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Abstract: Recommender systems generate suggestions by identifying relationships among past interactions, user
similarities, and item metadata. Recently, there has been an increased focus on evaluating recommendations
based not only on accuracy but also on aspects like transparency and calibration. Transparency is important, as
explanations can enhance user trust and persuasion, while calibration aligns users’ interests with recommendation
lists, improving fairness and reducing popularity bias. Traditionally, calibration and explanation are applied
in post-processing. Our study investigates two key research gaps: (1) the impact of graph embeddings in
model-agnostic knowledge graph explanations, exploring their under-researched potential compared to syntactic
approaches to produce meaningful explanations; and (2) the effect of calibration on recommendation explanations,
assessing whether calibrated recommendation reordering influences the outcomes of explanation algorithms. We
evaluate the quality of explanations using a set of metrics, such as diversity, which measures how well different
interests of the user are covered; popularity, which assesses how well explanations avoid favoring already popular
items; and recency, which examines the inclusion of recently interacted items. Our findings demonstrate that graph
embedding methods are effective in generating high-quality explanations using these offline explanation metrics,
and that post-hoc knowledge graph explanation algorithms are robust to calibration changes.
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1 Introduction
Recommender systems generate suggestions by analyzing
user interactions and/or incorporating side information, such
as domain knowledge, contextual data, and item metadata,
to enhance accuracy [Aggarwal, 2016; Ricci et al., 2022].
However, beyond improving accuracy, aspects such as
fairness, diversity, serendipity, novelty, and coverage also
play a crucial role in enhancing user experience. These
aspects are particularly relevant in addressing the long-tail
problem in recommender systems, where a small number
of items are highly popular across users while most items
receive few interactions [Kaminskas and Bridge, 2016]. In
addition, to capture nonlinear relationships among these data
sources, recommendation algorithms have become more
complex and are often considered black boxes, meaning that
users cannot understand why a particular suggestion was
provided by the system [Tintarev and Masthoff, 2015].
To address the problem of fairness in recommender

systems, Steck [2018] introduced the concept of calibration
in which a recommendation list is considered calibrated
when the user’s interacted item list and the user’s recom-
mended item list have the same distribution of classes
considering an attribute. Considering an example in a movie
domain, if a user interacted with 30% of comedy movies,
10% of adventure movies, and 60% of action movies, it is
expected that the user would receive a similar proportion of
recommended items.
Since calibration ensures that recommendations reflect

the user’s preferences in a balanced way, it can also influ-
ence how users perceive and understand explanations in
recommender systems.
In particular, generating explanations for recommenda-

tions has gained significant attention in the literature [Balog
and Radlinski, 2020; Rana et al., 2022], as explanations
can enhance transparency, trust, efficacy, persuasion, and
user satisfaction [Tintarev and Masthoff, 2015]. Despite
the efforts to explain and generate fair recommendations in-
trinsically in the recommendation algorithms, both methods
are mainly approached as post-processing methods, which
means that one can impact the other. However, no existing
work has systematically analyzed whether and how calibra-
tion influences the explanations generated for recommenda-
tions. Consequently, the main objective of this research is:

Objective: To investigate the effects of calibrated
recommendations in explanations algorithms for
recommender systems.

To understand how calibration impacts explanations in
recommender systems, it is important to include in our
analysis a comparison among the main approaches for gen-
erating explanations available in the literature. Currently,
strategies for generating explanations for RSs can be broadly
categorized into two approaches: (1) model-intrinsic and (2)
model-agnostic, also known as post-hoc approaches [Zhang
and Chen, 2020; Rudin, 2019]. Intrinsic models aim to
generate explanations along with the recommendation itself,
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presenting the reasons why an interacted item is related to
the recommended one [Xu et al., 2023]. Model-agnostic
or post-hoc methods, on the other hand, use an algorithm
independent of the recommendation process to establish
relationships between interacted and recommended items
and, therefore, do not rely on the recommendation algo-
rithm [Rana et al., 2022]. Model-agnostic methods are
generally enriched by external sources, such as Knowledge
Graphs (KGs) –where nodes represent items and their related
attributes, and edges represent the semantic relationships
between nodes – or user items’ reviews [Cao et al., 2024].
Post-hoc KG algorithms predominantly rely on syntactic

approaches, where the relevance of paths connecting inter-
acted and recommended items is measured by the number of
associated links. However, this measure may not fully cap-
ture the semantic relationships within the data. In contrast,
graph embedding-based approaches [Balloccu et al., 2022;
Li and Yang, 2022] can generate semantic representations
of paths between nodes of recommended and interacted
items by projecting them into a vector space. Despite the
potential impact that the choice of the graph embedding
algorithm may have on the quality of recommendation
explanations [Peng et al., 2023], we found no studies in the
literature that evaluate this aspect.
Thus, we aimed to fill this gap in the literature by compar-

ing the impact of different graph embedding algorithms on
the explanation quality in post-hoc explanation algorithms
for recommender systems, as well as by comparing them
with syntactic approaches. Therefore, the specific objectives
were divided into two Research Questions (RQ). The first is:

