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Abstract

The aim of this work is to present new spectral tools for studying the orbital stability of
standing waves solutions for the nonlinear Schrodinger equation (NLS) with power nonlin-
earity on looping edge graphs, namely, a graph consisting of a circle with several half-lines
attached at a single vertex. The main novelty of this paper is at least twofold: by considering
8-type boundary conditions at the vertex, the extension theory of Krein&von Neumann, and
a splitting eigenvalue method, we identify the Morse index and the nullity index of a specific
linearized operator around of a priori positive single-lobe state profile for every positive
power, this information will be main for a local stability study; and so via a bifurcation anal-
ysis on the phase plane we build at least two families of positive single-lobe states and we
study the stability properties of these in the subcritical, critical, and supercritical cases. Our
results recover some spectral studies in the literature associated to the NLS on looping edge
graphs which were obtained via variational techniques.

Keywords Nonlinear Schrodinger equation - Standing waves on metric graphs - Orbital
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1 Introduction

Evolution models on metric graph (i.e., a network-shaped structure of vertices connected by
edges identified as intervals) arise as models in wave propagation, for instance, in a quasi
one-dimensional (e.g. meso- or nanoscale) system that looks like a thin neighborhood of a
graph. Just to mention a few examples of these systems, we have the nonlinear Schrodinger
equation (NLS), the sine-Gordon (s-G) and the Korteweg-de Vries (KdV) models. Physical
phenomenas that describe these models we have the following: the NLS on networks of
nano-wires: propagation of optical electromagnetic pulses and Bose-Einstein condensation
(see [19, 20, 27, 28, 30, 39] and references therein); the s-G on Josephson junction networks
and electric circuits (see [14—16, 41, 42] and references therein); the KdV on blood pressure
waves in large arteries (see [25, 26] and reference therein).

B Jaime Angulo Pava
angulo@ime.usp.br

1 Department of Mathematics IME-USP, Cidade Universitdria, Rua do Matdo 1010, CEP 05508-090,
Sao Paulo, SP, Brazil

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-024-03565-x&domain=pdf

19 Page2of28 J. Angulo Pava

Fig.1 A looping edge graph with 4
5 half-lines ’

Roughly speaking, a metric graph G is a structure represented by a finite number of vertices
V = {v;} and a set of adjacent edges at the vertices £ = {e;} (for further details see [19,
37]). Each edge ¢; can be identified with a finite or infinite interval of the real line, I, (so
the spaces L?(G), H 1 (9), etc, are defined in the natural way. See notation below). Now, the
notation e € E will be used to mean that e is an edge of G. This identification introduces the
coordinate x, along the edge e. We identify any function U on G (the wave functions) with
a collection U = (u,).cg of functions u, defined on the edge e of G. Thus, each u, can be
considered as a real or complex-valued function on the interval /,.

We recall that an evolution model on a metric graph is equivalent to a system of PDEs
defined on the edges (intervals) with a coupling given exclusively through the boundary
conditions at the vertices (known as the “topology of the graph”) and which will determine
the dynamic on the network. Moreover, the freedom in setting the topology in a graph allows
us to create different dynamics much closer to the real world applications.

In the past years, evolution models on networks or branched structures have attracted
much attention in the context of soliton transport (see [1, 2, 9, 11-16, 30, 35, 43] and
references therein). Soliton and other nonlinear waves in branched systems appear in different
systems and these provide in-depth informations about the dynamic of the model. To study
the dynamics of these profiles, in general the problem is difficult to tackle because both
the equation of motion and the topology of the graph can be complex. Moreover, a central
point that makes this analysis a delicate issue is the presence of a vertex (or several vertices)
where a soliton-profile coming into the vertex along one of the bonds shows a complicated
motion around the vertex such as reflection and emergence of the radiation there. In particular,
one cannot see easily how the energy travels across the network. Thus, the study of soliton
propagation through networks can become a challenge. Results on the existence and stability
(or instability) of soliton profiles are still unclear for many type of evolution models and/or
metric graphs. Thus, one of the objectives of this work is to shed light on these themes in the
case of the NLS model on non-compact metric graphs of the type looping edge graph (see
Fig. 1 below).

In the last years, the following nonlinear Schrédinger model equation (NLS)

iU, + AU+ (p + DHIUPPU =0 (1.1)

has been studied intensively on different type of metric graphs G (for instance, star graph,
tadpole graph, flower graph, dumbbell graphs, double-bridge graphs and periodic ring graphs,
see the review paper [35]). For U(x,, 1) = (ue(xe, t))ece We have the nonlinearity |U?PU,
p > 0, acting componentwise, i.e., for instance (UIP~U), = |ue|?Pu., and the Laplacian
operator A will be a self-adjoint operator with D(A) C L?(G) which will give the coupling
conditions in the graph-vertices. We recall, that the action of A on a metric graph is given by
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— At (e)eck = (—U)ecE- (1.2)

Now, the study of the existence of standing waves, orbital stability, and well-posedness
problems for (1.1) have been studied internsively in the past years, and for a variety of
graph-geometry types (see [1, 3, 12, 13, 22, 33-35, 38, 43-46] and reference therein).

The focus of this paper is to shed a new light on the dynamics of standing wave solutions
of the NLS model (1.1) posed on looping edge graphs Gy, namely, a ring with N half-lines
attached at one vertex point (see Fig. 1). Thus, if the ring is place on the interval [—L, L]
and the semi-infinite lines are identified as [L, +00), we obtain a metric graph Gy (by
abusing notation) with a structure represented by the set E = {e;} where e = [—L, L] and
ej =[L,+00),j =1, ..., N,are the edges of Gy, and they are connected at the unique vertex
v = L. We will denote a wave function U on the looping edge graph Gy as U = (¢, (1/fj)1,y=1 ),
where ¢ : [-L, L] - Cand ¥/, : [L, +00) — C, forevery j =1, ..., N. The action of —A
on Gy will be considered on the following domains (Z € R)

Dzy={Ue€ H*Gy) : ¢p(L) = ¢(—L) = ¢y (L) = - = Yn(L) and

$(L)—¢ (L) =Yyl +zywy Y

where for any n 2 0,

N
H"(Gn) = H*(—L, L) ® @ H" (L, +00).
j=1

The boundary conditions in (1.3) are called of 5-type if Z # 0, and of Neuman-Kirchhoff
type if Z = 0. By using the extension theory for symmetric operators (see Theorem 6.6 in
Appendix below) follows that (—A, Dz y)zcRr represents a one-parameter family of self-
adjoint operators on the looping edge graph Gy. The parameter Z is a coupling constant
between the loop and the several half-lines. The choice of the coupling at the vertex v = L
corresponds to a conceivable quantum-wire experiment (see [27-29] and reference therein).
We recall that for the case N = 1, G, is called a tadpole graph or lasso graph .

Our main interest here will be to study the existence and stability of standing wave solutions
for NLS model in (1.1) posed on Gy, namely, solutions given by the profile U(x, ) =
e O (x), withw < 0,0 = (&, ¥) € Dz Ny, ¥ = (wj)?lzl (real-valued components), and
satisfying the stationary NLS vectorial equation

—AO —wO — (p+ OO =0. (1.4)

More explicitly, ® and W satisfy the following system, one on the ring and the other one on
the several half-line,

—0"(x) — 0®(x) — (p + DI®X)[*PP(x) =0, xe(-L,L),

—¥](x) — 0¥ () = (p+ DY) PPY;(x) =0, x € (L, +00), j=1,..,
O(L) = O(—L) =y (L) = - = Yyn(L),

(L) — @' (~L) = Y1 WL+ + Zyi (L), ZeR.

N,
(1.5)

It is clear that the delicate point in the existence of solutions for (1.5) is given for the
component ® on [—L, L] and satisfying the §-coupling condition. The components of W
will have obviously a soliton profile in the form

00 (x) = (—w)*Psech'? (p/=wx),  modulo translation and sign. (1.6)
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Fig.2 A positive single-lobe
state profile for the NLS model
onGy,N =3

It is an open problem to characterize all solutions to system (1.5) (see Sect. 2 for a brief
description on the known results on the existence of solutions for (1.5) in the case Z = 0,
and as some of these depend on ). Among all profiles for (1.5), we are interested here in the
positive single-lobe states (see Kairzhan&Noja&Pelinovsky [35] where a more general defi-
nition is given for standing waves on quantum graphs). More exactly, we have the following
definition.

Definition 1.1 The profile standing wave ® = (O, V) € Dz y, ¥ = (wj)?’:l, is said
to be a positive single-lobe state for (1.5) if every component is positive on each edge of
Gn, the maximum of ® is achieved at a single internal point, symmetric on [—L, L], and
monotonically decreasing on [0, L]. Moreover, every v/ is strictly decreasing on [L, +00).

Figure 2 shows a profile of a positive single-lobe state on Gy, N = 3.

