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Abstract
We present multiplicity results for mass constrained Allen–Cahn equations on a Rie-
mannianmanifoldwith boundary, considering bothNeumann andDirichlet conditions.
These results hold under the assumptions of small mass constraint and small diffu-
sion parameter. We obtain lower bounds on the number of solutions according to
the Lusternik–Schnirelmann category of the manifold in case of Dirichlet boundary
conditions and of its boundary in the case of Neumann boundary conditions. Under
generic non-degeneracy assumptions on the solutions, we obtain stronger results based
on Morse inequalities. Our approach combines topological and variational methods
with tools from Geometric Measure Theory.
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1 Introduction

Let (M, g) be a smooth, compact n–dimensional Riemannianmanifoldwith boundary,
for n ≥ 2. Let W ∈ C3loc(R, [0,+∞)) a double-well potential such that W −1(0) =
{0, 1}. For fixed ε, m > 0, consider the following Allen–Cahn type equations with a
mass constraint:

{
−ε�uε,m + 1

ε
W ′(uε,m) = λε,m, on M,∫

M uε,mdvg = m,
(1.1)

where the unknown parameter λε,m ∈ R is a Lagrange multiplier related to the mass
constraint

∫
M uε,mdvg = m.We study (1.1) under bothNeumann andDirichlet bound-

ary conditions, which leads respectively to the two following problems:

⎧⎪⎨
⎪⎩

−ε�uε,m + 1
ε

W ′(uε,m) = λε,m, on M,∫
M uε,m = m,

∂uε,m
∂ν

= 0, on ∂ M,

(1.2)

where ν ∈ T M
∣∣
∂ M is the unit inner normal vector to ∂ M in M , and

⎧⎪⎨
⎪⎩

−ε�uε,m + 1
ε

W ′(uε,m) = λε,m, on M,∫
M uε,m = m,

uε,m = 0, on ∂ M .

(1.3)
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A straightforward computation shows that solutions of the Neumann problem (1.2)
can be found among the critical points of the functional

Eε(u):=
∫

M

(
ε

|∇u|2
2

+ 1

ε
W (u)

)
dvg,

in the function space

Hm :=
{

u ∈ H1(M,R) :
∫

M
u dvg = m

}
,

while critical points of the restriction of Eε to the subspace

Hm,0:=
{

u ∈ H1
0 (M,R) :

∫
M

u dvg = m

}
,

are solutions of the Dirichlet problem (1.3).
The functional Eε is widely used in the modelling of phase transition phenomena.

For small ε > 0, critical points of Eε in Hm and Hm,0 develop transition layers
whose profiles are close to solutions of isoperimetric-type problems. This linkwas first
noticed (in theminimizing case, using the ideas of�-convergence) in the seminal work
ofModica [42] in the case of Neumann boundary conditions and by Owen, Rubinstein
and Sternberg [46] in the case ofDirichlet boundary conditions. Extensions to arbitrary
critical points have been given by Hutchinson and Tonegawa [35]. Analogously, in the
absence of a mass constraint critical points of Allen–Cahn functionals are linked to
the min-max theory of minimal surfaces (and, more generally, submanifolds) which
was initiated by Almgren [3, 4] and improved later by Pitts [54]. This theory has
been object of an extensive study in the past years after the works of Marques and
Neves (e.g., [39, 40]). In particular, a min-max theory for isoperimetric-type surfaces
was developed by Zhou and Zhu [63]. As a consequence, there has been an increased
and renewed interest in the study of existence and multiplicity of critical points for
functionals of Allen–Cahn type and their asymptotic behavior as ε → 0, departing
from results of Gaspar and Guaraco [32, 33]. In the presence of a mass constraint,
first studies in this direction have been carried out in [15] in the case of manifolds
without boundary, while related vectorial problems have been recently studied in [6].
In a related direction, Bellettini and Wickramaseckera [10] studied the existence of
solutions for a more general equation of Allen–Cahn-type associated to surfaces of
prescribed mean curvature.

The purpose of this paper is to extend the main results of [15] to the case of man-
ifolds with boundary. More precisely, we establish lower bounds on the number of
solutions for (1.2) and (1.3) in terms of certain topological invariants of the underlying
manifold. These lower bounds hold true for values of the parameters ε and m which
are relatively small. We believe that these results on manifolds with boundary are of
interest because they include the case of Euclidean domains in R

n (the one origi-
nally considered in classical works such as [42, 46]), which is left out in the setting
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3482 D. Corona et al.

of manifolds without boundary. Moreover, they require a fine understanding of rel-
ative isoperimetric-type problems for small volumes on Riemannian manifolds with
boundary, which actually depend heavily on the boundary conditions (Dirichlet or
Neumann) that are imposed. Overall, significant differences appear when one moves
from the setting without boundary to the setting with boundary.

In order to state and prove our main results, we consider the following typical
assumptions on the potential W :

(H1). The wells are non-degenerate global minimizers, i.e. W ′′(0), W ′′(1) > 0.
(H2). The potential W is coercive, i.e. there exist R > 0 and α > 0 such that

W ′(u)u ≥ α|u|2, if |u| ≥ R.

(H3). The potential W has subcritical growth at infinity, i.e. there exist p ∈ [2, 2∗),
α′ > 0 and R′ > 0 such that

|W ′′(u)| ≤ α′|u|p−2, if |u| ≥ R′.

Here 2∗ denotes the critical Sobolev exponent, i.e. 2∗ = 2n/(n − 2) if n ≥ 3
and 2∗ = +∞ if n = 2.

For n = 2, 3, a standard example of function W : R → [0,+∞) satisfying (H1), (H2)
and (H3) is the quartic potential:

Wq(u) = u2(u − 1)2.

We will denote by Eε,m the restriction of Eε to Hm , and by Eε,m the restriction to
Hm,0, that is

Eε,m :=Eε

∣∣Hm
and Eε,m :=Eε

∣∣Hm,0
.

Our multiplicity results for critical points of Eε,m and Eε,m are established in term
of certain topological invariants of M and ∂ M that we quickly recall here, referring
for instance to Benci [11] for more details on definitions. Given a topological space
X , denote by cat(X) its Lusternik–Schnirelmann category, i.e. the smallest number
of sets, open and contractible in X , needed to cover X (cat(X) = +∞ in case such
number does not exist). Denote moreover byP1(X) the sum of the Betti numbers of
X or, equivalently, the value at 1 of the Poincaré polynomial of X . Following [11],
here the Betti numbers are taken with coefficients in Z2.

The main results of the paper are the following ones.

Theorem A Assume that (H1), (H2) and (H3) hold. Then, there exists m∗ > 0 depend-
ing on M and g such that for all m ∈ (0, m∗) there exists εm, cm > 0 depending on
M and g as well such that for any ε ∈ (0, εm) the Neumann problem (1.2) has at
least cat(∂ M) solutions uε,m with Eε(uε,m) ≤ cm and at least one solution vε,m with
Eε(vε,m) > cm. Moreover, if m and ε as above are such that all critical points of Eε,m

are non-degenerate, then (1.2) has at leastP1(∂ M) solutions uε,m withEε(uε,m) ≤ cm

and at least P1(∂ M) − 1 solutions vε,m with Eε(vε,m) > cm.
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Theorem B Assume that (H1), (H2) and (H3) hold. Then, there exists m∗ > 0
depending on M and g such that for all m ∈ (0, m∗) there exist εm, cm > 0 depending
on M and g as well such that for any ε ∈ (0, εm) the Dirichlet problem (1.3) has at
least cat(M) solutions uε,m with Eε(uε,m) ≤ cm and, if cat(M) > 1, there exists at
least one solution vε,m with Eε(vε,m) > cm. Moreover, if m and ε as above are such that
all critical points of Eε,m are non-degenerate, then (1.3) has at least P1(M) solutions
uε,m with Eε(uε,m) ≤ cm and at least P1(M) − 1 solutions vε,m with Eε(vε,m) > cm.

In Sect. 5 we discuss some (essentially known) results which state that solutions of
(1.2) are non-degenerate in suitable generic situations. Roughly speaking, given the
Eq. (1.2), one can perform an arbitrary small perturbation of a key parameter (more
precisely, either the Riemannian metric or the boundary of the domain) so that the
resulting problem is such that all solutions are non-degenerate for a dense set of ε and
m. That is, the second parts of Theorems A and B, which are stronger than the first
ones, apply in almost all cases.

Remark 1.1 Notice that while the lower bound given in Theorem B for the Dirichlet
problem (1.3) is formulated in term of the topology of the whole of M (as in the case
without boundary), the lower bound on the number of solutions given by Theorem
A for the Neumann problem (1.2) depends solely on the topology of ∂ M . This fact
is related to the different nature of the limiting isoperimetric-type problem linked to
each case in the m, ε → 0 asymptotics.

Remark 1.2 It is easy to check that one always has cat(∂ M) > 1, as ∂ M is a closed
and compact manifold. However, this is not always true for M (consider, for instance,
a closed ball in Rn).

Example 1.3 Let M be a closed ball in R
n . Then we have cat(∂ M) = P1(∂ M) = 2,

so that by Theorem A we have at least 3 solutions for the Neumann problem (1.2) (in
the appropriate parameter regime). In particular, we do not obtain a better result in the
non-degenerate case when M is a ball. As cat(M) = 1 and P1(M) = 1, Theorem B
only guarantees the existence of one solution for the Dirichlet problem (1.3).

Example 1.4 The situation is different if we take M to be equal to an annulus in
R
2. In this case, ∂ M is the union of two disjoint circles and this implies that

cat(∂ M) = P1(∂ M) = 4, so Theorem A gives in general at least 5 solutions for the
Neumann problem (1.2), and at least 7 solutions in the non-degenerate case.Moreover,
as cat(M) = P1(M) = 2, Theorem B ensures the existence of at least three solutions
for (1.3), with no improvement in the non-degenerate case.

Remark 1.5 The non-degeneracy assumption (H1) for the potential W is standard
and, moreover, generic in several suitable senses (see Sect. 5 for more details). The
coercivity assumption (H2) is also standard and guarantees that the �-convergence
results for the energies (Eε)ε holds, see, e.g., Fonseca andTartar [31],Owen,Rubinstein
and Sternberg [46] (in the Euclidean case).

Regarding the assumption (H3), it is of more technical nature but also standard in
variational problems concerning nonlinear elliptic PDEs or differential geometry. It
ensures that these problems are compact or, more precisely, that both Eε,m and Eε,m
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satisfy the Palais–Smale condition. As we prove in Sect. 6, it is possible to drop (H3)
and obtain some partial results. However, it is not clear to us whether Theorems A and
B still hold true if (H3) is dropped. Indeed, the coercivity assumption (H2) could be
used to construct suitable energy decreasing projections or truncation-type operators
in order to restore strong compactness of sublevel sets of Eε, but such projections or
operators would not respect in general the mass constraint. One could also wonder
about the validity of our result without the compactness assumption on the manifold
M . In any case, these questions, although interesting, go beyond the scope of this
paper.

Remark 1.6 Theorem A and Theorem B extend to vectorial double-well potentials
W : Rk → R without substantial modifications on the proofs, as long as one assumes
that

W −1({0}) = {a0, a1} and D2W (ai ) is positive definite for i ∈ {0, 1},
∇W (u) · u ≥ α|u|2, if |u| ≥ R,

for some positive quantities α and R and

|D2W (u)| ≤ α′|u|p−2, if |u| ≥ R′,

for some positive quantities α′ and R′ and for some p in [2, 2∗). These assumptions
are the vectorial analogues of (H1), (H2) and (H3). For simplicity, we have chosen
to present the results for scalar potentials only. Nevertheless, as noticed in [6] (see
also the more recent work [26]) and also as discussed below, the extension to vectorial
potentials with three or more phases is not straightforward.

Our approach to prove Theorem A and Theorem B combines some topological and
variational methods with �-convergence properties of Eε and tools from Geometric
MeasureTheory.Variationalmethods relating themultiplicity of solutions of an elliptic
problemwith the topology of the underlying domainwere already used in earlier works
by Benci, Cerami and Passaseo [12–14], see also Benci [11] and references therein.
The results contained in this paper are mainly inspired by the recent contribution [15],
where the manifold M is supposed to be closed and compact (cf. also the earlier result
[16]).