RQ1: What is the impact of different types of
graph embedding algorithms on the quality of ex-
planations generated for recommender systems?

To answer this research question, we implemented a
model-agnostic (post-hoc) explanation algorithm using
three graph embedding models: one bilinear and two trans-
lational. These vector representations of graph nodes and
edges were generated using three state-of-the-art strategies
(i.e., TransE [Lin et al., 2015] and RotatE [Sun et al., 2019]
as translational models, and ComplEx [Trouillon et al.,
2016] as a bilinear model). The embeddings obtained from
these algorithms were combined to generate representations
of both the user and the graph paths connecting interacted
and recommended items. The path whose latent space
representation is most similar to the user representation is
selected as the explanation.
In the experimental analyses, we ran the post hoc expla-

nations on six different collaborative filtering recommender
systems. To validate explanations, we used explanation
metrics proposed by Balloccu et al. [2022] that assess their
quality, which is characterized by three aspects: measuring
the recency of interacted items, measuring the popularity of
attributes, and also measuring the diversity of the attributes
connecting interacted items to the recommended item.
Additionally, we compared graph embedding strategies

with three syntactic approaches (ExpLOD [Musto et al.,
2016], ExpLOD version 2 (ExpLOD v2) [Musto et al.,
2019], and the Proposed Property-based Explanation Model

Figure 1. Post processing calibration of recommendations.

(PEM) [Du et al., 2022]). The goal of this analysis is to
answer our second research question:

RQ2: Are graph embedding-based strategies
actually capable of generating better explanations
in recommender systems compared to syntactic
approaches?

Similarly to explanation in recommender systems, calibra-
tion can be performed at different stages. The pre-processing
step involves adjusting or omitting parts of the original
dataset [da Silva and Durão, 2023]. During recommendation,
calibration can be achieved by modifying the loss function
or objective function of the recommendation algorithm
[Souza and Manzato, 2024a]. Finally, as a post-processing
step, it consists of reordering the recommended items to
better align with the user’s item attribute distribution [Steck,
2018; da Silva and Durão, 2025].
Figure 1 illustrate the calibration process, where, on

step 1 a user interacts with items that are then inputted
on step 2 to a recommender system. The user-interacted
items follow a distribution based on a class of items (i.e.,
genres of music and movies). Then, step 3 represents the
generation of recommendations by the recommender. This
list also has a distribution of classes. The recommended
and interacted item lists are then inputted in step 4 to a
calibration algorithm that will be responsible for remem-
bering the recommendations in step 5 in order to align the
recommendation class distribution to the interacted item
distribution. Once this alignment achieves its maximum
similarity between distributions, the process is finalized.
In this context, while calibration ensures a balance

between the user’s preferences and recommendation distri-
butions, and explainability fosters transparency and trust in
recommender systems, both methods are commonly used
in post-processing steps. Since most recommender systems
do not account for these factors, the stacking of post-hoc
methods could facilitate the integration of explainability
and calibration algorithms. Consequently, our Research
Question 3 (RQ3) is:

RQ3: What is the impact of calibration strategies
on the explanations of recommendation systems?
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To answer this research question, we implemented the cal-
ibration strategy proposed by Steck [2018] to reorder the rec-
ommendations of five recommender systems using knowl-
edge graph (KG) attributes, based on the same six collab-
orative filtering algorithms used to address RQ1 and RQ2.
Then, we applied three syntactic post-hoc explainable algo-
rithms and the proposed semantic algorithm. We compared
the explanation quality metrics with and without calibration
to analyze whether reordering the items based on the user
profile affected the explanations.
Therefore, the main contributions of this work are:

• The development of a comprehensive approach for
evaluating explanation generation strategies for recom-
mender systems based on knowledge graphs.

• A comparative analysis between graph embedding
strategies and syntactic algorithms in terms of explana-
tion quality in recommender systems.

• A comparative analysis of the impact of different graph
embedding strategies on the quality of explanations gen-
erated for recommender systems;

• A comparative analysis of the effect of calibration on
the different post-hoc explainable algorithms.

