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Abstract

The parabolic subset of a 3-manifold generically immersed in R4 is a surface. We
analyze in this study the generic geometrical behavior of such surface, considered as
a submanifold of R4. Typical Singularity Theory techniques based on the analysis of
the family of height functions are applied in order to describe the geometrical charac-
terizations of the different singularity types.

1 Introduction

The parabolic subset of a 3-manifold M immersed in R4 is the set of singular points of the
Gauss map on M (see, p.e. [3], [6]). For a generically immersed 3-manifold, the parabolic
subset is a surface immersed in R4 with possible isolated singularities corresponding to
corank 2 singularities of the Gauss map on M . This study analyzes the generic geometri-
cal behavior of that surface, considered as a submanifold of R4 (see [1], [3], [4]). Typical
Singularity Theory techniques based on the analysis of the family of height functions
were applied towards geometrical characterizations of the different singularities and the
geometrical behavior of the parabolic subset considered as a submanifold of R4. Since the
corank 2 singularities of the Gauss map are generically isolated singular points at which
the parabolic surface is not a smooth submanifold, this analysis was restricted to the (non
necessarily closed) surface given by the complement of such points in the parabolic sub-
set.

The results of this study can be applied to that described in [8] which explored the
geometry of the canal hypersurfaces of generic curves in R4.
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Given an embedded of a hypersurface M in R4, its parabolic subset is denoted by ΣΓ,
and the height functions on M and ΣΓ in the directions v for a given unit normal vector
v ∈ NpM at p ∈M are denoted by Hv and H̃v, respectively.

The aim of this study is to prove the following result:

Theorem 1.1. The following assertions hold for an open and dense set of immersions of
a 3-manifold in M in R4:

(1) A point p is an A2 singularity of Hv on M if and only if p is an A1 singularity of H̃v

on ΣΓ ,

(2) If p is an A3 versal singularity of Hv on M then p is, generically, an A3 singularity of
H̃v on ΣΓ. Moreover, there may be singularities of type A4 or D4 at isolated points.
If p is an A3 singularity of H̃v, then p is an A3 versal singularity of Hv.

(3) A point p is an A4 versal singularity of Hv on M if and only if p is (generically) an
A4 singularity of H̃v on ΣΓ .

(4) There are no A2 singularities of H̃v at p, i.e., H̃w may have singularities of type A2

for w ∈ NpΣΓ, however, w ̸= v.

Moreover, the parabolic surface ΣΓ satisfies the following statements:

(5) If p is an A3 versal singularity of Hv on M and an A3 singularity of H̃v, then p ∈ ΣΓ
is either a parabolic, or a hyperbolic point of M . The hyperbolic case occurs if and
only if H̃v also has an A3 versal singularity.

(6) If p is an A3 versal singularity of Hv on M and A4 (resp. D4) of H̃v, then p ∈ ΣΓ is a
hyperbolic (resp. inflection) point.

(7) If p is an A4 versal singularity of Hv on M , then p ∈ ΣΓ is a hyperbolic point.

(8) If p is an A3 versal singularity of Hv on M and the curvature κ of the A3 curve in M
vanishes at p, then p ∈ ΣΓ is an inflection point.

2 Preliminaries

We use mainly the book [3] as reference for this section. Let E(n,m) denote the set of
germs, at the origin 0 in Rn, of smooth functions (Rn, 0) → Rm, En = {f : (Rn, 0) →
R | f is the germ of a smooth function}. With the addition and multiplication operations,
En becomes a commutative R-algebra with a unit. It has a maximal ideal Mn which is the
subset of germs of functions that vanish at the origin. We have Mn = {f ∈ En | f(0) =
0}. Since Mn is the unique maximal ideal of En, En is a local algebra. If (x1, ..., xn) is a
system of local coordinates of (Rn, 0), then Mn is generated by the germs of functions xi,
i = 1, ..., n, that is, Mn = En.{x1, ..., xn}. For a given positive integer k, the kth-power
of the maximal ideal Mn is denoted by Mk

n. It is the set of germs of functions f ∈ Mn
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with zero partial derivatives of order less or equal to k − 1 at the origin. We also have
Mk

n = En.{xi11 · · ·xinn | i1 + · · ·+ in = k}.
Let R denote the group of germs of diffeomorphisms (Rn, 0) → (Rn, 0). This group is

labelled the “right group” and acts smoothly on E(n,m) by h.f = fh−1 for any h ∈ R and
f ∈ E(n,m). Suppose that f : (Rn, 0) → (R, 0) is R-equivalent to ±x21 ± · · · ± x2n−1 ± xk+1

n

then we say that f has an Ak singularity (or has a singularity of type Ak) at 0 and if f is
R-equivalent to ±x21±· · ·±x2n−3+x

2
n−2xn−1±xk−1

n then we say that f has a Dk singularity
at 0.

Given a hypersurface M in Rm, the family of height functions (projections to lines) is
given by H : M × Sm−1 → R, where H(p,u) = ⟨p,u⟩ and Sm−1 is the unit hypersphere in
Rm. For a fixed u ∈ Sm−1, the height functionHu measures the contact of the hypersurface
M with the hyperplane normal to u.

LetM be an m-manifold immersed into Rm+k andeCϵM = {p+ϵu ∈ Rm+k | u ⊥ TpM},
which for a small enough ϵ ∈ R+ can be seen to be a hypersurface immersed in Rm+k .
This is also known as the canal hypersurface of M in Rm+k. We denote it by CM and
observe that the restriction of the natural projection π : M × Sm+k−1 → Sm+k−1 to the
submanifold ΣΛ ≡ CM can be viewed as the normal Gauss map Γ : CM → Sm+k−1 on
the hypersurface CM . This map is also known as the generalized normal Gauss map of
M . When M is a hypersurface (k = 1), we have that M and CM are locally diffeomorphic
and hence Γ is locally equivalent to the normal Gauss map on M .

