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Abstract

White-Nose Syndrome (WNS) has devastated insectivorous bat populations, particularly in
North America, leading to severe ecological and economic consequences. Despite extensive
research, many aspects of the evolutionary history, mitochondrial genome organization,
and metabolic adaptations of its etiological agent, Pseudogymnoascus destructans, remain
unexplored. Here, we present a multi-scale genomic analysis integrating pangenome recon-
struction, phylogenetic inference, Bayesian divergence dating, comparative mitochondrial
genomics, and refined functional annotation. Our divergence dating analysis reveals that
P. destructans separated from its Antarctic relatives approximately 141 million years ago,
before adapting to bat hibernacula in the Northern Hemisphere. Additionally, our refined
functional annotation significantly expands the known functional landscape of P. destruc-
tans, revealing an extensive repertoire of previously uncharacterized proteins involved
in carbohydrate metabolism and secondary metabolite biosynthesis—key processes that
likely contribute to its pathogenic success. By providing new insights into the genomic
basis of P. destructans adaptation and pathogenicity, our study refines the evolutionary
framework of this fungal pathogen and creates the foundation for future research on WNS
mitigation strategies.

Keywords: white-nose syndrome; molecular evolution; evolutionary genomics; fungal
evolution; phylogenetic comparative methods; phylogenomics

1. Introduction
Bats play a crucial role in maintaining ecosystem stability, acting as pollinators, seed

dispersers, and natural pest controllers [1,2]. However, in recent years, bat populations,
particularly in North America, have faced an unprecedented decline due to WNS, a fungal
disease caused by Pseudogymnoascus destructans [3,4]. Since its emergence in the United
States in 2006, WNS has spread rapidly, leading to mortality rates exceeding 90% in some
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bat hibernacula [5]. The ecological consequences of this epidemic are profound: the loss of
bat-mediated pest control has led to a 31% increase in insecticide use by farmers, correlating
with an 8% rise in infant mortality rates in affected regions [6]. The epizootology of this
disease is complex and depends on host susceptibility, environmental resistance, and
pathogen virulence [7]. Despite extensive efforts to characterize P. destructans, fundamental
gaps remain in our understanding of its genomic adaptations, pathogenicity mechanisms,
and molecular evolution.

While nuclear genome analyses have provided insights into its gene content and po-
tential virulence factors, mitochondrial genome evolution in this pathogen remains largely
unexplored. Mitochondria play a central role in fungal adaptation, particularly in en-
ergy metabolism, oxidative stress response, and host–pathogen interactions [8,9]. In the
emergence of fungal pathogens, mitochondrial genome rearrangements have been associ-
ated with shifts in virulence and environmental adaptation [10]. Yet the extent to which
mitochondrial evolution contributes to the pathogenic success of P. destructans remains
terra incognita.

Another major challenge in P. destructans research is the severe under-annotation
of its genome. Despite the availability of high-quality genome assemblies [11], over
16,000 proteins in RefSeq remain classified as “uncharacterized”. This lack of functional
annotation impedes efforts to identify critical metabolic pathways involved in host inva-
sion, persistence, and proliferation. Recent advances in computational annotation methods,
including orthology-based inference and metabolic pathway reconstruction, provide an
opportunity to refine the functional landscape of P. destructans, shedding light on its
pathogenic capabilities.

To address these gaps, we conducted a multi-scale genomic analysis of P. destructans,
integrating pangenomics, phylogenetics, comparative mitochondrial genomics, and func-
tional annotation. By reconstructing its evolutionary history within Leotiomycetes, we
aimed to refine estimates of its divergence and explore potential links between mitochon-
drial genome evolution and pathogenic adaptation. Through comparative genomics, we
sought to identify mitochondrial genome features unique to P. destructans and assess their
implications for its biology. Finally, by employing an orthology-based functional annotation
framework, we aimed to improve metabolic pathway resolution and uncover functional
traits underlying its virulence and ecological success.

2. Materials and Methods
2.1. Pangenome Analysis of Mitochondrial Genomes in Leotiomycetes

To perform the pangenome analysis of mitochondrial genomes in Leotiomycetes,
24 mitochondrial genome sequences were retrieved from the RefSeq [12] database using
Entrez-direct v. 22.4 [13] in FASTA format.

The analysis was conducted using the PanACoTA v.1.4.1 [14] toolkit. Pangenome
construction was carried out using MMseqs2 v.17 [15] with a stringent protein identity
threshold of 0.9 to focus on highly conserved genes, minimizing the impact of paralogs
and ensuring robust phylogenetic signal, as recommended in high-resolution pangenome
studies [16]. The pangenome structure was visualized using R packages ggplot2 (version
3.5.1) [17], dplyr, tidyr, and ggnewscale, generating: a donut chart illustrating the distribu-
tion of unique, shared, and core genes and a scatter plot depicting gene presence across
analyzed genomes. Genes present in at least 66% of the genomes were extracted using
MMseqs2 v.17, resulting in the selection of four genes for further analysis.
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2.2. Phylogenetic Analysis

To reconstruct the evolutionary history of Leotiomycetes, we performed both gene-
specific and phylogenomic analyses using mitochondrial coding sequences. As a pre-
liminary control step, we inferred maximum likelihood (ML) phylogenies for four of the
most conserved mitochondrial genes identified in the pangenome analysis. To extend
this approach, we conducted a broader phylogenomic analysis based on 13 single-copy
mitochondrial protein-coding genes (PCGs) shared across 19 Leotiomycetes species (atp6,
atp8, cox1, cox2, cox3, cob, nad1, nad2, nad3, nad4, nad4l, nad5, and nad6), identified using
Proteinortho v.6.3.4 [18].