Focusing first on RQ1, our results clearly show that bi-
linear models, which can represent more complex relation-
ships between nodes and edges, positively impact explana-
tion quality metrics. Regarding RQ2, we observed that while
syntactic methods prioritize the recency of items and the
popularity of attributes chosen in explanations, embedding-
based strategies balance the trade-off between attribute pop-
ularity and diversity in the explanations shown to users. Fi-
nally, in regard to RQ3, we verified that post hoc explanation
algorithms are robust to calibration methods, meaning that
calibrating recommendations had a low impact on the results
of RQ1 and RQ2 and that post hoc explainable algorithms
can be used stacked to calibration strategies.
The paper is structured as follows: Section 2 reviews

related work on explainable, knowledge graph-based rec-
ommender system algorithms approaches and calibration
strategies. Section 3 details the evaluation approach, focus-
ing on reproducibility, and Section 4 details post-processing
calibration and explanation algorithms, including their
experimental setup and metrics. Section 5 discusses the
results and answers to the three research questions leveraged
in this section. Section 6 summarizes the findings.

2 Background and Related Work

2.1 Post Hoc KG Explanation Algorithms

The concept of Knowledge Graphs is defined by Paulheim
[2016] with four main characteristics: (1) describe real-
world entities and their relations in a graph structure; (2)
define classes and relations of entities (3) allows potential
interrelating entities and (4) cover different domains. More
formally, we define KG as:

Definition: KG = (V, E), where V is the set of
nodes that represents real-world entities and E are
edges that create triple facts. Triples, denoted by
(vh, e, vt) where vh and vt are nodes in V and e is
a directed edge contained in E connecting the two
entities of the real-world nodes [Guo et al., 2022].

This definition provides the structural basis for generat-
ing explanations by the models. In particular, it supports the
construction of explanation path that connect user-interacted
items to recommended items through shared attributes (see
Section 4.1).
Considering a KG of places, a city such as Paris could

be represented by a node connected to its tourist attraction,
the Tower Eiffel, which would be another node in the
KG. An edge ’has attraction’ that represents the semantic
relation between both real-world entities connects them,
creating a triple (Paris, has_attraction, Tower_Eiffel)
that represents a connection between two nodes in a graph.
Particularly, in recommender systems, an explanation
represents a path between one or more interacted items and
a recommended item.
Since KGs provide structured metadata on items, they

have been used to generate accurate and explainable rec-
ommendations in various recommendation architectures.
Explanations in KGs are generated by associating interacted
and recommended items through shared attributes. In the
literature, there are two types of post-hoc or model-agnostic
explanatory algorithms using KGs: one in which recom-
mendations are reordered based on the best explanations
for a recommended item and another in which only the
explanations are generated [Rana et al., 2022].
Considering model-agnostic reordering algorithms using

KGs, Balloccu et al. [2022] employed three optimization
metrics—recency of interacted items, popularity, and diver-
sity of attributes extracted from KG explanation paths—to
reorder recommendations. Meanwhile, Zanon et al. [2022]
reordered recommendations by evaluating the relevance of
attributes extracted from explanation paths, comparing the
frequency of attribute associations with interacted items
and the item catalog. Additionally, Hada et al. [2021]
generated explanations through aspect extraction and
sentiment analysis, enhancing recommendation accuracy
by incorporating textual reviews as a regularizer for the
recommendation algorithm. However, in these studies, the
proposed approaches evaluated explanations exclusively
based on metrics such as accuracy and diversity.
Regarding post-hoc KG architectures for generating

explanations, Musto et al. [2016] introduced an algorithm
called ExpLOD, which leverages KG explanations based
on a bipartite graph that connects interacted and recom-
mended items through shared attributes. Explanations are
ranked using an adaptation of the Term Frequency-Inverse
Document Frequency (TF-IDF) metric, where item nodes
are documents, and attribute nodes are terms. This work
was evaluated by comparing the proposed explanation with
information extracted from the KG in an online experiment,
where the method improved user perception regarding ex-
planation objectives. Musto et al. [2019] extended ExpLOD
Musto et al. [2016] by incorporating broader attributes
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from the KG hierarchy. The same online experiment was
conducted, but ExpLOD explanations were compared with
the newly proposed version. Users preferred explanations
with broader attributes when analyzed from the perspective
of explanation objectives. More recently, Du et al. [2022]
proposed the Property-based Explanation Model (PEM), a
scoring function that ranks attributes based on their connec-
tions with interacted items and the complete item catalog.
PEM outperformed the second version of ExpLOD in online
experiments, establishing itself as the state-of-the-art for
model-agnostic KG-based explanatory algorithms. How-
ever, these approaches are syntactic and do not inherently
consider the KG structure and path to generate explanations.
To address this gap, Zanon et al. [2024] introduced a
model-agnostic explanation algorithm using KG vector
representations, comparing it with syntactic approaches
through offline explanation quality metrics. However,
different ways of generating graph vector representations
were not explored, as only a single model was used to
generate the KG embeddings in the explanation algorithm.
The evaluation of explanations has also gained attention,

