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Abstract

The parabolic subset of a 3-manifold generically immersed in R* is a surface. We
analyze in this study the generic geometrical behavior of such surface, considered as
a submanifold of R%. Typical Singularity Theory techniques based on the analysis of
the family of height functions are applied in order to describe the geometrical charac-
terizations of the different singularity types.

1 Introduction

The parabolic subset of a 3-manifold M immersed in R* is the set of singular points of the
Gauss map on M (see, p.e. [3], [6]). For a generically immersed 3-manifold, the parabolic
subset is a surface immersed in R* with possible isolated singularities corresponding to
corank 2 singularities of the Gauss map on M. This study analyzes the generic geometri-
cal behavior of that surface, considered as a submanifold of R* (see [1], [3], [4]). Typical
Singularity Theory techniques based on the analysis of the family of height functions
were applied towards geometrical characterizations of the different singularities and the
geometrical behavior of the parabolic subset considered as a submanifold of R*. Since the
corank 2 singularities of the Gauss map are generically isolated singular points at which
the parabolic surface is not a smooth submanifold, this analysis was restricted to the (non
necessarily closed) surface given by the complement of such points in the parabolic sub-
set.

The results of this study can be applied to that described in [8] which explored the
geometry of the canal hypersurfaces of generic curves in R*.
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Given an embedded of a hypersurface M in R, its parabolic subset is denoted by XT,
and the height functions on M and XI" in the directions v for a given unit normal vector
v € N,M at p € M are denoted by H, and H,, respectively.

The aim of this study is to prove the following result:

Theorem 1.1. The following assertions hold for an open and dense set of immersions of
a 3-manifold in M in R*:

(1) A point p is an A, singularity of H, on M if and only if p is an A, singularity of i,
on XI',

(2) If p is an Ajz versal singularity of H, on M then p is, generically, an Aj; singularity of
H, on ¥I'. Moreover, there may be singularities of type A, or D, at isolated points.
If p is an A3 singularity of H,, then p is an A3 versal singularity of H,,.

(3) A point p is an A4 versal singularity of H, on M if and only if p is (generically) an
A, singularity of H, on XI".

(4) There are no A, singularities of H, atp, ie., Hy may have singularities of type A,
for w € N,XT', however, w # v.

Moreover, the parabolic surface XI" satisfies the following statements:

(5) If pis an Aj versal singularity of H, on M and an Aj singularity of H,, thenp € XTI’
is either a parabolic, or a hyperbolic point of M. The hyperbolic case occurs if and
only if H, also has an A3 versal singularity.

(6) If p is an Aj versal singularity of H, on M and A, (resp. D) of H,, thenp € XTisa
hyperbolic (resp. inflection) point.

(7) If pis an Ay versal singularity of H, on M, then p € XTI is a hyperbolic point.

(8) If pis an Aj versal singularity of H, on M and the curvature « of the A3 curve in M
vanishes at p, then p € XI' is an inflection point.

2 Preliminaries

We use mainly the book [3] as reference for this section. Let £(n,m) denote the set of
germs, at the origin 0 in R", of smooth functions (R",0) — R™, &, = {f : (R",0) —
R | f is the germ of a smooth function}. With the addition and multiplication operations,
&, becomes a commutative R-algebra with a unit. It has a maximal ideal M,, which is the
subset of germs of functions that vanish at the origin. We have M,, = {f € &, | f(0) =
0}. Since M,, is the unique maximal ideal of &,, &, is a local algebra. If (z4,...,z,) is a
system of local coordinates of (R",0), then M,, is generated by the germs of functions z;,
i =1,..,n, thatis, M,, = &,.{z1,...,z,}. For a given positive integer k, the kth-power
of the maximal ideal M,, is denoted by MFE. Tt is the set of germs of functions f € M,



with zero partial derivatives of order less or equal to £ — 1 at the origin. We also have
ME =& {a'r - ain | iy 4+, = k.

Let R denote the group of germs of diffeomorphisms (R"”,0) — (R",0). This group is
labelled the “right group” and acts smoothly on £(n, m) by h.f = fh~* for any h € R and
f € E(n,m). Suppose that f : (R",0) — (R,0) is R-equivalent to +z? & --- £ 22 | £+ zF+!
then we say that f has an A, singularity (or has a singularity of type A;) at 0 and if f is
R-equivalent to +23 +---+ 22 ,+22 ,x, 1 251 then we say that f has a Dy, singularity
at 0.

Given a hypersurface M in R™, the family of height functions (projections to lines) is
givenby H : M x S™ ! — R, where H(p,u) = (p,u) and S™ ! is the unit hypersphere in
R™. For a fixed u € S™!, the height function H,, measures the contact of the hypersurface
M with the hyperplane normal to u.

Let M be an m-manifold immersed into R™** ande C.M = {p+eu € R™™* |u L T,M},
which for a small enough ¢ € R, can be seen to be a hypersurface immersed in R™*" .
This is also known as the canal hypersurface of M in R™"*. We denote it by C'M and
observe that the restriction of the natural projection 7 : M x S™+r=1 — §m+k=l {5 the
submanifold A = CM can be viewed as the normal Gauss map I' : CM — S™™~! on
the hypersurface C'M. This map is also known as the generalized normal Gauss map of
M. When M is a hypersurface (k = 1), we have that M and C'M are locally diffeomorphic
and hence I' is locally equivalent to the normal Gauss map on M.

