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In a previous work El et al. (2006) [1] exact stable oblique soliton solutions were revealed in two-
dimensional nonlinear Schrödinger flow. In this work we show that single soliton solution can be
expressed within the Hirota bilinear formalism. An attempt to build two-soliton solutions shows that
the system is “close” to integrability provided that the angle between the solitons is small and/or we are
in the hypersonic limit.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Schrödinger (NLS) flow is ubiquitous in many
physical systems such as photorefractive crystals, and the super-
fluids Bose–Einstein condensates and exciton-polaritons. A funda-
mental problem is how a superfluid reacts to the presence of an
obstacle. One can define a Mach velocity (M) as the velocity of
the obstacle relative to the sound velocity in the medium. Two-
dimensional studies showed that when M > 0.37 the system loses
superfluidity and start to emit pair of vortices [2–5]. Increasing
the velocity showed that vortices merge in a “vortex street” [6],
which were later understood as oblique solitons [7] and its ex-
act single soliton solution determined [1,8]. Oblique solitons were
long know to be unstable but it was showed that under the flow
they are only convectively unstable provided that M > 1.44 [9,10].
Studies with extended obstacles also presented oblique solitons in
the wake, and an analytical approach based on Whitham modu-
lation theory was successfully applied [11]. Oblique solitons were
realized experimentally in the system of exciton-polaritons [12],
though for lower Mach number than originally predicted by the-
ory. Corrections to the model including losses were able to match
experimental observations [13]. Dynamics of formation and decay
of oblique solitons were recently observed in [14].

A key question about solitons is how they behave in collisions.
As long as we know, there is no general proof about the non-
integrability of the 2D-NLS. Numerical studies with two obstacles
were able to generate collisions between these oblique solitons
[15]. These collisions were shown to be practically elastic suggest-
ing integrability or “close” to integrability in such system. In the
same work, an analytical treatment was considered using hydro-
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dynamical approach and the system was show to follow a 1D-NLS
equation in the hypersonic limit, and collisions could be described
by the well known phase shifts [16]. Numerical calculations were
in good agreement with predicted phase shifts, considering that
they were perturbed by previous interactions with linear waves.
Since the exact single soliton (1SS) was already obtained, one
might ask if an exact two-soliton solution (2SS) could be found.
A possible framework to find multiple soliton solutions is the Hi-
rota method [17,18]. In the following we build up a bilinear Hirota
form of the 2D-NLS in the stationary frame relative to the obsta-
cle. Then, we show that the single oblique soliton solution indeed
satisfy this form. In the sequence we propose an ansatz to the ex-
act solution of the two-soliton interaction problem and analyze its
consequences within this formalism.

2. Model

Oblique dark solitons in a superfluid are described [1] as sta-
tionary solutions of the defocusing nonlinear Schrödinger equation
(NLS)

iψt = −1

2
�ψ + |ψ |2ψ + V (x + Mt, y)ψ, (1)

which is written here in standard dimensionless units, � ≡ ∂2
x +∂2

y ,
the subscripts mean derivatives and the potential V is modeled
as a small impenetrable obstacle. The potential V is moved with
Mach velocity M from right to left across the fluid, where M is in
units of the sound velocity. We make a global phase transformation
ψ ′ = eitψ and later a Galilean transformation x′ = x + Mt , t′ = t
leading to

−2iψt = ψxx + ψyy + 2iMψx + 2ψ − 2ψ |ψ |2 − 2V (x, y)ψ, (2)

where the primes were omitted for convenience.
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This last equation describes the wave function in the stationary
frame relative to the obstacle. Also the boundary condition is ψ =
1 as x, y → ±∞. We assume that for time long enough the system
relaxes to a stationary solution, i.e., ψt = 0 is satisfied. This is well
verified for supersonic flow (M > 1.44) and in the following it will
be enough to find oblique soliton solutions. Using this condition,
we express the wave function as ψ = G/F and substitute in Eq. (2).
Multiplying the resulting equation by F 3 one obtains

F
[
Gxx F − 2Gx Fx − G Fxx + 2iM(Gx F − G Fx) + 2G F + G yy F

− 2G y F y − G F yy
] + 2G Fx Fx + 2G F y F y − 2|G|2G = 0, (3)

where the potential V is omitted since we will look for solutions
after passing the obstacle [1].