Roughly speaking, the idea of the proofs both here and in [15] consists on using
the �-convergence properties of the functionals Eε,m and Eε,m in order to show that
under small mass constraint and for ε > 0 small enough the sublevel sets

Ec
ε,m := {u ∈ Hm : Eε(u) ≤ c} and Ec

ε,m := {u ∈ Hm,0 : Eε(u) ≤ c
}

are, for suitable c > 0, homotopically equivalent to ∂ M and M , respectively. The
topological complexity of the above sublevel sets is hence comparable to that of ∂ M
and M , and wemay apply the infinite-dimensional versions of Lusternik–Schnirelman
and Morse theories (see Palais [48, 49]) to establish the stated lower bounds on the
number of critical points.
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There are other results in related settings which are also obtained by similar strate-
gies. For instance, Jerrard and Sternberg [37] provided an abstract framework which
allows to use “critical points” (in a non-smooth sense) of a �-limit functional in order
to prove existence of critical points for the �-converging functionals when they are
“close” enough to the �-limit. They applied this result to the 2D Allen–Cahn and
3D Ginzburg–Landau (with and without magnetic field) functionals. Improvements
of this abstract approach in the concrete setting of Ginzburg–Landau functionals on
manifolds without boundary have been made recently by Colinet, Jerrard and Stern-
berg [25] in 3D and by De Philippis and Pigati [51] in arbitrary dimension. Similar
ideas, but also using different methods, had been applied before by Pacard and Ritoré
[47] and Kowalczyk [38] in the Allen–Cahn setting. In the same spirit, Gaspar and
Guaraco [32, 33] proved that the number of solutions of the Allen–Cahn equation
(without volume constraint) in a closed manifold goes to infinity as ε → 0. Their
proof is restricted to even potentials, see also Passaseo [50]. By similar methods, Bel-
lettini and Wickramaseckera [10] proved existence of solutions for a more general
equation of Allen–Cahn type. Related results for the Ginzburg–Landau equations on
manifolds were obtained by Stern [58], and by Pigati and Stern [52] in the case with
magnetic field, see also [21, 22]. Moreover, earlier work of this type exists also in
the context of the 2D Ginzburg–Landau functional considered by Bethuel, Brezis and
Helein [17]. Almeida and Bethuel [1, 2] proved that there exists a lower bound on the
number of critical points according to the topological degree of the boundary data as
long as the perturbation parameter ε > 0 is small enough (see also Zhou and Zhou
[61] for improvements).

In our case, the �-limit functionals related to Eε,m and Eε,m correspond to different
isoperimetric-type problems on M in the small volume regime, for which there are
plenty of available results which provide a quite complete picture. In [20], Bérard and
Meyer showed that the isoperimetric profile of a n-dimensional compact and smooth
Riemannian manifold becomes comparable to the isoperimetric profile of Rn as the
volume tends to zero. Morgan and Johnson [44] took one step further by proving that
solutions to the isoperimetric problem with small volume are close to small spheres,
so that their diameter tends to zero for vanishing volumes. More precisely, a result
in [45] implies that these spheres are exactly those centered at a point of maximal
scalar curvature (of the manifold), see also Druet [29]. Analogous results are available
in the setting of compact Riemannian manifolds with boundary (without taking the
boundary into account): Bayle and Rosales [9] proved the asymptotic equivalence
with the relative isoperimetric profile of the half -space and Fall [30] showed that
relative isoperimetric regions of small volume are close to half-spheres centered at
the boundary points of maximal mean curvature. Moreover, one might also consider
variants of the isoperimetric problem inwhich the boundary part of themanifold is also
taken into account, still obtaining an asymptotic equivalence with the isoperimetric
problem in Rn .

One natural question concerns the extension of the results obtained in Theorem A
and Theorem B to systems of Allen–Cahn-type. It turns out that the main obstacle
for such extensions lies in the fine understanding of the resulting �-limit problem. It
is known since the work of Baldo [8] that the �-limit functional for vectorial multi-
well potentials corresponds to a minimization problem for the perimeter of clusters
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(with cardinality corresponding to the number of wells of the potential) under volume
constraints. These problems can be seen as vectorial versions of the isoperimetric
problem, and they are still poorly understood in the small volume regime. In particular,
as pointed out in [6], in the vectorial case it is not known in general whether the
diameters of the different cluster components of minimizers are uniformly controlled
by their respective volume, which is a crucial ingredient in our approach. However,
properties of that kind are available for clusters of three sets on the plane, allowing to
extend the results of [15] to the case of triple-well potentials on 2D closed manifolds
(see [6]). Further results is this direction have been obtained more recently in [26].

In a different direction, most of the recent results quoted above concerning the
existence of critical points of Allen–Cahn and Ginzburg–Landau functionals (e.g., [6,
10, 25, 32, 33, 51, 52, 58]) are proven in the setting of manifolds without boundary. It
is natural to wonder about their validity when one considers an underlying manifold
which has a non-empty boundary as we do in this paper. Moreover, not much is known
concerning Ginzburg–Landau functionals with a flux constraint on the vorticity, which
are naturally associated to a limiting isoperimetric-type problem in codimension 2. To
our knowledge, the only results in this direction were proven in [18] and by Chiron
[24], where they were applied to problems of existence of traveling waves for the
Gross–Pitaevskii equation. It is possible that these results could be extended to some
degree and then used to obtain multiplicity results in the spirit of the present paper.

2 Sketch of the proofs

In this section we outline the main ingredients used in the proofs of Theorems A
and B. We recall that a C1 functional f on a Banach manifold M is said to satisfy
the Palais–Smale condition if every Palais–Smale sequence for f admits a converg-
ing subsequence, where (xk)k∈N is a Palais–Smale sequence for f if ( f (xk))k∈N is
bounded and (‖d f (xk)‖)k∈N tends to 0 as n → ∞. We shall notice here that given
x ∈ M, the positive quantity ‖d f (x)‖ stands for the norm of d f (x) as an element
of (TxM)∗, the cotangent space of M at x . The Palais–Smale condition is a classical
and useful sufficient condition in critical point theory. When it holds one only needs
to detect a change of topology in the level sets of the functional in order to prove the
existence of critical points. The interested reader can find more details in [48, 49]. In
our case, the Palais–Smale condition is fulfilled:

Lemma 2.1 Assume that (H3) holds. Then, for all ε > 0 and m ∈ R the functional
Eε is C2 and satisfies the Palais–Smale condition on both Hm and Hm,0. Moreover,
if uε,m ∈ Hm is a critical point of Eε,m, then there exists λε,m such that (uε,m, λε,m)

solves (1.2) and if uε,m ∈ Hm,0 is a critical point of Eε,m, then there exists λε,m such
that (uε,m, λε,m) solves (1.3).

The proof of Lemma 2.1 is standard. In particular, compactness of the Palais–Smale
sequences for Eε follows from the compactness of M along with the subcritical behav-
ior of the potential provided by assumption (H3) (for more details see, for instance,
[15, Proposition 4.12]).
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According to the previous discussion, the proofs of Theorems A and B boil down
to determining changes of topology in the sublevel sets of the functionals Eε,m and
Eε,m . To do this, we employ the so-called photography method, which allows to under-
stand some topological invariants of a sublevel of a functional through a homotopy
equivalence with another topological space for which these invariants are more easily
computable. More precisely, we will use an abstract result from [11, 13]. Before pro-
ceeding to the statement, let us recall some notions following [11, Chapter I]. Given
M a C2-Hilbert manifold, f : M → R of class C2 and u ∈ M a critical point of f ,
one can define the Hessian form of f at u, denoted by H f (u). Moreover, the latter
is a bilinear form on Tu(M). If M is an open subset of Rn , then H f (u) is the usual
Hessian of f at u. The Morse index of u (as a critical point of f ) is then defined as
the maximal dimension for which there exists a subspace of Tu(M) in which H f (u) is
negative definite. If there exists H− ⊕ H+ a splitting of Tu(M) along with a positive
constant ν such that

H f (u)[v, v] ≥ ν‖v‖2, for all v ∈ H+

and

H f (u)[v, v] ≤ −ν‖v‖2, for all v ∈ H−,

then u is said to be non-degenerate. Finally, if u is isolated, then the multiplicity of u
is defined as the formal series

+∞∑
k=0

βk( f c, f c \ {x}),

where c := f (u), f c := {x ∈ M : f (x) ≤ c} and βk( f c, f c \ {x}) stands for the
k-th Betti number of the pair ( f c, f c \ {x}) for all k ∈ N. It can be then shown that
the multiplicity of non-degenerate critical points is well-defined and equal to one.
Recall that we are taking the Betti numbers relative to coefficients in Z2. However, as
mentioned in [11], analogous results could be obtained for other choices of fields of
coefficients.

Theorem C Let X be a topological space, M be a C2-Hilbert manifold, f : M → R

be a C1-functional. For c ∈ R, let f c be the c-sublevel set of f as defined above.
Assume that

(E1) f is bounded below;
(E2) f satisfies the Palais–Smale condition;
(E3) There exists c ∈ R and two continuous maps 
R : X → f c and 
L : f c → X

such that 
L ◦ 
R is homotopic to the identity map of X.

Then, the number of critical points in f c is at least cat(X). If M is contractible and
cat(X) > 1, there is at least another critical point of f outside f c. Moreover, there
exists c0 ∈ (c,∞) such that one of the two following conditions holds:
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(i) f c0 contains infinitely many critical points;
(ii) f c containsP1(X) critical points and f c0 \ f c containsP1(X)−1 critical points

if counted with their multiplicity. More precisely, we have the following relation:

∑
u∈Crit( f )

tμ(u) = tPt (X) + t2[Pt (X) − 1] + t(1 + t)Q(t),

where Crit( f ) is the set of critical points of f , μ(u) is the Morse index of the solu-
tion u andQ(t) is a polynomial with nonnegative integer coefficients. In particular,
if all the critical points are non-degenerate, there are at leastP1(X) critical points
in f c and at least P1(X) − 1 critical points in f c0 \ f c.

Since Eε is bounded below (as it is nonnegative) and satisfies the Palais–Smale
condition by Lemma 2.1, Theorem C implies Theorem A if we are able to show
that for all m and ε sufficiently small there exist c > 0 and two continuous maps
Pε,m : ∂ M → Ec

ε,m (the photography map) and B : Ec
ε,m → ∂ M (the barycenter map)

such thatB◦Pε,m : ∂ M → ∂ M is homotopic to the identitymap. Similarly, TheoremB
will follow by showing the existence of two continuous maps Pε,m : M → Ec

ε,m and

B : Ec
ε,m → M such that B ◦ Pε,m : M → M is homotopic to the identity map of M .

Analogously to [15], the two main ingredients that allow to construct the maps Pε,m

and B are the following:

1. The �-convergence, as ε → 0+, of the energies Eε towards some form of isoperi-
metric problem, the latter depending one the chosen boundary condition. In the case
of Neumann boundary conditions, the�-limit is the classical relative isoperimetric
problem, i.e., the boundary of M is not taken into account on the computation of
the perimeter. If one considers homogeneous Dirichlet boundary conditions, then
the �-limit takes into account the perimeter intersecting the boundary ∂ M .

2. The fact that the isoperimetric profile and the relative isoperimetric profile on
compact manifolds with boundary are asymptotic as m → 0+ to the isoperimetric
profiles on the Euclidean space and half-space, respectively. As a consequence, for
sufficiently small volumes any “almost minimizer” (a concept that will be formally
defined later) of the relative isoperimetric problem concentrates almost its entire
volume around a point on the boundary of M .
For the isoperimetric problem, the same concentration phenomena occurs but for
points on M . See Fig. 1 for an explanatory picture.

Combining this two ingredients, we find that in the Neumann case any function that
belongs to the smallest sublevel Ec

ε,m that contains the image of the photography map
has almost all its mass in a geodesic ball centered in a point of ∂ M . By composing with
the nearest point projection on ∂ M , it follows that the barycenter map B : Ec

ε,m → ∂ M
is well defined and continuous. In the Dirichlet case, we have that an almost minimizer
of Eε,m has almost all its mass in a geodesic ball centered in a point of M , so that the
barycenter map B : Ec

ε → M is well defined and continuous. Conversely, one finds
the photography maps Pε,m by constructing almost minimizers of Eε supported on
geodesic balls centered at arbitrary points of ∂ M in the Neumann case and of M in
the Dirichlet case.
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Fig. 1 The filled regions represent an arbitrary almost minimizer of the relative isoperimetric problem
(left) and the isoperimetric problem (right). In the former case, most of the volume is concentrated inside a
half-ball (dotted line) centered at the boundary. In the latter case, concentration occurs around some point
of M . However, some of the volume might be away from these balls, but it is always a small portion of
the volume which can be controlled. In particular, half-balls and balls are almost minimizers of the relative
isoperimetric and isoperimetric problems, respectively

Remark 2.2 To apply TheoremC in the proof of TheoremA, one needs that cat(∂ M) >

1 and thatHm is contractible. Since these two conditions are always satisfied (in fact,
Hm is convex), they are omitted in the statement of Theorem A. This is also the
reason why the condition cat(M) > 1, not necessarily fulfilled a priori, appears in the
statement of Theorem B.

3 Proof of Theorem A

3.1 The relative isoperimetric problem

We recall some standard notations. Let BV (M,R) be the set of functions of bounded
variation defined on M . For any � ⊂ M a measurable set, we denote by 1� its
characteristic function and define its perimeter as the total variation measure of 1�. If
the perimeter of � is finite, we say that � is a set of finite perimeter (or a Cacciopoli
set). Let us denote by Cg(M) the set of all� ⊂ M of finite perimeter. For� in Cg(M),
one can define ∂∗�, the reduced boundary of �, as the set of points of ∂� in which
the notion of measure-theoretic normal vector exists and has length equal to one. The
reduced boundary is denoted as ∂∗�. Such a notion was introduced by De Giorgi [27],
who proved (see also Ambrosio, Fusco and Pallara [5, Theorem 3.59]) that

∫
U

|∇1�| = Hn−1(∂∗� ∩ U ), (3.1)

for all U ⊂ M relatively open in M and where Hn stands for the n-dimensional
Hausdorff measure on Rñ . Let σ := ∫ 10 √

W (s)ds. For u ∈ L1(M,R) we set
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E0(u):=
{

σHn−1(∂∗� ∩ int(M)), if u = 1�, � ∈ Cg(M)

+∞, otherwise.