If we denote by hu : CM → R the height function in the direction u over CM and
by I the (k − 1) × (k − 1)-identity matrix, it is not difficult to check that, in appropriate
coordinate systems

Hess(hu)(p,u) =

[
Hess(Hu)(p) X
0 I

]
= DΓ(p,u).

The determinant of DΓ(p,u) is the Gauss-Kronnecker curvature function K of CM at
the point (p,u). The singular set ΣΓ = K−1(0) is the parabolic set of CM . It follows from
the above expression that (p, v) ∈ ΣΓ if and only if (p,u) is a degenerate singularity of hu,
which is in turn equivalent to saying that p is a degenerate singularity of fu (see [7]).

We write M in Monge form in a neighbourhood of a point p, that is, we consider M
given locally by the graph of a function w = f(x, y, z) near the origin, with w = 0 as the
tangent hyperplane at the origin. If we parametrize locally the sphere S3 by (a, b, c, 1)
near the normal to the hypersurface at the origin, we obtain the following expression for
the family of height functions H(x, y, z, a, b, c) = ax+ by+ cz+ f(x, y, z). In particular, for
v = (0, 0, 0, 1), Hv(x, y, z) = f(x, y, z).

Let M = ψ(U) be a hypersurface in R4 parametrized in Monge form and U an open
subset of R3:

ψ : U → R4

(x, y, z) 7→ ψ(x, y, z) = (x, y, z, f(x, y, z)),

with f ∈ M2
3 and p = ψ(x, y, z) ∈ M , where we assume that, up to a convenient

translation, p is the origin, fx = fy = fz = 0 at (0, 0, 0) and up a convenient rotation,
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fxy = fxz = fyz = 0 at (0, 0, 0). Let us consider the k-jet of f , k = 2, 3 . . ., given by

j2f = a200x
2 + a020y

2 + a002z
2,

j3f = j2f + a300x
3 + a210x

2y + a120xy
2 + a030y

3 + a003z
3 + a012yz

2 + a021y
2z + a102xz

2

+ a201x
2z + a111xyz,

j4f = j3f + a400x
4 + a310x

3y + a220x
2y2 + a130xy

3 + a040y
4 + a031y

3z + a022y
2z2

+ a013yz
3 + a004z

4 + a301x
3z + a202x

2z2 + a103xz
3 + a211x

2yz + a121xy
2z + a112xyz

2,

j5f = j4f + a500x
5 + a410x

4y + a320x
3y2 + a230x

2y3 + a140xy
4 + a050y

5 + a041y
4z

+ a032y
3z2 + a023y

2z3 + a014yz
4 + a005z

5 + a401x
4z + a302x

3z2 + a203x
2z3 + a104xz

4

+ a113xyz
3 + a122xy

2z2 + a131xy
3z + a212x

2yz2 + a221x
2y2z + a311x

3yz

and so on. Therefore,

f(x, y, z) = a200x
2 + a020y

2 + a002z
2 + a300x

3 + a210x
2y + a120xy

2 + a030y
3 + a003z

3

+ a012yz
2 + a021y

2z + a102xz
2 + a201x

2z + a111xyz + a400x
4 + a310x

3y (1)
+ a220x

2y2 + a130xy
3 + a040y

4 + a031y
3z + a022y

2z2 + a013yz
3 + a004z

4 + · · · .
Definition 2.1. ([3], Definition 3.1) A s-parameter unfolding of a germ f0 ∈ Mn.E(n, p) is
a map-germ F : (Rn×Rs, 0) −→ (Rp×Rs, 0), (x, u) 7→ (f(x, u), u) such that f0(x) = f(x, 0).
We use the notation: fu(x) = f(x, u), where fu is an deformation of f0, parametrized by
u ∈ Rs, and

.

F (x) = ∂f
∂ui

(x, 0), for i = 1, · · · , s.
Theorem 2.2. ([3], Theorem 3.6) An unfolding F is versal if and only if

LAef0 + R.{Ḟ1, · · · , Ḟs} = E(n, p).

Remark 2.3. If f is k-determined we can show that

jk(LA(f) + R.{
.

F 1, · · · ,
.

F p}) = Jk(n, p)

to verify if F is a versal unfolding.

Without loss of generality we can assume that a200a020 ̸= 0 and a002 = 0, provided v
is normal to M at p and then p is a corank 1 singularity for height function Hv of M . The
conditions on the coefficients of f for those singularities to occur and their corresponding
versal unfoldings are described in the following proposition.

Proposition 2.4. ([6], Proposition 2.1) Using the notation as above let us suppose a200a020 ̸=
0, then, the height function Hv on M in the direction v ∈ NpM has the following generic
singularities of corank 1 at p:

A2 : a002 = 0 and a003 ̸= 0;

A3 : a002 = 0, a003 = 0 and 4a004a020a200 − a012
2a200 − a102

2a020 ̸= 0;

A4 : a002 = 0, a003 = 0, 4a004a020a200 − a012
2a200 − a102

2a020 = 0 and
4a005a200

2a020
2 + a021a012

2a200
2 − 2a012a013a020a200

2 + a012a020a102a111a200

+ a201a102
2a020

2 − 2a103a102a200a020
2 ̸= 0.
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Such singularities are versaly unfolded by the height functions family provided:

A≤2 : always;
A3 : a012 ̸= 0 or a102 ̸= 0;

A4 : a102φ(aijk) ̸= 0;

where φ(aijk) is a polynomial of degree 12 in coefficients aijk, with 0 ≤ i + j + k ≤ 5 (see
[5]).

Proposition 2.5. ([6], Proposition 2.4 )

(1) The parabolic set (i.e. set of points in M where the height function along the normal
has an A2-singularity) is locally a smooth 2-dimensional surface.

(2) The A3-singularities of the height function H occur generically on a smooth curve
on the parabolic set, labelled A3 curve.

(3) The A4-singularities of H occur generically at isolated points of the A3 curve.

Remark 2.6. Although umbilic singularities (D±
4 ) may occur generically, the parabolic

subset is not a regular surface at such points and, therefore, they shall not be considered.