If we denote by h, : CM — R the height function in the direction u over C'M and
by I the (k — 1) x (k — 1)-identity matrix, it is not difficult to check that, in appropriate
coordinate systems

Hess(Hy)(p) X

Hess(hy)(p,u) = 0 7

= DI'(p,u).

The determinant of DI'(p, u) is the Gauss-Kronnecker curvature function IC of CM at
the point (p, u). The singular set XI' = K~1(0) is the parabolic set of C'M. It follows from
the above expression that (p, v) € XTI if and only if (p, u) is a degenerate singularity of A,
which is in turn equivalent to saying that p is a degenerate singularity of f, (see [7]).

We write M in Monge form in a neighbourhood of a point p, that is, we consider M
given locally by the graph of a function w = f(z,y, 2) near the origin, with w = 0 as the
tangent hyperplane at the origin. If we parametrize locally the sphere S® by (a,b,c,1)
near the normal to the hypersurface at the origin, we obtain the following expression for
the family of height functions H(x,y, 2, a,b, c) = ax + by + cz + f(x,y, 2). In particular, for
v =(0,0,0,1), Hy(z,y,2) = f(z,y, 2).

Let M = ¢(U) be a hypersurface in R* parametrized in Monge form and U an open
subset of R?:

U —RY
<x7y7 Z) H w(l’? y? Z) = (x7 y’ Z? f(x7 y? Z))?

with f € M2 and p = ¢(z,y,2) € M, where we assume that, up to a convenient
translation, p is the origin, f, = f, = f. = 0 at (0,0,0) and up a convenient rotation,



foy = for = fy- = 0at (0,0,0). Let us consider the k-jet of f, k =2,3..., given by

2 2 2 2
J°f = ag0x” + ap20y” + ago2z”,

33 =72 f 4 azo0r® + a2102y + a1202y” + aozoy® + ao0sz® + ao2yz” + aga1y’z + apewz’
+ a1’z + a1 ryz,
G =7 + asor® + azior’y + azor®y® + a130my’ + agaoy’ + aos1y’z + agey’s
+ a013yz3 + a004z4 + CL3011]3Z + CL20213222 + a103x23 + (I211{L’2y2 + a121$y22 + CL112.Ty22,
3°f = 3 + as002” + asor'y + az0r’y’ + azser’y’ + arory + agsoy® + aony’z
+ a0y’ 2 + a2 + aonayzt + apes2” + ason 'z + azoer® 2 + assr’z® + arpazz
+ a113Iy23 + alggxy222 + alglxy?’z + a212x2yz2 + a221x2y22 + a311x3yz

and so on. Therefore,

f(@,y, 2) = as00” + an0y” + ago2z” + ase0x” + 2102’y + a1202y” + aozoy’ + agosz”
+ ao12y2” + 1Y’z + a10282” + a2017°2 + a1112Y2 + asgox” + azior’y (1)
+ a20%°y” + a130zy® + aoaoy” + aos1y’z + a2y’ + anizyz® + agezt + -
Definition 2.1. ([3], Definition 3.1) A s-parameter unfolding of a germ f, € M,,.E(n,p) is
amap-germ F': (R" xR?* 0) — (R? xR?,0), (z,u) — (f(z,u),u) such that fo(z) = f(z,0).
We use the notation: f,(z) = f(x,u), where f, is an deformation of f,, parametrized by
u € R and F (1) = g—m(x,O),fori =1,---,s.
Theorem 2.2. ([3], Theorem 3.6) An unfolding F' is versal if and only if

LAefO +R{F1a e 7FS} = g(”vp)

Remark 2.3. If f is k-determined we can show that
to verify if I is a versal unfolding.

Without loss of generality we can assume that aspaoz0 # 0 and ag2 = 0, provided v
is normal to M at p and then p is a corank 1 singularity for height function H, of M. The
conditions on the coefficients of f for those singularities to occur and their corresponding
versal unfoldings are described in the following proposition.

Proposition 2.4. ([6], Proposition 2.1) Using the notation as above let us suppose asppao20 7#
0, then, the height function H, on M in the direction v € N, M has the following generic
singularities of corank 1 at p:
Ay agee = 0 and agpz # 0;
A3t agoe = 0, ago3 = 0 and 4agoa@osnazo0 — Ao12>a200 — @102°ao20 # 0;
Ayt agee = 0, agoz = 0, 4apoao20a200 — a0122a200 - a1022a020 =0and
4@005@2002&0202 + a021a0122a2002 - 261012(101361020@2002 + @01200200102@111 0200

2 2 2
+ a201@102" 020" — 2G103010202002020 7’é 0.



Such singularities are versaly unfolded by the height functions family provided:

A<y ¢ always;
Az agia # 0 or ajp # 0;
Ay a10290(aijk) # 0;

where ¢(a;j;) is a polynomial of degree 12 in coefficients a;;,, with 0 < i+ j + k < 5 (see
[5D).
Proposition 2.5. ([6], Proposition 2.4 )

(1) The parabolic set (i.e. set of points in M where the height function along the normal
has an A,-singularity) is locally a smooth 2-dimensional surface.

(2) The As-singularities of the height function H occur generically on a smooth curve
on the parabolic set, labelled A; curve.

(38) The A,-singularities of H occur generically at isolated points of the A3 curve.

Remark 2.6. Although umbilic singularities (D) may occur generically, the parabolic
subset is not a regular surface at such points and, therefore, they shall not be considered.