The existence of positive single-lobe states have been studied under rather restrictive
geometry and topological conditions via variational techniques (see the review paper of
Kairzhan et al. [35] and Sect. 2 below). By instance, for N = 3 and Z = 0, we can not obtain
these profiles as being the ground state associated to a constraint variational problem, and for
N = 1and Z < 0 (arbitrary), the existence is still open. Here, in Sect. 5, we use a bifurcation
analysis on the phase plane for building at least two families of positive single-lobe states of
(1.5) on Gy, namely, forany N = 1, Z = 0 and p > 0 (see proof of Theorem 1.5), and for
the strength Z < 0 satisfying Z = w and N = 1 (see proof of Theorem 1.6 and Remark 5.2)

For ® = (®, V) being a positive single-lobe state for (1.5), we have that every profile v;
has the representation (so-called a tail profile)

vix) = (=) P o (v =w(x — L) +aj), x2L, aj>0,
with Y9 = Q_; giving by

Yo(y) = sech'?(py), Y0(0) =1, ¥((0) =0, yeR. (1.7)
Thus, from the continuity condition at x = L, we geta; = ap = - - - = ay and hence
Y1 = Yo = --- = Yy on [L,+00). In our words, our positive single-lobe states are

symmetric on Gy (which can be called a “octopus state solution with N -tails arms”).
On the other hand, we will provide new spectral tools for studying the orbital stability
of a priori positive single-lobe state on arbitrary looping edge graph Gy . We are not aware
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of previous spectral studies for the NLS model on this particular framework, specially in
the case N = 3 and Z < 0. Thus, we will establish new results on the stability of positive
single-lobe profiles in the subcritical, critical, and supercritical cases for the NLS on looping
edge graphs (see Theorems 1.5-1.6 below).

We note that since our spectral analysis is of a non-variational type, this can be considered
as a first step towards studying other type of standing wave profiles on Gy, N = 1, and/or
with coupling conditions different to §-interactions, such as §'-interactions (we recommend
to the reader to see reference [10] where a stability theory for two-lobe profil on a tadpole
graph (see Fig. 3 below) has been established recently).

1.1 Preliminaries and main results

Next, we give the main results of our work associated to the orbital stability of positive
single-lobe states for the NLS model. By convenience of the reader, we establish before the
main points in the stability study of standing waves solutions for NLS models on looping
edge graphs. So, by starting, we note that the basic symmetry associated to the NLS model
(1.1) is the phase invariance, namely, if U is a solution of (1.1) then ¢'?U is also a solution
for any 6 € [0, 277). Therefore, it is reasonable to define orbital stability for the model (1.1)
as follows (see [31]).

Definition 1.2 The standing wave U(x,7) = 7P (D(x), W(x)) for (1.1) is said to be
orbitally stable in a Banach space X if for any ¢ > 0 there exists n > 0 with the fol-
lowing property: if Uy € X satisfies ||Ug — ($, W)||x < n then the solution U(z) of (1.1)
with U(0) = Uy exists for any t € R and

sup inf [[U(1) — (@, W)||x < e.
teR 0€R

Otherwise, the standing wave U(x, 1) = e 19 (P (x), W(x)) is said to be orbitally unstable
in X.

The space X in Definition 1.2 with the action of —A on Dz y, will be the continuous
energy-space £(Gy) defined by

EGv) = {(f. 9 € H' @) tforg = (g1 F(-L) = f(L) = g1 (L) = -+ = gn (D) }.
(1.8)

Next, we consider the following two conserved functionals for (1.1) defined in the energy
space £(Gn),

—UIAE o = Zu(L)]?,  (energy) (1.9)

Ez(U) = |VU|, riaGy)

(Gn)
and

QW) = [Ul}2 g, (mass) (1.10)

where U = (u, (Uj);\;l)- We observe that Ez, Q € C2(£(Gy), R) since p > 0. Now, for a

fixedw < 0,let U, (x, 1) = e ¥ (D, (x), ¥, (x)) be a standing wave solution for (1.1) with
(®y, ¥y) € Dz n being a positive single-lobe state. Then, for the action functional

SU) = Ez(U) —wQ(U), Ue&(@n), (1.11)
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we have S'(®,,, ¥,,) = 0. Next, for U = U; + iU, and W = W, + iW,, where the vector
functions U;, W;, j = 1, 2, are assumed to have real components, it is not difficult to see
that the second variation of S in (&, ¥,,) is given by

S" (@0, W) (U, W) = (L4 7U1, Wi) + (L zUs, Wa), (1.12)

where the two (N + 1) x (N + 1)-diagonal operators L. 7 are given for ¥, = (y j)ﬁ-v: ; and
Vi=—(p+DQ2p+ 1)wf” (obviously, Vi = - -+ = Vy), by
Li7=diag(=3> —o—(p+DQp+ DD, -2 —w+ Vi,.., 0> —w+ Vy)

L7 =diag(=2 —w—(p+ D&, -2 —w—(p+ DY’ .., =02 —w — (p + DY ).
(1.13)

We note that these two diagonal operators are self-adjoint with domain D(L+ z) = Dz n.
We also see that since (®,,, ¥,,) € Dz n and satisfies system (1.5), L_ z(Py,, ¥,,)' = 0
and so the kernel of £_ 7 is non-trivial.

Now, from [31, 32] (see Theorem 6.8 in Appendix) we know that the Morse index and
the nullity index of the operators £+ 7z, are a fundamental step in deciding about the orbital
stability of standing wave profiles. Thus, our main results are the following,

Theorem 1.3 Consider the self-adjoint operator (L z, Dz n) in (1.13) determined by the
positive single-lobe state (®,,, ¥,,) with ¥, = (1//1')9/:1, Y1 =vY2=---=1yYn. Then,

1) Perron—Frobenius property: let By < O be the smallest eigenvalue for L z with associ-
ated eigenfunction (fg,, 8p,), 8y = (gj)ﬁyzl. Then, fg, is positive and even on [—L, L],
and for every j =1, ..., N, g;j(x) > Owithx € [L, +00),

2) Po is simple,

3) the Morse index of L 7 is one,

4) it defines the quantity

"
wy = N WD)
Yi(L)
Then, the kernel associated to L4 7 is trivial in the following cases: for ay # 0 or
ay = 0 in the case of admissible parameters Z satisfying Z < 0.

The reader is asked to refer to Remark 4.1 for some comments on the conditions in item
4) above.

Theorem 1.4 Consider the self-adjoint operator (L_ 7z, Dz n) in (1.13) determined by the
positive single-lobe state (®,,, V,,) with ¥V, = (1//1')91:1, Y1 =y =---=1yYp. Then,

1) the kernel of L_ 7, ker (L_ 7z), satisfies ker (L—_z) = span{(Py, Vp)}.
2) L_. 7z is a non-negative operator, L_ 7 2 0.

We note that our results in Theorem 1.3 recover similar spectral results in the literature
associated to standing wave solutions on G| and G, for Z = 0, which were obtained via
variational and bifurcations techniques (see Sect. 2 below and [2, 4, 5, 22, 44, 45]). Our
approach has the advantage of being able to be extended to other types of profiles (for
instance, bound states profiles) (see Remark 4.3). Statement 3) for Z < 0 and statement 4)
for arbitrary Z, in Theorem 1.3, as far as we know, they are the first to be established in the
literature on looping edge graphs.
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The proof of Theorem 1.3 will be based in a splitting eigenvalue method applied to L 7z
on looping edge graphs (see Lemma 3.5). More exactly, we reduce our eigenvalue problem
associated to L4 7 = (Lo, £1) withdomain Dz y to two classes of eigenvalue problems, one
with periodic boundary conditions for Ly, on [—L, L] and the other one for £ with §-type
boundary conditions on the metric star graph generated by the set of edges E; = {e(,-}f’zl,
ej = [L, +o0) for all j, and attached at the unique vertex v = L.

Next, by using a bifurcation analysis on the phase plane associated to the first elliptic
equation in (1.5) we show the existence of at least two families of positive single-lobe states
of (1.5) on Gy (see Sect. 5). More exactly, we have the following existence and stability
results.

Theorem 1.5 Consider Z = 0 and p > 0 in (1.5). Then, there exists a C'- mapping w €
(wg, 0) — O, = (D, (l/fw)',.vzl) of positive single-lobe states on Gy for any N 2 1, with
—wq > 0 small enough. Moreover, for v € (wg, 0), the orbit

(€0, : 6 € [0,27)}
is stable for p € (0, 2) and unstable for p € (2, +00), forany N 2 1.

Theorem 1.5 with N = 1, 2, recovers several results known in the literature (see Sect. 2
and [2, 4, 5, 22, 44, 45]). The case N = 3 is novelty in the literature. The stability problem
for the case p = 2 and N = 3 remains open.

Theorem 1.6 Let p > 0 fixed and consider L such that L > ﬁ. Then there exists a C'-
mapping o € (wg, 0) - O, = (D, (Iﬂw);vzl) of positive single-lobe states on Gy for any
N 2 1, with —wo > 0 small enough, such that ®, € Dz y with Z = w. Moreover, for

w € (wg, 0), the orbit
(€90, : 6 €10, 21)}
is stable for p € (0, 2] and unstable for p € (2, +00), forany N 2 1.

The proof of Theorems 1.5-1.6 are given in Sect. 5. The statement of the orbital stability
follows from Theorems 1.3—1.4 and from the abstract stability framework established by
Grillakis&Shatah&Strauss in [31, 32]. By convenience of the reader, we establish in Theo-
rem 6.8 (Appendix) an adaptation of the abstract results in [31, 32] to the case of positive
single-lobe states on looping edge graphs.

We note that in Definition 1.2, we need a priori information about the local and global
well-posedness of the Cauchy problem associated to (1.1). Indeed, by using the results in
[22] in the case of looping edge graphs and (1.9)—(1.10), we can see that the NLS is globally
well-posed in the energy space £(Gy) for every p € (0,2), and for p = 2 the global
solution is defined at least for small initial data in the L2(Gy)-norm. For p > 2 we get local
well-posedness in £(Gy).