By taking into account the number of necessary conditions, it follows from the Transver-
sality Theorem that non versal singularities of types A3 and A4 of the height function
cannot occur generically ([6], Proposition 2.1) .

Given a parametrization x for a surface N in R4, denote by l1,m1, n1, l2,m2, n2 the co-
efficients of the second fundamental form with respect to any basis {xu1 , xu2 , f3, f4} of
TpM → NpM , and define ∆ by

∆ = 1
4

∣∣∣∣∣∣∣∣
l1 2m1 n1 0
l2 2m2 n2 0
0 l1 2m1 n1

0 l2 2m2 n2

∣∣∣∣∣∣∣∣ =
1
4
(4(l1m2 − l2m1)(m1n2 −m2n1))− (l1n2 − l2n1)

2).

A point p is said to be elliptic/parabolic/hyperbolic if ∆ < 0/ = 0/ > 0. The set of
points (x, y) where ∆ = 0 is called the parabolic set of N and is denoted by ∆.

Given a surface in R4 locally given in the Monge form by (x, y,Q1(x, y), Q2(x, y)) and
a vector v = (v1, v2, v3, v4) ∈ S3, the height function H̃v on N is given by

H̃v(x, y) = v1x+ v2y + v3Q1(x, y) + v4Q2(x, y).

Therefore, H̃v has a singularity at p if and only if v1 = v2 = 0, i.e., v ∈ NpN . By a
convenient rotation of the normal plane at the origin , we can assume that v = (0, 0, 0, 1)
is a degenerate direction and, therefore, Q1 and Q2 can be written as

Q1(x, y) =a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3 + · · ·
Q2(x, y) =b20x

2 + b30x
3 + b21x

2y + b12xy
2 + b03y

3 + b40x
4 + b31x

3y + b22x
2y2 + b13xy

3 + · · ·

and the singularities of H̃v can be given in terms of the coefficients of Q1 and Q2, as in the
following proposition.
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Proposition 2.7. ([1], Proposition 2.2.2) Using the notation as above, the conditions for
the generic singularities of the height function H̃v are:

A2 : b20 ̸= 0 and b03 ̸= 0;

A3 : b20 ̸= 0, b03 = 0 and 4b20b04 − b212 ̸= 0;

A4 : b20 ̸= 0, b03 = 0, 4b20b04 − b212 = 0 and 2b220b05 − 2b20b12b13 + b21b
2
12 ̸= 0;

D4 : b20 = 0 and b30x
3 + b21x

2y + b12xy
2 + b03y

3 is non degenerate.

Such singularities are a versally unfolded height functions family if and only if

A2 : always;
A3 : a02 ̸= 0 or b12 ̸= 0;

A4 : a02 (b20b13 − b21b12)− b12

(
b20a03 −

1

2
a11b12

)
̸= 0;

D4 : 3b30

(
a02b12 −

3

2
a11b03

)
− b21

(
a02b21 −

1

2
a11b12

)
+ a20

(
3b21b03 − b212

)
̸= 0.

Definition 2.8. A hyperplane with orthogonal direction v is an osculating hyperplane of
N at p = x(u) if it is tangent to N at p and H̃v has a degenerate (i.e., non Morse, that is
A≥2) singularity at p. We call the direction v a binormal direction of N at p.

Proposition 2.9. ([3], Proposition 7.7) Let N be a smooth surface immersed in R4 and let
p be a point on N .

(1) If p is an elliptic point, then H̃v has a non degenerate singularity at p of type A−
1 for

all v in NpN .

(2) If p is a hyperbolic point, then there are exactly two distinct binormal directions v1,
v2 in NpN .

(3) If p is a parabolic point but not an inflection point, then there is a unique binormal
direction v in NpN .

(4) If p is non-degenerate inflection point, then there is a unique binormal direction v
in NpN and the 2-jet of H̃v at p is identically zero.

Singularities of H̃v occur only in the non-elliptic region.

3 Characterization of height functions singularities on a
hypersurface M and its parabolic subset

The image of ΣΓ through ψ is generically a smooth surface, known as the parabolic sur-
face ([6]). We shall identify the subsets ΣΓ ≡ ψ(ΣΓ). The parabolic surface ΣΓ can be
considered as a surface in R4 and the following question can be asked: Given the normal
vector v at a parabolic point p ∈ M , is there a relation between the singularities of the
height functions H and H̃ in the direction v (denoted by Hv and H̃v) at p?
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Proposition 3.1. LetHv be a height function on the hypersurfaceM and H̃v a height func-
tion on the surface ΣΓ in the normal direction v to M at p. Then the following assertions
hold:

(1) If p is an A2 singularity of Hv then p is a singularity of type A1 of H̃v,

(2) If p is anA3 singularity ofHv then p is, generically, anA3 singularity of H̃v although,
at isolated points, it may be of either type A4, or D4,

(3) If p is an A4 versal singularity of Hv then p is, generically, a singularity of type A4

for H̃v.

Moreover, the following conditions hold for item 2:

(i) p is an A3 singularity of H̃v if and only if a2012a200 + a020a
2
102 ̸= 0 and 9a004a020a200

−2a200a012
2 − 2a020a102

2 ̸= 0;

(ii) p is an A4 singularity of H̃v if and only if a2012a200 + a020a
2
102 ̸= 0, 9a004a020a200

−2a200a012
2 − 2a020a102

2 = 0 and 21a005a200
2a020

2 + 4a021a012
2a200

2 − 9a012a013a020a200
2

+4a012a020a102a111a200 + 4a201a102
2a020

2 − 9a103a102a200a020
2 ̸= 0;