For both approaches, multiple sequence alignments were generated using MAFFT
v.7.525 [19], with poorly aligned regions removed using trimAl v.1.5.0 [20]. The best-fitting
substitution models were selected via ModelFinder [21], and ML phylogenies were recon-
structed using IQ-TREE v.2.4.0 [22] with 10,000 ultrafast bootstrap replicates [23]. The four
gene-specific trees provided a reference framework for evaluating phylogenetic consistency,
while the phylogenomic tree offered a higher-resolution view of species relationships within
Leotiomycetes. All phylogenies were visualized using ggtree, incorporating species meta-
data retrieved from RefSeq via Phyloki v.0.5.51 (https://github.com/iliapopov17/phyloki
accessed on 25 February 2025), ensuring a standardized and informative representation of
taxonomic relationships.

2.3. Bayesian Evolutionary Analysis

To explore the evolutionary relationships and divergence times within Leotiomycetes,
Bayesian phylogenetic analysis was conducted using BEAST v.1.10.4 [24]. The thirteen
PCGs identified above were concatenated [25] and included in the analysis. rps3 was not
included in the analysis as no substitution rate estimates were available for this gene in the
comparative mitochondrial study by Aguileta et al., and it is not part of the standard set
used for evolutionary rate normalization [26].

The analysis was designed using BEAUti, where the mtREV substitution model was
applied, along with a strict molecular clock. A lognormal prior was set on the clock rate,
with a mean of 0.01 substitutions per site per million years and a standard deviation of 0.5 in
real space, based on mitochondrial rearrangement-normalized substitution rates reported
for Sordariomycetes [26]. While Leotiomycetes-specific rates are not available, their close
phylogenetic relationship to Sordariomycetes—coupled with equivalent fossil-calibrated
divergence times [27]—justifies using this rate as a proxy. A normal prior was applied
to the root height, centered at 298 million years with a standard deviation of 10, based
on fossil-constrained divergence estimates for the Leotiomycetes–Sordariomycetes split
obtained from nuclear phylogenies using 18S, 28S, RPB1, and RPB2 genes [27]. Despite orig-
inating from nuclear loci, these fossil-informed calibrations are appropriate for time-scaling
mitochondrial phylogenies, as they constrain divergence time rather than substitution dy-
namics. The MCMC chain was run for 100,000,000 generations, sampling every 10,000 steps.
Convergence and effective sample sizes (ESS) for all model parameters were assessed in
Tracer v.1.7 [28], confirming sufficient sampling (ESS > 200). The maximum clade credibility
(MCC) tree was summarized using TreeAnnotator with a 5% burn-in (burn-in as stated:
500) and node heights set to mean heights.

Final tree visualization and annotation were performed using ggtree and deeptime,
incorporating species metadata retrieved in the previous step. To contextualize divergence
events within a broader environmental framework, the tree was complemented with a
485-million-year reconstruction of Earth’s surface temperature, based on global mean
surface temperature (GMST) estimates from Judd et al. (https://github.com/EJJudd/
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PhanDA/blob/main/5_Outputs/PhanDA_GMSTandCO2_percentiles.csv accessed on
25 February 2025) [29].

2.4. Comparative Genomic Analysis of Mitochondrial Genomes

Given the primary focus of this study on P. destructans and the close evolutionary rela-
tionship identified among four other fungal species, their mitochondrial genome sequences
in FASTA format were used to calculate the Average Nucleotide Identity (ANI) using
FastANI v.1.34 [30]. The resulting ANI values were visualized as a heatmap generated
with pandas, seaborn, and matplotlib, providing a comparative assessment of genomic
similarity among the selected Leotiomycetes representatives.

Additionally, their complete mitochondrial genomes were retrieved from RefSeq in
GenBank (.gb) format using Entrez-direct. Genomic synteny analysis was conducted using
pyGenomeViz v.1.5.0 (https://github.com/moshi4/pyGenomeViz accessed on 25 Febru-
ary 2025) and MMseqs2 v.17 to compare mitochondrial genome architecture across these
species. To account for the circular nature of fungal mitochondrial DNA and to avoid
artifactual rearrangement signals introduced by arbitrary starting positions, all mitochon-
drial genomes were linearized and anchored to the same conserved reference gene prior
to synteny visualization. Functionally related genes were grouped accordingly during
visualization to enhance interpretability.

To ensure a comprehensive comparative genomic analysis, we extended our approach
by incorporating a biogeographic visualization of the studied mitochondrial genomes. This
allowed us to examine the spatial distribution of the respective fungal species in relation to
their evolutionary divergence. The map was constructed using temperature data from World-
Clim [31] and geographic layers from Natural Earth (https://www.naturalearthdata.com
accessed on 25 February 2025). Data processing and visualization were carried out in
R v.4.4.2 (R Foundation for Statistical Computing, Vienna, Austria) with the sf, stars, terra,
tmap, and dplyr packages. The Miller cylindrical projection was chosen for its suitability in
representing high-latitude regions, including Antarctica [32]. Temperature data were pro-
cessed and reprojected accordingly. Country boundaries and ocean features were sourced
from the ne_110m_admin_0_countries and ne_110m_ocean layers of Natural Earth, ensur-
ing accurate placement of geographic points. Data on species geographic distribution were
retrieved from the Phyloki-generated metadata in the previous step.