We would like to point out that our approach for studying positive single-lobe states on
looping edge graphs could be used in the study of other branches of standing wave profiles for
(1.1) such as those shown in Fig. 3 below on a tadpole graph (see Angulo [10]), or in the case
that the second component of the profile standing wave, ¥ = (v j)ﬁyzl , has a combination of
tails and bumps soliton profiles.

The paper is organized as follows. In Sect. 2, we give a brief review of results in the
literature about the existence and stability of standing wave solutions for (1.1) on looping edge
graphs. In Sect. 3, we show Theorems 1.3—1.4 on a tadpoles graph via our splitting eigenvalue
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lemma (Lemma 3.5). In Sect. 4, Theorems 1.3—1.4 will be showed for generic looping edge
graphs. In Sect. 5, we give the proof of Theorems 1.5—1.6. Lastly, in the Appendix we establish
some tools and results of the extension theory of Krein and von Neumann used in our work,
as well as, a Perron—Frobenius property for §-interactions Schrédinger operators on the line.
Notation. Let —0o < a < b < co. We denote by L?(a, b) the Hilbert space equipped with
the inner product (1, v) = L lh u(x)v(x)dx. By H"(£2) we denote the classical Sobolev spaces
on 2 C R with the usual norm. We denote by Gy the looping edge graph parametrized by
the setof edges E = EgU E| with Eg = {egp},e0 = [—L, L], E1 = {ej}ﬁ.v:l, ej =[L, +00),
for all j, and attached to the common vertex v = L. On the graph Gy we define the spaces

N
LP(Gy) = LP(-L.L)® P L (L, +o0), p>1,
Jj=1

with the natural norms. Also, for U = (u1, g), V = (vi,h) € L2(Gy), with g = (gj);v:la
h = (hj)yzl, the inner product on L%(Gy) is defined by

L N 00
(U, V) = /Lul(x)m(x)dx +Z/L g (0 (xX)dx.
_ p

Let A be aclosed densely defined symmetric operator in the Hilbert space H. The domain of A
is denoted by D(A). The deficiency indices of A are denoted by n (A) := dim ker (A*Fil),
with A* denoting the adjoint operator of A. The number of negative eigenvalues counting
multiplicities (or Morse index) of A is denoted by n(A).

2 Existence of standing waves on a looping edge graph

In this section, we briefly describe existing results in the literature (to the author’s knowl-
edge) for system (1.5). One of the objectives of this review is to show where our results in
Theorems 1.5-1.6 fill some gaps in the study of the existence and stability of standing waves
for the NLS model on looping edge graphs (see also the review in [35]). So, we consider the
two conserved quantities £z and Q in (1.9) and (1.10), respectively. If the infimum of the
constrained minimization problem:

Mzu= inf {Ez(U):QWU) =u}, n=>0 2.1
Ue&(gn)
is finite and it is attained at ®,, = (®, ¥) € £(Gy) sothat Mz , = Ez(®,) and Q(®,) =
1, we say that this ©, is the ground state. By using classical bootstrapping arguments,
the same ®, is also a strong solution ®, € Dz y to the system (1.5) with @ being the
corresponding Euler-Lagrange multiplier which depends on . Then, we consider the set of
minimizers for (2.1), namely,

Szu=1{0 € &(Gn) : Q(O) =, Ez(0) =Mz} (2.2)

It is well-known that ground states on generic metric graphs with §-interactions concentrated
at vertices of the graph, exist under rather restrictive topological conditions (see [2, 4-6, 23,
35]). More exactly, in the case of a looping edge graph (which is also called a noncompact
metric graph or a starlike graph) the existence of a ground state will depend on the sign of
Z and the number N. Indeed, by using the concentration compactness method for starlike
structures, we obtain in the case of looping edge graphs the following:

@ Springer



Stability theory for the NLS... Page90f28 19

a)

b)

let Z > 0: for p € (0, 2) (subcritical case), we obtain from [23] that as
—ro = inf{IVU|* = Z|u(0)* : U € £(@Gn), Q(U) = 1)

satisfies Ao > Oanditis an isolated eigenvalue for the Schrédinger operator (—A, Dz y),
a ground state ®, always exists for . small enough. Moreover, this ground state belongs
to the branch of stationary state w € (—Ao—3, —Ag) — II(w) bifurcating from (—Ag, 0).
Thus, via this identification, it is possible to determine the positivity of the ground state
©®, and that §7 , = {eie ®, : 0 € [0,2m)}. Furthermore, by the global well-posedness
result in £(Gy) of (1.1) (see [23]) and by a classical argument from Cazenave&Lions
[24], it follows that ®,, is orbitally stable.

For p =2 and p > 2 (critical and supercritical cases, respectively), we obtain from [17]
(see also [21]) that for

B(r) ={U € £@Gy) : IVU|* = Z|u(0)|* + 240Q(U) < r},

and any r > 0, there exists u* = p*(r) > 0 small enough such for any u € (0, u*)
there is a ground state ®, , for the minimization problem

Mz ur= inf {EzU):Ue B(r)and Q(U) = u}. (2.3)
Ue&(gn)
let Z = 0: in this case we have the pure Kirchhoff boundary condition determined
by Dz n and the existence of ground state will depend of the number N of half-lines
essentially. Indeed,

i) the case N = 1 corresponds to the tadpole case extensively studied in the literature
([2, 4, 5, 22, 35, 44, 45]). It was shown in [4] that for p € (0, 2) a ground state
©,, always exists for any positive value of 1. Moreover, ©, is a positive single-lobe
state for (1.5) (from our Theorem 1.3 we recover the results in [45] associated to the
Morse index and the non-degeneracy of the kernel for £ 7 in (1.13) associated to
this ®,,). In the critical power p = 2 was shown in [5] (Theorem 3.3) that the ground
state, on the tadpole graph, is attained if and only if © € (ugr+, ur], where up+ is
the mass of the half-soliton Q,, in (1.6) on the half-line and ug is the mass of the
full-soliton on the full line, namely, ug+ = % and ur = % Also, it was shown in the
recent work [44] (Theorem 1.1) that for every @ < 0 there exists a global minimizer
I'(w) of the constrained minimization problem

Bw) = inf {IVUI2,5, —@QU): [Ule,) = 11, 2.4)
Ue&(G1)

which yields a solution ®,, being a positive single-lobe state for (1.5). In this case,
Theorem 1.3 recovers Theorem 1.2 in [44], it which was based on dynamical system
methods and the analytical theory for differential equations. For generalized power
P, the existence and stability of solutions for (1.5) with mass small enough, it was
obtained in [45] via a bifurcation analysis,

ii) the case N = 2 was studied in [2] (Theorem 2.5) and the existence of a ground state
for p € (0, 2) and any positive value of 1 in (2.1) holds true. For p = 2, the existence
of a ground state is restricted to the case of mass u = ur (see Theorem 3.2 in [5]).

iii) the case N = 3 is much more challenging. Indeed, for p € (0, 2] there is not ground
state according to Theorem 2.5 of [2] and Theorem 3.2 of [5]. Thus, one of the
objectives of this paper will be to shed light on the dynamics of positive single-lobe
state in this case (see Theorem 1.5).
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Now, by the previously results, several conditions on p in (2.1) have been found for
ensuring (or, on the contrary, ruled out) the existence of absolute minimizers of (2.1) (ground
states) at least for Z = 0, the case Z < 0 is still open. But, it may happen that there are
solutions to the stationary equation (1.5) without being ground state, in other words, the
so-called bound states (see [6, 22, 35]), that is, functions with a prescribed mass such that
are constrained critical points of Ez(U) and possibly without being absolute minimizers. In
[6], it has been showed the existence of these profiles with a mass p large enough and in the
case Z = 0.

Therefore, we can say from the review above that for a looping edge graph Gy, with
N = 3 and/or Z < 0, the existence and stability of bound states become more relevant to
be studied. In Theorems 1.5-1.6 we establish the first results in the literature related to the
existence and stability of single-lobe profiles for N = 1, p > 0 and Z < 0.

3 Morse and nullity indices for operators £ 7 on tadpole graphs

In this section we initially show Theorem 1.3, in the case of a tadpole graph for greater clarity
in the exposition. The case N > 2 will be established in Sect. 4. Thus, for N = 1 we will
consider one a priori positive single-lobe state (®,,, ¥,,) solution for (1.5) with ® < 0. By
convenience we denote & = ®,, and ¥ = W¥,,. Thus, the linearized operator £ 7 in (1.13)
becomes as

Liz=diag(=3?>—o— (p+DQ2p+ DO, -3 —w— (p+ 1)2p + HW?P)

3.1
with domain Dz = Dz |
Dz ={(f.g) € H*G)) : f(L) = f(~L) = g(L),
and, f'(L) — f'(-=L) = ¢'(L+) + Zg(L)}. (3.2)

Next, for (f, g) € Dz we consider h(x) = g(x + L) for x > 0. Then 2(0) = g(L) and
h'(0) = g'(L). Therefore, the eigenvalue problem £+ 7 (f, g)' = A(f, g)" will be equivalent
to the following one

£0,+f(x) = )",f(x)a X € (_Lv L)?
L1,+h(x) = Ah(x), x € (0, 400), 3.3)
(f,h) € Dz,

where
Loy =—0; —w—(p+DQ2p+ 1>,
Liv=-8—0—(p+DQ2p+Dyh, (3.4)

and Y 4(x) = (—w)' 2Py (V=wx + a), withx > 0, a > 0 ( a tail-soliton profile). The
domain Dy o is given by

Dzo=A{(f,h) € X*(—=L,L): f(L) = f(—L) = h(0), and,
(L) = f(=L) = W' (0) + Zh(0)}, (3.5)

with X"(—L, L) = H"(—L, L) @ H"(0, +00), n € N. We note that (P, ¥ ,) € Dz 0.
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For convenience of notation, we will consider Lo = Lo 4+, £1 = L1,4, and ¥4 = Y0.4.
Thus, we define £ = diag(Ly, £1) with domain Dy o. Therefore, the statements in Theo-
rem 1.3 for £ 7z will be sufficient to be showed for (L, Dz ).