(iii) p is a D4 singularity of H̃v if and only if a2012a200 + a020a
2
102 = 0 and

a012(48a004a
4
012a102a200a300 − 96a004a

4
012a

2
200a202 + 96a004a

4
012a200a

2
201−

48a004a
3
012a

2
102a200a210 − 96a004a

3
012a200a111a201a102 + 96a004a

3
012a

2
200a112a102−

96a004a
2
200a

2
012a022a

2
102 + 48a004a

2
012a

3
102a120a200 + 96a004a012a021a

3
102a111a200−

48a004a012a030a
4
102a200 − 96a004a

2
021a

4
102a200 + 25a4012a

2
201a

2
102 + 36a4012a

2
200a

2
103−

60a4012a200a103a201a102 + 60a3012a013a200a201a
2
102 − 72a3012a013a

2
200a103a102−

50a3012a
3
102a111a201 + 60a3012a103a111a200a

2
102 + 60a012a013a021a

4
102a200+

36a2013a
2
200a

2
012a

2
102 − 60a2012a013a

3
102a111a200 − 60a2012a021a

3
102a103a200+

50a2012a021a
4
102a201 + 25a2012a

4
102a

2
111 − 50a012a021a

5
102a111 + 25a2021a

6
102) ̸= 0

Proof. Let Hv(x, y, z) = f(x, y, z), where v = (0, 0, 0, 1) and f is as in equation (1). The
fold singularities of the Gauss map M → Sn correspond to A2 singularities of the height
function. Then the surface ΣΓ of M is given by the points (x, y, z) at which the Hessian
determinant of f vanishes, then ΣΓ is equal to P−1(0), where
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P (x, y, z) = 8a200a020a002 + (24a002a020a300 + 8a002a200a120 + 8a020a102a200)x+ (8a002a020a210

+ 24a002a030a200 + 8a012a020a200)y + (8a002a020a201 + 8a002a021a200 + 24a003a020a200)z

+ (48a002a020a400 + 24a002a120a300 + 8a002a200a020 − 8a002a
2
210 − 8a020a201

2 − 2a111
2a200

+ 24a020a102a300 + 8a020a200a202 + 8a102a120a200)x
2 + (24a002a020a310 + 72a002a030a300

− 8a002a120a210) + 24a002a130a200 + 24a012a020a300 + 8a012a120a200 + 8a020a102a210

− 8a020a111a201 + 8a020a112a200 − 8a021a111a200 + 24a030a102a200)xy + (24a002a020a301

+ 24a002a021a300 − 8a002a111a210 + 8a002a120a201 + 8a002a121a200 + 72a003a020a300

+ 24a003a120a200 − 8a012a111a200 − 8a020a102a201 + 24a020a103a200 + 8a021a102a200)xz

+ (8a002a020a200 + 24a002a030a210 + 48a002a040aa200 − 8a002a
2
120 − 2a020a111

2 − 8a021
2a200

+ 8a012a020a210 + 24a012a030a200 + 8a020a022a200)y
2 + (8a002a020a211 + 8a002a021a210

+ 24a002a030a201 + 24a002a031a200 − 8a002a111a120 + 24a003a020a210 + 72a003a030a200

+ 8a012a020a201 − 8a012a021a200 + 24a013a020a200 − 8a020a102a111)yz + (8a002a020a202

+ 8a002a021a201 + 8a002a022a200 + 48a004a020a200 + 24a003a020a201 + 24a003a021a200

− 2a002a
2
111 − 8a012

2a200 − 8a020a102
2)z2 + h.o.t.

(1) Let us suppose that Hv = f has a singularity of type A2. Then, from Proposition 2.4
we have that a002 = 0 and a003 ̸= 0. Note that Pz(0, 0, 0) = 24a003a020a200 ̸= 0 and
therefore the variable z can be expressed in terms of x and y, i.e.,

z = c1x+ c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2y + c8xy
2 + c9y

3 + · · ·

By substituting the expression of z in P (x, y, z) = 0 and calculating the coefficients
ci we obtain that

z =
−1

3a003

(
a102x+ a012y

)
+ φ1(x, y),

where φ1 ∈ M2
2. Therefore, the surface ΣΓ can be parametrized by

(x, y) 7→
(
x, y,

−1

3a003

(
a102x+ a012y

)
+ φ1(x, y), f̃(x, y)

)
,

and

f̃(x, y) = f

(
x, y,

−1

3a003

(
a102x+ a012y

)
+ φ1(x, y)

)
= a200x

2 + a020y
2 + higher order terms.

Since a002 ̸= 0 and a020 ̸= 0, then H̃v = f̃ ∼R x2 ± y2, i.e., H̃v has an A1 singularity.

(2) Let us suppose now that Hv = f has a singularity of type A3. Therefore, a002 = 0,
a003 = 0 and 4a004a020a200 − a012

2a200 − a102
2a020 ̸= 0.
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In such case,
∇P (0, 0, 0) = a200a020(a102, a012, 0).

Since the A3 singularity is versal, then either a102 ̸= 0, or a012 ̸= 0 and the parabolic
subset is a regular surface. Without loss of generality we can assume that a102 ̸= 0
and, therefore, by using calculations analogous to those of the previous case, x can
be written in terms of variables y and z. These calculations lead to the following:

x = −a012
a102

y − 1

4a1023a020a200

(
4a012

2a020a200a202 − 4a012
2a020a201

2 − a012
2a111

2a200

+ 4a012a020a102a111a201 − 4a012a020a102a112a200 + 4a012a021a102a111a200

+ 4a020a022a102
2a200 − a020a102

2a111
2 − 4a021

2a102
2a200

)
y2

− 1

4a1023a020a200

(
24a004a020a102

2a200 − 4a012
2a102

2a200 − 4a102
4a020

)
z2

− 1

2a1023a020a200

(
2a012

2a102a111a200 + 4a012a020a102
2a201 − 6a012a020a102a103a200

− 4a012a021a102
2a200 + 6a013a020a102

2a200 − 2a020a102
3a111

)
yz + · · ·

= −a012
a102

y + φ2(y, z),

where φ2 ∈ M2
2. Therefore, the surface ΣΓ in R4 is parametrized by

(y, z) 7→
(
−a012
a102

y + φ2(y, z), y, z, f̃(y, z)