as explanations are primarily assessed through online user
studies, which are time-consuming and costly to validate
strategies. In Coba et al. [2022], offline metrics were imple-
mented to evaluate explainable recommendations, assessing
the robustness of explanatory algorithms by measuring the
number of items that can be explained to users and the
number of user interactions related to explanations. On the
other hand, some studies also consider the diversity and
relevance of attributes displayed in explanations [Balloccu
et al., 2022; Souza and Manzato, 2022], although the
relationship between such metrics and online tests remains
undefined. Moreover, offline metrics are not standardized,
and studies evaluating explanations through user studies
often lack quantitative assessment.
Thus, explainable recommender systems often do not

evaluate explanations both quantitatively and qualitatively.
While model-agnostic KG-based reordering models con-
tribute with accuracy and diversity metrics, model-agnostic
KG explanations are evaluated through online user studies,
which are costly and limited by the number of participants.
As a result, they are not extensively assessed through offline
evaluation.

2.2 Calibration Strategies
Recommender systems research has traditionally focused
on enhancing the accuracy of these systems. However,
given their significant roles in shopping, entertainment,
socialization, and education, it is crucial to go beyond
accuracy. They should also emphasize other important
qualities, such as diversity in the recommendations, fairness
by ensuring all items have a similar opportunity to be recom-
mended, serendipity to surprise users with unexpected good
suggestions, and trustworthiness by strengthening system
security [Kaminskas and Bridge, 2016; Wang et al., 2024].
The concept of calibration was extracted from the field

of machine learning for the classification task, and it is
used to solve the class imbalance problem. In general,
miscalibration is associated with popularity bias where only

a few sets of items that are interacted with by many users
are recommended, affecting aspects such as diversity and
fairness [Abdollahpouri et al., 2020]. According to Steck
[2018], calibration is defined as:

Definition: A classification algorithm is considered
calibrated when the predicted class distributions
align with the actual data distributions. Specifi-
cally, in recommendations, calibration is achieved
when the user’s various interests are represented in
the recommended list in their correct proportions
[Steck, 2018].

In the literature, numerous studies focus on calibrating
recommender systems. An initial approach by Steck [2018]
introduced a post-processing step that re-ranks recommen-
dations using the maximal-marginal relevance algorithm
and employs the Kullback-Leibler (KL) divergence as a
calibration metric. The findings demonstrated that while the
alignment between the genres of movies that users interacted
with and those recommended improved after re-ranking, but
at the cost of reduced accuracy.
Building on the proposal by Steck [2018], several

adaptations and modifications of the algorithm have been de-
veloped to better align users’ interests in recommended lists
or to enhance the trade-off between accuracy and calibration.
For instance, Naghiaei et al. [2024] introduced an algorithm
aimed at addressing users’ needs beyond accuracy metrics.
Instead of focusing solely on the genre miscalibration as in
[Steck, 2018], their approach emphasized novelty, cover-
age, surprise, and redundancy in user rankings. Conversely,
da Silva and Durão [2023] proposed a new trade-off function
that incorporates user bias to better align with users’ tenden-
cies. Meanwhile, Souza and Manzato [2024b] developed
a processing approach for calibrating recommendations by
modifying the Bayesian Personalized Ranking based on
Matrix Factorization (BPR-MF) algorithm. They integrated
the KL divergence into the cost function to minimize both
error and divergence.
Several studies have explored calibration in recommender

systems from a user-centric perspective. For example, Ab-
dollahpouri et al. [2020] examined the relationship between
calibration and popularity bias and fairness, finding that
users with a stronger interest in popular items are more prone
to miscalibration. Similarly, Lin et al. [2020] conducted
experiments to understand the causes of miscalibration in
collaborative filtering algorithms, concluding that, beyond
item popularity, three other factors influence calibration:
(1) category-wise user profile entropy, (2) the number of
categories, and (3) the size of item categories. Conversely,
Alves et al. [2024] carried out an online experiment to assess
whether users could perceive fairness in calibrated recom-
mendations. An A/B test was conducted, comparing groups
that received different forms of calibrated recommendations
with a control group that received recommendations without
post-processing. The results indicated that calibration
did not alter the perception of recommendations despite
accuracy trade-offs reported in other studies. However, the
study also found that users did not perceive the fairness of
recommendations unless it was explicitly explained to them.
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Figure 2. Evaluation Approach: The blue and orange lines depict the input and output flows of the modules. Dashed lines indicate algorithms (in yellow)
or metrics (in green) within each module.