2.5. Functional Annotation of Pseudogymnoascus destructans

To functionally annotate the proteome of P. destructans, protein sequences were re-
trieved from RefSeq using Entrez-direct. Uncharacterized proteins were obtained using the
query “P. destructans AND Fungi AND uncharacterized AND srcdb_refseq[PROP]”, yield-
ing 16,425 sequences. Characterized proteins were retrieved using the query “P. destructans
AND Fungi NOT uncharacterized AND srcdb_refseq[PROP]”, resulting in 3909 sequences.
All retrieved sequences were combined into a single dataset, generating three FASTA files:
uncharacterized, characterized, and a complete coding sequence dataset.

Functional annotation was performed using eggNOG-mapper v.2.1.12 [33] within a
Snakemake v.8.28.0 [34] pipeline to optimize computational efficiency. To ensure a sys-
tematic functional classification, redundant annotations were removed, retaining only
unique entries. Each protein was assigned to a functional category based on its Clusters
of Orthologous Genes (COG) classification, with multi-letter categories reduced to the
first letter (e.g., COG4862 (KTN) was categorized under K). The functional distribution of
P. destructans was analyzed by generating bar plots of absolute counts, separately for the
complete dataset (uncharacterized + characterized proteins) and for the subset of char-
acterized proteins. Additionally, a stacked bar chart was used to illustrate the relative

https://github.com/EJJudd/PhanDA/blob/main/5_Outputs/PhanDA_GMSTandCO2_percentiles.csv
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representation of functional categories across three profiles: complete (all proteins), unchar-
acterized (only uncharacterized proteins), and characterized (only characterized proteins).
Data visualization was performed in R using the tidyverse, patchwork, paletter, and forcats
packages. To complement these results and assess annotation consistency, we additionally
ran InterProScan v.5.66-97.0 [35], applying it to a complete coding sequence dataset.

3. Results
3.1. Pangenome Composition

The pangenome analysis of 24 Leotiomycetes mitochondrial genomes identified
614 gene families (Figure 1A), of which 492 (80.1%) were cloud, occurring in only a single
genome. A total of 122 gene families (19.9%) were classified as shell, being present in more
than one genome, but not universally conserved. Notably, no core genes—those present
in all analyzed species—were detected. However, four gene families presented in more
than 2/3 out of 24 genomes were detected (Figure 1B). These genes, while not universally
conserved, exhibit broader distribution patterns compared to the rest of the pangenome.

Figure 1. Composition of mitochondrial pangenome of Leotiomycetes: (A)—Distribution of sets of
genes. The donut chart represents the proportion of cloud (blue), shell (purple), and core (dark green)
genes. Given the absence of core genes, no corresponding segment is represented in the visualization.
(B)—Scatter plot representation of gene family distribution in the pangenome. Each point represents
a gene family, with the x-axis indicating gene families and the y-axis showing their presence across
genomes. Cloud genes are marked in blue and shell genes are marked in purple. Genes exceeding
the 15-genome threshold were retained for further analysis, with those marked in green.

Gene family ID 6 was annotated as nad4l, occurring in 21 genomes, making it the most
conserved mitochondrial gene in our dataset. Gene family ID 32 was identified as cox2,
gene family ID 130 corresponded to cob, and gene family ID 565 was assigned to cox1. These
three genes were detected in 19, 17, and 16 mitochondrial genomes, respectively.

3.2. Phylogenetic Inference

The phylogenomic tree constructed from 13 mitochondrial PCGs provides a robust
framework for understanding evolutionary relationships within Leotiomycetes. A well-
supported and distinct clade consistently included the five key species under investigation:
Pseudogymnoascus destructans (NC_033907), Pseudogymnoascus pannorum (NC_027422), Thele-
bolus microsporus (NC_082275), Antarctomyces pellizariae (NC_048507), and Antarctomyces
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psychrotrophicus (NC_082276). This clustering reinforces their close evolutionary relation-
ship within the class (Figure 2).

Figure 2. Maximum-likelihood phylogenetic tree based on the thirteen protein-coding genes. The tree
was constructed based on atp6, atp8, cox1, cox2, cox3, cob, nad1, nad2, nad3, nad4, nad4l, nad5, and nad6
genes under cpREV+F+R3 substitution model. The tree is midpoint rooted. Clades with bootstrap
support < 70 are shaded in gray. The clade containing Pseudogymnoascus destructans (bold leaf label)
and its close relatives is highlighted in blue.

The majority of branches exhibited high bootstrap support, reflecting strong phyloge-
netic signal across the dataset. Only four nodes had bootstrap values under 70, suggesting
reduced support in a few specific regions of the phylogeny. Nevertheless, the overall
topology remained largely consistent with the reference maximum-likelihood trees based
on individual, highly conserved mitochondrial genes (Figure S1). The consistency between
the phylogenomic and gene-specific phylogenies further validates the inferred evolutionary
relationships and supports the robustness of the phylogenetic framework. To complement
this analysis, we also conducted a pangenome assessment across the same five-species
clade using the pipeline described in the Materials and Methods, with the protein identity
threshold set at 80% to reflect their close relatedness (Figure S2).