)
,

where

f̃(y, z) =

(
a020 +

a012
2a200

a1022

)
y2 + Ay3 +By2z + Cyz2 + · · · ,

with

A = − 1

2a1024a020

(
2a300a012

3a102a020 − 4a012
3a020a200a202 + 4a012

3a020a201
2

− 2a012
2a210a102

2a020 − 4a012
2a020a102a111a201 + 4a012

2a020a102a112a200

− 4a012
2a021a102a111a200 − 4a012a020a022a102

2a200 + 2a120a012a102
3a020

+ 4a012a021
2a102

2a200 − 2a030a102
4a020 + a3012a111

2a200 + a012a020a102
2a111

2
)
,

B =
1

a1023a020

(
6a012a013a020a102a200 + 5a012

2a020a102a201 − 6a012
2a020a103a200

+ 2a012
3a111a200 − 3a012a020a102

2a111 + a020a021a102
3 − 4a012

2a021a102a200

)
and

C =
2a012(6a004a020a200 − a012

2a200 − a020a102
2)

a1022a020
.
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Let us denote by coef(q, xk11 . . . xknn ) the coefficient of the monomial xk11 . . . xknn in a
polynomial q and suppose that

coef(f̃ , y2) =
a2012a200 + a020a

2
102

a2102
̸= 0.

The following coordinate changes can be applied to eliminate degree 3 monomials:

y 7→ y −

(
coef(f̃ , y3)

2coef(f̃ , y2)
y2 +

coef(f̃ , y2z)

2coef(f̃ , y2)
yz +

coef(f̃ , yz2)

2coef(f̃ , y2)
z2

)
and those of degree 4 can be eliminated by means of

y 7→ y −

(
coef(f̃ , y4)

2coef(f̃ , y2)
y3 +

coef(f̃ , y3z)

2coef(f̃ , y2)
y2z +

coef(f̃ , y2z2)

2coef(f̃ , y2)
yz2 +

coef(f̃ , yz3)

2coef(f̃ , y2)
z3

)
,

So we have

f̃ ∼R

(
a2012a200 + a020a

2
102

a2102

)
y2+

(4a004a020a200 − a200a012
2 − a020a102

2) (9a004a020a200 − 2a200a012
2 − 2a020a102

2)

a020a200 (a200a0122 + a020a1022)
z4.

Note 4a004a020a200 − a200a012
2 − a020a102

2 ̸= 0, as a consequence of the assump-
tion Hv = f has a singularity of type A3. Therefore, if 9a004a020a200 − 2a200a012

2 −
2a020a102

2 ̸= 0, then f̃ = H̃v ∼R y2 ± z4, i.e., H̃v has, generically, a singularity of type
A3. If 9a004a020a200−2a200a012

2−2a020a102
2 = 0, f̃ = H̃v ∼R y2±z5 is obtained through

convenient coordinate changes on f̃ , if and only if 21a005a2002a0202+4a021a012
2a200

2−
9a012a013a020a200

2+4a012a020a102a111a200+4a201a102
2a020

2−9a103a102a200a020
2 ̸= 0, thus

leading to a singularity of type A4 for H̃v.

Now, if coef(f̃ , y2) = 0, i.e., a2012a200 + a020a
2
102 = 0, then f̃ has cubic and higher

order terms. Therefore, f̃ = H̃v may have singularities of type D±
4 at isolated points

of A3 curve when the cubic part of f̃ is non degenerate, i.e., when its discriminant
δ does not vanish. It is not difficult to check through convenient straightforward
calculations that δ does not vanish if and only if

a012(48a004a
4
012a102a200a300 − 96a004a

4
012a

2
200a202 − 48a004a

3
012a

2
102a200a210

+ 96a004a
4
012a200a

2
201 − 96a004a

3
012a200a111a201a102 + 96a004a

3
012a

2
200a112a102

− 96a004a
2
200a

2
012a022a

2
102 + 48a004a

2
012a

3
102a120a200 + 96a004a012a021a

3
102a111a200

− 48a004a012a030a
4
102a200 − 96a004a

2
021a

4
102a200 + 25a4012a

2
201a

2
102 + 36a4012a

2
200a

2
103

− 60a4012a200a103a201a102 + 60a3012a013a200a201a
2
102 − 72a3012a013a

2
200a103a102

− 50a3012a
3
102a111a201 + 60a3012a103a111a200a

2
102 + 36a2013a

2
200a

2
012a

2
102 + 25a2021a

6
102

− 60a2012a013a
3
102a111a200 + 50a2012a021a

4
102a201 − 60a2012a021a

3
102a103a200

+ 25a2012a
4
102a

2
111 + 60a012a013a021a

4
102a200 − 50a012a021a

5
102a111) ̸= 0.
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(3) Let us suppose now that Hv = f has an A4 singularity. Therefore, a002 = 0,

a003 = 0, 4a004a020a200 − a012
2a200 − a102

2a020 = 0 and 4a005a200
2a020

2 + a021a012
2a200

2 −
2a012a013a020a200

2+a012a020a102a111a200+a201a102
2a020

2−2a103a102a200a020
2 ̸= 0. More-

over,
∇P (0, 0, 0) = a200a020(a102, a012, 0)

and a102 ̸= 0, since the singularity A4 is versal. Analogously to the previous cases,
surface ΣΓ in R4 is parametrized by

(y, z) 7→
(
−a012
a102

y + φ3(y, z), y, z, f̃(y, z)

)
,

where φ3, f̃ ∈ M2
2. Now, through convenient coordinates changes in f̃ towards

eliminating some monomials,

f̃ = H̃v ∼R

(
a2012a200 + a020a

2
102

a2102

)
y2 +Dz5,

where

D =
1

4a0202a2002

(
4a005a020

2a200
2 + a012

2a021a200
2 − 2a012a013a020a200

2

+ a012a020a102a111a200 + a020
2a102

2a201 − 2a020
2a102a103a200

)
̸= 0

by hypothesis. . Therefore, f̃ = H̃v ∼R y2 ± z5, i.e., H̃v has an A4 singularity.

