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Abstract. This paper introduces eTRUMiner, a novel algorithm for mining mul-
tivariate temporal association rules from heterogeneous time series datasets
with missing observations. Our approach enables user-defined discretization,
discovers frequent patterns, and outputs rules in short or detailed formats, thus
enhancing interpretability. The results show that: (i) the choice of discretiza-
tion method significantly influences rule relevance; (ii) eTRUMiner preserves
the rules with high confidence in a dataset with up to 15% missing data; and
(iii) the extracted rules can capture plausible causal dynamics. These findings
demonstrate eTRUMiner’s robustness to incomplete data and its usefulness for
exploratory analysis and forecasting in complex temporal domains.

1. Introduction

The volume of data generated and collected daily is enormous, from our everyday life
with [oT and social media usage to our work by-products, for example. In this scenario,
machine learning plays a relevant role, with tens of thousands of related papers published
in the academic and industrial area. The association rule mining is one of the machine
learning tasks capable of extracting knowledge from databases.

Association rules represent causality relationships between antecedent and conse-
quent [Agrawal et al. 1993], which is of great interest due to its simplicity, high explana-
tion potential, and prediction abilities. However, for time series data, patterns may depend
not only on co-occurrence but also on lead-lag relationships and seasonality. Therefore,
the time of rule occurrences and the temporal distance between antecedent and consequent
are valuable information.

Discovering causal, time-dependent relations in multivariate time series is cru-
cial for domains ranging from finance to climate science. The temporal feature
of the rules allows us to understand the order and time of occurrence of events
[Segura-Delgado et al. 2020]. Hence, mining temporal rules can be an efficient means
of obtaining useful information from massive data sources [Han et al. 2011]. For exam-
ple, a temporal rule on the economic scenario could be “one year after a rise in import,
the country’s GDP also increases with 69% confidence” [Karasawa and Sousa 2023].

Temporal association rule mining extends the classical formulation by setting an
explicit time window At to the rules, that is, (A = C, At), where A is the antecedent of
the rule and C' is its consequent. Yet most existing methods treat time implicitly as a sim-
ple ordering key or require pre-processing to align multiple series of different length and
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sampling rate [Romani et al. 2010, Zhao and Zhang 2017]. They also tend to be limited
to univariate [Das et al. 1998, Schliiter and Conrad 2011] or complete multivariate time
series datasets, which hampers their applicability to modern, heterogeneous and incom-
plete temporal repositories such as economic indicators, sensor networks, and electronic
health records.

We propose eTRUMiner (extended Temporal RUles Miner), the next step of TRU-
Miner, a previous algorithm designed to mine temporal rules limited to two variables
[Karasawa and Sousa 2022]. The eTRUMiner is capable of mining multivariate time se-
ries from several data sources and outputs rules with two or more distinct variables, in-
dicating the exact time-span between antecedent and consequent. It can handle hetero-
geneous time series with missing observations and also missing variables. The algorithm
runs with different discretization methods, allowing the user to choose an adequate dis-
cretization for the analysis purposes. The rules can be returned in short and extended
format, with antecedent, consequent, and temporal feature in both cases. In the extended
format, all occurrences of the rule and the corresponding time intervals are detailed.

This paper includes the related work in Section 2, background in Section 3 sum-
marizing the basic concepts of multivariate temporal rule mining, and eTRUMiner de-
scription in Section 4. Section S describes the datasets, results, and analysis of eTRU-
Miner execution on international trade data. Finally, in Section 6, we present our conclu-
sion and directions for future work.

2. Related Work

Rule-mining research dates to the 1990’s, with the landmark Apriori algorithm in
[Agrawal et al. 1993] that laid the foundation for later advances. For temporal rules,
[Das et al. 1998] proposed the temporal feature as the number of quantized elements be-
tween the antecedent and the consequent of the rules, but only as a maximum time span.
The MOWCATL algorithm [Harms and Deogun 2004] performs rule extraction consid-
ering a time window that can be a fixed or a maximum time between the antecedent and
the consequent. However, rule extraction is performed only on predetermined elements of
interest. In the Clearminer [Romani et al. 2010], an algorithm for extracting association
rules composed of distinct variables from multivariate time series, the temporal factor
delimits the maximum time window to generate the rules.

