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1 | INTRODUCTION

Escarole (Cichorium endive var. Latifolia L.) is a leafy vegetable largely
consumed cooked or as salad in Europe, Western Asia, and part of

America. It is considered a rich source of bioactive compounds,
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Abstract

This study aimed to evaluate the quality changes of the minimally processed escarole
under passive modified atmosphere, packaged in different flexible plastic packages,
which included polyvinyl chloride (PVC) stretch film, low-density polyethylene
(LDPE) bag, polypropylene (PP) bag, and bi-oriented polypropylene (BOPP) bag, dur-
ing storage for 20 days at 0°C and 90%-95% RH. The atmosphere of 16% O, and 3%
CO, formed in the PVC overwrap package provided the lowest browning index and
the best conservation of ascorbic acid, chlorophyll, and carotenoids. During the ex-
periment, no differences in phenolic compounds and polyphenol oxidase activity
among the treatments were observed, while the activity of peroxidase showed peaks
in different analysis days. Weight loss of all samples did not exceeded 1%. The mini-
mally processed escarole showed sensitivity to high CO, concentrations. Thus, a sim-
ple PVC stretch film provided the best visual and nutritional preservation of the
minimally processed escarole.

Practical applications

Escarole is one of the most consumed leafy vegetable as a minimally processed
product, however, there is no information about its quality changes associated with
the package. This produce is widely commercialized in the same package of other
leafy vegetables. This research has focused on application of passive modified at-
mosphere technology for quality preservation of escarole during storage, in order to
indicate the most adequate package for its quality and nutritional conservation. The
results implied that the quality of minimally processed escarole is better-maintained
using PVC stretch film, which is quite different from the usual plastic bags used for
minimally processed leafy vegetables. This information is quite interesting at pro-
cesser and market levels in order to standardize the packaging of this product and

prolong its visual and nutritional quality.

such as phenolic compounds and carotenoids, which have antioxi-
dant effects, preventing degenerative diseases in the human body
(Azevedo-Meleiro & Rodriguez-Amaya, 2005; Feltrim, Cecilio Filho,
Rezende, & Barbosa, 2008; Mascherpa, Carazzone, Marrubini,
Gazzani, & Papetti, 2012; Tiveron et al., 2012).
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The market for minimally processed products (MPP) is one
of the fastest growing segments on the food sector, due to the
high consumer demand for fresh and healthy foods ready to eat
or with easy preparation (Cozzolino et al., 2016). Due to the peel-
ing and cutting steps, the fresh cut products are highly perishable,
hence they are commercialized under refrigeration to ensure se-
curity and proper shelf life for commercialization. Additionally to
low temperature, others techniques such as modified atmosphere
(MAP) has been used to increase the shelf life of these products,
reducing water loss and retarding the growth of microorganisms
(Esturk, Ayhan, & Gokkurt, 2014; Mantilla, Mano, Vital, & Franco,
2010).

Modified atmosphere packaging (MAP) technique aims to con-
trol in-pack O, and CO, concentrations though the exchanging of
this gases between outside atmosphere and the headspace inside
the MPP package, which is formed naturally by the vegetables (Rai,
Kaur, & Patil, 2011). The most critical factor to obtain the desired
MAP is the package specification, especially the ones related to bar-
rier properties. If a package with very low oxygen transmission rate
is used in MPP with high respiratory rate, it can result in a reduction
of the internal level of O,, leading to anaerobic respiration, loss of
quality, and increasing the risk of contamination by anaerobic patho-
gens (Chinsirikul et al., 2014).

On the other hand, high CO, content may cause injuries, such
as necrosis, taste losses, unpleasant odor development, accelera-
tion of nutritional loss, and degradation of plant tissues (Hodges &
Toivonen, 2008; Poubol & Izumi, 2005). Passive modification of the
atmosphere is a simple application and low-cost technique for the
conservation of MPP (Jiang, Joyce, & Terry, 2001).