According to (3.1), one can equivalently defineE0 using the notion of relative perimeter
of � (up to the multiplicative constant σ ), which is defined as the total measure of
|∇1�| in int(M).

For fixed m ∈ [0, vol(M)], we define

IM (m):= inf

{
Hn−1(∂∗� ∩ int(M)) : � ∈ Cg(M) and

∫
M
1�dvg = m

}
.

Notice that IM : [0, vol(M)] → R is the isoperimetric profile function of M and that

IM (m) = 1

σ
inf

{
E0(u) : u ∈ L1(M,R),

∫
M

u dvg = m

}
.

The same problem can be stated in the euclidean semi-space

R
n+ = {z ∈ R

n : zn ≥ 0
} = R

n−1 × [0,+∞),

so that the function IRn+ : (0,+∞) → R is defined analogously and there exists a
dimensional constant c+

n > 0 such that

IRn+(m) = c+
n m

n−1
n . (3.2)

When m is small, there exists a link between the isoperimetric function IM and its
euclidean counterpart. More formally, Bayle and Rosales [9] (see also Fall [30]) have
shown that

IM (m) = (1 + O(m1/n)
)
IRn+(m). (3.3)

3.2 0-convergence

We now state the two main �-convergence results we need, starting with the the most
celebrated one, first proven by Modica and Mortola [42, 43], and later extended to
the vector-valued setting by several authors: Baldo [8], Fonseca and Tartar [31] and
Sternberg [59]. In [31], the double-well case was considered without the subcritical
growth condition (H3), meaning that their result is the most well adapted to our sit-
uation. We also point out that in the above mentioned papers the results are proven
in the Euclidean case, but it was later shown (see Benci et al. [15] and the references
therein) that they can be extended to the Riemannian setting.

Theorem 3.1 (cf. [31], Theorem 3.4 and [15], Proposition 3.3) Assume that (H1)
and (H2) hold. Then, the following statements hold:
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(i) (�-lim inf inequality): If (εk)k∈N ⊂]0,+∞[ is such that εk → 0+ and (uεk )k∈N ⊂
H1(M,R) is such that uεk → u0 in L1(M,R), then lim infk→∞ Eεk (uεk ) ≥
E0(u0);

(ii) (�-lim sup (in)equality): For any u0 ∈ L1(M,R) such that u0 = 1� for some
� ⊂ M and for every sequence (εk)k∈N ⊂]0,+∞[ such that εk → 0+, there
exists (uεk )k∈N ⊂ H1(M,R) such that uεk → u0 in L1(M,R),

∫
M

uεkdvg =
∫

M
u0dvg and lim sup

k→∞
Eεk (uεk ) ≤ E0(u0).

Remark 3.2 The interested reader can find in [15, Proposition 3.3] a detailed and
explicit construction of the functions uε that approximate u0 as required by the �-
lim sup statement of Theorem 3.1, which is the Riemannian version of the construction
given by Modica in [42] in the Euclidean setting. We give here just the idea of this
construction, following [42]. For every A ⊂ M we denote by dA : M → R the
following function:

dA(x):=
{

−distg(x, ∂ A), if x ∈ A,

distg(x, ∂ A), ifx /∈ A.
(3.4)

Subsequently, for every ε > 0 one can find a Lipschitz continuous function q̃ε : R →
[0, 1] such that q̃ε(t) = 0 if t < 0, and q̃ε(t) = 1 if t ≥ ηε > 0, where ηε → 0 as
ε → 0. Moreover, such a function is a solution of the following differential equation:

d

dt
q̃ε(t) = 1

ε

√
ε3/2 + 2W (q̃ε(t)), for all t ∈ [0, ηε]. (3.5)

Finally, for every u0 = 1�, uε is obtained as

uε(x) = q̃ε(dM\�(x) + δε,�), (3.6)

where δε,� ∈ [0, ηε] is a correction term such that

∫
M

uε dvg =
∫

M
q̃ε(dM\�(x) + δε,�)dvg =

∫
M

u0 dvg. (3.7)

Theorem 3.3 (cf. Theorem 4.1 of [31]) Assume that (H1) and (H2) hold. If (εk)k ⊂ R

is a sequence of positive numbers such that εk → 0+ and (uεk )k ⊂ H1(M,R) is a
sequence of functions such that

Eεk (uεk ) ≤ c, ∀k ∈ N,

for some constant c > 0, then there exists a subsequence, still denoted by (εk)k , such
that (uεk )k converges to a function u0 ∈ L1(M,R) with respect to the L1–norm.
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Remark 3.4 As a direct consequence of Theorem 3.3 and the lim-inf property of The-
orem 3.1, if Eεk (uεk ) ≤ c for every k ∈ N, then the function u0 ∈ L1(M,R) such that
uεk → u0 up to subsequences is such that E0(u0) ≤ E∗, there exists a measurable set
� ⊂ M such that u0 = 1� and

lim
k→∞

∫
M

uk dvg =
∫

M
u0 dvg.

3.3 Photographymap

In order to obtain the map Pε,m , we combine the �-convergence result given by
Theorem 3.1 with the characterization of the isoperimetric regions in a manifold with
boundary given by Fall [30]. Roughly, as long as m and ε are sufficiently small, for
every point p ∈ ∂ M we definePε,m(p) as the ε–approximation ensured by the lim-sup
part of Theorem 3.1 of the characteristic function of a small perturbation of a half-ball
centered at p and with volume m, denoted by E p,m ⊂ M . Such a set is defined by
employing the normal coordinates at the point p, and by using the implicit function
theorem to construct the perturbation that minimizes the perimeter. The details of the
construction of E p,m can be explored in [30]. However, for the purposes of this article,
we will provide a concise overview of the essential details.

Let N∂ M the unit interior normal vector field along ∂ M and, for any p ∈ ∂ M , let
exp∂ M

p be the exponential map of ∂ M at p. Let us consider an orthonormal frame
field (e1, . . . , en−1, N∂ M ) of M along ∂ M . We define the map f p : Rn−1 → ∂ M as
follows:

f p(z):=exp∂ M
p (zi ei ),

where we used the Einstein summation convention. For every z ∈ R
n−1 and t ∈ R,

with t ≥ 0 and sufficiently small, let us define also

F p(z, t) = exp f p(z)(t N∂ M ) ∈ M,

so that F p provides a local parametrization of a neighborhood of p ∈ M . Our aim is
to define a “semi-sphere” on M with center in p. To this aim, let us denote by Bn−1

the unit ball in R
n−1 and by Sn−1+ ∈ R

n the upper hemisphere of Sn−1, hence

Sn−1+ :={z ∈ R
n : ‖z‖ = 1, zn ≥ 0

}
.

Let us denote by� : Bn−1 → Sn−1+ the inverse of the stereographic projection from the
south pole (0, . . . , 0,−1) ∈ R

n , formally seeing Bn−1 as {z ∈ R
n : ‖z‖ ≤ 1, zn = 0}.

Let �̃ : Bn−1 → Bn−1 and t : Bn−1 → [0, 1] be such that

�(z) = (�̃(z), t(z)
)
.
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For every r sufficiently small, the hypersurface defined by{
F p(r�̃(z), r t(z)

) : z ∈ Bn−1
}

⊂ M

can be seen as an semi-sphere centered at p. All the hypersurfaces nearby this
semi-sphere centered at p ∈ ∂ M can be obtained by applying a small perturbation
ω : Sn−1+ → R, and so we define the hypersurface �p,r ,ω ⊂ M as follows:

�p,r ,ω:=
{

F p
((

r + ω(�(z))
)
�̃(z),

(
r + ω(�(z))

)
t(z)
)

: z ∈ Bn−1
}

.

Since t(z) = 0 for every z ∈ ∂ Bn−1, ∂�p,r ,ω ⊂ ∂ M , so that �p,r ,ω and ∂ M enclose
a set that we denote by E p,r ,ω. It can be checked that �p,r ,ω does not depend on the
orthonormal frame field chosen above.

By [30, Lemma 4.6], there exists r0 > 0 such that for any p ∈ ∂ M and r ∈ (0, r0)
there exists a unique smooth ωp,r ∈ C2,α(Sn−1+ ) such that �p,r ,ωp,r has a mean
curvature function that is, modulo an additive constant, an eigenfunction of the first
strictly positive eigenvalue of the Laplacian on the hemisphere. In this way, �p,r ,ωp,r

represents an almostCMC(constantmean curvature) half-sphere centered at p, thereby
implying that it is the unique competitor among all hypersurfaces �p,r ,ω to serve as a
solution to the isoperimetric problem. Moreover, ‖ωp,r‖1,α

C (Sn−1+ )
→ 0 as r → 0 and,

since it is defined by using the Implicit Function Theorem, the map (p, r) �→ ωp,r is
continuous. We denote as pseudo half-bubbles the hypersurfaces�p,r ,ωp,r , in analogy
with the pseudo-bubbles introduced in [45].

Following the notation in [30], we will use the simpler notation E p,r to refer to
E p,r ,ωp,r . Furthermore, for any p ∈ ∂ M and sufficiently small m, we denote by
rp,m > 0 the unique radius such that E p,rp,m has volume m, i.e.,

∫
M 1E p,r p,m

dvg = m.
Formore detailed information on the existence of such rp,m , please refer to [30, Lemma
4.7].

Remark 3.5 By the compactness assumption of M and ∂ M , there exists m0 > 0 such
that for every p ∈ ∂ M and m ∈ (0, m0)we have that rp,m is well defined and less than
r0. As a consequence, ωp,rp,m is always well defined by [30, Lemma 4.6] for every
p ∈ ∂ M and m ∈ (0, m0).

For the sake of notation, for every p ∈ ∂ M and m ∈ (0, m0) we set

E p,m :=E p,rp,m and �p,m :=�p,rp,m ,ωp,r p,m = ∂ E p,m ∩ M .

Let us notice that, since m < m0, the hypersurface �p,m is smooth. Finally, we will
denote by um

0,p ∈ L1(M,R) the characteristic function of E p,m , hence

um
0,p(x):=

{
1, if x ∈ E p,m,

0, otherwise.

Before defining the photography map, let us state [30, Lemma 4.8] in accordance
with our notation.
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Fig. 2 Depiction of the map Pε,m introduced in Definition 3.8. On the left, we see um
0,p , the indicator

function of the set E p,m , which is the set enclosed by the semi-sphere �p,m and ∂ M . The map Pε,m
returns um

ε,m , depicted on the right, which is the smooth approximation of um
0,p given by the �-convergence

result (Theorem 3.1)

Lemma 3.6 For every p ∈ ∂ M, let us denote by H∂ M (p) the mean curvature of ∂ M
at p. Then, there exists a dimensional constant γn > 0 such that

E0(um
0,p) = σ

(
IRn+(m) − γn H∂ M (p)m + O(m

n+1
n )
)

, ∀m ∈ (0, m0), (3.8)

and, moreover, the following holds:

IM (m) = IRn+(m) − γn max
p∈∂ M

{H∂ M (p)}m + O(m
n+1

n ). (3.9)

Remark 3.7 For our specific purposes, it is possible to avoid the use of the perturbation
ωp,r by setting ω ≡ 0 in the definitions of �p,r ,ω, E p,r , and um

0,p. This choice is
viable because the primary tool we will employ in the subsequent construction is the
estimate (3.8), which remains valid even when ω ≡ 0. However, in order to avoid a
detailed proof of this last assertion, as it falls outside the scope of our work, we rely
on the estimate provided by [30].

Definition 3.8 For every m ∈ (0, m0) and ε > 0, Pε,m : ∂ M → Hm is the map that
links p ∈ ∂ M to um

ε,p, that is the ε–approximation of um
0,p ∈ L1(M,R) given by the

lim-sup property of Theorem 3.1 (see Remark 3.2).

See Fig. 2 for a picture aimed at clarifying Definition 3.8. The main result of this
section is the following, which provides an estimate on the smallest sublevel of Eε,m

that contains the image of the photography map.

Proposition 3.9 Assume that (H1) and (H2) hold. There exists a constant θ =
θ(M, g, W ) > 0 such that there exists m1 = m1(M, g, W , θ) ∈]0, m0[ such that
for every m ∈]0, m1[ there exists ε1 = ε1(M, g, W , θ, m) > 0 such that for every
ε ∈]0, ε1[ we have

Eε,m(Pε,m(p)) ≤ σ IM (m) + θm, ∀p ∈ ∂ M . (3.10)
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In other words, the sublevel Eσ IM (m)+θm
ε,m contains the whole image of the photography

map Pε,m.

Proof Combining (3.8) and (3.9), we get

E0(um
0,p) = σ

(
IM (m) + γn

(
max
p∈∂ M

{H∂ M (p)} − H∂ M (p)
)
m

)
+ O(m

n+1
n ).

Hence, setting θ = θ(M, g) > 0 as

θ = 2σγn

(
max
p∈∂ M

{H∂ M (p)} − min
p∈∂ M

{H∂ M (p)} + 1

)
,

we have

E0(um
0,p) < σ IM (m) + θ

2
m + O(m

n+1
n ), ∀p ∈ ∂ M .