[Schliiter and Conrad 2011] evaluated three discretization methods, introducing a
prototype to extract temporal rules from univariate time series. In [Zhao and Zhang 2017]
the authors propose an algorithm to mine temporal rules from multivariate series with
temporal feature such as the time span between the antecedent and the consequent of the
rule. However, it needs to group the obtained patterns in clusters to reduce the gener-
ated patterns. TRiER [Amaral and Sousa 2019] extracts temporal exception rules from
multivariate time series aiming for the maximum number of variables for each item. In
[de Oliveira et al. 2017], the focus is the extraction of association rules in graphs.

In [He et al. 2024], the authors proposed temporal rule mining of multivariate
time series using shapelets, however, there is no mention of missing value handling.
[Ho et al. 2025] focus on temporal pattern mining, providing information of which vari-
ables occurred when, but with no mention of heterogeneous datasets. The work of
[Srivastava et al. 2024] proposes using association rules from financial time series for
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deep learning forecasting, with missing values treatment being series exclusion or ob-
servations imputation. We could not find any research work that simultaneously handles
heterogeneous multivariate time series, missing observations and variables, and multivari-
ate temporal rules as eTRUMiner does.

3. Background

Discretization is a relevant pre-processing step for temporal rule mining. The discretiza-
tion of a multivariate time series can be applied to each variable separately as in a univari-
ate time series and then group the variables to generate the discretized multivariate time
series. For example, consider a multivariate time series s with n observations and § vari-
ables where a univariate time series is s[varx| = obsy, ..., 0bsX, with varx € [1, ..., d].
For each variable, the discretization process generates the discretized univariate time se-
ries s'[varx] = aff ,,..., a5, o, representing a quantized symbol from variable X
covering s[varx| from ¢; (beginning time) to ¢; (ending time).

The transaction is defined as two sets of patterns, where a set is exemplified as
([varx,a;¥],...), and a temporal feature At indicating the time interval between the two
sets. It can be represented as

(varx,a;'],...), ([vary,a}/], ), At

Each pattern (e.g. [varx, aZX ]) contains a variable (e.g. varx representing variable X') and
its respective quantized symbol (e.g. «X), with i indicating the coverage time interval (;,
ty) in the discretized time series. Each variable can appear in at most one pattern within a
transaction [Karasawa and Sousa 2023]

The set with earlier beginning time on the transaction is termed the “antecedent”,
while the latter is the “consequent”. As the temporal feature indicates the time span, it
can be delimited by a temporal threshold w, the maximum time window, chosen by a
domain specialist to filter only causal relationships, as detailed in [Romani et al. 2010].
With this delimitation, the maximum number of transactions 7" generated from a dataset
with NV time series can be calculated as §.(w + 1)(2.L — w), where L is the number of
discretized observations from each time series.

A multivariate temporal rule is defined as

([varx, &;X], ...) = ([vary, a}/], o), At
where ([vary,a;X],...) is the rule’s antecedent and the consequent is ([vary,a)],...).
The antecedent came from the first set in the transactions while the consequent came from
the second, covering up to § variables. The temporal feature At of the rule comes from
the temporal feature of the transaction, indicating the time span between the antecedent’s
and consequent’s beginning time.

Each temporal rule is derived from a single transaction and includes at least one
pattern from the antecedent set and one from the consequent set. It can contain up to
distinct patterns, with a minimum of two. The same is valid for the time series variables
since each variable is only in one pattern of the transaction.