3.1 Perron-Frobenius property and Morse index for (L, Dz,0)

In the following we will see that n(L£1) = 1. First, since (®, ¥,;) € Dz ¢ and

(L (@, 0) (@)} = =2p(p + D[ [1, @ ) + [ 9 (0dx] < 0
(3.6)

we obtain from the mini-max principle that n(£) = 1. Now, we note that via the extension
theory for symmetric operators of Krein-von Neumann, it is possible to show n(£4) < 2 for
any Z.

Theorem 3.1 The Morse index associated to (L, Dz o) is one. Thus, the Morse index for
(L+.7z, Dz.1) is also one.

The proof of Theorem 3.1 (see Sect. 3.1.3) is based on the Perron—Frobenius property (PF
property) for (L4, Dz o) forany Z € R. Our approach associated to the PF property is based
on EDQO’s techniques, and we recover known results in the literature for the case Z = 0 (see
[17,23,29]).

3.1.1 Perron-Frobenius property for (L, Dz 0),Z € R.

We start our analysis by defining the quadratic form Q7 associated to operator £ on Dz o,
namely, Q7 : D(Qz) — R, with

L “+o00
Q9. 7) = / @+ Vot + /O &)+ Wyildx — ZEOP,  (37)

Vo=—o0—(p+DQ2p+ DHd2P, Wy =-o—-(p+1)Q2p+ 1)¢f§" and D(Qy) is defined
by

D(Qz) = {(#.¢) € X' (=L, L) : ¢(L) = ¢(~L) = ¢(0)}. (3.8)
Theorem 3.2 Let Ay < O be the smallest eigenvalue for L on Dz o with associated eigen-
Sunction (¢y, $iy). Then, ¢y, Ci, are positive functions. Moreover, ¢, is even on [—L, L].
Proof We split the proof into several steps.

1) The profile ¢y, is not identically zero: Indeed, suppose &;, = 0, then ¢;,, satisfies

Lopry(x) = dogyo(x), xe (=L, L),
Do (L) = Ppy(=L) =0 (3.9)
¢;,(L) = ¢, (—L).

Next, from the Dirichlet condition (which implies that the eigenvalue is simple and so
@y, is odd or even) and from oscillations theorems of the Floquet theory (which implies
that the number of zeros of ¢, is even on [—L, L)), we need to have that ¢, is odd.
Then, by Sturm-Liouville theory there is an eigenvalue 6 for Lo, such that 8 < Ao, with
associated eigenfunction & > QO on (—L, L), and §(—L) =&(L) = 0.
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Now, let Qp;, be the quadratic form associated to Lo with Dirichlet domain, namely,
Qpir : Hj(=L, L) — R with

L
Qpir (f) = / P+ Vo R, (3.10)

Then, QOpi,(§) = Qz(£,0) = Apll&]|? and so, 6 > Ag, which is a contradiction.

2) £3,(0) # 0: suppose ¢3,(0) = 0 and we consider the odd-extension £,qq4 for ¢3,, and
the even-extension Y.y, of the tail-profile 1, on whole the line. Then, ¢,qq € H 2(]R)
and Yepen € H 2(R — {0}) N H'(R). Next, we consider the following unfold operator L
associated to £ 4,

L=-32—w—(p+1Q2p+ )y, (3.11)
on the §-interaction domain
D5y, ={f e H*R—{OHNH'R): £ (0+) — f'(0-) =y f(O)}  (3.12)

for any y € R. Then, from the extension theory for symmetric operators we have that the
family (£, Ds,, ), cr represents all the self-adjoint extensions of the symmetric operator
(Mo, D(My)) defined by

Mo =L, DMo) ={feH*R): f(0)=0).

Moreover, the deficiency indices of (Mg, D(My)), n+(My), are given by ny(Mop) = 1
(see Albeverio et al. [8]). Now, the even tail-profile ¥y, satisfies ¥/}, (x) # 0 for all
x # 0, and so from the well-defined relation

Mof =—

[(llfeven)zi( 7 )] X #0, 3.13)

dx even

dx

(erﬂ

we can see easily that (Mg f, f) = 0forall f € D(My). Therefore, from the extension
theory (see Proposition 6.4 in Appendix) we obtain that the Morse index for the family
(E Ds ) satisfies n(ﬁ) < 1 for all Y € R. So, since {pqq € Ds,, (for any y) and
£§0dd = )»oé“add on R, we have n(ﬁ) 1. Then, Ao will be the smallest negative
eigenvalue for £ on 8-interactions domains and by Theorem 6.7 in Appendix (Perron
Frobenius property for £ with $-interactions domains on the line), ¢,qq needs to be
positive which is a contradiction. Therefore, &;,(0) # 0.

3) & ¢ [0, +00) — Rcanbe chosen strictly positive: Without loss of generality we suppose
£ (0) > 0. Then the condition ¢,’\0 (L) — ¢;»0 (=L) = ;/{0 (0) + Z£3,(0) implies

95,(L) = 8}, (=L)
510 (0)

Next, we con51der Leven being the even-extension of ¢, to whole the line, then Zepen €
Ds 5y, and ﬁ;“euen = Ag&even- Thus, by a similar analysis as in item 2) above, it follows
that Ag is the smallest eigenvalue for (/_‘, Ds 2y,). Hence, by Theorem 6.7 in Appendix,
Ceven 18 strictly positive on R. Therefore, ¢, (x) > 0 for all x = 0.

4) ¢y, : [—L, L] — R can be chosen strictly positive: initially we have that ¢, satisfies
the following boundary condition:

R0
;‘)\0 (0)

&, = 26100 = 7054 0).

91y (L) = 9}, (—L) = [ 225 + 2610 (0) = 063 (0) = oy (L).
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Now, we consider the following eigenvalue problem for Lo in (3.4) with real coupled
self-adjoint boundary condition determined by « € R,

Loy(x) =nyx), xe(=L,L),
(RCy) : § y(L) = y(=L), (3.14)
Y'(L) = y'(=L) = ay(L).

Next, from Theorem 1.35 in Kong&Wu&Zettl [36] or Theorem 4.8.1 in Zettl [49] with
K = [k;ij] given by k11 = 1, k12 = 0, k21 = ap and k2 = 1, we obtain that the
first eigenvalue ng = no(K) for (3.14) with o = « is simple. Moreover, since the pair
(¢, 20) is a solution for (3.14), we have Lo = no. In the following we show Lo = 1.
Indeed, we consider the quadratic form associated to the (RCy, )-problemin (3.14), Qgc,
where for h € H' (=L, L) with h(L) = h(=L),

L
Qrc(h) = f (h)? + Voh*dx — aglh(L)|*. (3.15)
—-L

Now, we define § = v{;, with v being a real constant such that £(0) = v¢;,,(0) = h(L).
Thus, (h, &) € D(Qz) in (3.8). Now, by using L&, = Ao{y, we obtain

+00
Qrc(h) = Qz(h, &) — agh*(L) — /0 (&N + WyEldx + Z|h(L)?

= Qz(h. &) — aoh*(L) + v*¢] (0)53,(0) — Aov* (|5 I + ZIA(L)
= Qz(h, &) — [¢],(OA(L) + Zh*(L)] + h(L)¢), (0) + Zh*(L) — A& 1>

= Qz(h, &) — AollEN* = AolllAl* + IIENPT — AollE 11> = Aollhll*.
(3.16)

Then ng = A and so g = Ag.

By the analysis above, we get that Ag is the first eigenvalue for the problem (RCy) in
(3.14) and so it is simple. Then, ¢;, is odd or even. If ¢,, is odd, then the condition
Oy (L) = ¢y (—L) implies ¢y,(L) = 0. But, ¢,,(L) = £,(0) > 0. So, we need to
have that ¢;,, is even. Now, from Oscillation Theorem for (RC,)-problem, the number
of zeros of ¢, on [—L, L) is 0 or 1 (see Theorem 4.8.5 in [49]). Since ¢;,(—L) > 0
and ¢, is even, we obtain necessarily that ¢, > 0 on [—L, L]. This finishes the proof.

O
Corollary 3.3 Let Ay < 0 be the smallest eigenvalue for (L, Dz o). Then, Ag is simple.

Proof The proof is immediate. Suppose Aq is double. Then, there is ( fo, go)’-eigenfunction
associated to A orthogonal to (¢;,, £5,). By Theorem 3.2 we have that fy, go > 0. So, we
arrive to a contradiction from the orthogonality property of the eigenfunctions. O

Remark 3.4 The strategy for showing the PF property in Theorem 3.2 can be extended to
the case of the first component of the standing wave profile (®, ¥,), ®, to be even and with
multiple bumps on (—L, L) (see Fig. 3 in [22] for examples of these profiles in the case
p = 1) and/or the profile 1, to be of tail (@ > 0) or bump (a < 0) type (see Fig. 3 below
and Angulo [10]).
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3.1.2 Splitting eigenvalue method on looping edge graphs

In the following, we establish our main strategy for studying eigenvalue problems on general
looping edge graphs Gy. More exactly, we reduce the eigenvalue problem for £4 7z =
(Lo, £1,n) in(1.13) to two classes of eigenvalue problems, one for £ with periodic boundary
conditions on [—L, L] and the other one for the diagonal operator £ y = diag(L, ..., L),

L=-3—w—(p+D2p+ 1)1plzp with -type boundary conditions on a star graph.