As a consequence, there exists m1 = m1(M, g, θ) ∈ (0, m0) such that for every
m ∈ (0, m1) we have

E0(um
0,p) < σ IM (m) + θm, ∀p ∈ ∂ M . (3.11)

By Theorem 3.1 and Remark 3.2, we also know that

lim sup
ε→0+

Eε(u
m
ε,p) = lim sup

ε→0+
Eε(Pε,m(p)) ≤ E0(um

0,p), ∀p ∈ ∂ M . (3.12)

By the strict inequality in (3.11) and since M is a compact manifold, by (3.12) we
infer the existence of ε1 = ε1(M, g, W , θ, m) > 0 such that (3.10) holds for every
ε ∈ (0, ε1). ��

Remark 3.10 By (3.2) and (3.3), namely that IM (m) ≈ m
n−1

n as m goes to zero, we
have

lim
m→0+

m

IM (m)
= 0, (3.13)

hence the “width” of the sublevel that contains the photography goes rapidly to 0 as
m → 0+.

In order to use Pε,m as a photography map in the sense of Theorem C, it remains
to prove its continuity.

Proposition 3.11 Assume that (H1) and (H2) hold. Let m1 > 0 and ε1 > 0 be defined
as in Proposition 3.9. For every m ∈ (0, m1) and ε ∈ (0, ε1), the map Pε,m : ∂ M →
Hm is continuous.
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Proof The proof follows the same line of the one of [15, Proposition 4.14], and we
report here the main steps.

We recall that for every p ∈ ∂ M and ε > 0 the function Pε,m(p) is defined by
using (3.6), hence we have

(Pε,m(p)
)
(x) = q̃ε

(
dM\E p,m (x) + δε,E p,m

)
,

where dM\E p,m is defined by using (3.4) and q̃ε is the Lipschitz continuous function
that solves (3.5). As a consequence, there exists a constant C > 0, which depends on
M, g, ε and W , such that the following inequality holds:

‖Pε,m(p1) − Pε,m(p2)‖H1(M,R)

≤ C
[
‖dM\E p1,m − dM\E p2,m ‖H1(M,R) + |δε,E p1,m − δε,E p2,m |

]
.

The interested reader can find more details on this last inequality in [15, Proposition
4.14]. Let us observe that, as long as m < m0, the hypersurface �p,m = ∂ E p,m ∩ M
is smooth and diffeomorphic to a hemisphere. The proof ends by observing that, as
p1 → p2, we have

‖dM\E p1,m − dM\E p2,m ‖H1(M,R) → 0 and |δε,E p1,m − δε,E p2,m | → 0,

the last convergence obtained as a consequence of the Implicit Function Theorem
applied to (3.7), where E p,m substitutes �, to define the C1 map p �→ δε,E p,m . ��

3.4 Barycenter map

The map B : Ec
ε,m → ∂ M is obtained by combining the �-convergence result with the

information of the isoperimetric problemgiven by Proposition 3.15,which ensures that
the “almost” minimizers of E0 have almost all their mass inside a small ball centered
on a point of the boundary ∂ M . While the map Pε,m has been constructed by using
the lim-sup part of the �-convergence result, namely Theorem 3.1, to define B we rely
on the lim-inf statement and on the compactness result ensured by Theorem 3.3.

Let us begin by introducing some new notation. Let distg : M × M → R be the
distance function induced by g, hence

distg(x, y):= inf

{(∫ 1

0
g(γ̇ , γ̇ )ds

)1/2

: γ ∈ H1([0, 1], M), γ (0) = x, γ (1) = y

}
.

With this notation, we set diamg(M) = max{distg(x, y) : x, y ∈ M}, and for any
p ∈ M and r ∈ (0, diamg(M)), let

B(p, r):= {x ∈ M : distg(p, x) ≤ r
}
.

Without loss of generality, from now on we assume that M is isometrically embedded
inRñ , for some ñ ≥ n. This will allow us to construct the map B as the composition of
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the “extrinsic” barycenter map and the nearest point projection on ∂ M . More formally,
let (∂ M)r ⊂ R

ñ be the following set

(∂ M)r :=
{

z ∈ R
ñ : dist

Rñ (z, ∂ M) ≤ r
}

,

and let us denote by π∂ M : (∂ M)r → ∂ M the nearest point projection onto ∂ M .
Notice that π∂ M is well defined when r is sufficiently small, thanks to the compactness
assumption on ∂ M . We will combine π∂ M with the following map

β∗ : u ∈ L1(M,R)\{0} →
∫

M x |u(x)|dvg∫
M |u(x)|dvg

∈ R
ñ, (3.14)

which gives the center of mass of a function in Rñ .

Lemma 3.12 The map β∗ : L1(M,R)\{0} → R
ñ is continuous.

Proof For every u, ũ ∈ L1(M,R)\{0}, set v = ∫
M |u|dvg and ṽ = ∫

M |ũ|dvg . Set
also ‖x‖∞ = max{‖x‖

Rñ : x ∈ M}. Then, we have

‖β∗(u) − β∗(ũ)‖
Rñ =

∥∥∥∥
∫

M x |u(x)|dvg

v
−
∫

M x |ũ(x)|dvg

ṽ

∥∥∥∥
Rñ

≤ ‖x‖∞
(∣∣∣∣1v − 1

ṽ

∣∣∣∣ ‖u‖L1(M,R) + 1

ṽ
‖u − ũ‖L1(M,R)

)
, (3.15)

where we have added and subtracted (
∫

M x |u(x)|dvg)/ṽ. Let now u ∈ L1(M,R)\{0}
and (uk)k∈N a sequence in L1(M,R) \ {0} such that ‖u − uk‖L1(M,R) tends to zero
as k → ∞. In particular, vk tends to v as k → ∞. Therefore, by applying (3.15)
with ũ = uk for all k ∈ N we deduce that β∗(uk) tends to β∗(u) as k → ∞, which
completes the proof. ��

In order to define B : Eσ IM (m)+θm
ε,m → ∂ M , one needs to show that for every r > 0

there exist m and ε sufficiently small such that

β∗(Eσ IM (m)+θm
ε,m ) ⊂ (∂ M)r .

In other words, we need to prove that if m and ε are sufficiently small, then the
barycenter of every function in the sublevel Eσ IM (m)+θm

ε,m lies in a small tubular
neighbourhood of ∂ M . Then, choosing r sufficiently small as well, one can define
B : Eσ IM (m)+θm

ε,m → ∂ M as follows:

B = π∂ M ◦ β∗. (3.16)

To this end, we need to ensure that if the volume m is sufficiently small then any
function in the sublevel Eσ IM (m)+θm

ε,m has almost all its mass in a small ball centered on
a point of the boundary ∂ M (see Proposition 3.15). The proof of this result is based

123



3498 D. Corona et al.

on [7, Theorem 1.2], which gives a compactness result for sequences of sets with
uniformly bounded volume and perimeter. For the sake of presentation, we restate
here that theorem. If (X , d,Hn) is a metric measure space (where Hn denotes the
n–dimensional Hausdorff measure) and � ⊂ X is a Borel set, we remind that the
definition of perimeter of � used in the following theorem is

P(�, X):= inf

{
lim inf

i

∫
X
lip fidHn : fi ∈ Liploc(X), fi → 1� in L1

loc(X ,Hn)

}
,

(3.17)

where lip f (x):= lim supy→x
| f (y)− f (x)|

d(x,y)
. Moreover, we recall that a metric space

(X , d,Hn) is an RCD(κ, n) space if, loosely speaking, it has synthetic notions of Ricci
curvature bounded below by κ ∈ R and dimension bounded above by n ∈ (0,+∞]
(see [7] for more details).

Theorem 3.13 (Theorem 1.2 of [7]) Let κ ∈ R and n ≥ 2. Let (Xk, dk,Hn
k ) be a

sequence of RCD(κ, n) spaces and let �k ⊂ Xk be bounded sets of finite perimeter
such that supk

(
P(�k, Xk) + Hn

k (�k)
)

< +∞. Assume there exists v0 > 0 such that
Hn

k (B(x, 1)) ≥ v0 for every x ∈ Xk and for every k ∈ N. Then, up to subsequences,
there exists a nondecreasing sequence (Nk)k∈N ⊂ N, Nk ≥ 1, points pk,i ∈ Xk, with
1 ≤ i ≤ Nk and pairwise disjoint subsets �k,i ⊂ �k such that:

(i) limk→∞ dk(pk,i , pk, j ) = +∞ for any i �= j ≤ N̄ , where N := limk→∞ Nk ∈
N ∪ {+∞};

(ii) For every 1 ≤ i < N + 1, the sequence (Xk, dk,Hn, pk,i ) converges in the
pointed measured Gromov–Hausdorff topology to a pointed RCD(κ, n) space
(Yi , distYi ,Hn, pi ) as k → ∞;

(iii) There exists Fi ⊂ Yi such that �k,i → Fi as k → ∞ in L1–strong topology and
the following relations hold:

lim
k→∞Hn

k (�k) =
N∑

i=1

Hn(Fi ),

and

N∑
i=1

P(Fi , Yi ) ≤ lim inf
k→∞ P(�k, Xk).

Moreover, if �k is an isoperimetric set in Xk for any k, then Fi is an isoperimetric set
in Yi for any i < N + 1 and

P(Fi , Yi ) = lim
k→∞ P(�k,i , Xk)

for any i < N + 1.
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Remark 3.14 In the following, we use the previous theorem on the more simple case of
Riemannian manifolds. We want to highlight that when the RCD space is (M, g,Hn),
the perimeter of a measurable set � ⊂ M with finite perimeter coincides with the
(n − 1)–dimensional Hausdorff measure of its relative boundary, hence

P(�, M) = Hn−1(∂∗� ∩ int(M)).

Proposition 3.15 There exists μ = μ(M) > 0, such that the following property
holds. For every almost isoperimetric sequence (uk)k∈N ⊂ L1(M,R) with volumes
mk = ∫M ukdvg → 0, i.e.,

lim
k→∞

E0(uk)

σ IM (mk)
= 1, (3.18)

there exists a sequence (pk)k∈N ⊂ ∂ M such that

lim
k→+∞

1

mk

(∫
M\B(pk ,μm1/n

k )

ukdvg

)
= 0. (3.19)

Proof of Proposition 3.15 For every fixed k ∈ N, let �k ∈ Cg(M) be such that uk =
1�k . Note that, given that uk ∈ L1(M,R), we can select any �k in such a way that
�k is a subset of the interior of M . Let us define the following sequence of manifolds
of bounded geometry:

(Xk, gk):=(M, m−1/n
k g).

In other words, we rescale the metric on M by a factor that depends on mk in such a
way that

Hn
k (�k) =

∫
Xk

ukdvgk = 1, ∀k ∈ N,

where Hn
k denotes the n–dimensional Hausdorff measure on (Xk, gk). Moreover,

by (3.3) and (3.18) and recalling that E0(uk) = σHn−1(∂∗�k ∩ int(M)), we obtain
the existence of a constant C such that

P(�k, Xk) = Hn−1
k (∂∗�k ∩ int(M)) < IRn+(1) + C, ∀k ∈ N.

Moreover, we have also the following equality:

lim
k→∞Hn−1

k (∂∗�k ∩ int(M)) = IRn+(1). (3.20)

This means that the sequence {(Xk, gk,Hn
k )}k∈N and �k ⊂ Mk satisfy the hypothe-

ses of Theorem 3.13 and so, up to subsequences, for every k there exist Nk ∈ N,
with Nk ≥ 1, and points pk,i ∈ Mk such that for every i ∈ 1, . . . , Nk the space
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(Xk, distgk ,Hn
k , pk,i ) converges in the Gromov–Hausdorff topology to a pointed

RCD(κ, n) as k → ∞, that we denote by (Mi∞, di∞,Hn,i∞ , pi∞). This space
could either be the Euclidean space (Rn, d,Hn, 0) or an Euclidean semi-space
(Rn+, d,Hn, p), where the center point p could either lie on the boundary of the semi-
space or in its interior. Moreover, setting N = limk→∞ Nk , for every i = 1, . . . , N
there exists �i∞ ⊂ Mi∞ such that

N∑
i=1

Hn,i∞ (�i∞) = lim
k→∞Hn

k (�k) = 1 (3.21)

and, using also (3.20), we have

N∑
i=1

Hn−1,i∞ (∂∗�i∞ ∩ int(Mi∞)) ≤ lim inf
k→∞ Hn−1

k (∂∗�k ∩ int(M)) = IRn+(1).

