470

comments with no answers or out-of-context answers that 471

addressed aspects unrelated to CoderBot. In the second 472

step, we performed open coding, in which we created 473

codes (concepts relevant to understanding the perception 474

of CoderBot) from the participants’ responses (quotes). 475

In the third step, we performed axial coding, grouping the 476

codes according to their properties and forming concepts 477

representing subcategories and categories. Finally, in the 478

145014 VOLUME 13, 2025



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

FIGURE 5. Acceptance perceived by students.

fourth step, we performed a complete evaluation of the479

final analysis to verify the consistency of the results. One480

researcher conducted the qualitative study and subsequently481

discussed it with other researchers who were experienced482

in qualitative methods. This collaborative approach helped483

to mitigate bias and improve the reliability of the findings.484

The insights gained from this analysis contributed to refining485

CoderBot for future iterations.486

V. RESULTS487

A. QUANTITATIVE ANALYSIS488

The results of students’ perceptions of CoderBot, evaluated489

through the TAM, are presented in Figure 5.490

Findings related to Perceived Usefulness (PU1, PU2,491

PU3, and PU4) indicated that 83% of the students agreed492

that CoderBot improves their performance in solving pro-493

gramming problems (PU1). Student E34 noted: ‘‘CoderBot494

helped because it showed examples of how to answer quick495

questions that could take hours to solve.’’ Additionally,496

80% of the students agreed that CoderBot could be an497

educational tool in learning programming (PU4). Student498

E83 remarked: ‘‘It helps in learning programming because499

it brings practical examples seen during classes, making500

the student understand the programming logic proposed by501

the exercises.’’ This evidence indicates that CoderBot was502

well received by the students as a valuable educational tool,503

reinforcing its perceived effectiveness and utility as a support504

for programming instruction.505

The analysis of Perceived Ease of Use (PEU1, PEU2,506

PEU3, and PEU4) revealed an agreement of over 85%,507

underscoring that most students found CoderBot accessible508

and intuitive to use. For example, in item PEU3, E17509

stated: ‘‘using CoderBot was easy, helping to solve simple510

exercises and, at times, exercises of medium difficulty.’’511

Therefore, including CoderBot in teaching does not present 512

significant difficulties for students. This positive perception 513

is reflected in other items, especially PEU4, which obtained 514

85% agreement among students. Students E40 and E52 also 515

reported that CoderBot is intuitive. Therefore, incorporating 516

CoderBot into programming education does not pose signif- 517

icant usability challenges for students. 518

Regarding Perceived Intention to Use (PIU1, PIU2 and 519

PIU3), while over 56% of students responded positively, 520

a considerable proportion remained neutral (24.7% on 521

average) or disagreed (19% on average). 522

Student P66 stated: ‘‘the range of data for demonstration 523

examples is small, but it showed the initial path to solving 524

the questions.’’ Similarly, E33 suggested: ‘‘for learning 525

purposes, it would be important to add comments to the 526

codes to help understand them.’’ These insights reveal that, 527

although CoderBot has gained general acceptance, there 528

are opportunities for improvement in its functionality and 529

breadth. The observed variability in responses suggests that 530

the current limitations may be due to CoderBot not yet being 531

in its final version, highlighting potential areas for further 532

refinement. 533

Figure 6 presents the results of students’ Perceived 534

Self-Efficacy when using CoderBot. 535

For the Satisfaction indicator (S1, S2, and S3), 536

we observed that a majority of students (average of 68%) 537

expressed satisfaction with CoderBot. For example, E81 538

reinforced that the CoderBot ‘‘helped to give direction 539

to each question, which saves time, that’s great.’’ In 540

addition, 68% of students agreed that they liked CoderBot, 541

with E18 commenting: ‘‘even though the exercise doesn’t 542

require exactly the function that CoderBot has, it’s easy 543

to use as a basis to adapt to the real problem of the 544

question.’’ 545

VOLUME 13, 2025 145015



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

FIGURE 6. Self-efficacy perceived by students.