Lemma 3.5 Let us consider the self-adjoint operator (L4 z, Dz n) in(1.13) forany N 2 1.

Suppose (f,8) € Dz n with g = (gj)zl.V:1 and gr(L) # 0, for some k. Suppose

Liz(f.8 =v(f,8" fory € R. Then, we obtain the following two eigenvalue problems:

{Lof(x) =yf(x), x e (—L, L), {ﬁgj(x) =ygj(x), x>L, j=1,.,N,
fL)=(=L), f(L)=f(-L), Y g (L4) = —Zgi(L+).

Proof For (f,g) € Dz n and gx(L) # 0, we have

1
gk(L+)

N
f=L = fw, 0 -r-n=| Y gL +Z|rLy =6,
j=1

and so f satisfies the real coupled problem (RCy) in (3.14) wth @ = 6 and n = y. In the
following, we will see that & = 0 which proves the lemma.

We consider Ky = [k;;] the 2 x 2-matrix associated to (3.14) given by kj; = 1, k12 =0,
ko1 = 0 and kyp = 1 (det(Ky) = 1), and by n, = 1,,(Kg), n € Ny, the eigenvalues for the
(BCy)-problem in (3.14). We also consider u,, = u,(Kp) and v, = v,(Kp), n € Np, the
eigenvalues problems in (3.14) induced by Ky with the following boundary conditions

y(=L)=y(L)=0 (Dirichlet condition),

Y (=L) =0, 6y(L)—y'(L) =0 (Neumann-type condition), G.17)

respectively. We recall that if y, is an eigenfunction of w,, then y, is unique up to constant
multiples and has exactly n zeros in (—L, L), n € Ny (a similar result is obtained for u,, an
eigenfunction of v,, n € Np). Next, by Theorem 4.8.1 in [49] we have that vy and 7o are
simple, and in particular, we have the following partial distribution of eigenvalues

vo = no < {po, vi} < n1 = {ur, v} S mo, (3.18)

where the notation {u,, v,,} is used to indicate either p,, or v, but no comparison is made
between i1, and vy,. In the following, we will see iy, (L) = 0 and so § = 0 (because by (3.18)
we have vgp < o and so ug(£L) # 0). Indeed, since vg is simple and the profile-solution
@ is even we need to have that ¢ is even or odd. But as u¢ has not zeros in [—L, L] we get
that uo even. Thus u(, is odd and therefore ug(£L) = 0. This finishes the proof.

O

Remark 3.6 a) Lemma 3.5 holds true for the first component of the standing wave profile
(D, ¥,), ®, to be even and with multiple bumps on (—L, L). Moreover, we can also
consider generic operators £ 7 in (1.13) with external potential V; not all the same, in
other words, the components of ¥ = (v/;) 3\': | can be a combination of tails and bumps
profiles. Therefore, Lemma 3.5 reduces our study to a spectral analysis on a star metric
graph with §-interaction conditions at a single vertex (see [3, 9, 12, 13] for a similar study
in the case of the NLS models on star graphs). The existence and stability of these mixed
profiles will be pursued in a future work.
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b) By Theorem 1.3 and Lemma 3.5, it follows that By being the smallest eigenvalue for
L+.z = (Lo, £) matches with the first eigenvalue for £y with periodic boundary condi-
tions and with the first eigenvalue for £ with §-interactions conditions on a star graph.
Moreover, from (3.18), Bo = vo = no.

3.1.3 Morse index for (L, Dz,9)

In the following, we give the proof of Theorem 3.1.

Proof We consider £ on Dz  and suppose n(£) = 2 without loss of generality (we note
that via extension theory we can show n(£4) < 2). From Theorem 3.2 and Corollary 3.3, the
first negative eigenvalue A¢ for £ is simple with associated eigenfunction (¢;,,, £;,) having
positive components and ¢;, being even on [—L, L]. Therefore, for A; being the second
negative eigenvalue for £, we need to have A1 > Ag.

Let (f1, g,) € Dz, be an associated eigenfunction to Aj. In the following, we divide our
analysis in several steps.

1) Suppose g1 = 0: then fj(—L) = fi1(L) = 0 and f; odd (see step 1) in the proof of
Theorem 3.2). Now, our profile-solution ® satisfies

Lo® =0, ' isodd, ®'(x) >0, forx € [-L,0),

thus since A1 < 0 we obtain from the Sturm Comparison Theorem that there is r €
(=L, 0) such that ®'(r) = 0, which is a contradiction. Then, g; is non-trivial.

2) Suppose g1(0+) = 0: we consider the odd-extension gi ,q4 € H2(]R) of g1 and the
unfold operator L in (3.11) on the §-interaction domains Dj, v in (3.12). Then, g1 o4 €
Ds,, for any y and so by Perron- Frobemus property for (L, Ds,,) (Theorem 6.7 in
Appendix) we need to have that n(L) = 2. But, by step 2) in the proof of Theorem 3.2
we obtain n(ﬁ) < 1 for all y, and so we get a contradiction.

3) Suppose g1(04) > 0 (without loss of generality) we will see that g1 (x) > 0 for all
x > 0. Indeed, by Lemma 3.5 we get g;(0+) = —Zg1(0+). Thus, by c0n51der1ng the
even-extension gi even Of g1 on whole the line and the unfold operator £ in (3 11) on
Ds._2z,wehavethat g1 epen € Ds,—27 and son(L) = 1.But, we know thatn(£) < 1and
so A1 is the smallest eigenvalue for (Z , Ds,—»7). Therefore, by Theorem 6.7 in Appendix,
g1 is strictly positive.

4) Lastly, since the pairs ({3,, Ao) and (g1, A1) satisfy the eigenvalue problem

{ag(x) =yg(x), x >0,

¢/ (04) = — Zg(0+), (3.19)

then ¢;,, and g1 need to be orthogonal (which is a contradiction). This finishes the proof.

[m}

3.2 Kernelfor (L, Dz,1)
In the next, we study the nullity index for £ z on Dz ; (see item 4) in Theorem 1.3 for the

case of a tadpole graph). By using the notations at the beginning of this section, it is sufficient
to show the following.
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Theorem 3.7 Consider L4 = diag(Lo, L1) on Dz, for Z fixed, and let the quantity
¥, (0)
o) = -
UAG)
Then, the kernel associated to Ly on Dy  is trivial in the following cases:

1) foray #0, or,
2) ay = 0 in the case of some admissible parameter Z satisfying Z < 0.

Remark 3.8 By Sect. 2, for the case Z = 0 we always have the existence of positive single-
lobe states on a tadpole graph. Hence, by Theorem 3.7 the associated linearized operator £
has a trivial kernel (in this case, we recover similar results established in [2, 4, 5, 22, 44, 45]
which were obtained by different techniques).

Proof Let (f, h) € Dz, suchthat £ (f, h)" = 0. Thus, since £14 = 0 and £y, = 0, we
obtain from classical Sturm-Liouville theory on half-lines ( [18]) that there is ¢ € R with

h=cy., on(0,+00).
1) Suppose ¢ = 0: then = 0 and f satisfies Lo f = 0 with Dirichlet-periodic conditions
f(L)=f(=L)=0 and f'(L)= f'(~L).

Suppose f # 0. From Floquet’s oscillation theory, we need to have that zero is not the
first eigenvalue for Lo with periodic conditions. Therefore f needs to change of sign.
Now, from Sturm-Liouville theory for Dirichlet conditions we have that f is even or odd
(as O will be a simple eigenvalue and ® has an even profile). Next, since Lo®" = 0 on
[—L, L], ® odd and ®'(L) # 0, we get that f is even (indeed, from classical ODE’s
theory f = a®’ + bP, where P is the even-solution of LoP = 0 with P(0) = 1,
P’(0) = 0, and so a = 0). Moreover, the number of zeros of f on (—L, L) is even.
Lastly, again from Floquet’s oscillation theory, f also needs to have an even number of
zeros on [—L, L). Hence f has an odd number of zeros on (—L, L) (as f(—L) = 0),
which is a contradiction. Therefore, f = 0 and so ker (L) is trivial.