The quality of the MPP involves a number of attractive attributes
to the consumer, such as appearance, texture, flavor and nutritional
value. However, these characteristics are affected during storage. It
could occur leaf yellowing or darkening, browning on the cut-off points,
and physiological disorders. These symptoms can be reduced or alle-
viated, depending on the atmosphere composition within the package
(Manolopoulou, Lambrinos, Chatzis, Xanthopoulos, & Aravantinos,
2010; Martinez-sanchez, Tudela, Luna, Allende, & Gil, 2011).

There are limited information on the use of different packaging and
the adequate balance of headspace atmosphere composition on min-
imally processed escarole. Thus, the aim of this study was to evaluate
the effects of passive modified atmosphere on the visual, physiological,
biochemical, and nutritional aspects of minimally processed escarole.

WVTR at 38°C and 90% RH (g
waterm2d™)

Film Thickness (um) O,TRat23°C (mLm2d?)

PVC 14 5.000 361
PP 30 2.927 5.72
LDPE 30 6.270 5.71
BOPP 30 1.396 4.17
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2 | MATERIAL AND METHODS

2.1 | Plant Material and Experimental Setup

Escarole (Cichorium endive var. Latifolia L. cv Amazonas
Gigante) were obtained from conventional farm located in
Piracicaba (Sdo Paulo, Brazil) and immediately transported to
the Physiology and Biochemistry Postharvest Laboratory of
the University of Sao Paulo, under refrigerated conditions.
The material were standardized according to its size, color and
absence of mechanical damage. The selected escaroles were
washed with tap water and then cut in the base of the head to
separate the leaves, which have passed through the new se-
lection. The washed leaves were transferred to a cold room at
15°C and sanitized by immersion in sodium hypochlorite so-
lution (200 mg/L) at 5°C for 10 min. After sanitization, whole
leaves were manually cut into strips with a stainless steel knive.
The slices were again sanitized for 5 min and centrifuged for
1.5 min in domestic centrifuge (Arno, Sdo Paulo, SP, Brazil)
with average angular velocity of 760 x g to remove the excess
water. After cutting, 150 g of escarole were packed in different
plastic films: low-density polyethylene (LDPE) bag, the most
common package used for MPP in Brazil; polypropylene (PP)
bag; polypropylene bi-oriented (BOPP) bag and PVC (polyvinyl
chloride) stretch film. The first three packs had dimensions of
21 x 24 cm and were heat sealed. For the third treatment with
the PVC film, the leaves were placed in polystyrene trays (21
x 14.5 x 1.5 cm) which were wrapped with the stretch film.
All samples were stored at 0°C and 90%-95% RH for 20 days.
Analyses were performed on day O, after processing and then
following every four days until the 20th day of storage. Table 1
shows the package film properties concerned to O, and water

vapor permeabilities.

2.2 | Experimental design and statistical analysis

The experimental design was completely randomized in a factorial
scheme 4 x 6, with four treatments and six periods of analysis, in-
cluding time zero (after processing). Three replicates were used for
weight loss, physical, chemical, and gas analysis and triplicates for
pigment analysis, enzyme activity and total phenolic compounds.
The results were submitted to analysis of variance (ANOVA), with

TABLE 1 Thicknesses, oxygen, and
water vapor transmission rates of the
selected films

Notes. O, TR: Oxigen transmission rate; WVTR: Water vapor transmission rate; LDPE: low-density
polyethylene; PP: polypropylene; BOPP: polypropylene bi-oriented; PVC: polyvinyl chloride.
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averages compared by Tukey test (p < 0.01 < 0.05). The data were
submitted to the Pearson correlation coefficient (r), were considered
significant correlations between variables, values >0.700. Statistical
analyzes were performed using the statistical software Statistical
Analysis System Model 9.3 (SAS, 2011).