(3.22)

By using contradiction arguments, this last inequality implies both that N = 1 and that
(M1∞, d1∞,Hn∞, p1∞) is actually the Euclidean semispace (Rn+, d,Hn, 0). Formally,
let us assume by contradiction that N > 1 (where we recall that N can also be equal
to ∞) and let us set mi = Hn,i∞ (�i∞) for any i = 1, . . . , N . Then mi ∈ (0, 1) for any
i , as if one it is equal to 0 we can remove it from the count. As we have that

IRn+(m) < IRn (m), ∀m > 0,

and that IRn+(m) = c+
n m

n−1
n is a strictly subadditive function, we then obtain that

N∑
i=1

Hn−1,i∞ (∂∗�i∞ ∩ int(Mi∞)) ≥
N∑

i=1

IRn+(mi ) > IRn+

⎛
⎝ N∑

i=1

mi

⎞
⎠ = IRn+(1),

which contradicts (3.22). Thus, we have N = 1. Now, if (M1∞, d1∞,Hn∞, p1∞) is the
Euclidean space, then

Hn−1,1∞ (∂∗�1∞ ∩ int(M1∞)) ≥ IRn (1) > IRn+(1),

which is another contradiction.
In conclusion, by (3.21) and (3.22), we obtain that �1∞ is an isoperimetric set for

the Euclidean half-space. Thus, it must be a hemisphere, and the sequence of subsets
�k ⊂ Xk converges to it in the L1-strong topology. Consequently, we can construct
a sequence of points on the boundary, denoted by (pk)k∈N ⊂ ∂ M , such that (3.19)
holds, where μ can be chosen as twice the radius of the semisphere in R

n+ with unit
volume. ��
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Using the same constants θ and μ given by Proposition 3.9 and Proposition 3.15,
respectively, we obtain the following result, which ensures that all the functions in the
sublevel that contains the image of the photography map have their mass concentrated
near the boundary.

Lemma 3.16 Assume that (H1) and (H2) hold. For every α ∈ (0, 1), there exists
mα = mα(M, g, W , θ, α) > 0 such that for every m ∈ (0, mα) there exists εα =
εα(M, g, W , θ, α, m) > 0 such that for every ε ∈ (0, εα) and for any u ∈ Eσ IM (m)+θm

ε,m
there exists a point pu ∈ ∂ M such that

∫
M\B(pu ,μm1/n)

|u|dvg ≤ αm. (3.23)

Proof Arguing by contradiction, there exists a sequence (mi )i∈N such that mi → 0+
and for every i ∈ N there exist two sequences (εi, j ) j∈N ∈ R and (ui, j ) j∈N ∈ Eci

εi, j ,mi ,
with ci = IM (mi ) + θmi , such that for every i ∈ N we have εi, j → 0+ as j → ∞
and

∫
M\Bg(p,μm1/n

i )

|ui, j |dvg > αmi , ∀p ∈ ∂ M, ∀ j ∈ N. (3.24)

Since for any fixed i ∈ N we have Eεi, j ,mi (ui, j ) ≤ ci for every j ∈ N, we can apply
Theorem 3.3 to obtain a sequence of characteristic functions (u0,i )i ⊂ L1(M,R) such
that, for every i , we have lim j→∞‖ui, j − u0,i‖L1(M,R) = 0, up to subsequences (see
also Remark 3.4). Hence, for every i there exists ji such that

∫
M

(|ui, ji | − u0,i
)
dvg ≤ α

4
mi , (3.25)

and we have also
∫

M u0,idvg = mi and E0(u0,i ) ≤ ci , namely

IM (mi ) ≤ E0(u0,i )

σ
≤ IM (mi ) + θmi .

Using also (3.13), we obtain

lim
i→∞

E0(u0,i )

σ IM (mi )
= 1,

so we can apply Proposition 3.15 to obtain the existence of a sequence (pi )i∈N ⊂ ∂ M
such that

lim
i→∞

1

mi

(∫
M\B(pi ,μm1/n

i )

u0,i dvg

)
= 0,
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so there exists i0 such that∫
M\B(pi ,μm1/n

i )

u0,i dvg ≤ α

4
mi , ∀i ≥ i0. (3.26)

As a consequence, combining (3.25) and (3.26), for every i > i0 we obtain∫
M\B(pi ,μm1/n

i )

|ui, ji |dvg

=
∫

M\B(pi ,μm1/n
i )

(
|ui, ji | − u0,i

)
dvg +

∫
M\B(pi ,μm1/n

i )

u0,i dvg

≤
∫

M

(|ui, ji | − u0,i
)
dvg +

∫
M\B(pi ,μm1/n

i )

u0,i dvg ≤ α

2
mi ,

which contradicts (3.24). ��
Using the previous result, we can ensure that if m and ε are sufficiently small, the

extrinsic barycenter of any function in the sublevel of Eε,m that contains the image of
the photograpy map is near the boundary of the manifold. More formally, setting

diam
Rñ (M):=max

{‖x − y‖
Rñ : x, y ∈ M

}
,

we have the following result.

Lemma 3.17 Assume that (H1) and (H2) hold. For every r > 0, there exists m2 =
m2(M, g, r , diam

Rñ (M)) > 0 such that for every m ∈ (0, m2) there exists ε2 =
ε2(M, g, r , m) > 0 such that for every ε ∈ (0, ε2) and any u ∈ Eσ IM (m)+θm

ε,m we have
β∗(u) ∈ (∂ M)r .

Proof Recalling the definition of β∗ given by (3.14), for every u ∈ H1(M,R) and
y ∈ M , let us define

ρ(u, y) = |u(y)|∫
M |u(x)|dvg

,

so that

β∗(u) =
∫

M
xρ(u, x)dvg and

∫
M

ρ(u, x)dvg = 1, ∀u ∈ H1(M,R).

Let us choose α > 0 such that

α ≤ r

2diam
Rñ (M)

,

and let mα be given by Lemma 3.16. Let us choose m ∈ (0, mα) and let ε ∈ (0, εα).
By Lemma 3.16, for every u ∈ Eσ IM (m)+θm

ε,m there exists pu ∈ ∂ M such that (3.23)
holds. As a consequence, for every u ∈ Eσ IM (m)+θm

ε,m we obtain
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‖β∗(u) − pu‖
Rñ =

∥∥∥∥
∫

M

(
x − pu

)
ρ(u, x)dvg

∥∥∥∥
Rñ

≤
∥∥∥∥
∫

B(pu ,μm1/n)

(
x − pu

)
ρ(u, x)dvg

∥∥∥∥
Rñ

+
∥∥∥∥
∫

M\B(pu ,μm1/n)

(
x − pu

)
ρ(u, x)dvg

∥∥∥∥
Rñ

≤ μm1/n + αdiam
Rñ (M) ≤ μm1/n + r

2
.

As a consequence, choosing m2 ∈ (0, mα) such that

μm1/n
2 ≤ r

2
,

for all m ∈ (0, m2) and for all ε ∈ (0, ε2), with ε2 = εα , we obtain

‖β∗(u) − pu‖
Rñ ≤ r , ∀u ∈ E IM (m)+θm

ε,m ,

and we are done. ��
Remark 3.18 By Lemma 3.17 and the compactness of ∂ M , there exists r1 > 0 such
that, choosing m2(M, g, r1, diamRñ ) > 0 and ε2(M, g, r1, m) > 0 as in the lemma,

for every m ∈ (0, m2) and ε ∈ (0, ε2), the map B = π∂ M ◦ β∗ : Eσ IM (m)+θm
ε,m → ∂ M

is well defined and continuous.

3.5 Conclusion of the proof

The following two results, namely, Lemma 3.19 and Lemma 3.20, demonstrate that
the barycenter of a function obtained by applying the photography map to a point
p ∈ ∂ M is in close proximity to p itself when m and ε are sufficiently small. As
a result, taking into account the definition of B provided in (3.16), the composition
B ◦ Pε,m : ∂ M → ∂ M closely approximates the identity map.

Lemma 3.19 Assume that (H1) and (H2) hold. For every r ∈]0, r1[ there exists m3 =
m3(M, g, r) > 0 such that for every m ∈ (0, m3) there exists ε3 = ε3(M, g, r , m) > 0
such that

‖β∗(Pε,m(p)) − p‖
Rñ ≤ r , ∀p ∈ ∂ M .

Proof We recall that for every p ∈ ∂ M and every m ∈ (0, vol(M)), the radius rp,m is
the one such that ∫

E p,r p,m

1dvg = m.

By the compactness of ∂ M , there exists m3 = m3(M, g, r) > 0 such that for every
m ∈ (0, m3) and for every p ∈ ∂ M we have rp,m < r/2. As a consequence, for every
x ∈ E p,rp,m ⊂ M we have

‖x − p‖
Rñ <

r

2
. (3.27)
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Moreover, we recall that for every m, ε > 0 the function Pε,m(p) is defined as the
ε–approximation of um

0,x = 1E p,m and that um
ε,p converges to um

0,x in the L1(M,R)

norm as ε → 0. Hence, using also the continuity of β∗ with respect to the L1–norm
ensured by Lemma 3.12 and again the compactness of ∂ M , we obtain the existence
of a constant ε3 = ε3(M, g, r , m) > 0 such that for every ε ∈ (0, ε3) and for every
p ∈ ∂ M the following holds:

‖β∗(Pε,m(p)) − β∗(um
0,p)‖Rñ = ‖β∗(um

ε,p) − β∗(um
0,p)‖Rñ ≤ r

2
. (3.28)

As a consequence, using both (3.27) and(3.28), for every m ∈ (0, m3) and for every
ε ∈ (0, ε3) we obtain

‖β∗(Pε,m(p)) − p‖
Rñ ≤ ‖β∗(Pε,m(p)) − β∗(um

0,p)‖
Rñ + ‖β∗(um

0,p) − p‖
Rñ

≤ r

2
+ 1∫

M |um
0,p|dvg

∫
M

(
‖x − p‖

Rñ |um
0,p|
)
dvg ≤ r , ∀p ∈ ∂ M,

which concludes the proof. ��
Lemma 3.20 Assume that (H1) and (H2) hold. There exists m∗ = m∗(M, g, W ) > 0
such that for any m ∈ (0, m∗) there exists ε∗ = ε∗(M, g, W , m) > 0 such that for
any ε ∈ (0, ε∗) the composition map

B ◦ Pε,m : ∂ M → ∂ M

is well defined and homotopic to the identity map.

Proof For p ∈ ∂ M , let exp∂ M
p be the exponential map of ∂ M at p, and let B∂ M

g (p, R)

be the geodesic ball of center p and radius R on ∂ M . We denote by inj(∂ M) the
injectivity radius of ∂ M , that is

inj(∂ M):= inf
p∈∂ M

sup
{

R > 0 s.t. exp∂ M
p : B∂ M

g (p, R) → ∂ M is a diffeomorphism
}

which is positive since ∂ M is a compact manifold. Moreover, the compactness of ∂ M
implies that there exists a constant C∂ M > 0 such that

dist(∂ M,g)(p, q) ≤ C∂ M‖p − q‖
Rñ ∀p, q ∈ ∂ M,

where dist(∂ M,g) stands for the Riemannian distance on (∂ M, g). Recalling the defi-
nition of r1 > 0 given in Remark 3.18, let

r∗ = min
{
r1, inj(∂ M)/(4C∂ M )

}
,

let m2 = m2(M, g, r∗, diam
Rñ (M)) > 0 be defined by Lemma 3.17, and for every

m ∈ (0, m2), set ε2 = ε2(M, g, r∗, m) > 0 in the same way. Moreover, let m3 =
m3(M, g, r∗) > 0 and ε3 = ε3(M, g, r∗, m) be similarly defined by Lemma 3.19.
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Recalling Proposition 3.9, let m∗ = min{m1, m2, m3} and for every m ∈ (0, m∗) set
ε∗ = min{ε1, ε2, ε3}.

By Proposition 3.9, for any p ∈ ∂ M we havePε,m(p) ∈ Eσ IM (m)+θm
ε,m , so we obtain

dist(∂ M,g)

(B(Pε,m(p)), p
) ≤ C∂ M‖π∂ M (β∗(Pε,m(p))) − p‖

Rñ

≤ C∂ M
(‖π∂ M (β∗(Pε,m(p))) − β∗(Pε,m(p))‖

Rñ + ‖β∗(Pε,m(p)) − p‖
Rñ

)
.

(3.29)

Since m∗ and ε∗ are, respectively, less than m2 and ε2 defined as in Lemma 3.17, we
have

‖π∂ M (β∗(Pε,m(p))) − β∗(Pε,m(p))‖
Rñ ≤ r∗,

and, by applying in an analogous manner Lemma 3.19, we obtain also

‖β∗(Pε,m(p)) − p‖
Rñ ≤ r∗.

Hence, from (3.29) we infer

dist(∂ M,g)

(B(Pε,m(p)), p
) ≤ 2C∂ Mr∗ ≤ 1

2
inj(∂ M).

As a consequence, the map F : [0, 1] × ∂ M → ∂ M , given by

F(t, p):=exp∂ M
p

(
t
(
exp∂ M

p

)−1(B(Pε,m(p))
))

,

is well-defined, continuous and gives a homotopy equivalence between B ◦ Pε,m and
the identity map in ∂ M . ��

Finally, we are ready to prove Theorem A.

Proof of TheoremA For every m, ε > 0, the functional Eε,m is clearly bounded below
and, by Lemma 2.1, it is of class C1 and satisfies the Palais–Smale condition.