Corollary 3.2. Singularities of type A2 of H̃v, for v ∈ NpM do not occur generically.

Remark 3.3. (1) The condition a2012a200 + a020a
2
102 = 0 in the singularity A4 of Proposi-

tion 3.1 leads to a situation that cannot occur generically neither at a point of the
hypersurface M in 4-space (for it would be an extra condition on an isolated singu-
larity, which is non generic), nor at a point of the surface ΣΓ. In fact, let us suppose
a2012a200 + a020a

2
102 = 0; therefore, f̃ has only cubic or higher order terms and the

discriminant of its cubic part is given by

δ =
144

a10210
(a200a012a004)

2Ã,

where Ã is given in terms of the sum and the product of coefficients of at least
order 2 of f . However, the height function Hv on M is supposed to have an A4

singularity. From Proposition 2.4 we have that 4a004a020a200−a0122a200−a1022a020 = 0,
and therefore we must have a004 = 0 for a020a200 ̸= 0 and a2012a200 + a020a

2
102 = 0.

Moreover, the discriminant δ is equal to zero, so we have a degenerate cubic and
hence a singularity of type D>4, which cannot occur generically on surfaces in R4.
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(2) We have from Proposition 3.1 that the points of the A3 curve of Hv in M is made of
points of type A3 for H̃v lying in ΣΓ. Now, we observe that at isolated points of the
A3 curve of Hv may become a singularity of type A4 for H̃v. On the other hand, the
singularities of type A4 of Hv correspond to the singularities of type A4 of H̃v, i.e.,
the number of type A4 singularities in those curves of ΣΓ is higher than or equal to
the number of A4 singularities on the A3 curve of M .

The following reciprocal of Proposition 3.1 holds:

Corollary 3.4. Let ΣΓ be the parabolic subset of a hypersurface M in R4, where ΣΓ is a
regular surface in R4. Let Hv be the height function on the hypersurface M and H̃v be
the height function on the surface ΣΓ in direction v normal to M at p. The following
assertions hold:

(1) If p is a singularity of type A1 of H̃v then p is a singularity of type A2 of Hv,

(2) If p is a singularity of type A3 of H̃v then p is an A3 versal singularity of Hv,

(3) If p is a singularity of type A4 of H̃v then p is an A4 versal singularity of Hv.

Proof. (1) Let us suppose that p ∈ ΣΓ is a type A1 singularity of H̃v. Since p is a regular
point in the parabolic surface of M , it is necessarily a singularity of type A≥2 of Hv.
Observe that if p is of either type A3 or A4 this would contradict Proposition 3.1.
Therefore, the point p must be a singular point of type A2 for Hv.

(2) If p is a singularity of typeA3 of H̃v we have that it cannot be a singularity of typeA1

forHv, for it lies in the parabolic subset; on the other hand, it cannot be a singularity
of type A2 nor of type A4, for it would contradict Proposition 3.1 and hence p must
be a singular point of type A3 of Hv.

(3) The argument in this case runs analogously to the previous one.

Corollary 3.5. (i) Given a point v ∈ NpM we have that v is a binormal direction of ΣΓ
if and only if p belongs to the A3 curve of M . Moreover, this A3 curve of M is an A3

curve of the parabolic surface ΣΓ too.

(ii) Let v ∈ NpΣΓ such that v /∈ NpM . Then, the hyperbolic region ΣΓ may contain
other A3 curves of H̃v as well as A2 type singularities of H̃v.

Observe in the proof of Proposition 3.1, the coefficient a2012a200 + a020a
2
102 was initially

supposed to be non zero. Provided it is zero, in anA3 singularity ofHv the height function
H̃v on ΣΓ might have a corank 2 singularity. The geometrical meaning of such a coefficient
is analyzed in the next proposition.

Proposition 3.6. Let us suppose p is an A3 versal singularity of Hv. Then, a2012a200 +
a020a

2
102 = 0 if and only if the curvature κ of the A3 curve of M vanishes at p.

12



Proof. The A3 curve can be parametrized as the set of points (x0, y0, z0) for which the
Hessian determinant of f vanishes and the kernel of the Hessian of f is a root of the cubic
form f . Therefore, such points are of the form

(x0, y0, z0) = (−a012Ay, a102Ay, (a012B + a102C)y) + h.o.t.,

with a102 ̸= 0 or a012 ̸= 0, since A3 is versal, where

A = 4a004a020a200 − a200a012
2 − a020a102

2,

B = a102a201a020 +
1

2
a012a200a111 − a200a020a103 − a200a021a102,

C = a200a020a013 −
1

2
a020a102a111.

Note that A ̸= 0 is precisely one of the conditions for an A3 singularity (Proposition 2.4).
So the A3 curve is given by

γ(y) = (x0, y0, z0, f(x0, y0, z0))

and its curvature is

κ(y) = 2

√√√√ A4(a2012a200 + a020a2102)
2
(
(A)2(a2102 + a2012) + (a012B + a102C)2

)(
A2(a2102 + a2012) + (a012B + a102C)2 + 4(A)4(a2012a200 + a020a2102)

2y2
)3 .

Observe that term (A)4 ((A)2(a2102 + a2012) + (a012B + a102C)
2) never vanishes; there-

fore, κ(y) = 0 if and only if a2012a200 + a020a
2
102 = 0.

4 Geometry of the parabolic subset ΣΓ as a surface in 4-
space

The previous section addressed to the behavior of the height functions on both, the hy-
persurface M and its parabolic subset ΣΓ, in a given direction v ∈ NpM . Since ΣΓ is
supposed to be a regular surface in R4 some known geometrical properties for surfaces
in 4-space can be applied to it. In particular, the Proposition 3.1 can relate the geometry
of the parabolic surface ΣΓ to the singularity type of the corresponding height function
(in the direction v) on M . Let us recall that when H̃v has a degenerate (i.e., non Morse)
singularity at a point p there exist one or two binormal directions with their respective
osculating hyperplanes on the parabolic surface of M (considered a surface in 4-space).