Regarding Usability (U1, U2, and U3), this indicator546

received an average agreement of 79%, the highest among547

the self-efficacy indicators. Notably, item U1 obtained an548

agreement from 91% of students, demonstrating the ease549

with which students could navigate and utilize CoderBot550

effectively. These findings collectively suggest that CoderBot551

provides a good user experience, contributing to positive552

perceptions of satisfaction and usability.553

In the Benevolence indicator, positive agreement averaged554

65%. Item B3, which assessed whether interaction with555

CoderBot was pleasant, achieved the highest results, with556

77% agreement. For example, E23 stated: ‘‘using CoderBot,557

I was able to improve my understanding of programming558

codes. Its interface is intuitive and simplifies interaction,559

making it easy to use.’’ However, item B1, which evaluated560

whether CoderBot accurately understood the questions,561

showed a significant level of neutrality (31%). E01 high-562

lighted a limitation, commenting that ‘‘although CoderBot563

has been very helpful, its current state is considerably limited,564

especially with more complex questions.’’565

The Credibility indicator received the lowest overall566

agreement (average 62.5%). Item C1, which queried whether567

CoderBot should be integrated into programming instruc-568

tion, was met with 80% agreement. E18 pointed out that569

‘‘CoderBot helped solve some exercises due to the simplicity570

of the explanation and the structured examples.’’ However,571

item C2 showed significant neutrality (33%), with E48572

commenting that: ‘‘CoderBot is very understandable and573

practical; however, it doesn’t explain what beginners need to574

know, which is why I hesitate to rely on it solely for classroom575

content.’’ These insights indicate that enhancing explanations576

of code logic within CoderBot could improve its instructional577

effectiveness, especially for beginners.578

B. QUALITATIVE ANALYSIS 579

In our qualitative analysis, we identified four main cate- 580

gories reflecting various perspectives on CoderBot’s impact: 581

(i) CoderBot’s Contribution to Learning Improvement, 582

(ii) Support from Examples in CoderBot for Conceptual 583

Understanding, (iii) Limitations in CoderBot’s Learning 584

Support, and (iv) Suggested Enhancements for CoderBot. 585

The first category,CoderBot’s Contribution to Learning 586

Improvement, addresses how CoderBot facilitated the 587

learning process and highlights specific support areas. 588

Within the subcategory CoderBot Enhanced Language 589

Comprehension, several students commented on how Coder- 590

Bot aided their understanding of the programming language 591

used in the exercises. For instance, E01 shared a positive 592

experience: ‘‘CoderBot was instrumental in completing exer- 593

cises and deepening my understanding of the C language.’’ 594

Similarly, E31, who had experience in another programming 595

language, remarked: ‘‘I am familiar with another program- 596

ming language, which is not C, and CoderBot helped me to 597

get a quick start with C syntax and structure.’’ 598

Students also noted that CoderBot’s impact on the 599

problem- solving skills. Regarding this, E08 expressing: 600

‘‘It simplified the exercises by structuring my thought 601

process. The well-written code clarified the logic behind each 602

question’’. Further, E83 highlighted that CoderBot enhanced 603

their understanding of programming logic: ‘‘CoderBot aids 604

in learning programming by providing practical examples in 605

Introduction to Programming and Data Structures courses. 606

This helps students grasp the programming logic behind each 607

exercise.’’ 608

The subcategory CoderBot’s Role in Problem-Solving 609

Support captured feedback on how CoderBot facilitated 610

problem-solving and exercise development. E16 shared, 611

145016 VOLUME 13, 2025



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

‘‘CoderBot offers insights into tackling problems,’’) while612

E14 observed, ‘‘CoderBot could help me solve problems,613

even though it was not the exact problem I was having, but614

the tool showed me step-by-step how to solve the bigger615

problem’’. Additionally, we noted that CoderBot helped616

beginners in programming, with students highlighting the617

support provided to those just starting to learn programming.618

As E67 noted ‘‘CoderBot is an invaluable resource for619

those new to programming.’’ E60 agreed, stating: ‘‘It helped620

with fundamental questions, and for beginners, it’s quite621

beneficial’’.622

Under the subcategory Didactic Clarity in CoderBot’s623

Explanations, students highlighted the clarity and instruc-624

tional effectiveness of CoderBot’s explanations. E57 com-625

mented that CoderBot provides a ‘‘clear and direct content626

that makes it easy to follow. The step-by-step breakdown of627

code execution helped me understand each line.’’ E73 echoed628

this sentiment: ‘‘It wasmuch clearer to visualize the code, and629

in terms of learning, it helped me a lot; with the step-by-step630

instructions, it is easier to understand each line.’’ This shows631

that CoderBot’s clarity facilitated learning, particularly in632

step-by-step guidance.633

Lastly, CoderBot as a Tool for Reinforcement and Recall is634

the subcategory highlighting howCoderBot supports students635

in recalling previously learned material. E82 mentioned:636

‘‘Using CoderBot helpedme improve; I was able to remember637

how to use Array (I learned it last semester), and I confess638

that it clarified many things for me’’. E15 also reflected:639

‘‘It was beneficial for some questions, for example, when I640

needed to recall some algorithms that I had already done on641

the list, like the summation ones’’.642

The second emerging category was CoderBot’s Use643

of Examples to Enhance Understanding. This category644

includes feedback from students who reported that the exam-645

ples provided by CoderBot facilitated their comprehension of646

programming exercises.647

A prominent subcategory was CoderBot’s Use of Correct648

and Erroneous Examples. Based on the results, we observed649

that this approach enriched students’ understanding of650

problem-solving processes. As student E49 noted, Coder-651

Bot’s presentation of ‘‘a correct and erroneous way to do the652

exercise’’ helped them learn ‘‘which path not to take when653

developing the code.’’ This insight highlights the pedagogical654

value of exposing students to both correct and erroneous655

examples during the explanation of an exercise, allowing656

them to understand correct and erroneous approaches clearly.657

Another important subcategory that we identified was658

CoderBot presents Detailed Step-by-Step Solutions. Students659

highlighted that the detailed solution of the exercises by660

CoderBot helped them better understand how to solve the661

questions. Student E57 mentioned that ‘‘the step-by-step662