2) Suppose ¢ # 0: then £(0) # 0 (h(x) > 0 without loss of generality with ¢ < 0). Hence,
from the splitting eigenvalue result in Lemma 3.5 in the case of a tadpole graph, we
obtain that f satisfies

{llof(x) =0, xe[-L, L],
f(L) = f(=L)=h(0) >0, and f'(L)= f'(-L),

and /' (0) = —Zh(0). The last equality implies immediately

AU
¥, (0)
therefore if we have by hypotheses that a; # 0, we obtain a contradiction. Then, ¢ = 0
and by item 1) above ker (L) = {0}.
Next, we consider the case &y = 0 with some Z < 0. Then, initially by Floquet theory
and oscillation theory, we have the following partial distribution of eigenvalues, 1, and
ILn, associated to Lo with periodic and Dirichlet conditions, respectively,

(3.20)

Z+

Mo < Mo <N =1 S M < p <13 (3.21)

In the next, we will prove 1 = 0 in (3.21) and that it is simple. Indeed, initially we
suppose that 0 > 1¢1. Then, we know that the profile ® satisfies Lo®" = 0 on [—-L, L],
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@’ is odd, ®'(x) > 0 for [—L, 0), and that the eigenfunction associated to w; is odd,
therefore from Sturm Comparison Theorem we get that &’ needs to have one zero on
(=L, 0), which is impossible. Hence, 0 < 1. Next, it supposes that i; = 0 and let x| be
an odd eigenfunction for u;. Let {®’, P} be a base of solutions for the problem Log = 0
(we recall that P can be chosen being even, satisfying P(0) = 1 and P’(0) = 0). Then,
x1 = a® with 0 = x1(L) = a®’(L). Hence, x; = 0 which is not possible. Therefore,
0 < 1 and so n; = 0 is simple with eigenfunction f (being even or odd). We note that
12 is also simple.

Lastly, since f(—L) = f(L) > 0 it follows that f is even and by Floquet theory f
has exactly two different zeros —a, a (@ > 0) on (—L, L). Hence, f(0) < 0. Next, we
consider the Wronskian function (constant) of f and ®’, namely,

W(x) = f(x)®"(x) — f/(x)®'(x) =C, forall x € [—L,L].

Then, C = f(0)®”(0) > 0. Therefore, by hypotheses (¢ = 0 with some Z < 0) we
obtain

C = f(L)P"(L) = h(O)g ,(0) = —cZ[ys , ()] £ 0, (3.22)

which is a contradiction. Then, ¢ = 0 and by item 1) above we get again ker (L£4) = {0}.
This finishes the proof.

4 Morse and nullity indices for operators £ 7 on general looping edge
graphs

In this section, we show Theorems 1.3-1.4 on looping edge graphs Gy, N = 2.

Proof (Theorem 1.3) The proof follows the same strategy as in the case of a tadpole graph.
By convenience of the reader, we give the main highlight in the analysis.

1) Perron-Frobenius property: consider (fg,,8s,) € Dz N, 88, = (gj)?’:l, an eigen-

function for the smallest eigenvalue Bp of L4 z. Then at least one component, g,
is not identically zero and gx(L) # O, because otherwise steps 1) — 2) in the
proof of Theorem 3.2 imply a contradiction. Thus, g satisfies Lgr = Pogk, with

L=-02—w—(p+1)2p+ Dy, and

T, (L) — f,(=L) 1
gk(L) gk (L)

N
> gL = Z]a(L) = maw().
J#k

g (L) = [

Therefore, from the Perron-Frobenius property (Theorem 6.7 in Appendix) we get gx > 0
on [0, +00). Now, since g;(L) = gk(L), for j # k, we obtain similarly that g; > 0.
Lastly, from relation

N

Jho () = fi (L) = [ = D8 (L) + Z]gi(L) = O S (L),
j=1

g1(L)

and step 4) in the proof of Theorem 3.2 imply that fg, is positive and even on [—L, L].
2) The property of By to be simple, follows from Corollary 3.3.
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3) TheMorse index of £ 7 isone: initially,as (®, ¥) € Dz y and (L4 z(D, W), (&, ¥)) <
0, weknownn(Ly z) = 1.1In the following, suppose n(L+ n) = 2,and Bo, B1 (Bo < B1)
the two negative eigenvalues with associated eigenfunctions ( fg,, gg,), 86, = (& j)j‘v:p

and (fg,, hg ), hg, = (h j)?lzl , respectively. Next, we show that every component of hg,
can be chosen positive. Suppose hg, = 0, then fg, satisfies periodic-Dirichlet boundary
conditions and so its profile is odd. Then, by the proof of Theorem 3.1 (step 1)) we get
a contradiction. Hence, there is at least one component /., which is not-trivial and satis-
fying hy > 0 on (L, +00) (see item 1) above and item 3) in the proof of Theorem 3.1).
Hence, by continuity at x = L it follows h;(L) > O for every j # k and therefore
hj > 0on (L, +oo) for every j. Now, by the splitting eigenvalue result in Lemma 3.5,
we get that for every j,

Lh; = pihj, Lg;j=Pog; on (L,+00),

with Y00, (L) = =Zhy(L) and Y1, ¢/ (L) = —Zg1(L). Then for g = Y7, g;
and h = 29;1 hj, we have that the pairs (g, Bo) and (h, B1) satisfy the eigenvalue
problem

{Lx(x) =yx(x), x>L, (4.1)

X/ (L+) = —Z x (L+).

Therefore, because g and h are positive and Sy # B1, we get a contradiction. Then,
n(Lyz) = 1.

4) Kernel for £ z: Suppose (p,q) € ker(Ly 7)., q = (qf);v:r Then, from Lg; = 0 we
get that there are constants c; such that ¢; = c¢; v/, and so by continuity at x = L we
getcy =cp =--- = cy = C.Hence, q = CV'. In the following we consider two cases:

a) Suppose C = 0:then p satisfies Lop = 0, p(L) = p(—L) = 0and p’(L) = p’(—L).
Thus, from step 1) in the proof of Theorem 3.7 follows p = 0.

b) Suppose C # O0and C < 0:theng; > 0 forevery j and so by the splitting eigenvalue
result in Lemma 3.5, p satisfies the eigenvalue problem (3.20) (with 2 = ¢1) and
Y%, 44 (L) = —Zqi(L). The last equality implies

z Y@
J— _l’_ —
N yi@)

Then, by following a similar analysis as in step 2) in the proof of Theorem 3.7, we
finish the statements about the non-degeneracy of £ 7.

0.

[m}

Remark 4.1 a) From condition 2®'(L) = Nvy{(L) + Zy1(L) < 0 and (1.7) we need to
have a priori that the strength Z satisfies Z < N+/—o tanh(pa) < N./—w, with
a=a(w,Z) > 0.

b) Some comments deserve to be established about the conditions in item 4) of Theorem 1.3
for the kernel of £ 7 to be trivial. We consider the mapping

. V(L) _ — (p + Dsech?(pa) — 1
ra@=noin =N Vo

related to the quantity oy in Theorem 1.3. Then, y is strictly decreasing, with y (a) —
+ooasa — 0T, and y(a) — —N./—w as a — +00. Moreover, there is an unique a*

, a>0, 4.2)
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such that y (a*) = 0, which matches with the only inflection-point for ¥ in (1.7). Thus,
we have that the equation y (a) = —Z always has a unique solution a for Z < N/—w.

Proof (Theorem 1.4) We consider a positive single-lobe state (®,,, ¥,,). Then, from (1.5)
we get (P, Vy,) € ker(L— 7). Next, we consider

M= —o—(p+DW¥2P, N=-8-0—(p+Dy’

thenforany V= (f,g8) € Dz n,g8= (g,) _, we obtain

=g (L)) recn

V=g A} e

Thus, we get immediately

(L_,ZV,V):/i qﬂ(d‘i( d +Z/ dx w/))d x>0

Moreover, since (£ 7V, V) = 0Oifand only if f = c®, and g; = d;v;, we obtain from the
continuity property at x = L thatc = d; = --- = dy. Then, ker (L_ z) = span{(D,, V,)}.
This finishes the proof. O

Remark 4.2 There is other strategy for showing Theorem 1.4: we can also see that
(L—.z, Dz, y) satisfies the Perron-Frobenius property just like (L4 z, Dz, n) does (see The-
orem 3.2). Hence, since (®,,, ¥,,) is a positive single-lobe state and £_ z(®,,, ¥,,)" = 0,
we conclude that zero is a simple eigenvalue and £_ 7z = 0.

Remark 4.3 In the following we establish some consequences and comments associated to
our results.

1) Let (®, W) beasolution for (1.5). If we consider a positive even-profile ® having multiple
bumpson (—L, L)and ¥ = (¢ j)?’zl with components being a mixed of tails and bumps
profiles, the strategy for showing Theorem 1.4 implies that the associated operator £_ 7z
in (1.13) is also non-negative and with one-dimensional kernel.

2) The existence of positive solutions (®, W) for (1.5) on a tadpole graph with a profile
shown in Fig. 3 (a “positive two-lobe” state), was showed explicitly at least for p = 1
in [22, 45]. Now, by using some strategies used in our work, in particular, the splitting
eigenvalue result in Lemma 3.5, a stability theory for these profiles has been established
recently in Angulo [10].

5 Applications
In this section we show Theorems 1.5-1.6. As far as we know, our stability results in Theo-

rem 1.5 (at least for N = 3) and in Theorem 1.6 (for any N = 1 and specific Z < 0), are the
first to be established in the literature (see [6, 35]).
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Fig.3 A positive two-lobe state
profile for the NLS model on a
tadpole graph

Proof (Theorem 1.5) Our basic strategy for obtaining a family of positive single-lobe states
on Gy is the following: by using a bifurcation analysis on the phase plane associated to the the
first elliptic equation in (1.5), we get initially an unique branch of profiles w — ®,,, with —w
small, satisfying the continuous property at the vertex v = L, ®,,(L) = ®,(—L) = (L)
and ) (L) — @, (—L) = Ny{(L). Thus, we get a C!-mapping @ € (wp,0) — O, =
(D, (Y1 )1/.\':1 ), with —wg > 0 small enough, of positive single-lobe states on Gy . We divide
our analysis in several steps:

a) By following an s1m11ar analysis as in [45], we have on a tadpole graph for @ = —¢2,

€>0,vY:(x) = el’ Yole(x — L)+ a),and ®(x) = el’qb(z) 7 = €x, that the boundary-
value problem (1.5) is rewrite in the form

—¢"(2) +¢ () — (p+ DIp(2)*Pp(z) =0, z € (€L, €L),
P(eL) = p(—€L) = Yro(a), (5.1)
¢'(eL) — ¢'(—€L) = Ny(a).