To evaluate the rules, quality measures from association rules mining, such as
support and confidence [Agrawal et al. 1993], can be extended to multivariate tempo-
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ral rules. However, it is necessary to integrate the temporal feature and the multivari-
ate characteristic. Support is the frequency of a rule in the whole set of transactions.
Equation 1 shows the multivariate temporal support used in this work, as presented in
[Karasawa and Sousa 2023].

sup — 100'freq([varx, o], ... = vary,a)], ... Al) 0
T
The dividend is the frequency of the rule ([varx,o;'], ... = [vary,a)], ..., At)

and 7' is the number of transactions obtained from the dataset. Since a transaction also has
the temporal feature, even transactions composed of the exact same sets can be distinct.
The number of transactions for a temporal feature k, with k& € [0, ..., w], is

Tarr = N.(L — k)

The temporal support can vary from 0 to 100, where a rule with support equal to 100 is
present in all the transactions obtained from discretized time series. However, in temporal
rule mining, this can only occur when w = 0, i.e. only the temporal feature At = 0 is
allowed. For multiple time spans, the percentage of transactions for a temporal feature k
is then

2.(L —k)

Taer(%) = 100. (w+ 1)(2.L — w)

For example, in a time series with 23 discretized elements and a time window
w = b, the temporal feature At = 0 is present in 18.7% of the transactions. Therefore,
the maximum support that any rule with temporal feature At = 0 can obtain is 18.7. The
larger the size of the evaluated time window, the lower the maximum support that can be
achieved.

The precision of the rule is measured by confidence, given by the frequency of the
rule over the frequency of all transactions that generate rules with the same antecedent
and temporal feature. Equation 2 measures the confidence in multivariate temporal rules.

freq([varx, a)],... = [vary,a)],..., At)
freq([varx, ], ..., At)

conf = 100. (2)

For the output of the rules, we adopt the formats “short” and “extended”. A “short”
rule contains the antecedent, the consequent, and the temporal feature. An “extended” rule
is more detailed, composed of the short rule and all occurrences in time series. To locate
each occurrence of the rule, the series index and the time of the first observation that refers
to the beginning of the temporal rule are provided.

4. The eTRUMiner Algorithm

The eTRUMiner (extended Temporal RUles Miner) is an algorithm to mine multivariate
temporal rules from time series of different origins. It handles time series with miss-
ing observations and missing variables (incomplete series), and distinct duration between
variables (heterogeneous series), without pre-processing needs. The algorithm can be
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Figure 1. eTRUMiner overview with step samples.
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summarized in 4 steps: discretization, transactions generation, rules generation, and rules
evaluation. Figure 1 illustrates eTRUMiner by exemplification of the first three steps.

In the discretization process, each variable of each time series is discretized into
a series of quantized symbols composed of: a symbol (eg.: I, D, S), a beginning, and an
ending time on the respective time series. The quantized symbols are then grouped into
patterns to generate transactions in the transaction generation step. The frequent patterns
obtained from the transactions are used to generate the rules, first two-variable rules and
then rules with more than two distinct variables. The evaluation step is executed based on
user thresholds, such as minimum confidence, to obtain relevant rules.

The entry dataset (S) is a set of multiple univariate time series that may have
different origins but can be grouped into domain-meaningful multivariate time series. In
Figure 1, each color in the dataset representation indicates a distinct variable. The series
identifier must coincide in all variables to allow eTRUMiner to identify a multivariate
time series. Other entry parameters are the discretization method, the temporal threshold,
the minimum support, and the minimum confidence. The temporal threshold limits the
maximum temporal feature based on the semantic meaning of the rule. Minimum support
and confidence are also used to reduce the algorithmic complexity.