3.3. Bayesian Evolutionary Inference

A Bayesian phylogenetic analysis was performed to estimate the evolutionary
divergence times within Leotiomycetes, with a particular focus on the clade con-
taining P. destructans and its closest relatives. The resulting time-calibrated phy-
logeny (Figure 3) largely recapitulates the topology observed in the ML trees, with
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P. destructans (NC_033907), P. pannorum (NC_027422), T. microsporus (NC_082275),
A. pellizariae (NC_048507), and A. psychrotrophicus (NC_082276) forming a strongly sup-
ported monophyletic group. Remarkably, there are only two branches on the tree with a
poor posterior probability parameter (<1).

Figure 3. Bayesian phylogenetic tree of Leotiomycetes mitochondrial genomes with estimated di-
vergence times. The clade containing Pseudogymnoascus destructans (bold leaf label) and its close
relatives is highlighted in blue. Node ages (in million years) are shown to the upper left of each
node, with 95% highest posterior density intervals represented by red horizontal bars. Posterior
probabilities < 1.0 are displayed below corresponding branches. The top panel shows the phy-
logeny; the bottom panel displays the global mean surface temperature (GMST) curve. A red dot
marks the estimated divergence time of the five species most recent common ancestor (MRCA),
and a yellow dot indicates the MRCA of P. destructans and Pseudogymnoascus pannorum. Geological
time scale with periods and epochs is shown for both tree and GMST curves. Ms = Mississippian,
Pn = Pennsylvanian, C = Cisuralian, G = Guadalupian, Lp = Lopingian, ET = Early Triassic, MT = Middle
Triassic, LT = Late Triassic, EJ = Early Jurassic, MJ = Middle Jurassic, LJ = Late Jurassic, EC = Early
Cretaceous, LC = Late Cretaceous, Pal = Paleocene, Eo = Eocene, Ol = Oligocene, Mio = Miocene.
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Divergence time estimates indicate that the most recent common ancestor (MRCA) of
P. destructans and P. pannorum existed approximately 28.2 million years ago (Mya; 95% highest
posterior density (HPD): 22.32–34.17 Mya), during a period when GMST was approximately
23.4 ◦C. In contrast, the MRCA of A. pellizariae and A. psychrotrophicus is estimated at only 0.19 Mya,
suggesting a relatively recent evolutionary split. The broader clade encompassing T. microsporus,
A. pellizariae, and A. psychrotrophicus traces back to 30.3 Mya, while the MRCA of all five focal
species dates to 140.9 Mya (95% HPD: 125.79–157.11 Mya), when GMST was approximately
27 ◦C. Between 140.9 and 28.2 Mya, GMST underwent several fluctuations—including steep
rises and falls—but overall decreased by approximately 3.6 ◦C, highlighting a long-term global
cooling trend across the evolutionary history of these lineages. The estimated divergence time
for the entire Leotiomycetes lineage is 298 Mya (95% HPD: 278.11–316.85 Mya), reflecting deep
evolutionary separation within the class.

3.4. Mitochondrial Genomic Comparison

To assess the degree of mitochondrial genomic similarity among the five focal species,
a pairwise ANI analysis was conducted. The resulting heatmap (Figure 4A) provides a
quantitative measure of nucleotide-level conservation across the mitochondrial genomes of
P. destructans, P. pannorum, T. microsporus, A. pellizariae, and A. psychrotrophicus.

Figure 4. Comparative genomic visualization of mitochondrial genomes in five key Leotiomycetes
species: (A)—Heatmap of pairwise Average Nucleotide Identity (ANI) among mitochondrial
genomes. ANI values represent the percentage of nucleotide identity between each pair of mitochon-
drial genomes. Higher ANI values indicate greater sequence similarity. (B)—A linear comparison
of mitochondrial genomes. Genes are color-coded according to their functional classification: Cy-
tochrome complex subunits—orange, NADH dehydrogenase subunits—blue, ATP synthase complex
genes—light yellow, rRNA—green, ribosomal protein S3—pink, and hypothetical proteins—light
purple. A legend is provided for reference. Pairwise gene synteny is visualized using connecting
lines that indicate sequence similarity, ranging from 56% to 100%. Green lines represent conserved
gene orientation, while red lines indicate inversion events; however, no inversions were observed in
the genomes analyzed.

The highest ANI values were observed between A. pellizariae and A. psychrotrophicus
(99.92%). In contrast, P. destructans and P. pannorum exhibit an ANI of 94.36%, indicating a
closer relationship relative to the other species but still suggesting substantial genetic diver-
gence. The mitochondrial genomes of T. microsporus, A. pellizariae, and A. psychrotrophicus
show moderately high pairwise ANI values (~91%). Notably, T. microsporus exhibits a lower
ANI (~85.9%) when compared to P. destructans and P. pannorum. These results provide
further support for the phylogenetic structure observed in both ML and Bayesian analyses,
where Pseudogymnoascus species form a distinct evolutionary unit, while Thelebolus and
Antarctomyces species cluster separately with varying degrees of sequence conservation.
The overall ANI trends emphasize the evolutionary divergence of these mitochondrial
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genomes, highlighting both recent speciation events and deeper phylogenetic separations
within the group.