We now use the well known Hirota techniques. We make the
replacements −G Fxx → +G Fxx − 2G Fxx and −G F yy → +G F yy −
2G F yy , multiply by F and rearrange the equation as

F 2[(2iM Dx + D2
x + D2

y

)
G.F + 2G F

]
− G F

[(
D2

x + D2
y

)
F .F + 2|G|2] = 0, (4)

where the Hirota D-operator is defined generally as Dn
x f .g ≡

(∂x −∂x′ )n g(x) f (x′)|x=x′ . In our particular case DxG.F ≡ Gx F − G Fx ,
D2

x G.F = Gxx F − 2Gx Fx + G Fxx , D2
x F .F = 2F Fxx − 2Fx Fx .

Eq. (4) suggests that the system can be put in bilinear form as

(
2iM Dx + D2

x + D2
y

)
G.F + 2G F = ΛG F , (5)(

D2
x + D2

y

)
F .F + 2GG∗ = ΛF 2, (6)

where Λ is a constant to be determined. This system of equations
have very close similarity to the bilinear form of dark solitons in
1D-NLS [17,18].

3. Single oblique soliton solution

The single oblique soliton solution was already found in [1,15]
assuming null vorticity and using a hydrodynamic formalism. One
can write it in the stationary frame as

ψ = ν(eξ/2 − e−ξ/2) − iλ(eξ/2 + e−ξ/2)

eξ/2 + e−ξ/2
, (7)

where ξ ≡ 2ν[x sin θ − y cos θ], ν ≡ √
1 − λ2, λ ≡ M sin θ , and θ is

the angle between the soliton and the horizontal axis. M sin θ =
±1 defines the Mach cone and thus solitons can be found only in
the region −arcsin(1/M) < θ < arcsin(1/M).

Multiplying Eq. (7) by an ineffective global phase i(λ + iν) and
numerator and denominator by eξ/2 we have

ψ = 1 + eξ+2iα

1 + eξ
, (8)

where eiα ≡ λ + iν . One can now readily identify the functions

G = 1 + eξ+2iα, (9)

F = 1 + eξ . (10)

After substitution of the functions G and F in Eqs. (5), (6) one
finds that they remarkably satisfy the bilinear equations provided
that Λ = 2. Thus, we were able to show that the single soliton
solution can be built within the Hirota method. It is now natural
to look for multiple soliton solutions using this formalism. We will
pursue this in the following.
4. Ansatz for two-soliton solution

Based on the similarity of Eqs. (5), (6) with the 1D-NLS bilinear
form and dark soliton solution [19], we build an ansatz for the
two-soliton solution in 2D-NLS supersonic flow as

G = 1 + eξ1+2iα1 + eξ2+2iα2 + eξ1+ξ2+2iα1+2iα2+ϕ12 , (11)

F = 1 + eξ1 + eξ2 + eξ1+ξ2+ϕ12 , (12)

where ξ j = 2ν[x sin θ j − y cos θ j], ν j =
√

1 − λ2
j , exp(iα j) = λ j + iν j ,

j = 1,2 and ϕ12 is to be determined.
Then, we substitute the ansatz (11), (12) in Eqs. (5) and (6) and

collect terms proportional to e0, eξ j , e2ξ j , eξ j+ξk , e2ξ j+ξk , e2ξ j+2ξk ,
j,k = {1,2}, j �= k. Terms proportional to e0, eξ j , e2ξ j well satisfy
the bilinear equations since they correspond to single soliton solu-
tions. The term e2ξ1+ξ2 gives equations

e2iα1+ϕ12
[
4iν2λ2

(
e2iα2 − 1

) + 4ν2
2

(
e2iα2 + 1

)] = 0, (13)

8ν2
2 eϕ12 + 2eϕ12

(
e−2iα2 + e2iα2

) − 4eϕ12 = 0, (14)

which can be shown to be true with little algebra, independently
of the value of eϕ12 . The same for the term eξ1+2ξ2 . Terms pro-
portional to e2ξ1+2ξ2 give equations that are easily shown to be
satisfied.

The remaining terms proportional to eξ1+ξ2 generate equations

4i
[
(ν1λ1 − ν2λ2)e2iα1 + (ν2λ2 − ν1λ1)e2iα2

+ (ν1λ1 + ν2λ2)
(
e2iα1+2iα2 − 1

)
eϕ12

]
+ 4

[
S−

(
e2iα1 + e2iα2

) + S+
(
e2iα1+2iα2+ϕ12

) + S+eϕ12
] = 0

(15)

and

4
(

S− + S+eϕ12
) + e2iα1−2iα2 + e−2iα1+2iα2

+ (
e2iα1+2iα2 + e−2iα1−2iα2

)
eϕ12 − 2 − 2eϕ12 = 0, (16)

where S± ≡ ν2
1 ± 2ν1ν2σ + ν2

2 , σ ≡ sin θ1 sin θ2 + cos θ1 cos θ2 =
cos(θ1 − θ2). Apart from the extra factor σ , these equations are
equal to the ones extracted from the 1D-NLS [19].