code execution topics helped me understand how each663

command line works.’’ Similarly, E73 noted: ‘‘With the step-664

by-step, it was easier to understand each line, it was much665

clearer to visualize the code, and it helped me a lot in666

learning.’’667

The comments contained in this third subcategory report 668

that thanks to the simplified way the exercise solutions were 669

presented in the explanation CoderBot presents a simple 670

explanation of code examples so they could better understand 671

and absorb the content in question. This is exemplified by 672

the comment from E18, who said he could solve the exercise 673

codes due to the clear and simplified explanation provided by 674

CoderBot: ‘‘CoderBot helped solve some exercises due to the 675

explanations’ simplicity and the examples’ structure.’’ 676

Finally, there were reports that the examples helped to 677

start the code, indicating that the examples helped students 678

take the first step in solving the exercises. For example, E76 679

mentioned that CoderBot helped start to solve the question, 680

providing an idea of how to start, which motivated the student 681

to develop the question: ‘‘CoderBot was useful in starting 682

the code by giving a brief idea of how the code could be 683

made.’’ Student E66 suggested that more examples of each 684

exercise could be made available. However, it acknowledged 685

that with the examples present, he could find an initial path 686

to solving the questions: ‘‘The range of data for examples in 687

the demonstration is small, but it showed the initial path to 688

solving the questions.’’ 689

Our analysis found that while many students positively 690

perceived CoderBot, some encountered challenges in using it 691

effectively. The emerging category, Challenges in Learning 692

with CoderBot, highlights why certain students found the 693

tool less helpful than anticipated. 694

One of the perceived difficulties was that CoderBot 695

required excessive reading, which was burdensome for some 696

learners. Student E02 expressed: ‘‘my initial impression is 697

that the CoderBot requires a lot of reading and little typing’’, 698

highlighting that they could use other available tools to 699

achieve the same function, suggesting CoderBot’s text-heavy 700

interface felt limiting. This perception implies that excessive 701

reading requirements may hinder students who prefer a more 702

hands-on approach. 703

Another challenge was that effective use of CoderBot 704

seemed to require prior programming knowledge. Student 705

E37 commented: ‘‘If the user has little programming 706

knowledge, it would not help much with solving the problem.’’ 707

Similarly, E52 added: ‘‘It is intuitive and straightforward for 708

those who already know a little about programming; as I am 709

still in the beginning stages, I need help understanding the 710

intersection, list, pointers, and more specific features.’’ These 711

remarks indicate that students at the initial stage of learning 712

may struggle with the exercises proposed by CoderBot due to 713

insufficient foundational knowledge. 714

Students also reported that CoderBot sometimes complica- 715

ted the resolution of activities instead of assisting, leading to 716

increased confusion. E05 stated: ‘‘in some questions in the 717

exercise, it ended up complicating the process of developing 718

the question.’’ S75 corroborated: ‘‘sometimes, it made the sim- 719

plest logic more confusing.’’These comments suggest that, for 720

some learners, CoderBot introduced additional complexity 721

rather than clarity. In this regard, E38 remarked: ‘‘it did not 722

help much because when I did not understand the logic, 723

VOLUME 13, 2025 145017



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

I needed an explanation,’’ implying that CoderBot’s content724

alone was insufficient to clarify the underlying programming725

logic. Adding to this, E88 commented: ‘‘Coderbot provides726

ready-made codes with few comments. It should focus727

more on the logic behind the questions, as understanding728

programming logic is more important than the coding itself.’’729

These observations indicate a need for more detailed and730

explanatory examples. Complementing these points, P71731

mentioned: ‘‘It helped in some cases. However, it was not so732

clear in code in others.’’ Thus, due to the lack of clarity in the733

examples presented, some students experienced difficulties734

when attempting to develop the exercises.735

The final emerging category, Suggested Improvements736

for CoderBot, explores and captures students’ recommen-737

dations for enhancing feedback from students who proposed738

enhancements to make CoderBot more effective.739

One of the main points highlighted was the need for740

more practical examples to assist in learning and exercise741

development. Student E29 expressed that CoderBot should742

display more programming examples with possible solutions:743

‘‘I think it should have more examples and show more ways744

to solve the same question. I do not remember which, but in745

some of the questions, it used Boolean, and others did not746

require it. So, I think having at least three examples of each747

concept would be appropriate if it is more complex.’’ E77748

added: ‘‘the availability of examples could be higher for more749

diverse problems; Coderbot will fall behind other chatbots.’’750

These comments suggest that a greater variety of examples751

could improve the tool’s utility, usability, and versatility.752

Another point raised was the limitation of CoderBot’s753

features. E01 commented: ‘‘As much as it has been beneficial,754

its current state is considerably limited, especially regarding755

more complex questions.’’ E41 added that the tool was helpful756

but limited: ‘‘It helped with basic questions, but it is still757

a limited system.’’ E46 proposed adding a button to copy758

and paste the example code displayed in CoderBot to save759

students’ time: ‘‘A button to copy the code would save time760

and let you edit only what’s needed.’’ This feedback indicates761

the need for additional features to increase flexibility in using762

CoderBot.763

Students also emphasized the need for more detailed764

comments within the code examples. E88 observed that765

‘‘CoderBot provides ready-made code with minimal com-766

ments. It should focus more on explaining the logic behind767

the examples since understanding logic is more critical than768

the syntax itself.’’ Including detailed comments could enhance769

students’ comprehension of the code examples, particularly770

for beginners.771

Another aspect discussed was the addition of new features772

to improve the user experience and usability of CoderBot. P85773

suggested improvements to the chat interface and a feature774

to change the response language: ‘‘the chat interface could775

be better, and an option to switch response language would776

be useful.’’ E72 also emphasized the need for descriptions of777