To evaluate mitochondrial genome organization and structural variation among the
five focal species, gene synteny was visualized, highlighting large-scale genomic rearrange-
ments and differences in overall genome size (Figure 4B). The mitochondrial genomes
of A. psychrotrophicus and A. pellizariae exhibit near-identical gene content and synteny.
Their mitochondrial genome sizes are almost equivalent (30,121 bp in A. pellizariae and
30,170 bp in A. psychrotrophicus), with only a minor discrepancy. The sole structural
difference is the presence of an additional ATP synthase complex gene in A. psychrotroph-
icus, though its small size renders it functionally non-impactful at the genome-wide
scale. This high degree of conservation suggests minimal evolutionary divergence at the
mitochondrial level.

T. microsporus exhibits several structural variations relative to Antarctomyces species, pri-
marily: an increase in genome size (38,803 bp); reduced sequence similarity in ribosomal protein
S3 compared to Antarctomyces; a rearrangement of two genes within the Cytochrome complex
subunits category; and a relocation of an ATP synthase complex gene within the genome.

P. pannorum possesses the smallest mitochondrial genome among the five species
(26,918 bp), signifying extensive genome compaction. The following structural modifi-
cations distinguish it from T. microsporus: minor rearrangements within the Cytochrome
complex subunits, ATP synthase complex genes, NADH dehydrogenase subunits, and a
reduction in ribosomal protein S3 sequence similarity.

P. destructans has a mitochondrial genome of intermediate length (32,181 bp) and
displays an overall gene order that is identical to that of P. pannorum. Their mitochondrial
synteny is largely preserved, indicating a high degree of architectural conservation, which
suggests that mitochondrial genome organization in Pseudogymnoascus species may be
subject to structural constraint, with functional innovation occurring through mechanisms
other than large-scale rearrangement.

The comparative analysis thus reveals a gradient of mitochondrial genome conserva-
tion: from the virtually identical architectures of the Antarctomyces species to the compact,
yet syntenically stable genomes of the Pseudogymnoascus clade. Although genome sizes
vary across lineages, pairwise sequence similarity across homologous genes remains con-
sistently high, underscoring the overall conservation of mitochondrial coding regions
within Leotiomycetes.

To complement the genomic comparisons, we examined the geographic distribution
of the studied fungal species (Figure 5). The geographic assessment revealed a distinct
biogeographic pattern: the understudied P. destructans’ mitochondrial genome originates
from the United States, whereas T. microsporus, A. pellizariae, and A. psychrotrophicus are
confined to Antarctica. The map visualization, constructed using the Miller cylindrical pro-
jection, integrates species occurrence data with global mean annual temperature patterns,
providing a spatial context for the observed mitochondrial genome divergence.
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Figure 5. Geographic distribution of five analyzed fungal species. The map illustrates the locations of
fungi in relation to global mean annual temperature. Light green dot represents Antarctica where
Thelebolus microsporus, Antarctomyces pellizariae, and Antarctomyces psychrotrophicus are distributed.
Red dot represents the United States of America, where Pseudogymnoascus fungi are prevalent. Coun-
try coordinates were extracted from the ne_110m_admin_0_countries dataset. The visualization
was generated using the Miller cylindrical projection to account for high-latitude distortions. Eu-
ropean and Asian locations of Pseudogymnoascus destructans are not presented due to the absence
of mitochondrial genomic records of this fungus species from the RefSeq and GenBank databases.
Pseudogymnoascus pannorum is not added to this map due to the lack of information on its isolation
site in the corresponding RefSeq entry (NC_082275).

3.5. Functional Profile of Pseudogymnoascus destructans

The functional annotation of P. destructans identified 12,206 proteins distributed across
21 COG functional categories, reflecting a diverse metabolic and cellular landscape (Figure 6A).
While all categories contribute to the biological complexity of the fungus, we focused on the
most abundant and biologically relevant groups, particularly those associated with metabolism,
cellular processes, and information processing. The results presented here are based on eggNOG-
mapper annotations, which are described in detail in the main text, while complementary
InterProScan outputs are provided in the Supplementary Material.
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Figure 6. Functional profile of Pseudogymnoascus destructans. (A)—Barplot of complete P. destructans
profile based on all the sequences from RefSeq. (B)—Barplot of P. destructans “characterized” profile
based on “characterized” sequences from RefSeq. The x-axis lists COG categories; the y-axis denotes
the number of functional elements in each category. (C)—Stacked barcharts of relative abundance of
each COG category in 3 functional profiles: Complete (“uncharacterized” + “characterized” proteins),
Uncharacterized (“uncharacterized” proteins only), and Characterized (“characterized” proteins
only). The x-axis denotes the percentage of relative abundance; the y-axis lists functional profiles. All
three plots share the same legend.

3.5.1. Information Storage and Processing

Several key categories involved in genome maintenance and regulation were identified.
The transcriptional machinery was well represented (L: Transcription, 521 proteins), along
with functional groups responsible for DNA replication, recombination, and repair (K,
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478 proteins) and RNA processing (A, 332 proteins). Additionally, the presence of ribosomal
biogenesis genes (J, 478 proteins) suggests an active protein synthesis system, crucial for
rapid fungal growth and adaptation.