By taking into account the number of necessary conditions, it follows from the Transver-
sality Theorem that non versal singularities of types As and A4 of the height function
cannot occur generically ([6], Proposition 2.1) .

Given a parametrization x for a surface N in R*, denote by [;, m1, ny, ls, ma, ns the co-
efficients of the second fundamental form with respect to any basis {z,, Zu,, f3, f1} of
T,M — N,M, and define A by

ll 2m1 nq 0
Iy 2 0
i 5 ;T2 27:;1 ny = }1(4(Z1m2 — lgml)(man — mgnl)) — (lmz — l2n1)2).

0 l2 2m2 N9

A =

A point p is said to be elliptic/parabolic/hyperbolic if A < 0/ = 0/ > 0. The set of
points (z,y) where A = 0 is called the parabolic set of N and is denoted by A.

Given a surface in R* locally given in the Monge form by (z,y, Q1(z,y), Q2(x,y)) and
avector v = (v, 09, v3,v4) € S, the height function H, on N is given by

Hy(z,y) = viz + vy + v3Q1 (2, y) + v4Q2(x, y).

Therefore, H, has a singularity at p if and only if vy = v, = 0, ie, v € N,N. By a
convenient rotation of the normal plane at the origin , we can assume that v = (0, 0,0, 1)
is a degenerate direction and, therefore, (); and ), can be written as

Q1 (z,y) =ag07” + anxy + agey’ + azor’ + an Yy + arpry® + agzy’ + - -
Q2(z,y) =boox® + b3o® + bo1 2%y + biowy® + bozy® + bagx? + bz12%y + byox?y? + byzwy® + - -

and the singularities of lflv can be given in terms of the coefficients of (); and (),, as in the
following proposition.



Proposition 2.7. ([1], Proposition 2.2.2) Using the notation as above, the conditions for
the generic singularities of the height function H, are:

Ag : byy # 0 and boz # 0;

As :byy # 0, bos = 0 and 4bygboy — b7, # 0;

Ay bag £ 0, bog = 0, 4bagbos — by = 0 and 2b5,bgs — 2bagbiabis + ba1biy # 0;

Dy : by = 0 and byz® + by 2y + biazy® + besy® is non degenerate.

Such singularities are a versally unfolded height functions family if and only if

Ay : always;
Azt agy # 0 0or by # 0;

1
Ayt oaps (bzob13 - b21b12) — bya (b20a03 - 5611612) # 0;

3 1
Dy : 3b3o (aozblz - §a11503) — bn (a02b21 - 5(111612) + a0 (3521503 - 5%2) # 0.

Definition 2.8. A hyperplane with orthogonal direction v is an osculating hyperplane of
N at p = z(u) if it is tangent to NV at p and H, has a degenerate (i.e., non Morse, that is
As) singularity at p. We call the direction v a binormal direction of N at p.

Proposition 2.9. ([3], Proposition 7.7) Let N be a smooth surface immersed in R* and let
p be a pointon N.

(1) If p is an elliptic point, then H, has a non degenerate singularity at p of type A; for
all vin N,N.

(2) If pis a hyperbolic point, then there are exactly two distinct binormal directions v;,
vy in N,N.

(3) If p is a parabolic point but not an inflection point, then there is a unique binormal
direction v in N, N.

(4) If p is non-degenerate inflection point, then there is a unique binormal direction v
in N, N and the 2-jet of H, at p is identically zero.

Singularities of H, occur only in the non-elliptic region.

3 Characterization of height functions singularities on a
hypersurface M and its parabolic subset

The image of XI' through v is generically a smooth surface, known as the parabolic sur-
face ([6]). We shall identify the subsets XI' = ¢(XI'). The parabolic surface ¥I' can be
considered as a surface in R* and the following question can be asked: Given the normal
vector v at a parabolic point p € M, is there a relation between the singularities of the
height functions H and H in the direction v (denoted by H, and H,) at p?



Proposition 3.1. Let H, be a height function on the hypersurface M and H, a height func-

tion on the surface XI' in the normal direction v to M at p. Then the following assertions
hold:

(1) If pis an A, singularity of H, then p is a singularity of type A, of H,,

(2) If pis an A; singularity of H, then p is, generically, an A; singularity of H, although,
at isolated points, it may be of either type Ay, or Dy,

3) If p is an A, versal singularity of H, then p is, generically, a singularity of type A4
for H,.

Moreover, the following conditions hold for item 2:

(i) pis an Az singularity of H, if and only if a2 ,a200 + ao2003; # 0 and 9Yagosao20a200
2 2 )
—2a2000012° — 2a020a102° 7# 0;

(ii) p is an A4 singularity of H, if and only if a2 ,a200 + @o20atgs # 0, 9a004@020a200
2 2 _ 2 9 2. 9 2
—2a2000012° — 20020a102° = 0 and 21agosa200” 020" + 4a21a012°A200° — 90012G01300200200

2 9 2 i

+4ap12a0200102@111 Q200 + 42010102 020" — 9A103G102@2000020 ?é 0;

(ii7) pisa Dy singularity of I, if and only if a2 ,as00 + ag20a3,, = 0 and

(1012(4861004@31261102%00@300 - 96@004631261%00@202 + 96000466312@200@%01_
48@0046131#%02@200@210 - 96a004a312a200a111a201a102 + 96&00461812(1300%12@102—
96a004a300a312a022a%02 + 48@004%2)12@?02@120@200 + 96@004%12@021a?ozanlamo—
4801004001200300 020200 — 960040551 0020200 + 2500150500705 + 3651503000703 —
60a012020001030201 @102 + 60a71500130200020105 05 — 7201500130500 01030102 —
50ag19a5 0201110201 + 60a815a103011102000705 + 600120130021 01020200+
36“(2)13‘130033120‘%02 - 60“(2)120‘013@?020‘111@200 - 60@(2)12%21“:1302@103@200"‘