According to Proposition 3.1, at a singularity of type A2 of Hv, v ∈ NpM , the function
H̃v has an A1 singularity and therefore the binormal direction of ΣΓ at p does not neces-
sarily coincide with the normal direction of M at p. On the other hand, at the singularities
of type Ak, k = 3, 4, the direction v ∈ NpM must be a binormal direction of surface ΣΓ
and the following result holds:
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Corollary 4.1. Given a hypersurface M such that the height function of M at a point p has
a singularity of type Ak, k = 3, 4, then one of the osculating hyperplanes of the parabolic
surface of M at p coincides with the tangent hyperplane of M at p.

Proof. We can represent the hypersurfaceM in the Monge formψ(x, y, z) = (x, y, z, f(x, y, z)),
with the point p at the origin, where f is given by (1). So the tangent hyperplane to M
at p, TpM , is orthogonal to the vector v = (0, 0, 0, 1). Now, since the parabolic surface ΣΓ
is contained in M , we then have that TpM is also a tangent hyperplane to ΣΓ at p. More-
over, since the height function Hv on M in the direction v = (0, 0, 0, 1) has a singularity
of type Ak, k = 3, 4, at p, we get from Proposition 3.1 that the height function on ΣΓ in
the direction v = (0, 0, 0, 1), H̃v, has an Ak, k = 3, 4, singularity at p, i.e., v is a binormal
direction at p and hence TpM must coincide with one of the osculating hyperplanes of the
parabolic surface ΣΓ at p.

As a consequence of Propositions 3.1 and 2.7, the versality conditions for the singu-
larities of the height function H̃v on ΣΓ can be obtained in terms of the coefficents of f
on M . The most interesting case occurs when the height function Hv on M has an A3

versal singularity, as described in the following proposition. According to the previous
notations, we have the following:

Proposition 4.2. Let us suppose that the function Hv on M has an A3 versal singularity.
Then, the function H̃v on ΣΓ has an A3 versal singularity if and only if 6 a004 a020 a200 −
a200 a012

2 − a020 a102
2 ̸= 0.

Proof. According to the proof of Proposition 3.1, parabolic surface ΣΓ ofM can be parametrized
as

g : (y, z) 7→
(
−a012
a102

y + φ2(y, z), y, z, f̃(y, z)

)
.

The aim now to eliminate the linear term in the first coordinate and apply the typical
methods of the theory of surfaces to R4 for studying the geometry of ΣΓ. By applying a
rotation of matrix

A =


cos θ sen θ 0 0
− sen θ cos θ 0 0

0 0 1 0
0 0 0 1


to g and taking θ = arctan

(
a012
a102

)
, the parabolic surface is given by (Q1(y, z), y, z, Q2(y, z)).

Now, let us suppose that Hv has an A3 versal singularity, therefore, Q1, Q2 ∈ M2
2, with

Q2 ∼R

(
a2012a200 + a020a

2
102

a2102

)
y2+

(4a004a020a200 − a200a012
2 − a020a102

2) (9a004a020a200 − 2a200a012
2 − 2a020a102

2)

a020a200 (a200a0122 + a020a1022)
z4,
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considering a2012a200 + a020a
2
102 ̸= 0 and 9a004a020a200 − 2a200a012

2 − 2a020a102
2 ̸= 0. By using

Proposition 2.7, singularity A3 is versal unfolding of H̃v if and only if a02 ̸= 0 or b12 ̸= 0.
In this case the coefficients are given by

a02 = −6 a004 a020 a200 − a200 a012
2 − a020 a102

2

a020 a102 a200

√
a0122+a1022

a1022

b12 =
2 a012 (2 a200a102

2 + a200 a012
2 + a020 a102

2) (6 a004 a020 a200 − a200 a012
2 − a020 a102

2)

a200a020a1022 (a0122 + a1022)

Therefore, singularityA3 is non versal if and only if 6 a004 a020 a200−a200 a0122−a020 a1022 =
0.

Observe that this case is generic for the surface ΣΓ, since these are isolated points
on the A3 curve. The fact that the singularity of H̃v is of type A3 (versal or non versal),
coming from a versal singularity of type A3 for Hv, provides interesting information on
the geometry of ΣΓ at the considered point.

Proposition 4.3. Let p ∈ M be an A3 versal singularity of Hv on M and a singularity of
type A3 of H̃v on ΣΓ. Then, we have the following:

(1) The point p is a hiperbolic point of ΣΓ if and only if p is an A3 versal singularity of
H̃v.

(2) The point p is a parabolic point of ΣΓ if and only if p is an A3 non versal singularity
of H̃v and a0122a111 a200+2 a012 a020 a102 a201−3 a012 a020 a103 a200−2 a012 a021 a102 a200+
3 a013 a020 a102 a200 − a020 a102

2a111 ̸= 0.

Proof. Suppose that p ∈M is anA3 versal singularity ofHv and of typeA3 for H̃v. Accord-
ing to Proposition 3.1 we have that a2012a200 + a020a

2
102 ̸= 0 and 9a004a020a200 − 2a200a012

2 −
2a020a102

2 ̸= 0.
On the other hand, from the proof of Proposition 4.2 we have that ΣΓ can be written

in the form g(y, z) = (Q1(y, z), y, z, Q2(y, z)) and only the calculation of the discriminant
∆ of the surface ΣΓ at p is required. The coefficients of the second fundamental form of g
are given by:

l1 = Q1yy(0, 0), m1 = Q1yz(0, 0), n1 = Q1zz(0, 0)

l2 = Q2yy(0, 0), m2 = Q2yz(0, 0), n2 = Q2zz(0, 0)

Therefore, the discriminant ∆ of g at p is

∆ = 1
4

∣∣∣∣∣∣∣∣
l1 2m1 n1 0
l2 2m2 n2 0
0 l1 2m1 n1

0 l2 2m2 n2

∣∣∣∣∣∣∣∣
=− 16 (6 a004 a020 a200 − a200 a012

2 − a020 a102
2)

2
(a200 a012

2 + a020 a102
2)

2

a0202a1022a2002 (a0122 + a1022)
2 .