3.5.2. Cellular Processes and Signaling

A significant portion of the P. destructans genome is dedicated to cellular homeostasis
and stress adaptation. The posttranslational modification, protein turnover, and chaperone
category (O, 656 proteins) is among the most enriched, likely reflecting the need for protein
stability and folding under stressful conditions such as oxidative stress and host immune
responses. Notably, the intracellular trafficking and secretion system (U, 570 proteins) is
highly developed, potentially facilitating the export of virulence-associated proteins. Signal
transduction (T, 428 proteins) plays a crucial role in environmental sensing, while defense
mechanisms (D, 188 proteins) may contribute to fungal resilience against host defenses.

3.5.3. Metabolism

The metabolic profile of P. destructans reveals a strong adaptation to its pathogenic
lifestyle. Carbohydrate metabolism (G, 1206 proteins) is the most highly represented
metabolic category, supporting efficient breakdown of host-derived carbon sources.
Amino acid metabolism (E, 650 proteins) and lipid metabolism (I, 487 proteins) suggest
metabolic flexibility, enabling survival in nutrient-limited environments such as bat hi-
bernacula. Additionally, the presence of numerous secondary metabolite biosynthesis
genes (Q, 760 proteins) may indicate the production of bioactive compounds, including
potential virulence factors.

3.5.4. Poorly Characterized Categories

A large fraction of proteins fell into categories with limited functional characterization.
The “Function unknown” (S) category alone contained 3485 proteins, highlighting the
significant gaps in annotation for P. destructans. Many of these uncharacterized proteins
could play essential roles in fungal pathogenesis, warranting further investigation. While
our analysis focused on the most highly represented and biologically relevant categories,
additional functional classes, including those involved in cell cycle control (V, 96 proteins),
chromatin remodeling (B, 249 proteins), and coenzyme metabolism (H, 229 proteins),
further emphasize the complexity of this fungal pathogen.

3.5.5. Comparison to Previously Characterized and Uncharacterized Proteins Dataset

The previously characterized protein subset (2137 proteins) encompassed all major functional
categories observed in the complete profile but represented only 17.5% of the total functional
landscape (12,206 vs. 2137 proteins) (Figure 6B). Characterized proteins were predominantly
associated with essential cellular functions such as translation (J, 219 proteins), post-translational
modification (O, 191 proteins), intracellular trafficking (U, 174 proteins), and energy production
(C, 136 proteins). However, integrating previously uncharacterized proteins, identified using
our refined analysis, revealed a markedly different functional landscape, exposing previously
underestimated aspects of P. destructans metabolism. The complete dataset, based on our refined
functional analysis, demonstrated a substantial expansion in carbohydrate metabolism (G, 1206
now vs. 109 proteins previously) and secondary metabolite biosynthesis (Q, 760 vs. 52 proteins),
supporting the hypothesis that P. destructans employs diverse metabolic strategies to colonize host
tissues. Amino acid metabolism (E, 650 vs. 112 proteins) and inorganic ion transport (P, 419 vs.
54 proteins) exhibited significant increases, suggesting an enhanced capacity to exploit nitrogen
and metal ion resources in nutrient-limited environments. The enrichment of cellular defense
mechanisms (D, 188 vs. 58 proteins) aligns with the pathogen’s need for resilience against host
immune defenses. Furthermore, lipid metabolism (I, 487 vs. 89 proteins) and RNA processing
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(A, 332 vs. 139 proteins) showed substantial expansion, potentially contributing to membrane
remodeling and regulatory adaptation under host-imposed stress conditions.

The relative proportion of “Function unknown” proteins (S) was lower in the charac-
terized dataset compared to the complete profile (Figure 6C). However, this effect primarily
results from the smaller total number of annotated genes rather than an actual enrichment
of known functions. Notably, the uncharacterized protein subset (12,108 proteins) exhibited
a functional distribution highly similar to the complete profile (Figure 6C), indicating that
most metabolic insights were embedded within previously unannotated sequences.

4. Discussion
In this study, we conducted a multi-scale genomic analysis of P. destructans and its close

relatives, employing an unconventional approach by performing a pangenome analysis at
the class level. Pangenome analysis is most commonly conducted at the species or genus
level [16], where lower genetic divergence facilitates clearer differentiation between core
and accessory genes. As the taxonomic level rises, genetic divergence tends to increase,
often leading to an almost complete loss of shared core genes [36], thereby reducing the
effectiveness of conventional pangenome approaches. Additionally, while pangenome
analyses have been widely applied to nuclear genomes, their use in mitochondrial studies
remains limited due to inherent constraints—mitochondrial genomes are typically compact,
encode a small number of essential genes, and exhibit strong functional conservation,
all of which reduce the resolution and dynamic range typically captured in pangenomic
comparisons [37]. Nevertheless, by applying a stringent protein identity threshold of 90%,
we aimed to reduce spurious clustering across highly divergent taxa and ensure that only
confidently conserved genes were retained. Using this approach, we successfully identified
four mitochondrial genes shared by at least 66% of the analyzed genomes, providing a
robust and phylogenetically meaningful core set. Among them, nad4l emerged as the
most conserved, being present in 21 out of 24 species, even under the stringent similarity
threshold. This finding is consistent with previous studies highlighting nad4l as one of
the most conserved mitochondrial genes across Leotiomycetes fungi [38], reinforcing its
phylogenetic utility. Thus, although our approach deviates from standard pangenome prac-
tices, it allowed us to systematically identify highly conserved genes within Leotiomycetes,
providing a robust foundation for subsequent phylogenetic and evolutionary analyses. The
phylogenetic trees reconstructed from these genes served as reference points, guiding the
interpretation of broader phylogenomic and divergence dating analyses.