Let us choosem∗ as in Lemma 3.20 and, for everym ∈ (0, m∗), let εm be equal to ε∗
of the same lemma and set cm = σ IM (m)+θm. By Proposition 3.11 andRemark 3.18,
for every ε ∈ (0, εm) both Pε,m : ∂ M → Ecm

ε,m and B : Ecm
ε,m → ∂ M are continuous

and, by Lemma 3.20, their composition is homotopic to the identity. Then, TheoremA
directly follows from Theorem C. In particular, there exist at least cat(∂ M) critical
points of Eε,m in Ecm

ε,m and, recalling that cat(∂ M) > 1 and Hm is a contractible set
(see Remark 2.2), there exist at least one critical point with energy larger than cm .
By Lemma 2.1, these critical points are solutions of (1.2). Moreover, if all the critical
points of Eε,m are non-degenerate, then Theorem C and Lemma 2.1 ensure that (1.2)
has at least P1(∂ M) solutions with energy less than cm and P1(∂ M) − 1 solutions
with energy larger than cm , and we are done. ��
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4 Proof of Theorem B

The proof of Theorem B follows essentially the same structure of the proof of The-
orem A, by applying again Theorem C. Relying on some �–convergence results for
Eε,m [36, 46], we can construct the photography map Pε,m : M → Ec

ε,m , where the
value of c can be estimated exploiting the convergence of the isoperimetric problem
on M that takes into account also the boundary ∂ M to the standard Euclidean case as
m goes to 0.

4.1 The isoperimetric problem

We define the functional E0 : L1(M,R) → R as

E0(u):=
{

σHn−1(∂∗�), if u = 1�, � ∈ Cg(M),

+∞, otherwise,

where σ ∈ R is as in Sect. 3.1. Let I : ]0, vol(M)] → R be the following function:

I M (m):= inf

{
Hn−1(∂∗�) : � ∈ Cg(M) and

∫
M
1�dvg = m

}
.

In other words, the quantity I M is the isoperimetric profile of M that takes also into
account the boundary ∂ M .

Remark 4.1 In the following, it is convenient to extend (M, g) to a closed Riemannian
manifold (M̃, g̃) of the same dimension, in such a way that

M ⊂ M̃, and g̃|M = g.

In this way, the notion of perimeter given by (3.17), when applied to the subsets of
M , takes into account also the contribution along the boundary of the manifold M . In
other words, any Caccioppoli set � ∈ Cg(M) can be naturally regarded as a subset of
M̃ , and P(�, M̃) = Hn−1(∂∗�). Such a manifold can be constructed, for instance,
by gluing together two copies of M along their boundaries. We refer to [53, Theorem
A] and its proof for further details on this construction.

For small volumes, the function I M converges to its Euclidean counterpart, which

is IRn (m) = cnm
n−1

n , where cn is the Euclidean isoperimetric constant.More formally,
we have the following result.

Lemma 4.2 The following equality holds:

lim
m→0+

I M (m)

IRn (m)
= lim

m→0+
I M (m)

cnm
n−1

n

= 1. (4.1)
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Proof Thanks to the construction given in the Remark 4.1, the thesis is a direct con-
sequence of [45, Theorem 3]. Indeed, since every Caccioppoli subset of M is also a
subset of M̃ , it follows that

I M̃ (m) ≤ I M (m), ∀m ∈ (0, vol(M)).

We can then apply [45, Theorem 3] to obtain

lim
m→0+

I M̃ (m)

cnm
n−1

n

= 1.

On the other hand, estimating the perimeter of geodesic balls of volume m centered
at any point p ∈ M , we also get

I M (m) ≤ cnm
n−1

n + o(m),

as m → 0+, where this estimate can be found in [45, Lemma 3.10]. Combining these
inequalities, a standard limit argument leads to (4.1). ��

4.2 Gamma convergence

Proposition 4.3 (cf. Proposition A and Proposition B of [36]) Assume that (H1)
and (H2) hold. Then, the following statements hold:

(i) Lim-inf: If (εk)k∈N ⊂]0,+∞[ is such that εk → 0+ and (uεk )k∈N ⊂ H1
0 (M,R)

is such that uεk → u0 in L1(M,R), then lim infk→∞ Eεk (uεk ) ≥ E0(u0);
(ii) Lim-sup: For any u0 ∈ L1(M,R) such that u0 = 1� for some finite perimeter

measurable set � ⊂ M and for every sequence (εk)k∈N ⊂]0,+∞[ such that
εk → 0+, there exists (uεk )k∈N ⊂ H1

0 (M,R) such that uεk → u0 in L1(M,R),

∫
M

uεkdvg =
∫

M
u0dvg and lim sup

k→∞
Eεk (uεk ) ≤ E0(u0).

Remark 4.4 Noticing that the compactness result ensured by Theorem 3.3 refers to the
functional Eε : H1(M,R) → R, as for the case of Neumann boundary condition we
have that if (εk)k∈N ⊂]0,+∞[ is a sequence such that εk → 0+ and if a sequence
(uεk )k∈N ⊂ Hm,0 satisfies Eεk (uεk ) ≤ E∗ for some constant E∗, then, up to subse-
quences, (uεk )k∈N converges to a function u0 ∈ L1(M,R). By applying the lim-inf
property of Proposition 4.3,we have thatE0(u0) ≤ E∗, hence there exists ameasurable
and finite perimeter set � ⊂ M such that u0 = 1� and vol(�) = ∫M u0dvg = m.

4.3 Photographymap

Since now we are dealing with the Dirichlet boundary condition, namely u ≡ 0 on
∂ M , the photography map is defined by utilizing a boundary layer. The main idea is
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to associate to each point of the manifold the ε–approximation of the characteristic
function of the geodesic ball with prescribed volume centered in the point. However,
when the point is near the boundary, such a ball may intersect with the boundary and
the ε–approximation does not satisfy the boundary condition. To avoid this problem,
we construct a boundary layer map L : M → M that slightly moves inside the points
that lie on tubular neighbourhood of ∂ M . In this way, the geodesic ball of prescribed
volume m centered at L(p) is in the interior of M for every p ∈ M , provided m
sufficiently small.

Let us proceed with a formal construction. Since the boundary of M is smooth and
compact, there exists δM > 0 such that the map

∂ M × [0, δM ] � (Q, t) �→ expQ(t N∂ M )

provides a coordinate system in a neighbourhood of ∂ M , where we recall that N∂ M

stands for the unit interior normal vector field along ∂ M . Now, for any p ∈ M such
that dist(p, ∂ M) ≤ δM , we denote by (Q p, tp) the unique element in ∂ M × [0, δM ]
such that

p = expQ p
(tp N∂ M ).

In other words, tp is the distance of p to the boundary, while Q p is its projection on
it. Now, let us choose a C∞ function h : [0, δM ] → [0, δM ] that is strictly increasing
(hence invertible), h(0) = δM/2, h(δM ) = δM and h′(δM ) = 1. Our boundary-layer
function L : M → M is defined as follows:

L(p):=
{
expQ p

(
h(tp)N∂ M

)
, if dist(p, ∂ M) ∈ [0, δM ],

p, if dist(p, ∂ M) ≥ δM .

Notice that L is a C1–map homotopic to the identity.
Since dist(L(p), ∂(M)) ≥ δM/2 for every p ∈ M and M is compact, there exists

a sufficiently small volume, say m0 > 0, such that for any p ∈ M and m ∈ (0, m0)

the geodesic ball centered at L(p) and with volume m doesn’t intersect the boundary
of the manifold. More formally, denoting by rq,m > 0 the radius of the geodesic ball
centered at q ∈ M with volume m, hence

∫
B(q,rq,m )

1dvg = m, we have

B(L(p), rL(p),m) ∩ ∂ M = ∅, ∀p ∈ M, m ∈ (0, m0).

For any p ∈ M and m ∈ (0, m0) let us denote by um
0,L(p)

the characteristic function of
B(L(p), rL(p),m). Moreover, for every ε > 0 let um

ε,L(p)
∈ Hm be ε–approximation

of um
0,L(p)

given by the lim-sup property of Proposition 4.3. Since M is compact and
supp um

0,L(p)
⊂⊂ int(M) for every p ∈ M and m ∈ (0, m0), there exists ε0 > 0 such

that for every ε ∈]0, ε0[ we have um
ε,L(p)

∈ Hm,0, hence uε,L(p) ≡ 0 on ∂ M (see
Remark 3.2 for the details about the construction of the ε–approximation).
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Fig. 3 The map introduced in Definition 4.5 turns the indicator function um
0,L(p)

into the smooth approx-

imation um
ε,L(p)

given by �-convergence (Proposition 4.3). The functions are supported on the balls

B(L(p), rL(p),m ), whose center L(p) is obtained by sending a point p away from the boundary through
the boundary layer map L

Definition 4.5 For every m ∈ (0, m0) and ε ∈ (0, ε0), we define the photography map
Pε,m : M → Hm,0 as follows:

Pε,m(p) = um
ε,L(p).

See Fig. 3 for a representation of Definition 4.5.

Proposition 4.6 Assume that (H1) and (H2) hold. There exists a function τ : R+ → R

such that

lim
m→0+

τ(m)

m
n−1

n

= 0

and there exists m1 = m1(M, g, W , τ ) ∈ (0, m0) such that for every m ∈ (0, m1)

there exists ε1 = ε1(M, g, W , m) ∈ (0, ε0) such that for every ε ∈ (0, ε1) we have

Eε,m(Pε,m(p)) ≤ σ I M (m) + τ(m), ∀p ∈ M . (4.2)

Proof By applying some standard results (see, e.g., [45, Lemma 3.10]), since um
0,L(p)

has compact support in the interior of M for every m ∈ (0, m0) we have

E0(u
m
0,L(p)) = σ

(
cnm

n−1
n − γnScg(L(p))m

n+1
n

)
+ O(m

n+3
n ), as m → 0+,

where cn is the Euclidean isoperimetric constant, γn is a constant which depends only
on the dimension of the manifold and Scg(L(p)) denotes the scalar curvature of the
metric tensor g at the point L(p). Since M is compact, there exists a constant ω > 0
and m1 ∈ (0, m0) such that for every m ∈ (0, m1) we have

E0(u
m
0,L(p)) < σcnm

n−1
n + ωm

n+1
n , ∀p ∈ M .
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Since the last inequality is strict and using again the compactness of M , by the lim-sup
property of Proposition 4.3 there exists ε1 = ε1(M, g, m) ∈ (0, ε0) such that for every
ε ∈ (0, ε1) we have

Eε,m(um
ε,L(p)) ≤ σcnm

n−1
n + ωm

n+1
n , ∀p ∈ M . (4.3)

By (4.1), the function τ0 : R+ → R given by τ0(m) = cnm
n−1

n − I M (m) is a o(m
n−1

n )

asm goes to 0. As a consequence, setting τ(m) = στ0(m)+ωm
n+1

n , (4.3) is equivalent
to (4.2). ��

Since L : M → M is a continuous function, one can employ the same construction
of the proof of Proposition 3.11 to obtain the continuity of the photographymap, which
is stated by the next result.

Proposition 4.7 Assume that (H1) and (H2) hold. Let m1 > 0 and ε1 > 0 be defined as
in Proposition 4.6. For every m ∈ (0, m1) and ε ∈ (0, ε1) the map Pε,m : M → Hm,0
is continuous.

Proof Cf. Proposition 3.11. ��

4.4 Barycenter map

The construction of the barycenter map is analogous to the case of Neumann boundary
condition. In particular, we will use again the function β∗ : L1(M,R) → R

ñ defined
in (3.14),which gives the “extrinsic” center ofmass of a function in theEuclidean space
R

ñ where the manifold M is isometrically embedded. In this case, we will compose
this map with the nearest point projection map πM : Rñ → M . We need to prove that,
when m and ε are sufficiently small, β∗(u) is near the manifold for any function u
that belongs to the sublevel of Eε,m that contains the image of the photography map,
namely for every u ∈ Ec

ε,m with c = σ I M (m)+ τ(m) (see Proposition 4.6). To obtain
the last result, we rely on the “concentration property”, namely that as m goes to 0 the
support of every function in Ec

ε,m is inside a small ball, up to a negligible part.

Proposition 4.8 There exists μ = μ(M, g) > 0 such that the following property
holds. For every almost isoperimetric sequence (uk)k∈N ⊂ L1(M,R) with volumes
mk = ∫M ukdvg → 0, i.e.,

lim
k→∞

E0(uk)

σ I M (mk)
= 1, (4.4)

there exists a sequence (pk)k∈N ⊂ M such that

lim
k→+∞

1

mk

(∫
M\B(pk ,μm1/n

k )

ukdvg

)
= 0. (4.5)
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Proof The proof is analogous to that of Proposition 3.15, and it relies on the compact-
ness result provided by Theorem 3.13. However, in this case we cannot work directly
on M , since the notion of perimeter for Caccioppoli sets accounts only for the portion
lying in the interior of M (see Remark 3.14). To overcome this issue, we consider
the closed manifold M̃ , introduced in Remark 4.1, which contains M as a subset.
Accordingly, we may regard the almost isoperimetric sequence (uk)k∈N ⊂ L1(M,R)

as functions on M̃ , extended by zero outside M . We then denote by (�k)k∈N ⊂ Cg(M̃)

the associated finite perimeter subsets of M̃ such that uk = 1�k .
Let (Xk, gk) = (M̃, m−1/k g), so that Hn

k (�k) = 1 for every k, where Hn
k denotes

the n–dimensional Hausdorff measure on (Xk, gk). By (4.1) and (4.4), we have also
that

lim
k→∞ P(�k, Xk) = lim

k→∞Hn−1
k (∂∗�k) = IRn (1).