2 4 2 4 2 5 2 6
500190021 @1g90201 + 25a05,90102a71; — 50001200217 09a111 + 25a5,,a7g,) 7 0

Proof. Let Hy(x,y,z) = f(x,y,z), where v = (0,0,0,1) and f is as in equation (I). The
fold singularities of the Gauss map M — S™ correspond to A, singularities of the height
function. Then the surface XI" of M is given by the points (z,y, z) at which the Hessian
determinant of f vanishes, then YT is equal to P~!(0), where



P(x,y,2) = 8a0o20a002 + (24a002a020a300 + 80022000120 + 8@020a1020200)T + (8002a020a210
+ 24ag02a0300200 + 8@012@0200200)Y + (8a0026020a201 + 8p02a021a200 + 240030020G200) 2

+ (48a002a020@400 + 24a002a1204300 + 8A002a2000020 — 80020510 — SAo204201° — 2a111°A200
+ 24ap20a102a300 + 8@02002000202 + 8a102a1zoa200)1’2 + (24a002a020a310 + 7200020300300

— 8a0020120G210) + 2400201300200 + 2400120020a300 + 8G01201200200 + 8020102210

— 8ap20a111a201 + 8A020@112a200 — 8021 G111 G200 + 24€030a1020200)TY + (24a002a0200301

+ 24ago2a021a300 — 8002a1110210 + 80021200201 + 8A002a121A200 + 7200030020300

+ 24app3a1200200 — 801201110200 — A20@1020201 + 24A020@1030200 + 8a021a102a200)x2

+ (8a002a020a200 + 24agp2a030a210 + 48a00200400a200 — 8(1002@%20 - 2@020611112 - 80021261200
+ 8agi2a020a210 + 24a012a030a200 + 8a020a022a200)y2 + (861002&020@211 + Bapo2a021a210

+ 24ago2a030a201 + 24a00200310200 — 8G02a1110120 + 2400300200210 + 7200030300200

+ 8ap12a0200201 — 8Ag12A0210200 + 2401300200200 — 8a020a102a111)y2 + (8@00201020@202

+ 8apo2a021a201 + 8020220200 + 480040200200 + 24a003a020a201 + 24a0030021 G200

2 2 2\ .2
— 2@002@111 — 8@012 a200 — 8(1020@102 )Z + h.o.t.

(1) Let us suppose that H, = f has a singularity of type A,. Then, from Proposition[2.4]
we have that app2 — 0 and apos 7é 0. Note that PZ(O, 07 0) = 24@003@020(1200 7& 0 and
therefore the variable z can be expressed in terms of z and v, i.e.,

2= 1@ + ey + 322 + ey + c5y® + cer + crry + sy + oy + - -

By substituting the expression of z in P(z,y, 2) = 0 and calculating the coefficients
¢; we obtain that .
r=—
3003

(aloﬂ + a012y) + 1(z,y),
where p; € M3. Therefore, the surface 3I" can be parametrized by

—1

(z,y) — (%Z/, 3—(G1029€ + 610123/) + o1(z,y), ]g(ﬂ%y)) )
003

and

. 1
flz,y)=f (% Vg — (aloﬂ + CL012y) + o1 (z, y)>
003

= ag007” + agaoy” + higher order terms.

Since agoy # 0 and agy # 0, then H, = f ~z 2% + 32, i.e., H, has an A, singularity.

(2) Let us suppose now that H, = f has a singularity of type As. Therefore, agp; = 0,
agos = 0 and 4agpaaozoaaoo — o12°az00 — ar02* a0 # 0.



In such case,
VP(O, 0, 0) = @200@020(G102> ap12, 0)-

Since the Aj singularity is versal, then either a,02 # 0, or agi2 # 0 and the parabolic
subset is a regular surface. Without loss of generality we can assume that a;p2 # 0
and, therefore, by using calculations analogous to those of the previous case, x can
be written in terms of variables y and z. These calculations lead to the following:

G012 1

2 2 2 2 2
- 3 (4%12 02002000202 — 4a@o12” Go20A201" — Ao12”A111" A200
a2 4102 ao20a200

+ 4ap12a020010201110201 — 4001200200102@1120200 + 400120021 A 10201110200

2 2 2 2 2 2
+ 4ap20a022@102° A200 — 200102 A111° — 4ap21 102 azoo)?/

1
2 2, 2 4 2
= <24a004a020a102 ago0 — 4ap12” 102" az00 — 4a102 a020>z
102" Q0204200
! 2a012> 4 2 6
— 5 3. | 200127 10201110200 T 4A012G0200102" A201 — OA0120020010201030200
2a102° 0204200

2 2 3
— 4ap12a021a102” @200 + 6a0132020@102" @200 — 200200102 am)yz + -

ap12
= ——Y + 902(317 Z)J
aio2

where ¢, € M3. Therefore, the surface ¥.I" in R* is parametrized by

(y.2) (—“O—gjy + oy, ). z,f”<y,z>) |

ai
where )
= Qp12~ @200 2 2 2
f(y,z):(a020+—2 y: + Ay + Bz 4+ Cyz® + - - -,
a102
with
1
3 3 3 2
=5 <2a300a012 a102@020 — 4@012”A020G2000202 + 012" Go20A201
2a102*aozo