4.1. Discretization

In the discretization process, the choice of discretization method is intrinsically tied to
the application domain. Since the eTRUMiner was originally designed for economic
data, the chosen methods were a variation-based discretization, decis, quartis and SAX
[Lin et al. 2003]. Each discretized observation has its symbol, beginning time and ending
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time. This representation allows the quantized symbol to represent a sequence of the
original observations.

eTRUMiner handles missing observations and missing variables during the dis-
cretization step because beginning and ending times of each quantized observation are
stored. With this information, transactions and rules are generated using precise time
marks. This ability of eTRUMiner simplifies time series pre-processing, and allow di-
verse datasets to be explored, even with missing observations, missing variables, and
distinct duration between series without the need for data imputation.

Figure 2. Discretization process with missing observations.
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Figure 2 samples a discretization process in which the applied method discretizes
each observation in one quantized symbol, so both beginning and ending time equals the
observation time. An element / refers to an increase behavior between observations, D
indicates a decrease while S stands for a stability behavior. Since the third observation
(1998) 1s missing, the second and third quantized symbols are not generated, with no loss
to the method because the beginning and ending times are stored.

4.2. Transactions Generation

After discretizing all time series, the quantized series are used to generate transactions in
the next step. Each quantized symbol is stored in the pattern form, linked to a time stamp
with its transactions occurrences. The rule generation then is performed over frequent
patterns, using minimum support as the threshold and the transaction frequency.

As detailed in Section 3, a pattern contains the quantized symbol and its respective
variable. In the transactions generation step, patterns are ordered by the beginning time of
the quantized symbol (e.g. in Figure 1 quantized symbols for each variable are aligned for
beginning year) and grouped into lists (ptrn[1997] for example in Figure 1), the maximum
number of elements being the number of distinct variables in the dataset. The set of
lists are concatenated in pairs (in Figure 1 a pair is exemplified as seq[1, 1997, 1998])
complying with the temporal threshold as the maximum time span between the beginning
time of the pair for generate the transactions.

For each transaction is stored an identifier and the beginning time of both an-
tecedent and consequent sets. Every pattern that composes a transaction is then counted,
considering the temporal feature of the transaction in which it occurs and if it is in the an-
tecedent or consequent of the transaction. The storage of transactions occurrences helps
in rules generation and facilitates rules location in the extended representation.
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4.3. Rules Generation

Given the minimum support, we can calculate the minimum occurrences of a pattern to be
classified as a frequent pattern. It is given by sup,,;, * T" where sup,,;, is a user-defined
threshold and 7" accounts for the total number of transactions. Only frequent antecedent
and consequent patterns are used to generate temporal rules for each temporal feature up
to the temporal threshold w.

In this work, the antecedent frequent patterns are joined to the consequent ones if
they are from distinct variables, producing rules with no repeated variable. This joining
step generates all possible rules, but only rules with a high intersection frequency between
antecedent and consequent occurrences are stored. The minimum occurrences are also
used here to filter the relevant rules. Rules with more than one pattern in the antecedent
and one in consequent are obtained by the eTRUMiner adding other frequent patterns
from distinct variables of the ones already present in the rule.

In the increase pattern step, only the rules generated with the n patterns and with
frequency above the minimum occurrences are used to generate rules with the n + 1
patterns. The process of rules generation is executed up to the end of the possible variables
to increase or the last rules generated with n patterns cannot generate any rule with n 4 1
pattern with frequency above the minimum. Each distinct rule with minimum frequency
or more is stored for the rule evaluation step.

4.4. Rules Evaluation

The evaluation of rules is the last step of eTRUMiner. In this work, support and confi-
dence were implemented as defined in Equation 1 and Equation 2 respectively. They are
traditional quantitative measures for rules mining, with adaptations to fully incorporate
the temporal feature of temporal rules. However, in temporal rules mining, support can
be very low, as detailed in Section 3.

The support measure utilizes the frequency of the rule, stored on the rules genera-
tion step, and the total of transactions generated, obtained from the transaction generation
step. The confidence is obtained from the frequency of the rules over the frequency of
the transaction that has the same patterns in the antecedent and also the same temporal
feature.