Thismeans that the sequence (�k)k∈N has uniformly bounded volumes and perimeters
andwe can apply Theorem3.13 to obtain a number N ∈ N∪{+∞}, a family of pointed
RCD(κ, n) spaces (Mi∞, di∞,Hn∞, pi ), for i = 1, . . . , N , and subsets �i∞ ⊂ Mi∞
such that

N∑
i=1

Hn∞(�i∞) = lim
k→∞Hn

k (�k) = 1, (4.6)

and

N∑
i=1

Hn−1∞ (∂∗�i∞) ≤ lim inf
k→∞ Hn−1

k (∂∗�k) = IRn (1). (4.7)

Since M̃ is a closed manifold (and therefore each rescaled space Xk is also a
closed manifold), every limit space (Mi∞, di∞,Hn∞, pi ) must be the Euclidean space
(Rn, d,Hn, 0).

By arguing as in the final part of the proof of Proposition 3.15, and using the fact

that the Euclidean isoperimetric profile IRn (m) = cnm
n−1

n is strictly subadditive, we
conclude that the conditions (4.6) and (4.7) can only be satisfied if N = 1. Moreover,
�1∞ ⊂ R

n is an isoperimetric set, so it must be an Euclidean ball of unit volume. Since
by Theorem 3.13 we know that �k → �1∞ in the L1–strong topology as k → ∞, and
each �k ⊂ M̃ is contained in M , that is,

Hn(�k \ M) = 0, ∀k ∈ N,

we conclude that, also when regarded as subsets of the rescaled spaces Xk , the sets
�k concentrate inside M . Therefore, we can find a sequence of points (pk)k∈N ⊂ M
such that (4.5) holds, where μ can be chosen as twice the radius of the unit-volume
Euclidean ball in Rn . ��
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Lemma 4.9 Assume that (H1) and (H2) hold and let τ : R+ → R be given by Propo-
sition 4.6. For every α ∈ (0, 1), there exists mα = mα(M, g, W , θ, α) > 0 such that
for every m ∈ (0, mα) there exists εα = εα(M, g, W , θ, α, m) > 0 such that for every

ε ∈ (0, εα) and for any u ∈ Eσ I M (m)+τ(m)
ε,m there exists a point pu ∈ M such that

∫
M\B(pu ,μm1/n)

|u|dvg ≤ αm.

Proof Relying on the concentration result ensured by Proposition 4.8, the proof is
analogous to the one of Lemma 3.16. For the sake of clarity, we report here the main
steps.

Arguing by contradiction, there exists a sequence (mi )i∈N that goes to 0 and for
every i ∈ N there exists two sequences (εi, j ) j∈N and (ui, j ) j∈N ⊂ Eci

εi, j ,mi
, with

ci = σ I M (mi ) + τ(mi ) such that εi, j → 0+ as j → ∞ and

∫
M\Bg(p,μm1/n

i )

|ui, j |dvg > αmi , ∀p ∈ M, ∀ j ∈ N.

Since Eεi, j ,mi (ui, j ) ≤ ci for every j , by Theorem 3.3 we have that for every fixed
i ∈ N there exists a characteristic function u0,i ∈ L1(M,R) such that ui, j converges
to it, up to subsequences. Therefore, for every i ∈ N there exists ji sufficiently large
such that ∫

M

(|ui, ji − u0,i |
)
dvg ≤ α

4
mi . (4.8)

Moreover, by Remark 4.4 we have

I M (mi ) ≤ E0(u0,i )

σ
≤ I M (mi ) + τ(mi ).

Since τ(m) = o(m
n−1

n ) and (4.1) holds, the last chain of inequality implies that

lim
i→∞

E0(u0,i )

σ I M (mi )
= 1,

so we can apply Proposition 4.8 and obtain a sequence of points (pi )i∈N ⊂ M such
that

lim
i→+∞

1

mi

(∫
M\B(pi ,μm1/n

i )

u0,idvg

)
= 0. (4.9)

Utilizing the same reasoning employed in the concluding section of the proof for
Lemma 3.16, (4.8) and (4.9) lead us to the intended contradiction. ��

123



Multiplicity results for mass constrained Allen–Cahn equations… 3513

As we have done for the case of Neumann conditions, now that we have the “con-
centration” result ensured by Lemma 4.9, it is possible to prove that if m and ε are

sufficiently small for any u ∈ Eσ I M (m)+τ(m)

ε,m we have that β∗(u) is in a neighbourhood
of M ⊂ R

ñ . More formally, setting

Mr =
{

x ∈ R
ñ : dist

Rñ (x, M) < r
}

, ∀r > 0,

we have the following result.

Lemma 4.10 Assume that (H1) and (H2) hold. For any r > 0, there exists m2 =
m2(M, g, r , diam

Rñ (M)) > 0 such that for every m ∈ (0, m2) there exists another
positive constant ε2 = ε2(M, g, r , m) such that for every ε ∈ (0, ε2) and any u ∈
Eσ I M (m)+τ(m)

ε,m we have β∗(u) ∈ Mr .

Proof Cf. Lemma 3.17. ��
Remark 4.11 By the previous lemma and the compactness of M , there exists r1 > 0
such that for every r ∈]0, r1[, setting m2 = m2(M, g, r , diam

Rñ (M)) and ε2 =
ε2(M, g, r , m) as in the lemma, the map B = πM ◦ β∗ : Ec

ε,m → M is well defined
and continuous, with c = σ I M (m) + τ(m).

4.5 Conclusion of the proof

In this section we show that if m and ε are sufficiently small then B ◦Pε,m : M → M
is homotopic to the identity map. Then, Theorem B follows as an application of
Theorem C.

Recalling the definition of δM > 0 given in Sect. 4.3 for the purpose of defining the
photographymapPε,m : M → Hm,0, let us also define themap P̃ε,m : MδM /2 → Hm,0
as follows:

P̃ε,m(p) = um
ε,p,

where MδM/2 = {p ∈ M : distg(p, ∂ M) ≥ δM/2}. With this notation, Pε,m is given
by P̃ε,m ◦ L.
Lemma 4.12 Assume that (H1) and (H2) hold. For every r ∈]0, δM/2[ there exists
m3 = m3(M, g, r) > 0 such that for every m ∈ (0, m3) there exists ε3 =
ε3(M, g, r , m) > 0 such that

‖β∗(P̃ε,m(p)) − p‖
Rñ ≤ r , ∀p ∈ MδM /2.

Proof Cf. Lemma 3.19. ��
Lemma 4.13 Assume that (H1) and (H2) hold, let Pε,m : M → Hm,0 be given by
Definition 4.5 and let B : H1(M,R) → M be defined as πM ◦ β∗. There exists m∗ =
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m∗(M, g, W ) > 0 such that for any m ∈ (0, m∗) there exists ε∗ = ε∗(M, g, W , m) >

0 such that for any ε ∈ (0, ε∗) the composition map

B ◦ Pε,m : M → M

is well defined and homotopic to the identity map.

Proof The proof is very similar to the one of Lemma 3.20, but it has to take into
account the action of the boundary layer map L. However, since L is homotopic to
the identity map, it suffices to show that B ◦ P̃ε,m : MδM/2 → M is homotopic to the
identity map as well, provided that m and ε are sufficiently small.

By the compactness of M , there exists a positive constant CM such that
dist(M,g)(p, q) ≤ CM‖p − q‖

Rñ , for every p, q ∈ M , where dist(M,g) stands for
the Riemannian distance on (M, g). Therefore,. We denote by inj(MδM /2) the injec-
tivity radius of MδM/2 in M , that is

inj(MδM/2):= inf
p∈MδM /2

sup
{

R > 0 s.t. expM
p : B M

g (p, R) → M is a diffeomorphism
}
.

Note that by this construction we have inj(MδM/2) ≤ δM/2.
Recalling the definition of r1 given in Remark 4.11, we set

r∗ = 1

2
min

{
inj(MδM /2)

2CM
, r1

}
≤ δM

4
.

Letm1 = m1(M, g, W , τ ),m2 = m2(M, g, r∗, diam
Rñ (M)) andm3 = m3(M, g, r∗)

be the positive constants given by Proposition 4.6, Lemma 4.10 and Lemma 4.12,
respectively. Let m∗ = min{m1, m2, m3} > 0 and for every m ∈ (0, m∗) let ε∗ =
min{ε1, ε2, ε3}, where εi is defined by using the same results of mi , for i = 1, 2, 3.
Since m < m1, for every p ∈ MδM /2 we have that P̃ε,m(p) ∈ Ec

ε,m , with c =
σ I M (m) + τ(m). Since m < m3, this implies that

‖β∗(P̃ε,m(p)) − p‖
Rñ ≤ r∗ for every p ∈ MδM /2. Therefore, we have

dist(M,g)

(B(P̃ε,m(p)), p
) ≤ CM‖πM (β∗(P̃ε,m(p))) − p‖

Rñ

≤ CM
(‖πM (β∗(P̃ε,m(p))) − β∗(P̃ε,m(p))‖

Rñ + ‖β∗(P̃ε,m(p)) − p‖
Rñ

)
≤ 2CMr∗ ≤ δM

2
,

so the map F : [0, 1] × MδM /2 → M , given by

F(t, p):=expM
p

(
t
(
expM

p

)−1(B(P̃ε,m(p))
))

,

is well-defined, continuous and gives a homotopy equivalence between B ◦ P̃ε,m and
the identity map in MδM/2. ��
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Proof of Theorem B As previously stated, this proof is based on Theorem C. Indeed,
for every m, ε > 0 the functional Eε,m is bounded below and it satisfies the Palais–
Smale condition (see Lemma 2.1). Moreover, let m∗ > 0 be given by Lemma 4.13
and for every m ∈ (0, m∗) let ε∗ > 0 be given by the same lemma. Setting c =
σ I M (m) + τ(m), where τ : R+ → R is defined in Proposition 4.6, we establish
that the photography map Pε,m : M → Ec

ε,m (as defined in Definition 4.5) and the

barycenter map B : Ec
ε,m → M (defined as πM ◦ β∗) are well-defined, for every

ε ∈ (0, ε∗). Furthermore, according to Lemma 4.13, their composition B ◦ Pε,m is
homotopic to the identity map. Then, all the conclusions of Theorem B can be derived
by applying Theorem C. ��

5 Generic non-degeneracy

The conclusions of Theorems A and B are stronger if one can ensure that for given
m and ε all the solutions of (1.2) and (1.3) are nondegenerate. In many situations,
non-degeneracy of solutions is a generic property, in the sense that it is obtained after
some arbitrary small perturbation of a key parameter of the problem. This is the case
for semilinear elliptic equations as the ones considered in this paper, meaning that
the stronger existence statements of Theorem A and B, based on Morse inequalities,
hold in generic situations. The purpose of this section is to give some insight on how
these genericity properties are obtained from the available literature, which contains
analogous results in similar settings. We present generic non-degeneracy results with
respect to perturbations of the Riemannian metric (Theorem 5.2 below) as well as with
respect to boundary perturbations (Theorem 5.3 below). As it has been noted by the
referee, it would also be interesting in view of possible applications to study whether
one has generic non-degeneracy with respect to perturbations on the mass constraint,
in the spirit of Zhou’s work on the multiplicity one conjecture [62]. The answer to this
interesting question does not seem obvious to us at first glance; therefore, we leave it
open here.

5.1 Abstract transversality result

Generic non-degeneracy is usually obtained by applying Sard–Smale Theorem [57]
and abstract transversality results on infinite-dimensional Banach manifolds, see
Quinn [55], Saut and Temam [56] and Uhlenbeck [60]. Following [56], we now intro-
duce some objects that will be fixed for the rest of this section and recall some standard
definitions. Let X , Y and Z be Banach spaces and U ⊂ X , V ⊂ Y open subsets. Let
F : U × V → Z be of class Ck for k ≥ 1. We will denote by DF(x0, y0) the (total)
differential of F at the point (x0, y0) ∈ U × V and by DX F(x0, y0), DY F(x0, y0)
the differentials with respect to the x and the y components, respectively. Given Z ′
a Banach space, U ′ ⊂ Z ′ an open subset and g : Z ′ → Z of class C1, we say that
z0 ∈ Z is a regular value of g if Dg(z′

0) (the differential of g at z′
0) is onto for any

z′
0 ∈ U ′ such that g(z′

0) = z0. The abstract result we use is the following:
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Theorem 5.1 (Theorem 1.1 in [56]) Assume that z0 ∈ Z is a regular value of F and
that, moreover:

1. For any x ∈ U and y ∈ V , DX F(x, y) : X → Z is a Fredholm map of index
l < k.

2. The set of x ∈ U such that F(x, y) = z0 for all y in a compact subset of V is a
relatively compact set of U.

Then, the set

O:={y ∈ V : z0 is a regular value of F(·, y)},

is a dense open subset of V .

5.2 Generic non-degeneracy with respect to the Riemannianmetric

Theorem 5.1 was used in [28] by de Paula Ramos in order to prove generic non-
degeneracy for solutions of (1.1) (i.e., critical points of the C2 functionals Eε,m and
Eε,m) with respect to the Riemannian metric. Analogous results for systems were
proven in [6], see also Micheletti and Pistoia [41] for earlier results in related settings.
The result proven in [28] reads as follows:

Theorem 5.2 LetMet∞(M) be the space of C∞ Riemannian metrics on M and m ∈ R.
For ĝ ∈ Met∞(M) and ε ∈ (0,+∞), we denote by Eε,m,ĝ and Eε,m,ĝ the functionals
Eε,m and Eε,m with respect to the metric ĝ. Then, for any g0 ∈ Met∞(M) the sets

{
(ε, ĝ) ∈ (0,+∞) × Met∞(M) : any critical point

of Eε,m,ĝ in H1
g0(M,R) is non-degenerate

}

and {
(ε, ĝ) ∈ (0,+∞) × Met∞(M) : any critical point

of Eε,m,ĝ in H1
g0(M,R) is non-degenerate

}

can be written as a countable interesection of open and dense subsets of (0,+∞) ×
Diff∞(M). In particular, they are residual subsets of (0,+∞) × Diff∞(M), which
are dense.