Moreover,
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(1) p is a hiperbolic point of ΣΓ if and only if ∆ < 0, if and only if 6 a004 a020 a200 −
a200 a012

2 − a020 a102
2 ̸= 0, which, from Proposition 4.2, provides the condition for an

A3 versal singularity.

(2) Analogously, p is a parabolic point of ΣΓ if and only if ∆ = 0 and rank α = 2
([3]), where α is the matrix of the second fundamental form of g. The 2 × 2 minor
determinants of α vanish simultaneously if and only if{

(6 a004 a020 a200 − a200 a012
2 − a020 a102

2) (a200 a012
2 + a020 a102

2) = 0,

A (a200 a012
2 + a020 a102

2) = 0,

where

A = a012
2a111 a200 + 2 a012 a020 a102 a201 − 3 a012 a020 a103 a200 − 2 a012 a021 a102 a200

+ 3 a013 a020 a102 a200 − a020 a102
2a111.

Therefore, p is a parabolic point of ΣΓ if and only if A ̸= 0.

Remark 4.4. The case in which an A3 versal singularity of Hv is an A3 singularity of H̃v,
either versal or not, was considered in the last proposition. In Proposition 3.1, A3 versal
singularities of Hv may also be A4 or D4 for H̃v. Even if height function Hv on M does
not have corank 2 singularities, height function H̃v on ΣΓ may have inflection points,
meaning H̃v has umbilic singularities.

Proposition 4.5. Let p ∈ M be an A3 versal singularity of Hv. If p is not an A3 singularity
of H̃v, then p is either a hyperbolic point or an inflection point of ΣΓ.

Proof. The point p is an A3 versal singularity of Hv. Since it is not A3 singularity for H̃v,
according to Prop. 3.1, p may be of either type A4 or D4.

(i) If p is an A4 singularity for H̃v, then the conditions a2012a200 + a020a
2
102 ̸= 0 and

9a004a020a200−2a200a012
2−2a020a102

2 = 0 hold. By using them and writing the surface
ΣΓ as in the proof of Proposition 4.2, the discriminant ∆ at p is given by

∆ = − 16 (a200 a012
2 + a020 a102

2)
4

9 a2002a1022a0202 (a0122 + a1022)
2

i.e. , ∆ < 0 and p is a hyperbolic point of ΣΓ.

(ii) If p is an D4 singularity of H̃v, then we have a2012a200 + a020a
2
102 = 0, implying that

∆ = 0 and rank α < 2 at p, i.e., p is an inflection point of ΣΓ.

The same arguments can be applied when point p is an A4 singularity of Hv. In such a
case, hyperbolic points of ΣΓ are obtained.
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Proposition 4.6. Let p ∈ M be an A4 versal singularity for Hv. Then p is a hyperbolic
point of ΣΓ.

Proof. Since p ∈ M is an A4 versal singularity of Hv, we get from Proposition 3.1 that p
must be a singularity of type A4 also for H̃v. Therefore, ΣΓ can be parametrized as(

−a012
a102

y + φ3(y, z), y, z, f̃(y, z)

)
.

Following an analogous argument to that of the proof 4.2, the same rotation matrix can
be applied in order to eliminate the linear term and parametrize ΣΓ as (Q1(y, z), y, z, Q2(y, z))
and hence, the discriminant ∆ at the point p is given by

∆ = − (a012
2a200 + a020 a102

2)
4

a2002a1024a0202 (a0122 + a1022)
.

Since from the hypothesis we have that a0122a200 + a020 a102 ̸= 0, we can conclude that
∆ < 0 and thus p is a hyperbolic point of ΣΓ.

According to Proposition 3.6, when p is an A3 versal singularity of Hv, then a2012a200 +
a020a

2
102 = 0 if and only if curvature κ of A3 curve vanishes at p. Therefore, as a conse-

quence of Proposition 3.6 and Corollary 4.5 we can state the following:

Corollary 4.7. Let p be an A3 versal singularity of Hv. If the curvature κ at p of the A3

curve in M vanishes, then p is an inflection point of the parabolic surface ΣΓ.

Remark 4.8. The study of hypersurfaces in R4 has been lately very important. “In medicine,
4D models can be used in magnetic resonance imaging, computed tomography and ul-
trasound. In the case of magnetic resonance imaging methods that use 4D images have
proven to be effective in facilitating the diagnosis of cardiovascular diseases. They dif-
fer from previous methods, both in terms of greater accuracy in obtaining a 3D model
of the heart and in their ability to calculate blood flow in all directions. In the case of
computed tomography a new scanning protocol was created to generate 4D images of
the lung. Compared to previous protocols this new one has a shorter scanning time and
obtains images of the entire respiratory cycle. In ultrasound applied to prenatal exams a
4D method allows the dynamic visualization of images of the fetal heart at different levels
of depth and facilitates the diagnosis of congenital anomalies”. See [2].

“It is of interest for several applications such as event detection, robotics, electronic
games, animation, human-computer interaction, etc., the reconstruction of 3D computa-
tional models from physical objects. This is usually done by using computer vision tech-
niques from 2D images or sensor data, which can be also interpreted as binary images.
When the objects to be reconstructed are in motion, 4D images can be used to identify
dynamics and occlusions of the objects and thus enable the creation of efficient compu-
tational models. Additional techniques can be used to complement the reconstruction,
such as topology and mass conservation properties”. See [2] for more references.
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E-mail: carmen.romero@uv.es

18

http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042016-101148
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042016-101148

	Introduction
	Preliminaries
	Characterization of height functions singularities on a hypersurface M and its parabolic subset
	Geometry of the parabolic subset  as a surface in 4-space