Rules are returned if they meet the minimum support and minimum confidence
thresholds defined by the user. They are ordered by support and confidence, respec-
tively, and can be returned in a short or extended format. For example, ([IMP, ] =
[GDP,I], At = 0) is a sample of the short format while its extended format includes
occurrences, for example (bra,1997;bra,2000;bra,2001). This rule indicates that a rise on
import volumes is detected with a rise in GDP volumes in the same year. The extended
format also shows that there are occurrences of this rule in Brazil on 1997, 2000 and 2001.

4.5. eTRUMiner Implementation

The implementation of eTRUMiner was carried out in C++ using the concept of classes.
To construct the dataset from the time series input, the identifier of each time series must
be consistent (for example, in the evaluated sample, the Brazil series are referred to “bra”
in all variables), maintaining exactly the same denomination in all variables of the same
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series. The order of organization between the series is irrelevant, which facilitates the
integration of variables from different sources into a single set of multivariate series.

The discretization is performed by variable for each series, allowing different dis-
cretizations between variables. However, this analysis was not performed in this work.
The implementation of the SAX discretization uses a table containing the coverage range
of each symbol, stored on a file. The maximum number of distinct elements in the SAX
discretization is 26, which constitutes the size of the alphabet.

The main data structures used in eTRUMiner are vectors and dictionaries. For ex-
ample, each temporal feature At contains a dictionary to store frequent patterns and their
occurrences as an antecedent or a consequent. This allows for easy navigation during
rules generation, while also avoiding pattern and variable duplication. Since each trans-
action is stored as an index from a vector, a rule frequency is reduced to the intersection
between patterns occurrences.

The memory usage by eTRUMiner is given by O(3°.N.L.w) in the worst-case
scenario, with each transaction generating up to almost 3° rules. The threshold w limits
the memory usage, ¢ is the number of variables in the /V time series of the dataset that
are composed of up to L quantized symbols. For time complexity, O(w.3°.5%.L?) is the
worst case scenario, with rules generation as the costly step. However, this estimate does
not consider some heuristics implemented at code level, such as minimum support, order
between patterns stored and patterns in the same antecedent or consequent having the
same beginning time.

5. Experimental Analysis

The eTRUMiner experiments were performed over multivariate time series from interna-
tional trade of distinct sources, with missing observations and missing variables, adding
up 9.39% of missing values. The dataset covers 232 countries from 1996 to 2020 of
import', export!, ECI?> and GDP?. The experiments are presented in three subsections
based in their objectives: in Subsection 5.1 we evaluate the algorithm’s performance on
the dataset, in Subsection 5.2 we assess eTRUMiner’s ability to handle missing values,
and the semantic interpretation of the extracted rules is detailed in Subsection 5.3.

5.1. eTRUMiner Performance

We tested, four discretization methods on the dataset: the variation-based discretization,
decis, quartis, and SAX. For the first three methods, discretization was applied directly to
the original data, whereas SAX includes a z-score normalization step before generating
quantized symbols. For the discretizations variation-based and SAX, the maximum num-
ber of distinct quantized symbols is limited to three, while decis and quartis do not have
a predefined maximum. In terms of the resulting number of rules, variation-based and
SAX produce more than ten thousand rules, while decis and quartis generate hundreds of
thousands.

'BACII (CEPII) http://www.cepii.fr/CEPII/en/bdd\_modele/bdd\_modele\
_item.asp?id=37

2ECI (Harvard) https://atlas.cid.harvard.edu/rankings

3GDP (IMF) https://www.imf.org/en/Publications/WEO/weo-database/2022/
April
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Figure 3 presents the distribution of rules on support and confidence for the eval-
uated methods. The variation-based discretization generates the lowest volume of rules
and achieves the highest support value, indicating the lowest dispersion in support values
among rules. For confidence measure, the values can not be directly compared across
discretization methods, since the confidence of a rule is the percentage of occurrence of
the same antecedent in the specific set of rules.