2.3 | Atmosphere composition inside the packages

The concentrations of gases in the headspace of the packages
were monitored using a gas analyzer CheckMate 9900 O,/CO, PBI
Dansensor (Minneapolis, MN, USA). The gas samples were taken via
syringe (hypodermic needle) coupled silicone septa previously set in
individual containers. The values were expressed as percentage in vol-
ume (v/v). The Day 0 gas analysis was performed 1 hr after sealing the

packages, which were maintained at experimental storage conditions.

2.4 | Browning Index, Total Chlorophyll and
Carotenoids Content

For browning index (Bl) determination were used 3 replicates, ana-
lyzing 10 pieces of minimally processed escarole strips from each
replicate. The Bl was based on the proportion of leaf area affected
following rating scale from O (no browning) to 3 (severe browning).
Bl was calculated by the formula: IE = = (browning note x percent-
age of the affected area corresponding to the sample) according to
Pen and Jiang (2003). Samples with IE higher than 2 were considered
unmarketable. For quantification of total chlorophyll and total carot-
enoids content, 0.25 g of sample were mixed with a 80% acetone
solution, and centrifuged at 10,000 x g for 10 min at 4°C. The su-
pernatant was used for the measurement of pigments by means of
a spectrophotometer (Biochrom, model pound 522) at wavelengths
of 663, 646 and 470 nm for determination of chlorophylls a, b, and
carotenoids, respectively, from which the values were calculated
the total values of chlorophyll and carotenoids. The formulas used
were described by Lichtenthaler (1987). The results were expressed
as milligrams of the pigment per 100 g fresh weight (100 mg/g FW).

2.5 | Ascorbic acid content

The extract for analysis was prepared by homogenized 30 g of the
sample with 10 mL of distilled water. This mixture was filtered to
obtain the liquid extract. Ascorbic acid content was determined by
titration of a 10 mL aliquot of the extract diluted in 50 mL of oxalic
acid (10%) with DCFI indicator (indofenol-sodium 2,6-dichlorophe-
nol) until color changed. The results were expressed in mg of ascorbic
acid per 100 g fresh weight (100 mg/g FW) (Carvalho et al., 1990).

2.6 | Total phenolic compounds and polyphenol
oxidase (PPO) and peroxidase (POD) activity

The total phenolic compounds (TPC) were determined according
to the methodology of Singleton and Rossi (1965), with adapta-
tions. The extract was prepared by milling 1 g of sample, added
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to 9 mL ethanol and centrifuged at 15,000 xg at 4°C for 20 min.
For the measurement sample were mixed 0.3 mL of the plant
extract with 0.75 mL of Folin-Ciocalteu 10%; 1.20 mL of water
and 0.75 mL of 4% sodium carbonate, and incubated in the dark
for 2 hr. The TPC analysis was performed in spectrophotometer
(Biochrom, model Libra S22) at 765 nm in triplicate. The calcu-
lation of total phenolic compounds was carried out by drawing
the standard curve with gallic acid. The results were expressed
in mg of gallic acid equivalents per 100 grams of fresh sample
(100 mg GAE g™ FW). The extract used for enzyme analysis was
elaborated adapting the method used by Zhan, Fontana, Tibaldi,
and Nicola (2009): 0.5 g of frozen leaves were added to 12 mL
of 50 mM sodium phosphate buffer (pH 7.0) (on ice), and subse-
quently centrifuged at 20,000 x g for 20 min 4°C. The enzyme
activity was carried out by spectrophotometry. To analyze the
activity of polyphenol oxidase (EC. 1.10.3.1 PPO) was followed
the methodology proposed by Degl'Innocenti, Guidi, Pardossi,
and Tognoni (2005) and modified by Zhan et al. (2009). The
analysis was performed by reading at 480 nm of 0.1 mL of the
enzyme extract incubated with 1.9 mL of 25 mM catechol in
quartz cuvettes. After a minute of the first reading, a new read-
ing was performed. It was considered as an enzymatic unit PPO,
the minimum difference in absorbance of 0.001 per minute be-
tween readings. The results were expressed as PPO units per
mg protein (U mg™! protein). For peroxidase activity (EC 1.11.1.7
POD), reading followed the recommendations of Degl’Innocenti
et al. (2005): the sample contained 0.16 mL of the extract in-
cubated with 0.004 mL of distilled water, 0.2 mL of 35 mM hy-
drogen peroxide and 1.6 mL of 10 mM guaiacol. Readings were
taken immediately after the addition of guaiacol and after 1 min
at a wavelength of 470 nm. Were considered as a POD unit, the
minimum increase in absorbance of 0.001 per minute. The results
were expressed in micromoles of guaiacol oxidized per minute
per mg protein (mmolL guaiacol min™t mg™ protein). Protein analy-
sis was performed by the method of Bradford (1976) using bovine
serum albumin as standard.