In this context, research on calibration in recommender
systems can be broadly categorized into two subgroups: (1)
studies aiming to improve the alignment of user interests
in recommendation lists while maintaining accuracy and
(2) studies exploring user perceptions and the causes of
miscalibration in collaborative filtering algorithms. Despite
these efforts, the effect of calibration strategies on other
post-processing steps, such as explanation algorithms,
remains largely unexplored. Our work addresses this gap
by investigating whether calibration strategies influence the
quality of explanations in recommendation systems.

3 Proposed Evaluation Approach

One of the key contributions of this paper is the evaluation
approach for evaluating explanations, as illustrated in Figure
2. The blue line depicts the data flow used to address
RQ1 and RQ2, focusing on evaluating and comparing
model-agnostic post-hoc KG-based explanations using
syntactic and semantic approaches.
Conversely, the orange line indicates the flow used

to address RQ3. Before generating explanations for the
recommendations produced by the Recommender System
module, a calibration strategy proposed by Steck [2018]
reorders the suggestions using two KG attributes: genre and
award received. For instance, in a movie context, by the end
of the calibration algorithm module phase, if the distribution
of interacted genres is 20% drama, 50% action, and 30%
comedy, the distribution of reordered recommended items
will more closely align with these proportions compared
to the initial list. The answer to RQ3 is then derived from
comparing explanations generated with and without the
Calibration Algorithm module.
The first two research questions focus on comparing the

impact of different embedding algorithms on explanations
and evaluating how these explanations compare to syntactic
approaches. To address RQ1 and RQ2, the blue flow in
the figure is followed. First, six recommender systems are
executed using two datasets to generate recommendation
lists for all users. Then, three syntactic explanation methods

and one embedding-based model are used to generate
explanations for each recommendation.
For RQ3, we aim to analyze the impact of calibration

approaches on explanations. As shown by the orange flow in
Figure 2, this process involves two stacked post-processing
steps. First, the recommender systems generate suggestions.
Then, a calibration reordering is applied to align the distribu-
tion of KG attributes between interacted and recommended
items. This reordering takes place before the execution of
the explanation algorithms.
In the context of movies, a KG can include various edge

types such as genres, awards received, actors, and directors.
The calibration algorithm operates by taking as input (1) the
user’s interacted items, (2) the suggested items generated by
a recommendation algorithm, (3) a specific edge type, and
(4) the KG itself. Each user’s profile will display a distri-
bution of attribute nodes linked to a chosen edge type. For
instance, if we focus on the genre edge type, the distribution
might show that 20% of interacted movie nodes are linked to
drama, 50% to action, and 30% to comedy. The calibration
algorithm then adjusts the order of the suggested items to
match this distribution in relation to the chosen edge type.
In order to answer RQ1 and analyze how different

graph embedding algorithms impact the generation of
model-agnostic explanations in Recommender Systems
(RS), we used the evaluation approach of Figure 3 that
generates explanations for recommendations using graph
embeddings produced by the TransE [Lin et al., 2015],
ComplEx [Trouillon et al., 2016], and RotatE [Sun et al.,
2019] algorithms. The selected explanation is the path with
the highest similarity between two embeddings: the path
embedding and the user embedding. The path embedding
is computed as the sum of the embeddings of the nodes and
edges that connect one or more interacted item nodes to a
recommended item node. Meanwhile, the user embedding is
obtained by summing the embeddings of the interacted item
nodes. In Section 4.1, we provide a detailed explanation of
the embedding-based strategies.
To answer RQ2, we compare graph embedding-based

approaches with three state-of-the-art algorithms for syntac-
tic explanations in Recommender Systems (RS). Our goal
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is to determine whether embedding-based approaches out-
perform syntactic approaches. The implemented syntactic
algorithms are: ExpLOD [Musto et al., 2016], ExpLOD
version 2 (ExpLOD v2) [Musto et al., 2019], and the
Proposed Property-based Explanation Model (PEM) [Du
et al., 2022]. All three use strategies to balance the number
of references that attribute nodes have between interacted
and recommended items to select the most relevant path
for an explanation. In Section 4.2, we provide a detailed
explanation of these approaches. In Section 4.3, we describe
the metrics proposed by Balloccu et al. [2022] that assess ex-
planation quality by measuring attribute diversity, attribute
popularity, and the recency of items within explanations.
The evaluated strategies are post-hoc and, therefore,

independent of the RS. In our evaluation, we consider seven
recommendation algorithms based on different approaches:

• Most Popular [Cremonesi et al., 2010] for non-
personalized recommendations. It recommends the
most popular items that were not interacted by the user.;

• Personalized PageRank algorithm [Musto et al.,
2016] augmented with the Wikidata graph for graph-
based recommendations. This algorithm recommends
items based on random walks from user-interacted item
nodes. The weights for the random walks performed
by the algorithm 80% to interacted items and 20% to
all remaining nodes;

• User-KNN [Resnick et al., 1994] for neighborhood-
based. This algorithm performs cosine similarity
between users to recommend items that a similar user
has interacted with, but the user that will receive the
recommendation has not. The parameter K was set to
the square root of the total number of users;

• Embarrassingly Shallow AutoEncoder (EASE)
[Steck, 2019] and Bayesian Personalized Ranking
Matrix Factorization (BPR-MF) [Rendle et al.,
2009] for non-neural algorithms. While the EASE
algorithm uses a linear auto-encoder architecture to
generate suggestions, the BPR-MF is an optimization
method for Matrix Factorization (MF) that learns from
implicit feedback using a pairwise ranking approach.
The model optimizes a criterion where a recommender
system learns by preferring an interacted item over a
non-interacted item for a given user. The parameter
lambda for the EASE algorithm was set to 500 in
concordance with the original paper. The parameter of
embedding size for BPR-MF was set to 32;

• Neural Collaborative Filtering (NCF) [He et al.,
2017] for neural network-based architectures. This
algorithm is an ensemble of an Artificial Neural
Network and Matrix Factorization. For both algorithms
the user and item embedding was set to 32, with four
layers of 64, 32, 16, 8 neurons, running for 10 epochs
and a batch size of 256 samples. A negative sampling
was also used were for each positive sample on the
train set, 4 negative samples were added based on
unseen items. For testing a leave-one-out evaluation
was conducted, as in the original paper, therefore, the
last interaction of every user along with 100 items that
were not interacted are on the training set.

We used the CaseRecommender library [da Costa et al.,
2018] to implement the Most Popular, User-KNN, and BPR-
MF algorithms. The implementations of the other recommen-
dation algorithms, along with the explanation algorithms,
metrics, and queries used to extract triples for constructing
the KG, are available in an open-source repository1, which
is one of our contributions in this work. The split for all al-
gorithms, excluding the NCF, which is based on a leave-one-
out evaluation, was 80% for training and 20% for testing.
For evaluations, we considered the MovieLens Latest

(ml-latest-small) [Harper and Konstan, 2015] and LastFM-
2k [Cantador et al., 2011] datasets to generate explanations
for the Top-5 recommendations of six RS algorithms for
all users. For the highest-ranked items from each recom-
mendation algorithm, all seven (four embedding-based and
three syntactic) model-agnostic explanation algorithms were
executed to obtain explanation quality metrics. Taking into
account the reproducibility guidelines in RS proposed by
Ferrari Dacrema et al. [2021] and the robustness in evalu-
ating the explanations highlighted in Tchuente et al. [2024],
and to ensure a rigorous evaluation, we applied six RS
algorithms from different families, using 90% of the dataset
for training and 10% for testing to generate explanations.
We used a Wikidata Linked Open Data (LOD) KG to

extract data for the domains of movies and musical artists
to implement all evaluated explanation and calibration
algorithms. Items where no data was found on the LOD was
removed from the datasets. The processed data retained 99%
of the original interactions for the MovieLens dataset and
89% for the LastFM dataset. A summary of the MovieLens
and LastFM dataset statistics before and after preprocessing,
as well as KG details, is available in Table 1. The data
extraction software and obtained triples from the KG for
the domains are available in this manuscript’s open-source
repository.

Table 1. Statistics of the original and processed datasets, as well as
KG information regarding the number of entities, triples, and edges.