Figure 3. Percentage distribution of temporal rules in support and confidence
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In all discretization methods, more than 80% of the rules have support below
1 while the maximum value is 9.32, obtained for variation-based. This method also
extracted 0.5% of the rules with support between 9 and 10. For the confidence measure,
at least 40% of the rules have confidence up to 10, but rules with high confidence (between
90 and 100) have a high probability of low occurrence and therefore are not of interest.

Figure 4. Rules distribution after set threshold for support and confidence.
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The high percentage of rules with low support and low confidence strengthens
the usage of minimum support and minimum confidence threshold, that can significantly
reduce the volume of rules generated and the algorithm processing and memory cost,
and also help select more relevant rules. Figure 4 presents the distribution of the rules
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after applying the minimum support and minimum confidence thresholds for time series
discretized using the variation-based method.

In Figure 4a, the x-axis represents the minimum support threshold and the y-
axis indicates the confidence interval of the rules. The number above each symbol refers
to the number of rules in the respective confidence interval for the minimum support
threshold. From this plot, it is possible to observe that rules with lowest support have
mostly low confidence, between O to 20, as expected. Rising minimum support threshold
up to 3 selects most of the rules between confidence 60 to 80, with low loss of rules with
confidence between 80 - 100. Rules with low confidence tend to disappear with a high
minimum support threshold, indicating that sup,,;, > 3 is a suitable threshold for this
dataset.

Figure 4b shows the minimum confidence threshold for variation-based dis-
cretization. Rules concentrate between support 0 and 3 for all minimum confidences
evaluated. For rules with support above 2, the volume drop begins at con f,,,;, = 50 and
becomes significant only for con f,,;, = 75, indicating a great resilience of these rules to
the application of a confidence cutoff. Given that a significant reduction in the volume
of rules with high support occurs after con f,,;, = 50, a confidence cutoff in this range is
indicated for the variation-based discretization applied to our dataset.

The maximum support obtained by eTRUMiner for our data is 9.32, with up to
hundreds of thousands of rules according to discretization method. For the discretization
methods we evaluated, the variation-based led to the best results, with lower volume of
rules generated, rules with the highest support value, and good resilience to minimum
support and confidence cuts. The SAX discretization also had good results, but since it
tends to smooth missing observations it may not be a suitable method for datasets with
missing values.

5.2. Missing Values Evaluation

For the analysis of missing values, since the dataset already has missing observations and
missing variables, we selected the complete time series to create a new ‘“homogeneous”
dataset composed of 116 series with the same four variables from 1996 to 2019. We
compared the homogeneous dataset with the original one regarding resulting rules and
evaluated the impact of increasing percentages of missingness in the former. For these
analyses, we employed the variation-based discretization method due to its resilience to
missing observations, as shown in the previous experiments.

Although the number of time series is reduced to half compared to the original
dataset, the number of total rules decreased only 3%, with 6,225 rules generated from the
original data versus 6,039 rules extracted from the homogeneous dataset. However, the
maximum support increased from 9.32 to 11.84, indicating that missing values tends to
impact quality measures.

Figure 5 presents the distribution of rules in support and confidence ranges of both
datasets. Despite the similar distribution behavior, the distribution of rules from homo-
geneous dataset reaches higher support and confidence values than those of the original
dataset. Thus, complete time series data could result in more cohesive rules with better
distribution of rules considering these quality measures.
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Figure 5. Rules distribution comparative between datasets from variation-based
discretization.
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A more detailed analysis of missing values was performed with observations ran-
domly removed from the homogeneous dataset, ranging from 1 to 15% of removal. The
number of generated rules varied from 6,017 with 1% of removal to 4,852 on 15% of
missing values, representing a reduction of 20% in the volume of rules. It is noteworthy
that no new rules were extracted from the subsets with missing values, due to the choice of
the discretization method. The missing values had a negative impact mainly on the quality
measurements, with a mean support variation of up to 55% considering coincident rules
extracted from the homogeneous dataset and the subset with 15% missing values.