Multiplying the whole equation (15) by e−iα1−iα2 and after al-
gebraic manipulation we get

eϕ12
a = σ−1 − λ1λ2 − ν1ν2

σ−1 − λ1λ2 + ν1ν2
(17)

and Eq. (16) gives

eϕ12
b = σ − λ1λ2 − ν1ν2

σ − λ1λ2 + ν1ν2
, (18)

where the subscripts a and b correspond to eϕ12 extracted from
Eqs. (15) and (16), respectively.

For 1D-NLS, σ is equal to 1 and thus eϕ12
a = eϕ12

b and the two-
soliton solution is integrable. If |θ1 − θ2| is sufficiently small then
σ ∼ 1 and the collision of two solitons must be practically elas-
tic. Here the treatment is developed regardless the value of M . In
the symmetrical case, i.e., θ1 = −θ2 = θ , one can examine the ra-
tio R = eϕ12

b /eϕ12
a , this should provide a measure of how close to

the Hirota integrability is the proposed ansatz. In Fig. 1 we show
this ratio as a function of sin θ for different flow velocities M . For
M = 2 and small θ the system is far from integrability and the
ansatz is poor especially at the collision region and get strong de-
viations from phase shifts. As M is increased the ratio R is closer
to 1, independent of the angle θ . This was already anticipated in
Ref. [15] using a hydrodynamical approach, where it was assumed



2424 E.G. Khamis, A. Gammal / Physics Letters A 376 (2012) 2422–2424
Fig. 1. Results of the proposed ansatz similar to the 1D-NLS two dark soliton solu-
tion. The ratio R = eϕ12

b /eϕ12
a is between the factors that satisfy each one of the two

Hirota bilinear equations.

hypersonic limit (M 
 1) so that the equation can be approxi-
mated to 1D-NLS. For the typical case of an impenetrable obstacle
with radius r = 1, solitons are generated with sin θ ∼ 0.1 [1], that
gives R ∼ 0.93 and the collision shall appear as almost elastic. This
is consistent with the observations in Ref. [15].

5. Phase shifts

A typical behavior of solitons is that they maintain their shapes
after collisions. However, their positions just after collision are
dislocated relative to the free soliton propagation. These disloca-
tions are named phase shifts and are closely related to the factor
exp(ϕ12). One can calculate the phase shift keeping one of the
solitons fixed and observing its position when the other soliton
is located at infinity [20]. Following this recipe, we take the ansatz
of ψ = G/F given by Eqs. (11), (12), multiply numerator and de-
nominator by e−ξ2 and take the limit ξ2 → ∞ giving

ψ ∼ e2iα2
(1 + eξ1+2iα1+ϕ12)

1 + eξ1+ϕ12
. (19)

Thus, comparing with the single soliton solution from Eq. (7), the
first soliton that depends on ξ1 suffers translation as ξ1 → ξ1 +ϕ12.
The dislocation δy can be calculated simply by

2ν1[x sin θ1 − y cos θ1] + ϕ12 = 2ν1
[
x sin θ1 − (y + δy) cos θ1

]
(20)

giving

δy = −ϕ12

2ν1 cos θ1
. (21)

Finally, using expression (17) in the limit σ ∼ 1 gives

δy = −1

2ν1 cos θ1
ln

[
1 − λ1λ2 − ν1ν2

1 − λ1λ2 + ν1ν2

]
. (22)
In the hypersonic limit with M 
 1, cos θ1 tends to one, and we
recover the well known formula of phase shift of 1D dark solitons
[15,16]. Analogous results are obtained for the phase shift of the
second soliton.

6. Conclusions

We studied the problem of oblique solitons solutions in two-
dimensional NLS flow using the Hirota bilinear form. This deriva-
tion was made in the obstacle frame and assuming stationary flow.
We were able to build exact single soliton solution with similar
form of the 1D-NLS. An ansatz for the two-soliton solution was
proposed. It is shown that for high Mach number the collision can
be considered as practically elastic and amplitude and phase can
be predicted from NLS-1D approximation, in agreement with pre-
vious hydrodynamical approach and numerical simulations. Also,
solitons with small angles between them will collide almost elasti-
cally, regardless the velocity M . These results are relevant for pos-
sible experiments like generation of oblique solitons with exciton-
polaritons that were recently reported in [12,14].
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