commands adopted in the examples: ‘‘Some commands lack778

explanations. It would be nice if there were a description of779

the commands. If it is for beginners, each command should 780

at least have a description.’’ These recommendations indicate 781

that improvements to CoderBot’s interface and features could 782

make it more accessible and valuable for users at all levels. 783

VI. DISCUSSIONS 784

Wedescribe an exploratory study to identify students’ percep- 785

tions of CoderBot for programming education, specifically 786

facilitating novice learners’ understanding of programming 787

fundamentals. Grounded in Example-Based Learning princi- 788

ples, CoderBot adopted correct and erroneous code examples 789

to guide students in developing accurate code and recognizing 790

potential errors in the code, functioning as a structured 791

learning facilitator. Through personalized and structured 792

examples, CoderBot supports cognitive map construction, 793

promotes reflective learning, and fosters an interactive, 794

participatory approach to programming education. 795

Our qualitative student feedback analysis reveals strengths 796

and challenges, offering insights that extend previous 797

research on educational chatbots. The study revealed four 798

categories of perceptions toward CoderBot. In the first cat- 799

egory (CoderBot’s Contribution to Learning Improvement), 800

students highlighted how CoderBot supported their pro- 801

gramming studies. Reports indicate that CoderBot facilitated 802

understanding of the C programming language (adopted by 803

one instructor during the experiment), improving comprehen- 804

sion of syntax, structure, and logical flow in programming 805

tasks. The clarity in the presentation of the exercises 806

helped students understand the logic of the questions. 807

CoderBot provided foundational support for some students 808

and enhanced their grasp of key concepts through clear, step- 809

by-step explanations. Moreover, CoderBot proved beneficial 810

in helping students revisit and reinforce previously learned 811

content, thus consolidating their understanding of critical 812

concepts. 813

The second category underscored the role of CoderBot’s 814

examples in enhancing the comprehension of programming 815

exercises. Coderbot provides correct and incorrect examples 816

and clear steps for problem-solving, helps promote critical 817

thinking, and encourages learning from mistakes. Students 818

noted that the detailed explanations and simplified language 819

improved content assimilation, while the initial examples 820

encouraged student engagement in the exercises. In addition, 821

we realized that a clear and practical explanation of the 822

examples, with step-by-step explanations, was significant 823

for understanding the exercises. These results highlight the 824

importance of correctly integrating a clear, complete, and 825

varied pedagogical approach in teaching programming. 826

Contrasting with the first category, the third category 827

(Challenges in Learning with CoderBot) indicated that, 828

despite CoderBot’s benefits, it also presents some chal- 829

lenges for students. In this sense, students’ feedback 830

identified excessive reading requirements, the need for 831

prior knowledge, and insufficient clarity, in some examples, 832

as significant barriers. Also, some students reported that 833

CoderBot sometimes complicated rather than facilitated their 834

145018 VOLUME 13, 2025



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

activity completion. These results highlight the need for835

improvements in CoderBot, specifically to make it more836

accessible and efficient for all levels of education and to837

improve its effectiveness.838

Students also provided constructive feedback and sug-839

gestions for improving CoderBot, particularly highlighting840

its current limitation in addressing complex, open-ended841

programming questions. Compared tomore advanced conver-842

sational agents like ChatGPT, students perceived CoderBot843

as less adaptable and more restricted in its responses — a844

limitation also attributed to the need for more diverse and845

context-rich examples. This constraint primarily stems from846

CoderBot’s current architecture, which relies on a predefined,847

template-based dataset and rule-based interactions, limiting848

its ability to interpret nuanced queries or generate dynamic849

explanations. To address these limitations, students suggested850

enhancements such as expanding the variety of examples per851

topic, including explanatory comments within code, enabling852

copy-to-clipboard functionality, supporting language switch-853

ing, and offering command-specific explanations. These854

insights point to the importance of making CoderBot more855

flexible, responsive, and pedagogically rich. In response to856

this feedback, our development roadmap includes the integra-857

tion of Large Language Models (LLMs) in future iterations858

of CoderBot. This enhancement is expected to increase859

its capability to process and respond to complex, context-860

dependent queries through natural language generation. The861

integration will combine the pedagogical scaffolding of the862

current template-driven structure with the adaptability and863

semantic reasoning enabled by LLMs—striking a balance864

between instructional control and conversational flexibility.865

This evolution will make CoderBot a more intelligent866

and versatile educational companion, capable of delivering867

structured guidance while supporting richer andmore person-868

alized learning experiences.869

The qualitative evidence suggests that CoderBot has strong870

potential as an educational pedagogical agent, particularly871

regarding clarity, accessibility, and ongoing support. From872

this, we can affirm that CoderBot emerges as an emerging873

educational technology, which demonstrates that it is possible874

to integrate pedagogical approaches, such as Example-875

Based Learning, during the design process of a chatbot876

as a conversational agent. This leads to further research877

on AI-driven education since the content taught will be878

communicated to students more clearly and accurately.879

Besides that, the results of this study help to further880

tailor educational research approaches in computer science881

education on a set of feedback mechanisms promoting882

personalized and adaptive instruction of computer science for883

learners by addressing the preferred learning modality of the884

students we studied in this paper. This is because we require885

notable educational chatbots ‘designed to be plastic’ in terms886

of richness and differentiation of feedback for heterogeneous887

classrooms, where students have different backgrounds and888

vastly different prior knowledge. In our view, this trend889

renders educational chatbots in their modern form an adjunct890

pedagogical tool and a central pedagogical resource in the 891