The proof of Theorem 5.2 is obtained as an application of the abstract Theorem 5.1
and can be found in [28].

5.3 Generic non-degeneracy with respect to the domain

Notice that Theorem 5.2 has a drawback: In some applications, one might not want
to modify the metric of the problem. For instance, if M is an Euclidean domain
� ⊂ R

n then it would not make much sense to replace the Euclidean metric on � by
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another one. It is therefore reasonable to be interesected in generic non-degeneracy
with respect to a different key parameter. It might be tempting to consider a genericity
result based on modifying the potential instead of the Riemannian metric. However,
Brunovský and Poláčik [19] produced a counterexample for semilinear elliptic equa-
tions on the Euclidean ball with homogeneous Dirichlet boundary conditions. Our
setting is slightly different than theirs (in particular, more restrictive) meaning that
one could still hope to obtain genericity results with respect to the potential. However,
the investigation of this question goes beyond the scope of this paper. Instead, we will
present a genericity result based on perturbation of the domain, obtained by adapting
a result due to Saut and Temam [56] and Henry [34, Chapter 6].

Following [34], let us give the precise statement of the result. For l ∈ {1, . . . ,+∞},
let Diff l(M) be the set of maps in Cl(M,Rñ) such that h : M → h(M) is a Cl -
diffeomorphism (recall that M is isometrically embedded into Rñ). In particular, Id ∈
Diff l(M). For l < +∞, let us endow Cl(M,Rn) with the usual sup norm, so it is a
Banach space. This induces the usual Whitney topology on C∞(M,Rn). Then, with
these choices of topologies, Diff l(M) is open in Cl(M,Rn). For h ∈ Diff l(M) and
ε > 0, let Eε,h denote the energy functional with parameter ε in the domain h(M). For
m ∈ R, define Eε,m,h and Eε,m,h as the restriction of Eε,h toHm andHm,0 respectively.
The main results then read as follows:

Theorem 5.3 Let m ∈ R. The sets

{
(ε, h) ∈ (0,+∞) × Diff∞(M) : any critical point of Eε,m,h is non-degenerate

}
and

{
(ε, h) ∈ (0,+∞) × Diff∞(M) : any critical point of Eε,m,h is non-degenerate

}
can be written as a countable interesection of open and dense subsets of (0,+∞) ×
Diff∞(M). In particular, they are residual subsets of (0,+∞) × Diff∞(M), which
are dense.

The proof of Theorem 5.3 follows by combining the ideas in [6, 28] with those in [34,
56]. We give a sketch below.

Sketch of the proof of Theorem 5.3 ByBaire’s Theorem, it suffices to prove that for any
l ∈ N

∗ such that l ≥ 3 and K > 0, the sets

{
(ε, h) ∈ (0,+∞) × Diff l(M) : any critical point of Eε,m,h in B∞(0, K )

is non-degenerate} (5.1)

and {
(ε, h) ∈ (0,+∞) × Diffl(M) : any critical point of Eε,m,h in B∞(0, K )

is non-degenerate} (5.2)
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are open and dense in (0,+∞) × Diff l(M), where we have set

B∞(0, K ) := {v ∈ L∞(M) : ‖v‖L∞(M) ≤ K }.

Let l and C be as above and fixed. Given M a Riemannian manifold with boundary of
class Cl isometrically embedded into R

ñ , set

F̂M : H2(M) × R × (0,+∞) → L2(M) × R

as

F̂(u, λ, ε) :=
(

−ε�M u + 1

ε
W ′(u) − λ,

∫
M

u − m

)

for (u, λ, ε) ∈ H2(M) × R × (0,+∞). Subsequently, consider

F : H2(M) × R × Diff l(M) × (0,+∞) → L2(M) × R,

defined as

F(u, λ, ε, h) := h∗ F̂h(M)((h
−1)∗u, λ, ε)

where h∗ stands for the composition map defined as

h∗(u(x)) := u(h(x)), for a. e. x ∈ M,

whenever u ∈ L1
loc(M) and where h(M) has been endowed with the pull-back metric.

We begin by proving that F satisfies the assumptions of Theorem 5.1 with X =
H2(M) × R, Y = Diff l(M) × (0,+∞), Z = L2(M) × R, U = (H2(M)\R) × R

(so that we are first considering the case of non-constant solutions), V = Y and
z0 = (0, 0) ∈ Z . One easily checks that F is of class C1. It is also easy to see that
DFX (u, λ, ε, h) is a Fredholm operator of index 0 on U × V , which establishes 1 in
Theorem 5.1. Condition 2 follows from the fact that the energy functional satisfies the
Palais–Smale condition. It remains only to prove that (0, 0) is a regular value of F .
As in [34, Chapter 6], we argue by contradiction. Assume that there exists (u, λ, ε, h)

such that DF(u, λ, ε, h) is not surjective. Arguing as in [34, Page 81], one can assume
that h = IdM by considering (h−1)∗u instead of u. By assumption, one has a nonzero
element (ψ, a) in L2(M) × R which is orthogonal to the image of DF(u, λ, ε, h).
After some computations along the lines of [34, Chapter 6], one is lead to the following
overdetermined problem:

− ε�ψ + 1

ε
W ′′(u)ψ = 0, on M, (5.3)

∂ψ

∂ν
= ψ(W ′(u) − λ) = 0, on ∂ M . (5.4)
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Moreover, one also obtains that a = 0, which implies that ψ is nonzero. By a con-
tradiction argument based on the unique continuation principle, one obtains from
(5.3) and (5.4) that W ′(u) − λ = 0 on ∂ M and hence �u = 0 on ∂ M . This
implies that u is constant on ∂ M , which yields once again the same contradiction.
As a consequence, we can apply Theorem 5.1 for non-constant solutions. In order
to prove generic non-degeneracy for constant solutions, one argues in a direct man-
ner and the statement then follows from the fact that the set of the eigenvalues of the
Laplacian (with either Dirichlet or Neumann boundary conditions) is discrete, see [28,
Proposition B] for details. This proves the result for the set (5.1). In order to prove the
property for the set (5.2), one argues similarly, see [34, Example 6.5]. ��

6 A partial result without the subcritical growth assumption

The sole purpose of the subcritical growth assumption (H3) is to ensure that the varia-
tional problems under consideration are compact (more precisely, that the functionals
Eε,m and Eε,m satisfy the Palais–Smale condition). However, as it was already observed
in [15], it is possible to drop (H3) and obtain weaker versions of Theorems A and B.
More precisely, one has:

Theorem 6.1 Assume that (H1) and (H2) hold. Then, there exists m∗ > 0 such that
for all m ∈ (0, m∗) there exist εm, cm > 0 such that for any ε ∈ (0, εm) the Neumann
problem (1.2) has at least cat(∂ M) solutions uε,m with Eε(uε,m) ≤ cm. Moreover, if ε

and m as above are such that all critical points of Eε,m are non-degenerate, then (1.2)
has at least P1(∂ M) solutions uε,m with Eε(uε,m) ≤ cm.

Theorem 6.2 Assume that (H1) and (H2) hold. Then, there exists m∗ > 0 such that
for all m ∈ (0, m∗) there exist εm, cm > 0 such that for any ε ∈ (0, εm) the Dirichlet
problem (1.3) has at least cat(M) solutions uε,m with Eε(uε,m) ≤ cm. Moreover, if ε

and m as above are such that all critical points of Eε,m are non-degenerate, then (1.3)
has at least P1(M) solutions uε,m with Eε(uε,m) ≤ cm.

The proofs of Theorems 6.1 and 6.2 work essentially like that of [15, Theorem 5.9].
However, the assumptions on the potential that we take in this paper are slightly
different than those in [15]. Therefore, we include the proofs of Theorems 6.1 and
6.2 for completeness. The crucial ingredient is that for small ε one can obtain a priori
bounds on the L∞ norm of any solution (uε, λε) of the equation

− ε�uε + 1

ε
Ŵ ′(uε) = λε on M . (6.1)

according to its energy (see Proposition 6.3 below). Such ingredient allows to modify
potentials close to infinity to turn them into potentialswith subcritical growth at infinity
to which one may apply Theorems A and B. The a priori bounds imply that the low
energy solutions of the modified potential are also solutions of the original potential.
However, no such thing can be said at this point regarding high energy solutions, hence
the weaker statements of Theorems 6.1 and 6.2.
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Proposition 6.3 Let Ŵ ∈ C3loc(R, [0,+∞]) be a double-well potential vanishing
exactly on {0, 1} and satisfying (H1) and (H2). There exists εub > 0 such that for
any ε ∈ (0, εub] and any (uε, λε) solution of (6.1) such that E

ε,Ŵ (uε) < +∞ we
have

‖uε‖L∞(M,R) ≤ Cub(εub, Eε,Ŵ (uε)),

with Cub(εub, Eε,Ŵ (uε)) > 0 a constant depending on the quantities εub and E
ε,Ŵ (uε)

but independent on ε.

The proof of Proposition 6.3 relies on the following result.

Lemma 6.4 Let Ŵ ∈ C3loc(R, [0,+∞]) be a double-well potential vanishing exactly
on {0, 1} and satisfying (H1) and (H2). There exist εest > 0 and Cest > 0 such that
for any ε ∈ (0, εest), m ∈ [0, 1] and (uε, λε) a solution of (6.1) we have

|λε| ≤ CestEε,Ŵ (uε).

Lemma 6.4 was proven by Chen in [23, Lemma 3.4] in the case of an Euclidean
domain of Rn and then extended to the setting of closed manifolds in [15, Proposition
5.3]. In both cases, the proof is obtained by combining standard elliptic estimates with
mollification arguments. As the arguments carry on directly to our setting, we skip the
proof. We are now ready to prove Proposition 6.3, which relies on standard arguments
(see, for instance, [15, Theorem 5.9]).

Proof of Proposition 6.3 Assume that ε ∈ (0, εest), with εest as in Lemma 6.4. By (H2),
we find u∗(εest, Eε,Ŵ (uε)) depending only on εest > 0 and E

ε,Ŵ (uε) such that

1

ε
Ŵ ′(u) > CestEε,Ŵ (uε), for all u ≥ u∗(εest, Eε,Ŵ (uε))

and

1

ε
Ŵ ′(u) < −CestEε,Ŵ (uε), for all u ≤ u∗(εest, _ε(uε)),

with Cest > 0 as in Lemma 6.4. Let xmax ∈ M be a maximum point for uε and
assume by contradiction that ‖uε‖L∞(M,R) > u∗(εest, Eε,Ŵ (uε)). Then, using (6.1)
and Lemma 6.4 it follows

−ε�uε(xmax) = λε − 1

ε
Ŵ ′(uε(xmax)) < 0,

which gives the contradiction. Hence, one has that maxM u ≤ u∗(εest, Eε,Ŵ (uε)) and,
in an analogous fashion, one finds that minM u ≥ u∗(εest, Eε,Ŵ (uε)). This establishes
the result by choosing εub = εest and Cub(εub, Eε,Ŵ (uε)) = u∗(εest, Eε,Ŵ (uε)). ��

At this point, the proof of Theorem 6.1 can be completed as follows.
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Proof of Theorem 6.1 Let ε ∈ (0, εub), with εub as in Lemma 6.4 and Cub(εub, 1) >

0 the constant given by Proposition 6.3. We can find u∗ ≥ Cub(εub, 1) and Ŵ ∈
C3loc(R, [0,+∞)) such that Ŵ −1(0) = {0, 1}which satisfies (H1), (H2) and (H3) with
Ŵ (u) = W (u) for all u ∈ [−u∗, u∗]. We now apply Theorem A to Ŵ . In particular,
there exists m̂∗ > 0 such that for all m ∈ (0, m̂∗) there exist ε̂m, ĉm > 0 such
that for all ε ∈ (0, ε̂m) we have that there exist cat(∂ M) solutions of (1.2) (for Ŵ )
(ûε,m, λ̂ε,m) with E

ε,Ŵ (ûε,m) ≤ ĉm . Moreover ĉm can be chosen such that ĉm → 0 as
m → 0, see the end of Sect. 3.5. Therefore, choose m∗ ≤ m̂∗ such that ĉm ≤ 1 for all
m ∈ (0, m∗). For all such m, let εm := 1

2 min{ε̂m, εest} > 0, ε ∈ (0, εm) and ûε,m . Since
Eε(ûε,m) ≤ 1 whenever ûε,m is a solution as above, we can apply Proposition 6.3 and
find that ‖ûε,m‖L∞(M,R) ≤ Cub(εub, 1) ≤ u∗ which implies that ûε,m is a solution of
(1.2) for W and hence the result. ��
The proof of Theorem 6.2 works in the same way, so we skip it.
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