Minimum support and minimum confidence thresholds were applied to help in
the analysis of relevant rules. Although confidence thresholds have a mild effect on rules
volume reduction, it helps select rules with lower variation on support when compared to
their counterparts from the homogeneous dataset. For instance, in the 15% missing values
subset, rules mean support dispersion is under 40%, but with a higher cut as minimum
support (Supm,in = 4) and minimum confidence con f,,;, = 50, 34 relevant, coincident
rules were extracted with low variation in quality measures, showing that eTRUMiner
preserves relevant rules while being capable of handling missing data.

5.3. Semantic Evaluation

In this section, we discuss some of the relevant rules eTRUMiner extracted from the
original dataset regarding their meaning, time of occurrence, and location. eTRUMiner
discovered the rule ([(GDP, D] = [IMP,I|[EXP,I],At = 5), sup = 3.11,conf =
88.15, indicating that 5 years after a decrease in GDP a rise in country’s imports and
exports is often observed. This rule is verified in Japan, Canada and Russia starting in
1998, during the Dotcom bubble crisis (1996-2004), representing an expected behavior
after the crisis, as economies undergo restructuring.

During 2005 to 2012, we observe mostly an economic growth season, with
relevant rules exhibiting increasing patterns. The strongest rule is ([/MP,I] =
[GDP,I],At = 0), sup = 18.84,conf = 92.62, indicating that a rise in import is
usually seen with a rise in GDP. A similar strong rule has the same antecedent and
consequent, but with a temporal feature of one year. This period also covers the Great
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Recession, generating rules such as ([[M P, D||[GDP,D] = [EXP,D|,At = 0),
sup = 3.48, conf = 94.78, a behavior of economic recession detected in USA, Germany,
and Brazil starting in 2009, as expected.

In the following period, 2013 to 2019, the rules still indicate an increase in eco-
nomic indexes, but they are more dispersed. This characteristic can be an effect of
growth in economic disparity, countries with specialized economies, while others are pri-
marly agricultural. For example, the rule ([EXP, I[[ECI,I] = [GDP,I],At = 2),
sup = 3.16, conf = 70 is verified in China in 2014, Japan in 2016 and Canada in the next
year, all countries with a high-specialized economy and comprising the largest economies
in the world.

6. Conclusion

This paper introduced eTRUMiner, an algorithm capable of mining multivariate tempo-
ral rules from heterogeneous time series datasets with missing observations and missing
variables. The algorithm verifies the relationships between several variables for different
time intervals and can report all occurrences of each rule in individual series. Related al-
gorithms do not deal with problems existing in real data sets such as missing observations,
missing variables, and heterogeneous duration across series variables. The rules can be
returned in short and extended formats and are composed of two or more variables.

eTRUMiner was applied and evaluated on macroeconomic multivariate time se-
ries of 232 countries from 1996 to 2020. Distinct discretization methods were analyzed
to determine the impact of missing data. The variation-based presented the highest max-
imum support, the best distribution of support and confidence in distinct rules count, and
generated the rules with smallest dispersion in missing data scenario.

The application of eTRUMiner on a homogeneous and complete dataset produces
a more concise set of rules, with higher support. Even so, our algorithm is able to mine
temporal rules from heterogeneous and incomplete time series with acceptable impact on
the quality of returned rules. For the economic analysis, the rules extracted match the
expected behaviors.

Future research could focus on incorporating additional evaluation metrics into
eTRUMiner, offering new perspectives on the rules extracted. Given eTRUMiner’s
versatility over discretization methods and evaluation measurements, its application to
new datasets is both feasible and encouraged. Moreover, because eTRUMiner supports
variable-specific discretization, exploring mixed-method discretization across variables in
rules mining is another promising direction.
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