2.7 | Weightloss

The weight loss was determined by the difference of the initial
weight of the samples with the weight values obtained at each ex-
perimental evaluation period. The results were expressed in per-

centage of mass loss.

3 | RESULTS

3.1 | Atmosphere composition inside the package

There were significant differences (p < 0.01) in the gas headspace
composition of both O, (Figure 1a) and CO, (Figure 1b) concentra-
tions. Initially, as the atmosphere modification started taking place,
a rapid decrease in the percentage of O, and, consequently, CO,
increasing were observed for most of the tested films, except for
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the PVC, which achieved and maintained an equilibrium atmosphere
(16% O, and 3% CO,) during the storage.

As the storage progressed, the headspace atmosphere of LDPE
and PP bags reached equilibrium at the 4th day, with a slight change
on 20th day, when the product presented a higher degree of deterio-
ration. These two packages had mean values of 12% O,, and 5% CO,,
for LDPE and 11% CO,, for PP. The BOPP bags provided a rapid and
sustained reduction of O, reaching 4% on the 20th day, while its CO,

content reached and maintained 21% from the 8th day.

3.2 | Browning index, total chlorophyll and
carotenoids content

Browning index (BI), the total chlorophyll and carotenoids content were
affected by treatments and storage according to the F test (Table 2). A
slight increase in Bl started at the 12th day in all the samples (Figure 1c).
The samples packaged with PVC film had the lowest Bl among all films.
The samples packaged in PP and BOPP films exceeded the Bl market-
able limit on the last day of storage, and these samples showed largely
darkened points on the leaves area surface. Total chlorophyll content
(Figure 2a) and carotenoids (Figure 2b) decreased in all films tested.
Among the treatments, PVC was more effective (p < 0.01) in the con-
servation of these pigments in most part of storage. On the other hand,
PP and BOPP provided the lowest values observed in samples. The ini-
tial chlorophyll and carotenoids values were 40.2 mg 100 g* FW and
4.49 mg 100 gt FW, respectively.

3.3 | Ascorbic acid

The content of ascorbic acid (AA) decreased gradually in all treat-
ments (Figure 2c). Leaves packaged in PVC statistically differed
(p < 0.01) from the others at the 20th day, it retained the high-
est content of AA in most part of the storage. The lowest AA
values were obtained for the samples packed in BOPP. The at-
mosphere formed inside PVC film provided a retention of 50%
ascorbic acid at the last day of analysis, while the gas atmosphere
of BOPP retained only 27% of the initial value. There was a posi-
tive correlation between the AA content and total chlorophyll
(r = 0.944), total carotenoids (r = 0.939) and total phenolic com-
pounds (r = 0.893). That implies the strong influence that the AA
has on these parameters and their relationship with the browning
of tissues. Also, a negative correlation of AA with Bl (r = -0.773)
was observed, indicating that the degradation of this acid cause
higher darkening of the tissues. The initial AA values were from
25.50 mg 100 g™ FW to 7.15 mg 100 g™* FW in the BOPP samples
at the last day of storage.