The phylogenomic analysis based on 13 mitochondrial genes revealed a well-
supported evolutionary framework within Leotiomycetes. The ML tree demonstrated
strong topological stability, with most branches receiving high bootstrap support. Notably,
P. destructans, P. pannorum, T. microsporus, A. pellizariae, and A. psychrotrophicus consistently
formed a distinct monophyletic clade, reinforcing their close evolutionary relationship. It is
important to note that the results of this particular step of the study correspond to previ-
ous studies and are reproducible—they are fully consistent with the results of a study on
comparative mitochondrial genomics of Thelebolaceae fungi obtained by Mi et al., 2024 [38],
where an identical monophyletic group was observed. Despite the existence of a similar
study, our results have a broader interpretation. While the previous study focused on the
two newly sequenced mitochondrial genomes of Thelebolaceae fungi, the present study has
a different aim: to analyze the genome of P. destructans in as much detail as possible. By
evaluating the topology of the obtained trees, we were able to decide on the design of the
next step of the study. In addition, all further steps were carried out for the first time.

The comparative analysis of mitochondrial genomes within P. destructans and its
closest relatives reveals striking sequence conservation coupled with unexpected structural
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stability. The ANI values among the five fungal species remain strikingly high, with a
minimum of 85.7%, reinforcing the close phylogenetic relationship previously established.
The highest ANI values (99.92%) observed between A. pellizariae and A. psychrotrophicus
reflect their recent divergence, while the moderate ANI between Pseudogymnoascus and
Thelebolus species (~85.9 to 90.9%) supports a more ancient common ancestry.

A key question arising from our findings is why P. destructans shows no significant
mitochondrial genome rearrangements despite its emergence as a bat pathogen. Mitochon-
drial genomes play a critical role in fungal pathogenicity by influencing energy production,
stress tolerance, and virulence factor expression [39]. Widespread mitochondrial rear-
rangements may represent an adaptive shift linked to the transition from a free-living
or psychrophilic lifestyle to host-dependent pathogenicity [40]. These rearrangements
are often associated with high rates of homologous recombination [41], mobile element
activity [42,43], or shifts in selective pressures that favor genomic plasticity [9,44,45]. In
pathogenic fungi, drastic mitochondrial genome restructuring has been linked to adaptive
responses, including metabolic flexibility [46], oxidative stress tolerance, and host–pathogen
interactions [8,47]. For example, Ward et al. documented that Ophiocordyceps fungi undergo-
ing a transition from free-living pathogens to insect symbionts exhibited alterations in both
mitochondrial and nuclear genomes – such as gene loss and intensified selective pressures –
corresponding to changes in their parasitic strategy [48]. Likewise, some human pathogens,
such as Cryptococcus [49] and Candida [50], exhibit mitochondrial genome rearrangements
associated with host adaptation and metabolic shifts. In contrast, P. destructans maintains
a mitochondrial gene synteny highly similar to its psychrophilic relatives. Four of the
analyzed species are non-pathogenic and primarily found in extreme cold environments,
such as Antarctica (A. pellizariae, A. psychrotrophicus, T. microsporus) [51,52] or Canada (P.
pannorum) [53]. These psychrophilic species share near-identical mitochondrial architec-
tures, and P. destructans, despite its pathogenic lifestyle and temperate cave habitat across
North America, Europe, and Asia, appears to retain this conserved ancestral gene order.
This stability is notable given that fungal mitogenomes are often prone to rearrangement
via recombination [40]. The absence of widespread mtDNA reorganization in P. destructans
suggests that its adaptation to bats relied on different evolutionary routes. One possibility
is that P. destructans evolved through metabolic streamlining rather than organelle genome
reshuffling. Indeed, compared to its soil-dwelling relative P. pannorum, P. destructans has
shed numerous metabolic functions and can utilize far fewer substrates [53]. This reduced,
specialist metabolism aligns with a host-restricted niche and may have obviated any need
for mitochondrial gene order changes. Unlike most fungal pathogens, P. destructans thrives
at 4–15 ◦C during its host’s hibernation. It primarily infects superficial skin tissues in a two-
phase (biotrophic-to-necrotrophic) manner reminiscent of plant pathogens [54], a strategy
that could be executed without novel mitochondrial reconfiguration. Notably, P. destructans
belongs to the Leotiomycetes, a lineage dominated by plant-associated fungi [55], and likely
inherited effective virulence mechanisms (e.g. nutrienttropism and appressorium-like pen-
etration structures) from that ancestry. This evolutionary head start may have reduced
pressure to alter its mitochondrial genome when it jumped to animal hosts. Consistent with
this idea, P. destructans is phylogenetically distant from other animal pathogens [54] and
may reproduce clonally [56], limiting opportunities for the recombination events [57] that
often drive mitochondrial rearrangements [58]. The lack of mitochondrial rearrangement
in P. destructans highlights that pathogenic success can emerge via genomic streamlining
and repurposing of existing traits rather than through organelle genome plasticity. In sum,
P. destructans exemplifies a pathogen that has evolved a lethal host-specific lifestyle while
paradoxically retaining a static mitochondrial genome. This suggests that strong selection
can favor maintaining mitochondrial integrity when other adaptive strategies (gene loss,
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metabolic specialization, and host mimicry of plant-pathogen tactics) sufficiently meet the
demands of a new ecological niche.