instruction of STEM courses. 892

CoderBot’s architecture and findings provide a foundation 893

for exploring adaptive learning algorithms, dynamic content 894

delivery, and real-time error correction in computer science 895

education. This study highlights the value of integrating struc- 896

tured feedback mechanisms and customizable instructional 897

content in chatbots, setting a precedent for designing tools 898

that can support novice programmers in both formal and 899

informal learning environments. Moving forward, this work 900

will inform research on the role of chatbots in computer 901

science education, particularly in creating accessible learning 902

tools that can adapt to various student needs and cognitive 903

preferences, fostering a more inclusive and practical pro- 904

gramming education experience. 905

VII. THREATS TO VALIDITY 906

As in all empirical studies, some threats could affect the 907

validity of the results. In this section, we discuss the threats 908

to the validity of our findings [34], [35]. 909

Internal Validity. The time available to the students could 910

influence the results. However, we controlled this threat using 911

exercises that could be constructed in the stipulated period. 912

Each session lasted for two classes (duration of 1h40 per 913

class). The exercises used to carry out the activities could 914

have affected the study if the students did not understand the 915

scenario. This threat was minimized using exercises based on 916

actual problems. Also, the requirements of this scenario were 917

explicit, such as simulating some exercises carried out in the 918

classroom. 919

External Validity. As researchers, we know student behav- 920

ior during activities could result in participant reactivity. 921

However, in this case, the students understood that they were 922

performing a graded practical assignment, which was already 923

part of the course syllabus, as performed by Hay et al. [36]. 924

So, this bias may not have influenced our results. 925

Conclusion Validity. The number of participants could 926

be better statistically. However, sample size is a known 927

problem in studies of Computer Science Education [33], 928

[37]. We conducted our study in a specific teaching context. 929

Therefore, it may not explain the whole reality. However, this 930

exploratory study is essential as initial evidence regarding 931

the CoderBot in programming education. If other researchers 932

have the same teaching context, they can replicate this 933

empirical study. According to Carver et al. [38], when studies 934

are replicated and achieve the same or similar results as the 935

original study, it gives greater validity to the findings. 936

Construct Validity.Regarding the application of a question- 937

naire used to collect student perceptions, we emphasize that 938

this threat cannot be considered a risk to the validity of results 939

since these questionnaires have already been validated and 940

used in other studies [16], [17]. We also capture the students’ 941

perceptions using open-ended answers. Open-ended answers 942

are usually more challenging when collecting subjective 943

data. However, students are more comfortable providing 944

real insights on a particular topic [35]. There is a risk 945

VOLUME 13, 2025 145019



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

of not recording all the relevant information. We avoided946

this by reviewing the answers with three more experienced947

researchers in programming education. Besides, we con-948

ducted a pilot to assess if the script would reach its goal.949

VIII. FINAL CONSIDERATIONS950

This paper introduces CoderBot, a pedagogical agent951

grounded in EBL that helps novice programmers learn952

through well-structured and personalized examples. To eval-953

uate CoderBot’s effectiveness, we conducted an exploratory954

study with undergraduate students from introductory pro-955

gramming courses. Findings reveal that CoderBot was956

well-received by students, with feedback indicating that it is957

an engaging and user-friendly tool for learning programming.958

Also, high levels of agreement in the Satisfaction and Usabil-959

ity indicators. The Perceived Self-Efficacy suggests that960

CoderBot successfully supports students in their educational961

journey. Nonetheless, variability in responses related to the962

Credibility indicator reveals areas for improvement, with963

students noting a need for greater diversity and depth in964

examples and additional explanatory comments in the code.965

In addition to the improvements mentioned by students,966

further research endeavors could enhance CoderBot’s role967

as a comprehensive programming education tool. Future968

work will also focus on integrating Artificial Intelligence969

driven by Large Language Models into CoderBot to enable970

a more sophisticated interpretation of student struggles971

and adaptable interaction patterns. We will plan additional972

experimental studies with instructors to evaluate their per-973

ception of CoderBot’s impact on teaching practices, and with974

students using an updated version of CoderBot to assess their975

performance and comprehension across varied pedagogical976

settings.977

ACKNOWLEDGMENT978

The authors acknowledge the use of Grammarly and979

ChatGPT-4o to support the writing and revision process980

of this manuscript. ChatGPT-4o was employed to improve981

spelling, grammar, vocabulary, and overall style, as well as982

to assist in drafting and refining sections of the text. They983

also utilized ChatGPT 4.o to speed up the writing of Python984

code to create the graphics. They carefully examined, tested,985

and often corrected all suggestions, whereby we take full986

responsibility for the form and content of the article.987

REFERENCES988

[1] C. G. B. Morais, ‘‘Ensino e aprendizagem de programação: Estudo de caso989

no ensino superior,’’ Tech. Rep., 2022.990

[2] C. Papakostas, C. Troussas, A. Krouska, and C. Sgouropoulou, ‘‘A rule-991

based chatbot offering personalized guidance in computer programming992

education,’’ in Proc. Int. Conf. Intell. Tutoring Syst., 2024, pp. 253–264.993

[3] G. Alves, A. Rebouças, and P. Scaico, ‘‘Coding dojo como prática994

de aprendizagem colaborativa para apoiar o ensino introdutório de995

programação: Um estudo de caso,’’ in Proc. Anais do Workshop sobre996

Educação em Computação (WEI), Jul. 2019, pp. 276–290.997

[4] J. Penney, J. F. Pimentel, I. Steinmacher, and M. A. Gerosa, ‘‘Anticipating998

user needs: Insights from design fiction on conversational agents for com-999

putational thinking,’’ in Proc. Int. Workshop Chatbot Res. Design, 2024,1000

pp. 204–219.1001

[5] A. V. Robins, ‘‘Novice programmers and introductory programming,’’ 1002

in The Cambridge Handbook of Computing Education Research, 2019, 1003

pp. 327–376. 1004

[6] L. G. Dantas, ‘‘Um protótipo de um sistema para fornecer dicas para tarefas 1005