3.4 | Total Phenolic compounds content and
Activity of PPO and POD

The total phenolic compounds (TPC) (Figure 3a) decreased during
storage regardless of the treatments. However, some variations
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FIGURE 1 Changesin %02 (a),and %CO2 (b) concentrations
inside packages and Browning Index (c) in minimally processed
escarole during storage at 0°C. Notes. Values are the mean of three
replicates. Vertical bars represent the standard error of the mean
(n=3)

were observed. There were a peak increased on the TPC of PVC
samples that differ significantly (p < 0.01) only on the 4th day. In the
20th day, the PP and BOPP samples showed higher TPC than the
others. In addition to the relationship with ascorbic acid, a positive
correlation was observed between TPC and total chlorophyll con-
tent (r = 0.877) and total carotenoids (r = 0.885). The initial values
were from 164.30 mg GAE 100 g FW and the lowest value were
53.43 mg GAE 100 g’1 FW in the LDPE films at the last day of
storage.

No significant effect of films, storage duration and their inter-
action on the PPO activity was found (Table 2). The mean of PPO
activity was 0.27 U mg™! protein. The POD activity (Figure 3b) in the
leaves showed significant differences (p < 0.05) between the films
during storage. The initial values of the POD activity was 0.37 umoL
guaiacol min"t mg™! protein. There were peaks in the POD activity in
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Quality parameters Storage duration  Film
Carbon dioxide concentration * *

(CO,%)?
Oxygen concentration (O,%) o o
Ascorbic acid (AAmg 100 g™ FW)®  ** -
Total Chlorophyll (mg 100 g™* FW)*  ** o
Total Carotenoids (mg 100 g™* FW)°>  ** o
Total phenolic compound (mg GAE > >

100 gt Fw)°®
Browning Index’ ** ns
Weight loss (%)8 *x *x
PPO activity (U mg™ protein) ns ns
POD activity (umol guaiacol min* x ns

mg~* protein)’

wzeifst CWILEY--2"

TABLE 2 Effect of films, storage

St durati . . . .
orage duration X duration, and interaction (films x storage

Film . . .
duration) on physiological aspects,
* nutritional and quality of escarole
minimally processed stored at 0°C for
o 20 days
ns
ns

*%

Notes. The results were obtained from the average of three repetitions. **: p < 0.01; NS: not signifi-
cant. 1 = transformed data, lambda value: xz; 2= x’o’s; 3= Xo,s; 4= xo; 5= xo; 6= xl; 7= x’2; 8= xo;

9=x°

the leaves packed in PVC, BOPP and LDPE at different periods. The
higher activity was observed in the BOPP samples on the 20th day

(0.81 pmolL guaiacol min™t mg™ protein).

3.5 | Weight loss

At the end of storage, the weight loss was less than 1%. The highest
weight loss (Figure 3c) were 0.79% and 0.52% achieved in PVC and
LDPE packages respectively, that differed (p < 0.01) from the others
at 12th day of storage.

4 | DISCUSSION

Observing the results, it could be imply that MP escarole has sen-
sibility to high CO, environments. The exceeded Bl from PP and
BOPP samples could be explain by the high CO, concentration in-
side these films, which also promoted undesirable odors in the prod-
uct, symptom also reported in broccoli under high CO, conditions
(>20%) in the package (Lucera et al., 2011). Although some authors
recommend higher proportion of CO, then O, inside the packages to
preserve the quality of most minimally processed leafy vegetables
(Barth et al., 1993; Kaji, Ueno & Osajima, 1993), the balance of these
gases must be manipulate in order to avoid CO, damage or anaerobic
respiration.

High CO, concentrations inside the package may cause physi-
ological disorders, such as the occurrence of dark spots and tissue
necrosis (Varoquaux & Wiley, 1994). This type of injury caused by
high concentration of CO, (>10%) has been reported for other MPP
such as butter lettuce, romaine lettuce and broccoli (Cefola et al.,
2010; Kim et al., 2005; Martinez, Ares, & Lema, 2008; Varoquaux,
Mazollier & Albagnac, 1996). The susceptibility to damage from CO,

in the MP escarole can be compared to the same symptom observed

in butter lettuce MP, which showed dark spots on the surface and
cutting areas under CO, atmosphere between 3% and 5% (Martinez
et al., 2008).