2 2 2 2
— 2a012” 2100102 @020 — 4ap12"A020A1020111A201 + 4A012” Q020 10201120200

2 2 3
— 4ap12"ap2101020111a200 — 4a0120020@0220102" Q200 + 2012000120 102" Q020

2 2 4 3 2 2 2
+ 4api2a021 @102 200 — 200300102 @020 + Ay12G111° Q200 + A012C0200 102" A111 >,
= ——5——( 0a012@013@02001020200 + 9012" A020@102@201 — Oo12” A020@1030200
102" @020

3 2 3 2
+ 2ap12°a111a200 — 301200200102 A111 + Ao20Q021 102" — 4012 a021a102a200> and

2 2
O — 2a012(6aoo4a02oa2oo — 012”4200 — Q0200102 )

2
a102”a020



Let us denote by coef(q, 25" ... x*) the coefficient of the monomial 2% ... 2% in a
polynomial ¢ and suppose that

2 2
~ An10a =+ agopa
coe f( p,y2> 0124200 0204102 / 0.

aio
The following coordinate changes can be applied to eliminate degree 3 monomials:
orf (F) o, coed Fo2) | cond(Fye?)
2coef(f,y?)"  2coef(f.y?)"  2coef(f,y?)

and those of degree 4 can be eliminated by means of

(et (") s coc(Fyte) o | coef(FaP) | coef(Fue)
P eoet Gy 2eoct (o) 2e0et Gogt) U 200t (o) )

So we have

yr—=y—-

2 2
; 120200 + @0200702 \ o
f ~R B Yy +
QA7102

2 2 2 2
(4(1004@020@200 — A200Q012° — Qp20A102 ) (9(1004%20&200 — 2a2000012° — 200200102 )24

0200200 (@2000012% + Ao2001027)

Note 4agsao20a200 — A2000012° — Go20a102> # 0, as a consequence of the assump-
tion H, = f has a smgularlty of type As. Therefore, if 9agouao20a200 — 2a200Q012° —
2a020a102° # 0, then f=H, ~g y*+ 2% ie., H, has, genencally, a singularity of type
As. T 900400200200 — 2020000122 — 200200102 = 0, f = H,, ~g y>42” is obtained through
convenient coordinate changes on f, if and only if 21agsa2002a020> 4 4a021 G012 200> —
9a012001300200200° + 4001200201021 G200 + 4001 0102% A020” — 9a103010202000020° 7 0, thus
leading to a singularity of type A4 for H,.

Now, if coef(f,y?) = 0, i.e., a25a200 + 020030, = 0, then f has cubic and higher
order terms. Therefore, f = H, may have singularities of type DT at isolated points
of As curve when the cubic part of f is non degenerate, i.e., when its discriminant

d does not vanish. It is not difficult to check through convenient straightforward
calculations that § does not vanish if and only if

Cl012(48000461312%02@200@300 - 96&00461312030()@202 - 48aoo4a812af02a200a210

+ 96a00400;202000501 — 960047 1502000111A201 @102 + I6004a2A500A 1120102

- 96@004@00@(2)12@022@%02 + 48aoo4a312a?02a120a200 + 96@004a012a021a?02a111a200
- 48a004a012a030a‘1102a200 - 96@004@321%02@200 + 25@312(1301@%02 + 36@31261300@%03
- 60“312&200%03&201&102 + 60@312@013@00&201&%02 - 72@3126101361%00@103@102

— 50a(,15070501110201 + 60051501030111020007 02 + 36513050005150T02 + 250551050
— 60ag50013050201110200 4 50aG,90021 01090201 — 600790021 a34901030200

2 4 2 4 5
+ 25a012a102a111 + 60@012a013a021a102a200 — 50&012%21@102&111) 7é 0.

10



(3) Let us suppose now that H, = f has an A, singularity. Therefore, a2 = 0,

_ 2 2 _ 2 2 2 2
aoos = 0, 4appa@o20a200 — @o12°A200 — G102” 020 = 0 @nd 4agosa200”@o20” + Ao21G012” 200" —
2 2 2 2
2a012a01300200200° + Q0120020010211 0200 + Q201 102”020~ — 2A103010202000020 7& 0. More-
over,
VP(Q 0, 0) = azooaozo(am% 012, 0)

and ap2 # 0, since the singularity A, is versal. Analogously to the previous cases,
surface XI" in R?* is parametrized by

ap12 3
(yaz) = (_?(By + 903(y72)7y7 Z, f<y7z)> )

where 3, f € M3. Now, through convenient coordinates changes in f towards
eliminating some monomials,

2 2
~ ~ AH19A200 + Qo200
N 0120200 0200702 2 5
f =H, ~g < 5 ) Yo+ Dz ,
702

where

D

1

_ 2. 2 2 2 2

T da2 B (4(100561020 200" + Go12” 0210200 — 2a012G013C0200200
@020~ A200

2 2 2
+ ap12a020Q102a1110200 + Q20" @102~ A201 — 2G020 a102a103a200> 7"é 0

by hypothesis. . Therefore, f = H, ~g 3>+ 2%, i.e., H, has an A, singularity.

Corollary 3.2. Singularities of type A of H,, for v € N,M do not occur generically.