Next, from symmetry of trajectories on the phase plane (¢, ¢’), it follows that for € > 0
small enough, the condition ¢ (e L) = ¢ (—e L) can be satisfied if and only if the function
¢ is even in z. Moreover, by the condition of single-lobe profile, we will looking for
trajectories inside the homoclinic orbit x — (¥ (x), w(’) (x)). Therefore, we can consider
an initial-value problem for the second-order differential equation in system (5.1) with
an initial data (¢(0), ¢'(0)) = (¢0,0), ¢o > 0, ¢o < 1 and ¢g ~ 1. Then, by edo’s
theory there exists a § = 8(¢9) > 0 and a unique local solution ¢ € C*°(—4, §) such
that ¢ (0) = ¢ and ¢'(0) = 0. Moreover, ¢(z) > 0 for all z € (=8, 8). Thus, being
L fixed, we have e L < § for sufficiently small €, so that ¢ is the unique even positive
local solution on [—€L, e L] with a profile being of single-lobe type. Moreover, by the
continuity property of the data-solution mapping, we can choose € such that for ¢ in a
neighborhood of ¢ the associated solution ¢; with ¢, (0) = ¢ can be also defined on
[—eL,eL].

With regard to the boundary conditions ¢(—€L) = vo(a) and 2¢'(eL) = Nyy(a)
we have the following: for the first condition we consider the Taylor expansion (with
Lagrange remainder) ¢(—eL) = ¢o + %W’(O)ez L? + O(e*) with € small and arbi-
trary, and ¢”(0) = g(¢o) giving by the differential equation in system (5.1). Then,
for Yo(a) ~ 1 arbitrary, but fixed, with @ > 0, and by considering F(¢o, €) = ¢o +
18(p0)e> L + O(e*) — Yo(a), for (do, €) € By(Yo(a), 0) we obtain F(y(a), 0) = 0
and dg, F(Yo(a),0) = 1. Therefore, the implicit function theorem implies the exis-
tence of a smooth mapping of “initial conditions”, € — ¢9 = ¢o(€) for € small,
such that F(¢o(€),e) = 0. Thus, by uniqueness in the Taylor expansion, we get
Yola) = ¢o + %g(q&o)ez L? 4+ O(e*) = ¢(—€L). Moreover, since ¢6(e)|6=0 =0
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follows ¢o(€) = Vo(a) + O(e?) (thus ¢p(e) < 1).
Now, for the second condition we get the right shift-value a and we will show that

2L 3
a(e) = WG + O(€e”).

Indeed, from Taylor expansion we get 2¢'(—eL) = 2 g(¢o)eL + O(e3) with € small.
Next,forG(a, €) = 2g(¢0)eL+O(63)—N1ﬁ6(a) we have G(0,0) = 0and d,G (0, 0) =
—N{/(0) # 0. Therefore, there is a smooth mapping of shift-values, ¢ — a = a(e),
such that G (a(e€), €) = 0, and so 2¢'(e L) = Ny (a(e)).

2g(¢o)L
Ny (0)°
Vo (0) = (1 —(p+ 1)\031](0))\//0(0), and ¢o(€) = Yo(a) + O(€?) = 1 + O(€?) (since
¥0(0) = 1 and y;(0) = 0) that

_ 2g8(¢o)L
N5 (0)
Therefore, by analysis above, for p > 0 and every € > 0 sufficiently small, there exists

a unique positive-lobe solution &, € C*(—L, L) and a = a(e) > 0 of the following
boundary-value problem

Next, we have from a’(0) =

the second-order differential equation in (5.1),

3 2L 3
a(e) e+ 0O(’) = Wé + O(e”). (5.2)

— @/ (x) + 2D (x) — (p + D] P (x)[?P P (x) =0, x € (—L,L),

1
O (L) =D (—L) = eﬁwoga), (5.3)
®L(L) — DL(~L) = Ne' TPy (a).

1
Moreover, &, = €7 (1 + OCoo(_L,L)(ez)), [Pellzoe(—1,1) = O(€) and a = O(e) as

€ — 0. ) B ) ) - )
b) From [@c[2, , , = 2Ler (1 + O@) and el o = €7 1002200
where 1 is e-independent, we obtain for p € (0, 2) and € small enough
e (1Pl oy 1)+ NVel g o0) > O,
and for p € (2, +00), € small enough
0e(IPellya_p 1)+ NlVelTa s o) <O (5.4)
¢) Fromw = —€2 we get immediately a cl- mapping o € (wp, 0) = (P, V) on G with

—wo > 0 small enough, such that

B Polfa 1)+ NVolia o) <O p€(0,2),
d(1Polfa_y 1)+ NVolia o) > 0. p € (2,+00).
d) Define w € (wg, 0) — 0, = (P, (ww)ﬁ.v:l) € Dz n, of positive single-lobe states on
Gy Then, [Ou175 g\ = 1Polj2_; 1)+ NlIVolis o, and so,
80190ll72g,, <0. P e€0.2),
%ll®ull7rg,, > 0. P € Q2. +00).
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By Theorems 1.3-1.4, and Theorem 6.8, N = 1 fixed, we obtain that the orbit (€70, :
0 € [0, 2m)} is orbitally unstable for p > 2 and orbitally stable for p < 2. This completes
the assertions of the Theorem. O

Remark 5.1 The case N = 1 (tadpole case) and p = 2 was studied in [44]. In this case
were found a C!- mapping @ € (—o0,0) — (d,, V,) of positive single-lobe on G; and a
threshold value w* < 0 of the frequency such that for @ > w™* the standing wave is orbitally
stable, and for v < w* we get orbital instability.

Proof (Theorem 1.6) We will use the same strategy as in Theorem 1.5. Thus, for w = —€2,

1 1
€ >0, Y(x) =eryple(x — L) +a),and ®(x) = €7 ¢(z), z = €x, the boundary-value
problem (1.5) is rewrite in the form

4" () +¢@) — (p+ DIP()IPPP(2) =0, z € (=€L, €L),
¢(eL) = ¢p(—€L) = Yo(a), (5.5
€d'(eL) —€¢'(—€L) = Neyy(a) + Zo(a)

Thus, for Z = —e? we get the condition ¢’ (eL) — ¢'(—€L) = N(a) — eyo(a). Next,
by a phase plane analysis we get a unique even positive local solution ¢ (of single-lobe
type) for the second-order differential equation in (5.5) on [—€L, €L], € small, such that
$(0) = ¢o ~ 1 and ¢'(0) = 0. Then for ¥o(a) ~ 1 arbitrary, but fixed, with a > 0, the
implicit function theorem implies the existence of a smooth mapping of “initial conditions”,
€ = ¢o = ¢o(€) = Yo(a) such that the associated solutions ¢ = ¢, with ¢ (0) = ¢p(€),
satisfy for € small that Yo(a) = ¢(—€L). Moreover, ¢o(€) = Yo(a) + O(€?) (thus ¢o(e) <
D).

With regard to the boundary condition 2¢’(e L) = N;(a) — €ro(a) we have the follow-
ing: we consider

H(a, €) = —€eyn(a) — 2¢'(cL) + Nyj(a) = —eyo(a) — 2¢"(0)eL + Nj(a) + O(€).

Then, H(0,0) = 0 and 9,H(0,0) = Nv{/(0) # 0. Therefore, there is a smooth mapping
of shift-values, € — a = a(e), such that H(a(e), €) = 0, and so 2¢'(¢L) = Nlﬁ(’)(a(e)) —
1+2g(¢o) L

Ny{0)
equation in (5.5), ¥ (0) = (1 — (p + 1)1//317(0))1//0(0), and ¢o(€) = Yola) + O(e?) =
1 + O(e?) (since Yo (0) = 1 and ¥{(0) = 0) that

a(e) = 1+ 2g(¢o)L
Ny

€yo(a(e)). Moreover, since a’(0) = follows from the second-order differential

€+ 0 = %[u _ %]e + 0.

From 2L > %, we get a(e) > 0 for e small. Therefore, for every € > 0 sufficiently small,
there exists a unique positive-lobe solution &, € C*°(—L, L) and a = a(e) > 0 of the
following boundary-value problem

— @/ (x) + 2P (x) — (p+ DD (x)[*PDe(x) =0, x € (=L, L),

1
Pe(L) = Pe(=L) = €7 Yo(a), 1 (5.6)
®L(L) — DL(~L) = Ne' TPy (a) — e2e Py (a).

1
Moreover, &, = €7 (1 + OCoc(,L,L)(ez)), |Pellro(—r,1) = O(e) anda = O(e) ase — 0.
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2 2_
Next, from [|0cl12,, , =2Le? (1+0) and YelZa, =€ 1022 o)
where 1 is e-independent, we obtain for P(€) = || D, ”iZ(—L 9 + N||1/fg||2Lz(L o0) that
L 2.AL 12 5 5 1 5 2
Pl@ =er [ 254 INC = D0l — ¥R @@ ([22 = S ]+ 0) [+ 0™
_ AL 12 5 5] 5 2
=er [ NG = Dol 00— [22 = ]+ 0]+ 0™,

Therefore, for p € (0,2) and ¢ small enough, we have P'(¢) > 0, and P'(¢) < O for
p € (2, +00), € small enough. Lastly, for p = 2 we obtain P’'(¢) = % + O(€?) and so
P’'(e) > 0.