The lowest chlorophyll values were observed in PP and BOPP
due possibly to the high CO, content accumulated inside these pack-
ages, which could explain in part, the higher Bl in these samples.
High concentrations of CO, can reduce the intercellular pH and af-
fect directly the degradation of chlorophyll. When the tissues be-
come acid, it might occur pheophitinization, process that comprises
replacing the magnesium ion by hydrogen ions in the chlorophyll
protein group, converting it into pheophytin, a brownish color com-
pound that causes browning of tissues (Kirca, Yemis & Ozkan, 2006;
Toivonen & Brummell, 2008).

The largest loss of AA was observed in the BOPP samples,
probably due to the damage caused by high CO, concentrations,
which could have stimulated the enzyme ascorbate peroxidase
activity, that acts oxidizing AA, converting it into dehydroascor-
bic acid (DHA) (Lee & Kader, 2000). In leafy vegetables, CO, acts
on the de-compartmentalization of these acids in chloroplasts
(Asada, 1992). The AA content of broccoli MP also decreased
when exposed to high CO, (10%) concentrations inside the pack-
age (Cefola et al., 2010).

PVC film had better conserved the AA between all films studied,
this can be explained by the low CO, concentrations in the packs
(<6%) and the antioxidant action of endogenous AA and carotenoids,
whose contents were higher in leaves packed in this film. Our results
shows a positive correlation between those compounds in MP esca-
role. AA acts protecting the pigments against chemical and oxidative
reactions, considering that this acid has a competitive action in the
interactions between amides and carbonyl-amine in the enzyme ac-
tive center that could result in the browning of tissue, in this process,
AA is oxidized into DHA (Altunkaya & Gékmen, 2009). AA along with

carotenoids have antioxidant activity in chloroplast structures, also
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FIGURE 2 Total Chlorophyll (a), total carotenoids content

(b) and ascorbic acid content (c) in minimally processed escarole
packaged in different films during storage at 0°C. Notes. The
columns represent the average of three repetitions. Means
followed by different uppercase letters within each day of storage
and lowercase letters between treatments differ from each other
by Tukey’s test

maintaining the integrity of membranes (Schwartz & Von Elbe, 1983;
Thompson, Legge & Barber, 1987).

The effect of gas concentration in phenolic content in minimally
processed escarole is not yet elucidated. Although it is known that
the TPC content increases during storage in MP lettuces due to
damage caused by cutting (Martinez-sanchez et al. 2011), the gas
content may influence the production of these compounds. The
TPC in crisphead lettuce was reduced when exposed to 20% CO,
due to decreased activity of phenylalanine ammonia-lyase (PAL)
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FIGURE 3 Total phenolic content (a), pod activity (b) and weight
loss (c) in minimally processed escarole during storage at 0°C. Notes.
The columns represent the average of three repetitions. Means
followed by different uppercase letters within each day of storage
and lowercase letters between treatments differ from each other by
Tukey's test

(Mateos et al. 1993). Moreover, under low concentrations of 0,
(3%) in broccoli minimally processed, TPC remained unchanged
for 17 days (Cefola et al., 2010). Reyes, Villarreal and Cisneros-
Zevallos (2007) found that vegetables that have high AA con-
tent (5-60 mg 100 g™1) and initial TPC content between 60 and
200 mg 100 g1, have its phenolic content decreased after cut-
ting and during storage, as observed in cabbage. This may explain
the decrease of TPC content in all treatments in escarole. The AA
also has synergistic action with phenolic compounds as a reducing
agent and preventing its levels reduction (Altunkaya & Goékmen,
2008). Thus, these compounds can reduce the loss of pigments