Remark 3.3. (1) The condition a§;,as00 + @o20a3y, = 0 in the singularity A, of Proposi-
tion [3.1|leads to a situation that cannot occur generically neither at a point of the
hypersurface M in 4-space (for it would be an extra condition on an isolated singu-
larity, which is non generic), nor at a point of the surface XI'. In fact, let us suppose
2150200 + G200y, = O; therefore, f has only cubic or higher order terms and the
discriminant of its cubic part is given by

144 ~
10 (a200a012a004)2A,

5:

a102

where A is given in terms of the sum and the product of coefficients of at least
order 2 of f. However, the height function H, on M is supposed to have an A,
singularity. From Proposition[2.4we have that 4ag4020a200— @o122a200— @102 020 = 0,
and therefore we must have agys = 0 for agapaze # 0 and a2 ,a000 + ap20a30y = 0.
Moreover, the discriminant § is equal to zero, so we have a degenerate cubic and
hence a singularity of type D-,, which cannot occur generically on surfaces in R*.

11



(2) We have from Proposition 3.1|that the points of the A3 curve of H, in M is made of
points of type A; for H, lying in XI'. Now, we observe that at isolated points of the
Aj curve of H, may become a singularity of type A, for H,. On the other hand, the
singularities of type A4 of H, correspond to the singularities of type A4 of H,, ie.,
the number of type A, singularities in those curves of ¥I" is higher than or equal to
the number of A, singularities on the A3 curve of M.

The following reciprocal of Proposition 3.1 holds:

Corollary 3.4. Let XI" be the parabolic subset of a hypersurface M in R*, where XTI is a
regular surface in R%. Let H, be the height function on the hypersurface M and f, be
the height function on the surface ¥XI' in direction v normal to M at p. The following
assertions hold:

(1) If p is a singularity of type A, of H, then p is a singularity of type A, of H,,
(2) If p is a singularity of type A3 of H, then pis an A; versal singularity of H,,
(3) If p is a singularity of type A4 of H, then pis an A, versal singularity of H,.

Proof. (1) Let us suppose that p € X is a type A, singularity of H,. Since p is a regular
point in the parabolic surface of }, it is necessarily a singularity of type A, of H,.
Observe that if p is of either type A; or A4 this would contradict Proposition
Therefore, the point p must be a singular point of type A, for H,.

(2) If pis a singularity of type A; of H, we have that it cannot be a singularity of type A,
for H,, for it lies in the parabolic subset; on the other hand, it cannot be a singularity
of type A, nor of type Ay, for it would contradict Proposition 3.1]and hence p must
be a singular point of type A3 of H,.

(3) The argument in this case runs analogously to the previous one. O

Corollary 3.5. (i) Given a point v € N,M we have that v is a binormal direction of XI"
if and only if p belongs to the A3 curve of M. Moreover, this A; curve of M is an Aj;
curve of the parabolic surface XI" too.

(i) Let v € N,XI such that v ¢ N,M. Then, the hyperbolic region XI" may contain
other Az curves of H, as well as A, type singularities of H,.

Observe in the proof of Proposition the coefficient a2;,a200 + ao20a3y, was initially
supposed to be non zero. Provided it is zero, in an A3 singularity of H, the height function
H, on XI" might have a corank 2 singularity. The geometrical meaning of such a coefficient
is analyzed in the next proposition.

Proposition 3.6. Let us suppose p is an Az versal singularity of H,. Then, a3;,as00 +
ao20aigs = 0 if and only if the curvature x of the A3 curve of M vanishes at p.

12



Proof. The A; curve can be parametrized as the set of points (o, o, 29) for which the
Hessian determinant of f vanishes and the kernel of the Hessian of f is a root of the cubic
form f. Therefore, such points are of the form

(20, Y0, 20) = (—a0124Y, a102AY, (ag12B + a102C)y) + h.o.t.,
with ajg2 # 0 or ag12 # 0, since Aj is versal, where

2 2
A = 4a004a0200200 — G200G012° — A0200102 )

1

B = aj02a201a020 + 5%12&20061111 — (20020200103 — A20020212102,
1

C' = a00a0200013 — 5%200102@111-

Note that A # 0 is precisely one of the conditions for an A3 singularity (Proposition [2.4).
So the A3 curve is given by

Y(y) = (%o, Yo, 20, f (w0, Yo, 20))

and its curvature is

() = 2J A*(ag 90200 + ao2007)? ((A)*(afg + afya) + (a012B + a102C)?)
_ .
y

(A2(a3yy + adis) + (ao12B + a102C)? + 4(A)*(ad 50200 + 02003 2)y?)

Observe that term (A)* ((A)*(a%y, + a315) + (ap12B + a102C)?) never vanishes; there-
fore, (y) = 0 if and only if a2;5a200 + ag20a3y, = 0.
[

4 Geometry of the parabolic subset >I' as a surface in 4-
space

The previous section addressed to the behavior of the height functions on both, the hy-
persurface M and its parabolic subset XTI, in a given direction v € N,M. Since XTI is
supposed to be a regular surface in R* some known geometrical properties for surfaces
in 4-space can be applied to it. In particular, the Proposition 3.1| can relate the geometry
of the parabolic surface XI' to the singularity type of the corresponding height function
(in the direction v) on M. Let us recall that when H, has a degenerate (i.e., non Morse)
singularity at a point p there exist one or two binormal directions with their respective
osculating hyperplanes on the parabolic surface of M (considered a surface in 4-space).