Then, from w = —e2 we obtain a C!- mapping o € (wg, 0) - 0, = (d,, (l/fw)yzl) S
Dz n, with —wo > 0 small enough, of positive single-lobe states on Gy and satisfying

30l1®0l7>g,, <0 pe©.2]

90| O |l 0,  pe +o0).

2
L2(Gy) ~

Hence, the orbit {¢!?®,, : @ € [0, 27)} is orbitally unstable for p > 2 and orbitally stable
for p < 2. This completes the assertions of the Theorem. O

Remark 5.2 If we choose Z = —(—a))"/2 = —€",n > 2,n € N, in the proof of Theorem 1.6,
we obtain an similar stability result as in Theorem 1.5, because in this case the shift parameter
a = a(e) satisfies the same equation as in (5.2). This consideration shows that for an arbitrary
Z < 0, the dynamics of positive single-lobe states on Gy can become a tricky problem.

6 Appendix

in this Appendix we formulate some tools from the extension theory of symmetric operators
of Krein&von Neumann suitable for our needs (see [40, 48] for further information). Also, we
establish a Perron-Frobenius property for Schrodinger operators with §-interactions domains
on whole line.

6.1 Classical extension theory results

The following two results are classical and can be found in [48].

Theorem 6.1 (von-Neumann decomposition) Let A be a closed, symmetric operator, then
D(A*) = D(A) ® N_; & N4;. 6.1)
with Ny; = ker(A*il). Therefore, foru € D(A*) andu = x+y+z € D(A)ON_; DNy,
A'u = Ax + (—i)y +iz. (6.2)
Remark 6.2 The direct sum in (6.1) is not necessarily orthogonal.

Proposition 6.3 Let A be a densely defined, closed, symmetric operator in some Hilbert
space H with deficiency indices equal ny(A) = 1. All self-adjoint extensions Ay of A may
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be parametrized by a real parameter 6 € [0, 2r) where

D(Ag) = {x +cp + ¢ : x € D(A), ¢ € C},

Ag(x + Sy +ce¥9) = Ax+itgy —itep_,
with A*¢+ = xi¢+, and ¢+ || = ||

The next proposition provides a strategy for estimating the Morse-index of the self-adjoint
extensions (see [40], [48]-Chapter X).

Proposition 6.4 Let A be a densely defined lower semi-bounded symmetric operator (that is,
A > ml) with finite deficiency indices, n+(A) = k < oo, in the Hilbert space H, and let A
be a self-adjoint extension of A. Then the spectrum of Ain (—o00, m) is discrete and consists
of, at most, k eigenvalues counting multiplicities.

Next Proposition can be found in Naimark [40] (see Theorem 9).

Proposition 6.5 All self-adjoint extensions of a closed, symmetric operator which has equal
and finite deficiency indices have one and the same continuous spectrum.

6.2 Extension theory for the Laplacian operator on a looping edge graph

In this subsection, by convenience of the reader, we establish an extension theory for the
Laplacian operator —A in (1.2) on a looping edge graph which will imply the domains Dz
in (1.3).

Theorem 6.6 Ler Gy be a looping edge graph with N 2 1. The Schrédinger type operator
—Ain(1.2) on L*(Gy), with domain

D(=4A) = {((/% (1/fj)f’=1) €H*(GN) : ¢(—-L)=p(L) =y1(L) = =yYn(L) =0,
N (6.3)
¢(L) - ¢/ (—L) =Y viw),
j=1
is a densely defined symmetric operator with deficiency indices ny(—A) = 1. There-

fore, (—A, D(—A)) has a one-parameter family of self-adjoint extensions defined by
(—=A, Dy)yer with

Dy ={(f (N €@ s f(L) = [(~L) = gi(L) = -+ = gn (L),

N 6.4)
FW =111 =Y giL) +raiL).
j=1
Proof The symmetric property of (—A, D(—A)) is immediate. Since, CX°(—L, L) @
@yzl C>(L,+00) C D(—A) we obtain the density property of D(—A) in L2(Gn). Now,
by following a similar analysis as in Proposition A.6 in [14], it is not difficult to see that the
adjoint operator (—A*, D(—A*)) of (—A, D(—A)) is given by
—A*=—A, D(=A*)={@u )l e H Gn):
u(=L) =u(L) =vi(L) =---=vn(LD)} (6.5)
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Next, the deficiency subspaces D+ = ker(—A™ F i) have dimension one. Indeed, by using
the definition of D(—A*) in (6.5) we can see that Dy = span{( fy;, g+i)} with

fri(x) = eVTi0HL) 4 o=Vit=L), xe(=L,L), Im(v=) >0
{g+i (x) = (e¥—i—D) 4 eﬁ(’““)y:], x>1L, (6.6)
and
fri(x) = eViGHD) 4 o=Vit—L), xe (=L, L), Im(i) <0
{gi(X) — (eVit-L) 4 exfi(x+L))§}’=1, v~ L. 6.7

Thus, from Proposition 6.3 we can deduce that (—A, D(—A)) has a one-parameter family
of self-adjoint extensions (—A, D, ), cr with D), defined in (6.4). This finishes the proof. O

6.3 Perron-Frobenius property for d-interaction Schrodinger operators on the line

In this section we establish the Perron-Frobenius property for the unfold self-adjoint operator
Lin (3.11),

L=-—w—(p+DQp+ ¥, w=<0, 6.8)
on J-interaction domains, namely,
D5, =1{f e HH®R—{ODNH'R) : f/(0+) — f'(0-) = y f(0)} (6.9)

for any y € R. Here, .. is the even extension to whole the line of the tail-soliton profile
V0.0 (x) = (=) /?Pyo(/—wx + a), with x, a > 0, and o defined in (1.7).

We note that there are several results in the literature related to the Perron-Frobenius
property for Schrodinger operator —A + V (x) with a external potential. In the case of metric
graphs, some results have been obtained depending of the topology (see [23,29], and reference
therein). Here, by convenience of the reader, we give an unified proof of this property for
(L, Ds,,) with any value of .

So, we start with the following two remarks: by Weyl’s essential spectrum theorem ([47]),
we have that the essential spectrum, ae”([l) of L satisfies ae”([l) = [—w, +00). Moreover,
from the extension theory, we can see that the Morse index of (E Ds ) satisfies n(ﬁ) <1
for any y (this a consequence of Proposition 6.4 and that ¥,,., has a tail-profile, see [9],

[13D).

Theorem6 7 (Perron-Frobenius property) Consider the family of self-adjoint operators
(ll Ds )yer. For y fixed, assume that f = 1nf(r(£) < —w is the smallest eigenvalue.
Then, B is simple, and its corresponding eigenfunction (g is positive (after replacing {g by
—{p if necessary) and even.

Proof This result follows by a slight twist of standard abstract Perron-Frobenius arguments
(see Proposition 2 in Albert&Bona&Henry [7]). The basic point in the analysis is to show

2 . .
—% on the domain Ds ,, has its resolvent R, =

(=Ay, + 1)~ ! represented by a positive kernel for some p > 0 sufficiently large. Namely,
for f € L2(R)

that the Laplacian operator —A, =

+o00
Ruf(x) = / K(x. ) f(n)dy

—00
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with K (x, y) > 0 for all x, y € R. By convenience of the reader we show this main point,
the remainder of the proof follows the same strategy as in [7]. Thus, for y fixed, let © > 0
be sufficiently large (with -2,/ < y in the case y < 0), then from the Krein formula (see
Theorem 3.1.2 in [8]) we obtain

K(x,y) =

! [e—mx—y|_ v e—ﬂ(|x\+\y|)]_
21 y+2J1

Moreover, for every x fixed, K(x, ) € Lz(]R). Thus, the existence of the integral above is
guaranteed by Holder’s inequality. Now, since K (x, y) = K(y, x), it is sufficient to show
that K (x, y) > 0 in the following cases.

(1) Letx >0andy > Oorx < Oand y < 0: for y = 0, we obtain from < 1 and

Y
Y2/
lx—y| < |x|+|yl, that K (x, y) > 0.Fory < Oand —2,/it < y, it follows immediately
K(x,y)>0.
(2) Letx > 0 and y < O: in this case,
1
K, y)= ———e VA 5 g
Y +2/1
for any value of y (where again —2,/it < y in the case y < 0).
This finishes the proof. O

6.4 Orbital stability criterion

By convenience of the reader, in this subsection we adapted the abstract stability results from
Grillakis&Shatah&Strauss in [31, 32] for the case of a looping edge graph and standing waves
being positive single-lobe states. This criterion was used in the proof of Theorems 1.5-1.6.

Theorem 6.8 Suppose that there is C'-mapping @ — (9, V,,) of positive single-lobe
states for the NLS model (1.1) on a looping edge graph Gy. We consider the assertions in
Theorems 1.3—1.4 associated to the Morse index and the nullity index for the operators L 7z
and L_ 7. Then, for Ker(Ly z) = {0} we have

1) if 0p||(Dy, q”w)”iz(g,\;) < 0, then e 71! (&, W) is orbitally stable in £(Gy),
2) if 0u || (D, \pw)”iz(g,\,) > 0, then e (&, U,,) is orbitally unstable in E(Gy).
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