MovieLens LastFM

Original
Dataset

users 610 1,892
items 9,724 17,632

interactions 100,836 92,834

Generated
Dataset

users 610 1,875
items 9,517 11,641

interactions 100,521 83,017

Wikidata
KG

entities 78,703 34,297
triples 295,787 134,197

edge types 23 33

To address RQ3, we integrated the calibration method sug-
gested by Steck [2018] within our evaluation approach. We
applied this calibration to two edge types in the KG for re-
sults from each recommendation algorithm, with the goal of
aligning the distribution of user-interacted item nodes with
those of recommended item nodes. Following calibration,
we executed the explanation algorithms to determinewhether
stacking these two post-processing methods would influence
the quality of explanations in recommender systems. Our ex-

1https://github.com/andlzanon/lod-personalized-recommender
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periment was conducted using the five collaborative filtering
methods, which are inherently more susceptible to popularity
bias from the MovieLens dataset. Therefore, for this exper-
iment, we included the Most Popular, UserKNN, BPR-MF,
EASE and NCF algorithms.
As explanation algorithms, we included the three syntactic

baselines. The ComplEx [Trouillon et al., 2016] algorithm
was chosen to represent an embedding approach as it was
the most effective embedding algorithm among TransE [Lin
et al., 2015], RotatE [Sun et al., 2019], and ComplEx in ac-
cordance with the answers of RQ1 and RQ2. The edge types
chosen to calibrate recommendations upon were genre and
award received.

4 Materials and Methods

4.1 Embedding Explanation Algorithm
In the literature, generating explanations for recommenda-
tions using Knowledge Graphs (KGs) is often approached
as a path-finding problem [Du et al., 2022; Musto et al.,
2016, 2019]. This method involves identifying connections
between user-interacted and recommended items through
shared attributes. As defined in Section 2.1, the KG models
entities and their relationships, forming the basis for both
syntactic and semantic techniques by unifying user interac-
tions and item metadata. Model-agnostic KG explanations
aim to identify the most relevant explanation path, which
is defined as a KG path connecting an interacted item to a
recommended item.

Definition: An explanation path is represented as
argmax(∀c ∈ C : agg(rel(n)∀n ∈ c)). Where, for
each path c in the set of paths C that connect an
interacted item to a recommended item, an aggre-
gation function (agg) — such as mean or sum— is
applied to the relevance rel of each node n within
the path.

Figure 3 illustrates the model-agnostic KG embedding
approach. The nodes interacted with by the user in the KG
are shown in blue, attribute nodes are represented in yellow,
and the recommended item node is in red. The same colors
apply to the vectors that represent the embeddings of these
nodes. The black vector represents an embedding of the
relations between the nodes, represented by an arrow of the
same color in Figure 3.
Two embeddings are required to compute the relevance

rel of an explanation path: the user embedding and the
path embedding. The user embedding is calculated using
the sum pooling of the embeddings of the interacted items.
The path embedding, in turn, is obtained by sum pooling all
embeddings of items, attributes, and relations along the path
that connects an interacted item node to a recommended
item node in the KG. Equations 1 and 2 define the compu-
tation for each embedding, where I represents the set of
interacted item nodes, and P is the set of item, relation, and
attribute nodes in a path. The embedding method returns
the embedding of the node passed as a parameter. The paths
were extracted using Dijkstra’s algorithm [Dijkstra, 2022].

Figure 3. Structure of the proposed model. The blue nodes represent the
items interacted with by the user, the yellow) nodes represent attribute
nodes, and the red) node is the recommended item node. The same color
scheme applies to the vectors generated by the embedding algorithms.
Black vectors represent edge embeddings. The symbol

∑
represents a sum

pooling operation, and ∼ is the cosine similarity between two embeddings,
with rel being the output of the cosine similarity function.

embed(user) =
∑
i∈I

embedding(i) (1)

embed(path) =
∑
n∈P

embedding(n) (2)

The chosen explanation path is the one with the greatest
similarity to the user’s embedding among all the paths that
connect at least one interacted item to the recommended
item. In this sense, the cosine similarity of the user’s em-
bedding with the path embeddings computes this proximity.
The maximum path length was set to 5, and the number
of interacted items per explanation to 3, following the
same configuration as the baselines. The similarity value is
represented in Equation 3, where embed(user) is the user’s
embedding and embed(path) is the path’s embedding.

sim(user, path) = embed(user).embed(path)
||embed(user)||.||embed(path)||

(3)

The selection of the explanation path adheres to Equation
4, where, for all explanation paths within the set Paths
that connect a node of an interacted item to a node of
a recommended item through shared attributes, the path
embedding with the highest cosine similarity to the user
embedding is chosen.