_ According to Proposition 3.1} at a singularity of type A, of H,, v € N, M, the function
H, has an A, singularity and therefore the binormal direction of ¥I" at p does not neces-
sarily coincide with the normal direction of M at p. On the other hand, at the singularities
of type Ay, k = 3,4, the direction v € N,M must be a binormal direction of surface I
and the following result holds:

13



Corollary 4.1. Given a hypersurface M such that the height function of M at a point p has
a singularity of type A, k = 3,4, then one of the osculating hyperplanes of the parabolic
surface of M at p coincides with the tangent hyperplane of M at p.

Proof. We can represent the hypersurface M in the Monge form ¢(x,y, 2) = (2, vy, 2, f(x,y, 2)),
with the point p at the origin, where f is given by (I). So the tangent hyperplane to M
at p, T,,M, is orthogonal to the vector v = (0,0, 0, 1). Now, since the parabolic surface X'
is contained in M, we then have that 7,/ is also a tangent hyperplane to XI" at p. More-
over, since the height function H, on M in the direction v = (0,0, 0, 1) has a singularity
of type Ay, k = 3,4, at p, we get from Proposition 3.1 that the height function on XI" in
the direction v = (0,0,0,1), Hy, has an A, k = 3,4, singularity at p, i.e., v is a binormal
direction at p and hence 7, M must coincide with one of the osculating hyperplanes of the
parabolic surface XTI at p. O

As a consequence of Propositions [3.1]and the versality conditions for the singu-
larities of the height function H, on XI' can be obtained in terms of the coefficents of f
on M. The most interesting case occurs when the height function H, on M has an Aj;
versal singularity, as described in the following proposition. According to the previous
notations, we have the following:

Proposition 4.2. Let us suppose that the function H, on M has an A3 versal singularity.
Then, the function H, on XI" has an A3 versal singularity if and only if 6 agos ao20 @200 —
(200 Go12” — G020 A102° # 0.

Proof. According to the proof of Proposition 3.1} parabolic surface X" of M can be parametrized
as

a ~
g:(y,2) — (—ﬂy +©2(y,2), 9,2, fy, Z)> :
aio02

The aim now to eliminate the linear term in the first coordinate and apply the typical
methods of the theory of surfaces to R* for studying the geometry of XI'. By applying a
rotation of matrix

cosf senf 0 O

—senf cosf® 0 0

A= 0 0 10
0 0 0 1

12
02

to g and taking # = arctan (ZJIL), the parabolic surface is given by (Q1 (v, 2), v, 2z, Q2(y, 2)).
Now, let us suppose that H, has an A4; versal singularity, therefore, Q1, Q2 € M3, with

2 2
ap120200 + Q0200702 \ 2
QZ ~MR 2 Yy +
ETD)

2 2 2 2
(4a004a020a200 — G2000012° — @0200102 ) (9a004a020a200 — 2a000a012” — 20200102 )24

)

0200200 (20000122 + @02001022)
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considering a Q200 + &020&%02 7’é 0 and 9(1004(1020(1,200 — 2~a200a0122 — 2&020&1022 7& 0. By using
Proposition singularity A; is versal unfolding of H, if and only if agy # 0 or bys # 0.
In this case the coefficients are given by

2 2
6 apoa @20 Q200 — G200 @012° — Q020 A102

gy = —
0 ao12%+ai02?
Qp20 A102 @200 1022

2 2 2 2 2
2 ap12 (2 Q200@102° + Q200 Qo12~ + Go20 A102 ) (6 Qpo4 @20 200 — Q200 @p12~ — Q20 A102 )
200002001022 (a012% + @1022)

b12 =

Therefore, singularity Aj is non versal if and only if 6 agos @o20 @200 — @200 @012% — G020 102> =
0. ]

Observe that this case is generic for the surface ¥I', since these are isolated points
on the A3 curve. The fact that the singularity of H, is of type Az (versal or non versal),
coming from a versal singularity of type Az for H,, provides interesting information on
the geometry of XI" at the considered point.

Proposition 4.3. Let p € M be an Aj versal singularity of H, on M and a singularity of
type As of H, on XI'. Then, we have the following:

(1) The point p is a hiperbolic point of ¥T" if and only if p is an A3 versal singularity of
H,.

(2) The point p is a parabolic point of XI" if and only if p is an A3 non versal singularity
] 2
of Hy and ap12°a111 200 +2 ao12 Go20 @102 A201 — 3 Ao12 Qo20 G103 G200 — 2 Go12 Go21 A102 G200 +
2
3 ap13 @020 G102 Q200 — Q020 G102~ A111 7 0.

Proof. Suppose that p € M is an A; versal singularity of H,, and of type As for H,. Accord-
ing to Proposition 3.1 we have that a2|,as00 + a20a3, 7 0 and 9ageaoanaasy — 2ase0aorn’ —
2a020a102° # 0.

On the other hand, from the proof of Proposition 4.2l we have that ¥I" can be written
in the form ¢(y, z) = (Q1(y, 2), y, z, Q2(y, 2)) and only the calculation of the discriminant
A of the surface XTI at p is required. The coefficients of the second fundamental form of g
are given by:

L = Q1yy(0,0), my = Qlyz(oao), ny = lez(oao)
ly = Q2,,(0,0), my=Q,.(0,0), ny=0Q>,(0,0)
Therefore, the discriminant A of g at p is
ll 2m1 nq 0
1 lg 2m2 N9 0

A==
410 ll 2m1 nq
0 12 2m2 N9
2 2\2 2 2\2
16 (6 agos @o20 G200 — G200 Go12” — @020 @102°)" (@200 Go12” + G020 A1027)
— . ,
ao202a1022a200? (@012 + a102?)
Moreover,
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(1) p is a hiperbolic point of XI" if and only if A < 0, if and only if 6 agos ao20 @200 —
00 Ao12° — Ao20 102> # 0, which, from Proposition provides the condition for an
Aj versal singularity.