de programação em disciplinas de programação introdutória,’’ Tech. Rep., 1006

2020. 1007

[7] F. Clarizia, F. Colace, M. Lombardi, F. Pascale, and D. Santaniello, 1008

‘‘Chatbot: An education support system for student,’’ in Proc. Int. Symp. 1009

Cyberspace Saf. Secur., 2018, pp. 291–302. 1010

[8] S. Ruan, L. Jiang, J. Xu, B. J.-K. Tham, Z. Qiu, Y. Zhu, E. L. Murnane, 1011

E. Brunskill, and J. A. Landay, ‘‘QuizBot: A dialogue-based adaptive 1012

learning system for factual knowledge,’’ in Proc. CHI Conf. Hum. Factors 1013

Comput. Syst., May 2019, pp. 1–13. 1014

[9] P. Smutny and P. Schreiberova, ‘‘Chatbots for learning: A review 1015

of educational chatbots for the Facebook messenger,’’ Comput. 1016

Educ., vol. 151, Jul. 2020, Art. no. 103862. [Online]. Available: 1017

https://www.sciencedirect.com/science/article/pii/S0360131520300622 1018

[10] P. K. Bii, ‘‘Chatbot technology: A possible means of unlocking 1019

student potential to learn how to learn,’’ Educ. Res., vol. 4, no. 2, 1020

pp. 218–221, 2013. 1021

[11] M. D. L. Roca, M. M. Chan, A. Garcia-Cabot, E. Garcia-Lopez, and 1022

H. Amado-Salvatierra, ‘‘The impact of a chatbot working as an assistant in 1023

a course for supporting student learning and engagement,’’ Comput. Appl. 1024

Eng. Educ., vol. 32, no. 5, p. 22750, Sep. 2024. 1025

[12] J. Correia, M. C. Nicholson, D. Coutinho, C. Barbosa, M. Castelluccio, 1026

M. Gerosa, A. Garcia, and I. Steinmacher, ‘‘Unveiling the potential of a 1027

conversational agent in developer support: Insights from mozillas pdf.js 1028

project,’’ Tech. Rep., 2024. 1029

[13] A. P. Chaves, ‘‘Desenho de linguagem de chatbots: Influência da 1030

variação da linguagem na experiência do usuário com chatbot assis- 1031

tente de turismo,’’ in Proc. Anais Estendidos do XVIII Simpósio 1032

Brasileiro de Sistemas Colaborativos (SBSC Estendido), May 2023, 1033

pp. 42–47. 1034

[14] J. Edwards, J. Ditton, D. Trninic, H. Swanson, S. Sullivan, and C. Mano, 1035

‘‘Syntax exercises in CS1,’’ in Proc. ACM Conf. Int. Comput. Educ. Res., 1036

Aug. 2020, pp. 216–226. 1037

[15] R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, ‘‘Learning from 1038

examples: Instructional principles from the worked examples research,’’ 1039

Rev. Educ. Res., vol. 70, no. 2, pp. 181–214, 2000. 1040

[16] V. Venkatesh and F. D. Davis, ‘‘A theoretical extension of the technology 1041

acceptance model: Four longitudinal field studies,’’Manage. Sci., vol. 46, 1042

no. 2, pp. 186–204, Feb. 2000. 1043

[17] A.-P. Raiche, L. Dauphinais, M. Duval, G. De Luca, D. Rivest-Hénault, 1044

T. Vaughan, C. Proulx, and J.-P. Guay, ‘‘Factors influencing acceptance and 1045

trust of chatbots in juvenile offenders’ risk assessment training,’’ Frontiers 1046

Psychol., vol. 14, Jun. 2023, Art. no. 1184016. 1047

[18] G. Ilieva, T. Yankova, S. Klisarova-Belcheva, A. Dimitrov, M. Bratkov, 1048

and D. Angelov, ‘‘Effects of generative chatbots in higher education,’’ 1049

Information, vol. 14, no. 9, p. 492, Sep. 2023. 1050

[19] A. C. S. da Sousa and R. L. Fecchio, ‘‘Chatbots no apoio à educação 1051

superior: Revisão de literatura,’’ Tech. Rep., 2021. 1052

[20] J. F. Pane, E. D. Steiner, M. D. Baird, L. S. Hamilton, and J. D. Pane, How 1053

Does Personalized Learning Affect Student Achievement? Santa Monica, 1054

CA, USA: RAND Corporation, 2017. 1055

[21] S. Hobert. (2019). Say Hello to ‘Coding Tutor’! Design and Evaluation of a 1056

Chatbot-Based Learning System Supporting Students to Learn to Program. 1057

[Online]. Available: https://api.semanticscholar.org/CorpusID:209149824 1058

[22] S. I. Malik, M.W. Ashfque, R.M. Tawafak, G. Al-Farsi, N. A. Usmani, and 1059

B. H. Khudayer, ‘‘A chatbot to facilitate student learning in a programming 1060

1 course: A gendered analysis,’’ Int. J. Virtual Pers. Learn. Environ., 1061

vol. 12, no. 1, pp. 1–20, Sep. 2022. 1062

[23] G. Carreira, L. Silva, A. J. Mendes, and H. G. Oliveira, ‘‘Pyo, a chatbot 1063

assistant for introductory programming students,’’ in Proc. Int. Symp. 1064

Comput. Educ. (SIIE), Nov. 2022, pp. 1–6. 1065

[24] V. Kasinathan, A. Mustapha, S. Siow, and M. Hopman, ‘‘TicTad: 1066

A chatterbot for learning visual C# programming based on expert 1067

system,’’ Indonesian J. Electr. Eng. Comput. Sci., vol. 11, no. 2, p. 740, 1068

2018. 1069

[25] X. Huang, ‘‘Example-based learning: Effects of different types of examples 1070

on student performance, cognitive load and self-efficacy in a statistical 1071

learning task,’’ Interact. Learn. Environ., vol. 25, no. 3, pp. 283–294, 1072

Apr. 2017. 1073

145020 VOLUME 13, 2025



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

[26] T. Van Gog and N. Rummel, ‘‘Example-based learning,’’ in Inter-1074

national Handbook of the Learning Sciences. Evanston, IL, USA:1075

Routledge, 2018. [Online]. Available: https://www.routledgehandbooks.1076

com/doi/10.4324/9781315617572-201077

[27] J. Sweller, J. J. G. van Merrienboer, and F. G. W. C. Paas, ‘‘Cognitive1078

architecture and instructional design,’’ Educ. Psychol. Rev., vol. 10, no. 3,1079

pp. 251–296, Sep. 1998.1080

[28] B. Jury, A. Lorusso, J. Leinonen, P. Denny, and A. Luxton-Reilly, ‘‘Evalu-1081

ating LLM-generated worked examples in an introductory programming1082

course,’’ in Proc. 26th Australas. Comput. Educ. Conf., Jan. 2024,1083

pp. 77–86.1084

[29] O. Chen, E. Retnowati, B. K. Y. Chan, and S. Kalyuga, ‘‘The effect of1085

worked examples on learning solution steps and knowledge transfer,’’1086

Educ. Psychol., vol. 43, no. 8, pp. 914–928, Sep. 2023.1087

[30] C. S. Große and A. Renkl, ‘‘Finding and fixing errors in worked examples:1088