Our mitochondrial Bayesian evolutionary analysis provides a refined evolutionary
framework for P. destructans and its closest relatives. A strongly supported clade consisting
of P. destructans, P. pannorum, T. microsporus, A. pellizariae, and A. psychrotrophicus shares a
common ancestor dating to approximately 141 million years ago, a time corresponding to a
globally warm climate (GMST ≈ 27 ◦C). Between this ancestral divergence and the more
recent split of P. destructans from P. pannorum (~28.2 Mya; 95% HPD: 22.32–34.17 Mya),
global mean surface temperatures dropped by roughly 3.6 ◦C, although this interval was
marked by significant climatic variability. Notably, this lineage endured and diversified
through multiple climatic shifts, ultimately spreading across Antarctica and cold regions of
the Northern Hemisphere. This is highly consistent with the 23.5 Mya estimate reported by
Palmer et al., based on nuclear genome data, despite variations in analytical methods and
taxon selection [58]. Notably, key Leotiomycetes such as Antarctomyces and Thelebolus were
absent from Palmer’s dataset, while our analysis includes these taxa—offering a broader
and complementary perspective. Together, these studies provide coherent insights into the
evolutionary timing of this clade. The deeper divergence of P. destructans from its Antarc-
tic relatives suggests long-term adaptation across hemispheres and environments, with
potential ecological flexibility rooted in a cold-adapted ancestral lineage. Despite relying
on a proxy substitution rate derived from Sordariomycetes, the estimate of a 141 Mya
divergence remains credible, as our results are in excellent agreement with Palmer’s,
who used nuclear genome data and reached similar conclusions at an important time
point. We estimate the origin of Leotiomycetes at 298 Mya (95% HPD: 278.11–316.85 Mya).
This is consistent with fossil-calibrated estimates by Beimforde et al., who placed the
Leotiomycetes–Sordariomycetes split at 287 Mya (Calibration 1) and 309 Mya (Calibration
2) [27]. Since our prior root height was directly informed by these fossil-based nuclear
calibrations, the observed concordance between our mitochondrial estimates and published
nuclear timelines further strengthens the internal consistency and reliability of our model.

Functional annotation of P. destructans has been significantly expanded in this study,
revealing a much broader functional landscape than previously recognized. While in the
previously characterized proteins dataset, our annotation allowed us to assign 2137 COG
categories, our reannotation incorporating uncharacterized proteins increased this num-
ber nearly sixfold to 12,206 proteins, providing a more comprehensive overview of
the pathogen’s functional potential. This result suggests that a substantial portion of
P. destructans’ functional diversity remained obscured due to the incomplete annotation of
its genome. However, despite this progress, 3485 proteins remain classified as “Function
unknown”, reflecting the broader challenge of deciphering fungal protein functions at
a large scale. The under-annotation of fungal genomes is not solely a consequence of
limited experimental validation but also of methodological constraints [59]. As a result,
key metabolic traits in fungi, including those relevant to pathogenicity, may be underrepre-
sented or misclassified. Expanding curated fungal-specific annotation resources is crucial
for improving the accuracy of functional predictions and advancing our understanding of
fungal pathobiology.

Despite the severity of WNS in the United States and Canada, the genome of its etio-
logical agent, P. destructans, remains poorly characterized. As of now, the RefSeq database
contains 16,425 protein sequences from P. destructans labeled as “uncharacterized protein”,
highlighting the significant gaps in the functional annotation. Bioinformatics-driven studies
on the fungal genome are notably scarce. One such study by Davy et al. demonstrated that
P. destructans maintains stable gene expression when growing on the wing tissue of different
bat species, showing no transcriptional shifts between superficial colonization and invasive
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tissue penetration [60]. Additionally, Forsythe & Xu sequenced and annotated the complete
mitochondrial genome of P. destructans, which served as a key reference in our study [61]. We
anticipate that our findings will provide researchers with valuable insights into the genomic
and metabolic landscape of P. destructans, ultimately aiding in the development of strategies to
mitigate WNS [62]. Despite the comprehensive genomic analysis conducted in this study, we
must acknowledge the limitation of this analysis, which is the lack of mitochondrial genomic
records of P. destructans isolates from Eurasian bat populations due to the absence of these
records in publicly available datasets. This limitation naturally constrains the biogeographic
depth of our analysis and limits the exploration of regional variation in mitochondrial genome
structure. Nonetheless, it emphasizes the need for future studies to incorporate geographically
diverse isolates and to complement genomic analyses with functional validation. Further work
should include transcriptomic profiling under ecologically relevant conditions, cross-continental
comparative genomics, and targeted functional assays to investigate the roles of candidate
virulence genes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof11080550/s1. Figure S1: Maximum-likelihood phylogenetic trees inferred on
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substitution model). All trees are midpoint rooted. Clades with bootstrap support < 70 are shaded in gray.
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blue; Figure S2: Composition of mitochondrial pangenome of Pseudogymnoascus and Thelebolaceae fungi.
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and core (dark green) genes. B—Scatter plot representation of gene family distribution in the pangenome.
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