(2) Analogously, p is a parabolic point of XI'" if and only if A = 0 and rank o = 2
([3]), where « is the matrix of the second fundamental form of g. The 2 x 2 minor
determinants of a vanish simultaneously if and only if

2 2 2 2N _
(6 agos @20 @200 — @200 Go12° — Q020 G102”) (G200 A012° + G020 A102°) = 0,
2 2y _

A (ag00 ag12” + ago a102”) = 0,

where

_ 2
A = api2”a111 G200 + 2 agiz ao20 G102 @201 — 3 Ao12 G020 G103 Q200 — 2 Ao12 Go21 Q102 4200

+ 3 agi3 @20 @102 Q200 — Q020 61102201111-
Therefore, p is a parabolic point of >I" if and only if A # 0.
L]

Remark 4.4. The case in which an Aj versal singularity of H, is an A3 singularity of H,,
either versal or not, was considered in the last proposition. In Proposition As versal
singularities of H, may also be A, or D, for H,. Even if height function H, on M does
not have corank 2 singularities, height function H, on XT' may have inflection points,
meaning H, has umbilic singularities.

Proposition 4.5. Let p € M be an A3 versal singularity of H,. If p is not an A3 singularity
of H,, then p is either a hyperbolic point or an inflection point of XT".

Proof. The point p is an Az versal singularity of H,,. Since it is not A3 singularity for H,,
according to Prop. 3.1} p may be of either type A, or D;.

(¢) If p is an A4 singularity for H,, then the conditions a2 5a200 + agaiy, # 0 and
9(1004(1020(1,200 — 2(1200(1,0122 — 2&020&1022 = 0 hold. By USil’lg them and Writing the surface
I as in the proof of Proposition4.2} the discriminant A at p is given by

2 2\4
16 (az200 @p12” + G020 A102°)

7
9 as0?a1022a020? (a0122 + a102?)

A= —

i.e. , A < 0and pis a hyperbolic point of ¥I".

(i7) If p is an D, singularity of H,, then we have a2 ,a200 + Go2003p; = 0, implying that
A =0andrank a < 2 atp, i.e., p is an inflection point of XI".

O

The same arguments can be applied when point p is an A, singularity of H,. In such a
case, hyperbolic points of XI" are obtained.
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Proposition 4.6. Let p € M be an A, versal singularity for H,. Then p is a hyperbolic
point of XT.

Proof. Since p € M is an A, versal singularity of H,, we get from Proposition 3.1] that p
must be a singularity of type A, also for H,. Therefore, ¥I" can be parametrized as

(—@y + 903(2/7 Z)7y7 2 f(y,Z)) :

Q102

Following an analogous argument to that of the proof4.2}, the same rotation matrix can
be applied in order to eliminate the linear term and parametrize ¥I" as (Q1 (v, 2), y, 2, Q2(y, 2))
and hence, the discriminant A at the point p is given by

(ao12®as00 + o2 a1022)4
azo0?a102tao20? (an12? + ar2?)

Since from the hypothesis we have that agi2%as00 + ao20 @102 # 0, we can conclude that
A < 0 and thus p is a hyperbolic point of XT". O

A= —

According to Proposition when p is an A3 versal singularity of Hy, then a3;,a200 +
ao20aiy, = 0 if and only if curvature x of A; curve vanishes at p. Therefore, as a conse-
quence of Proposition 3.6 and Corollary 4.5 we can state the following:

Corollary 4.7. Let p be an Aj; versal singularity of H,. If the curvature « at p of the A3
curve in M vanishes, then p is an inflection point of the parabolic surface XI.

Remark 4.8. The study of hypersurfaces in R* has been lately very important. “In medicine,
4D models can be used in magnetic resonance imaging, computed tomography and ul-
trasound. In the case of magnetic resonance imaging methods that use 4D images have
proven to be effective in facilitating the diagnosis of cardiovascular diseases. They dif-
fer from previous methods, both in terms of greater accuracy in obtaining a 3D model
of the heart and in their ability to calculate blood flow in all directions. In the case of
computed tomography a new scanning protocol was created to generate 4D images of
the lung. Compared to previous protocols this new one has a shorter scanning time and
obtains images of the entire respiratory cycle. In ultrasound applied to prenatal exams a
4D method allows the dynamic visualization of images of the fetal heart at different levels
of depth and facilitates the diagnosis of congenital anomalies”. See [2].

“It is of interest for several applications such as event detection, robotics, electronic
games, animation, human-computer interaction, etc., the reconstruction of 3D computa-
tional models from physical objects. This is usually done by using computer vision tech-
niques from 2D images or sensor data, which can be also interpreted as binary images.
When the objects to be reconstructed are in motion, 4D images can be used to identify
dynamics and occlusions of the objects and thus enable the creation of efficient compu-
tational models. Additional techniques can be used to complement the reconstruction,
such as topology and mass conservation properties”. See [2] for more references.
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