Can this foster learning outcomes?’’ Learn. Instruct., vol. 17, no. 6,1089

pp. 612–634, Dec. 2007.1090

[31] D. M. Adams, B. M. McLaren, K. Durkin, R. E. Mayer, B. Rittle-Johnson,1091

S. Isotani, and M. van Velsen, ‘‘Using erroneous examples to improve1092

mathematics learning with a web-based tutoring system,’’ Comput. Hum.1093

Behav., vol. 36, pp. 401–411, Jul. 2014.1094

[32] A. L. M. Miranda, R. Garcia, G. M. Lunardi, R. Vilela, P. H. D. Vale, and1095

W. Silva, ‘‘Projeto e Avaliação de um template de worked examples para1096

o ensino de Programação,’’ in Proc. Anais do XXXIV Simpósio Brasileiro1097

de Informática na Educação (SBIE ), Nov. 2023, pp. 1673–1684. [Online].1098

Available: https://sol.sbc.org.br/index.php/sbie/article/view/267881099

[33] W. Silva, I. Steinmacher, and T. Conte, ‘‘Students’ and instructors’1100

perceptions of five different active learning strategies used to teach1101

software modeling,’’ IEEE Access, vol. 7, pp. 184063–184077, 2019.1102

[Online]. Available: https://ieeexplore.ieee.org/document/8765700/21103

[34] K. Petersen and C. Gencel, ‘‘Worldviews, research methods, and their1104

relationship to validity in empirical software engineering research,’’ in1105

Proc. Joint Conf. 23rd Int. Workshop Softw. Meas. 8th Int. Conf. Softw.1106

Process Product Meas., Oct. 2013, pp. 81–89.1107

[35] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,1108

and A. Wesslén, Experimentation in Software Engineering. Cham,1109

Switzerland: Springer, 2012.1110

[36] L. R. Hay, R. O. Nelson, and W. M. Hay, ‘‘Methodological problems in1111

the use of participant observers,’’ J. Appl. Behav. Anal., vol. 13, no. 3,1112

pp. 501–504, Sep. 1980.1113

[37] W. A. F. Silva, I. F. Steinmacher, and T. U. Conte, ‘‘Is it better to learn from1114

problems or erroneous examples?’’ in Proc. IEEE 30th Conf. Softw. Eng.1115

Educ. Training (CSEE&T), Nov. 2017, pp. 222–231. [Online]. Available:1116

http://ieeexplore.ieee.org/document/8166706/1117

[38] J. C. Carver, N. Juristo, M. T. Baldassarre, and S. Vegas, ‘‘Replications of1118

software engineering experiments,’’ Empirical Softw. Eng., vol. 19, no. 2,1119

pp. 267–276, Apr. 2014.1120

RENATO DE SOUZA GARCIA received the
bachelor’s degree in computer science from the
State University of Mato Grosso do Sul (Dourados
Campus) and the M.Sc. degree from the Graduate
Program in Informatics, Federal University of
Pampa (UNIPAMPA). He is currently pursuing the
Ph.D. degree with the Institute ofMathematics and
Statistics, University of São Paulo (IME-USP).
He is a Professor at the Federal Institute of Educa-
tion, Science, and Technology of Mato Grosso do

Sul. He is a member of the NIPETI Research Group (Interdisciplinary Center
for Research, Study, and Development in Information Technology). With
previous experience as a Software Developer, as well as a strong academic
background, he integrates research, teaching, and community outreach
to drive advancements in information systems, software engineering, and
software development. His research interests include computer science
education, informatics in education, experimental software engineering,
information systems, as well as conversational agents, chatbots, artificial
intelligence, and machine learning.

JOÃO EMILIO ANTONIO VILLA received the
bachelor’s degree in software engineering from
the Federal University of Pampa (UNIPAMPA),
where he is currently pursuing the master’s degree
in software engineering. He is an Instructor at
SENAC Alegrete, teaching Python programming
and software development courses. He also has
experience as a teaching and research fellowships
in higher education. He has been actively involved
in academic and outreach projects, including

CoderBot, an educational chatbot developed to support programming
education. This project resulted in empirical studies and scientific publi-
cations in the field of computing education. He has also contributed as a
Volunteer in outreach programs, such as Programa C and Tramas at the
Federal University of Pampa, aiming to promote educational initiatives and
technology dissemination. With a solid technical background in front-end,
UX design, Java, React.js, and Python, and an interest in interdisciplinary
applications of technology, he integrates academic research, teaching, and
software development to explore innovative approaches for enhancing
programming education and user experience in intelligent systems. His
research interests include software engineering, computing education, web
development, chatbots, and usability and user experience (UX).