reflecting in preserving color.
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The activity of PPO in this study followed the same kinetics oc-
curring in minimally processed lettuce, which have peaks of activ-
ity in the first hours after processing and then decrease and remain
stable during storage (Degl'innocenti et al., 2005; Mattos, Moretti
& Yosino Da Silva, 2013). The POD activity peak on the 20th day
of storage at BOPP may occurred due the higher levels of CO,. The
activity of POD and PPO are related to the defense mechanisms of
the vegetable under stress conditions (Sdnchez et al., 2000; Zhang
et al., 2011). Some authors had reported that the POD activity in
different lettuce cultivars may increase or decrease during storage,
due to the concentration of gases inside the package (Ke & Saltveit,
1989; Mattos et al., 2013). Our PPO activity values were in accord-
ing to previous research for MP lettuce (Degl’innocenti et al., 2005;
Zhan et al., 2012). The PPO and POD enzymes are directly related to
enzymatic browning of tissues. The PPO catalyzes diphenols to the
o-quinonas in the presence of oxygen. The quinones passes though
polimerization into brown pigmentation (Mayer, 1987). The POD has
the same model of action on browning, but this enzyme uses hydro-
gen peroxide (H,0,) as a substrate instead of oxygen (Amiot et al.,
1997; Robinson, 1991).

In our research, no significant correlations between the PPO
and POD enzymes, the TPC content and Bl were found, indicating
that the browning in MP escarole may have been nonenzymatic.
This may be due to the low activity of the enzymes, which do not
oxidize phenolic compounds sufficiently to form quinones and
subsequent initiate the browning process. In other studies, it has
been suggested that resistance to enzymatic browning in MP leafy
vegetables can be associated with high endogenous AA content
(Bottino et al., 2009; Degl'innocenti et al., 2007; Landi et al., 2013).
The AA can control the activity of enzymes by two mechanisms:
reducing the pH of the cytosol of the cells or reducing quinones to
their precursor forms of diphenols, during this process AA is con-
verted to DHA (Nicolas et al., 1994; Vamos-vigyazo & Haard, 1981).
The DHA content has been positively correlated with browning in
lettuce (Heimdal et al., 1995). It is known that vegetables with high
AA content are able to control effectively the accumulation of re-
active oxygen species (ROS), such as H,0, (Cocetta et al., 2014;
Reyes et al., 2007).

Previous work has shown that the content of phenolics, AA and
the PPO and POD activity has no clear correlation with the brown-
ing in MP lettuce cultivars (Cantos, Espin, & Toméas-Barbera, 2001;
Degl'innocenti et al., 2005, 2007 ). It can be inferred that the main-
tenance of higher AA levels had controlled the enzymatic browning in
MP escarole. We can reinforce that hypothesis observing the negative
correlation between the AA and the browning index (r = -0.773), so
we can highlight the PVC film, which was the most effective in pre-
serving the AA content and hence, provided the lowest browning
index in the product.

Although PVC has shown the highest weight loss at the end of
storage, it was less than 1%, this might happened due to the high
water vapor transmission of this package. On the contrary, BOPP
bags had lower weight loss than the others at most storage period,
probably because it had the lowest water vapor transmission rate,
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which could have conserved the humidity within these samples.
For MP broccoli, the maximum weight loss is 7% (Manolopoulou &
Varzakas, 2011). The loss of weight is mainly caused by the loss of
water from the vegetable respiration, this factor along with the vapor
transmission rate of the film to water vapor as well as the storage
temperature are the main parameters that affect the percentage of
weight loss (Artés & Martinez, 1999). Data obtained in this study
were similar to those observed by Manolopoulou et al. (2010) in min-

imally processed chicory.

5 | CONCLUSION

In conclusion, this research indicates that PVC stretch overwrap,
which promoted concentrations of 16% oxygen and 3% carbon di-
oxide, provides better preservation of visual and nutritional quality
of fresh cut escarole for up to 20 days at 0°C and 90%-95% UR. We
also verified that minimally processed escarole has sensitivity to high

CO, concentrations.
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