ANDRE LUIZ MENDES MIRANDA is cur-
rently pursuing the degree in software engineer-
ing with the Universidade Federal do Pampa
(UNIPAMPA). He works at Venda ERP, a white
label ERP company, where he began as a Full-
Stack Intern, developing chatbots and solutions for
the white label ecosystem. Later, he transitioned to
360Chat, a customer support platform, contribut-
ing to its development and enhancement. With
a strong background in full-stack development,

he has experience in automation scripts, API integrations, CI/CD pipelines,
and gRPC-based microservices. His expertise includes React,.NET, Java,
and Go, with a keen interest in optimizing software workflows and
automation. Beyond his professional work, he is passionate about education
and technology. He has participated in an extension program focused
on teaching children programming logic, which sparked his interest in
computing education. Since then, he has contributed to academic research
and publications on the subject. He is involved in a startup project,
working on an expanding application while exploring team organization
strategies, Kanban methodologies, and team management. His research
interests include software engineering, chatbots, and educational technology,
aiming to integrate technical expertise with user-centered innovations to
enhance software development practices and user experience.

GILLEANES THORWALD ARAUJO GUEDES
received the bachelor’s degree in informatics
from the University Campaign Region (Universi-
dade da Região da Campanha)—URCAMP, Bage
Campus, and the M.Sc. and Ph.D. degrees in
computer science from the Graduate Program in
Informatics, Federal University of Rio Grande
do Sul (UFRGS). Currently, he is an Adjunct
Professor with the Federal University of Pampa
(UNIPAMPA) and a member and the Coordinator

of the Graduate Program in Software Engineering (PPGES-UNIPAMPA).
His research interests include requirements engineering, software design,
modeling with UML, software process, software verification and validation,
domain-specific modeling languages (DSMLs), and agent-oriented software
engineering (AOSE).

VOLUME 13, 2025 145021



R. D. S. Garcia et al.: Theory Inspires, but Examples Engage

ANA CAROLINA ORAN received the bachelor’s
degree in systems analysis from the Centro de
Ensino Superior Fucapi, the M.Sc. degree in
computer science from the Federal University of
Pernambuco (UFPE), and the Ph.D. degree in
informatics from the Graduate Program in Infor-
matics, Federal University of Amazonas (UFAM).
Currently, she is a Professor with UFAM and a
member of the Graduate Program in Informatics
(PPGI-UFAM). She is part of the Usability and

Software Engineering (USES) Research Group and actively contributes to
research projects focused on enhancing software development practices and
supporting the local software industry in the Amazon region. With previous
experience as a Software Developer and a Requirements Analyst, as well as a
strong academic background, she integrates research, teaching, and practical
innovation to foster technological and human-centered advancements in
software engineering. Her research interests include software engineering,
requirements engineering, usability and user experience (UX), developer
experience (DX), agile methodologies, and software testing.

PAULO SILAS SEVERO DE SOUZA received the
master’s and Ph.D. degrees in computer science
from the Pontifical Catholic University of Rio
Grande do Sul (PUCRS), Brazil. Currently, he is a
Professor of software engineering with the Federal
University of Pampa (UNIPAMPA). He has expe-
rience in software development, holding multiple
software deposits at Brazilian National Institute
of Industrial Property (INPI). Additionally, he has
a strong research background, having published

over 50 articles in prestigious venues, including IEEE COMMUNICATIONS

LETTERS, Future Generation Computer Systems, IEEEACCESS,Measurement,
Journal of Network and Computer Applications, and The Journal of
Supercomputing, where he also serves as a Regular Reviewer. His research
interests include DevOps, cloud computing, and related paradigms.

RICARDO FERREIRA VILELA received the bach-
elor’s degree in computer science from the Federal
University of Gois (UFG), the M.B.A. degree in
people management from ESALQ-USP, and the
M.Sc. and Ph.D. degrees in computer science and
computational mathematics from the University
of São Paulo (ICMC-USP). Currently, he is an
Assistant Professor with the School of Technol-
ogy, University of Campinas (FT-UNICAMP).
His research interests include software quality,

experimental software engineering, software testing, search-based software
testing, test automation, and chatbots. He is a member of Brazilian Computer
Society (SBC).

PEDRO HENRIQUE DIAS VALLE received the
bachelor’s degree in computer science from the
Federal University of Gois (UFG), the M.B.A.
degree in project management from ESALQ-USP,
and the M.Sc. and Ph.D. degrees in computer
science and computational mathematics from the
University of São Paulo (ICMC-USP). Currently,
he is an Assistant Professor with the Institute
of Mathematics and Statistics, University of São
Paulo (IME-USP). His research interests include

computer science education, informatics in education, software quality,
experimental software engineering, software testing, software architecture,
interoperability, educational games, conversational agents, chatbots, and
artificial intelligence. He is a member of Brazilian Computer Society (SBC).

WILLIAMSON SILVA received the bachelor’s
degree in systems analysis and development from
the Federal Institute of Education, Science, and
Technology of Roraima (Boa Vista Campus) and
the M.Sc. and Ph.D. degrees in informatics from
the Graduate Program in Informatics, Federal
University of Amazonas (UFAM). Currently, he is
an Adjunct Professor with the Federal University
of Cariri. With a solid academic background
and an interdisciplinary approach, he actively

contributes to the academic community, seeking advancements in the fields
of computing education and software engineering. His research interests
include computer science education, informatics in education, requirements
engineering, software quality, experimental software engineering, informa-
tion systems, usability and user experience, as well as conversational agents,
chatbots, artificial intelligence, and machine learning. He was a member
of the Steering Committee of the Special Commission on Information
Systems (CESI) (2022–2023, 2023–2024, and 2024–2025) and the Steering
Committee of the Special Commission on Informatics in Education
(2024–2025), both committees of Brazilian Computer Society (SBC). He is
also part of the Interest Group on Active Methodologies linked to the Special
Commission on Computer Education.

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - ROR identifier: 00x0ma614

145022 VOLUME 13, 2025