argmax(∀path ∈ Paths sim(user, path)) (4)

Algorithm 1 is the pseudocode for the explanation algo-
rithm based on embeddings and uses three parameters: the
user’s history items (pro_items), the recommended item to
be explained (rec_item), and the trained graph embedding
model (model). In line 2, the user’s embedding is created
by summing the embeddings of the interacted item nodes,
which are returned by the graph embedding model.
Next, in line 3, all paths from an interacted item to the

recommended item are obtained using Dijkstra’s algorithm
[Dijkstra, 2022]. Since in the proposed algorithm the user’s
embedding is compared to the path embeddings, lines 4 and
5 initialize variables that will store the current maximum
similarity and the path embedding most similar to the user’s.
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Lines 6 to 14 represent the generation of path embeddings
and their comparison with the user’s embedding. Thus, for
each path, the embedding is generated by summing the em-
beddings of the nodes that compose it. Therefore, c.nodes()
returns a list of nodes in the path c and model(c.nodes())
returns the embeddings of these nodes. Then, the cosine
similarity between the user’s and the path’s embeddings
is computed in line 8. When this value is greater than the
current maximum, both the maximum value and the path
corresponding to this maximum similarity are updated in
lines 10 and 11. In line 14, the algorithm returns the path em-
bedding with the greatest similarity to the user’s embedding.

Algorithm 1 Embedding Explanation Generation
1: function embed_expl(pro_items, rec_item, model)
2: user_embed← sum(model(pro_items))
3: paths← dijkstra(pro_items, rec_item)
4: max← −1
5: max_path← []
6: for c in paths do
7: path_embed← sum(model(c.nodes()))
8: sim← cosine(path_embed, user_embed)
9: if sim > max then
10: max← sim
11: max_path← c
12: end if
13: end for
14: return max_path
15: end function

The embedding proposal was made by generating em-
beddings from the KGs extracted from the Wikidata LOD
for the movie and artistic domains of the MovieLens and
LastFM databases, respectively. The choice of embedding
algorithms was made based on different families of algo-
rithms. While TransE [Lin et al., 2015] and RotatE [Sun
et al., 2019] use the translational approach, the ComplEX
algorithm [Trouillon et al., 2016], in turn, is a bilinear
algorithm. The TransE algorithm was compared to RotatE
to verify whether the evolution of the state of the art in graph
embeddings representation within a family of algorithms
improves explanation quality metrics.
Translational models are based on the concept of cartesian

coordinates [Cao et al., 2024; Zhang et al., 2019] where,
considering a triple (h, r, t), where h and t are nodes in the
KG and r is the relation that connects the two nodes, a linear
transformation representing the distance among these ele-
ments generates the cost function to beminimized, so h+r ≈
t. RotatE uses the distance equation dr(h, t) = ||h ◦ r − t||,
whereas TransE uses the function dr(h, t) = ||h + r − t||.
The symbol ◦ denotes the element-wise product. Bilinear
models, meanwhile, assess the similarity of h, r, and t
using inner products and multiplicative operations, usually
involving bilinear forms [Li and Yang, 2022].
For training the graph embedding models, parameter

optimization was performed where the learning rate (λ) was
varied between 0.1 and 0.001, and the batch size (B) for
the parameter update was 128 and 256. The embedding size
(K) was also optimized between 200 and 400. The use of
negative sampling was also varied. When negative sampling

was present, 10 negative samples per positive sample were
generated for a batch. The number of epochs for training
was fixed at 40 for all models. Since the ComplEX model
[Trouillon et al., 2016] uses the Stochastic Gradient Descent
algorithm with AdaGrad [Duchi et al., 2011] as an optimizer,
the learning rate is adjusted during training.
The KG triples were divided into training, validation, and

test sets in 0.8, 0.1, and 0.1 proportions, respectively. In
the KG extracted from Wikidata for the MovieLens dataset,
235,466 triples were used for training, 29,434 for validation,
and 29,433 for testing. For the KG extracted for LastFM, the
training, validation, and test splits were 101,516, 12,690, and
12,689, respectively. The Pykeen library [Ali et al., 2021]
was used to implement the graph embedding models. The
model’s accuracy is measured by the Hit Rate metric, which
evaluates how well the model finds the node that completes
a triple. Thus, given a node embedding h and a relation em-
bedding r, the model must find the correct node embedding
t corresponding to the triple (h, r, t) present in the graph.
The Hit Rate metrics on the test set for the best parameter
models for the KG embeddings extracted from Wikidata for
MovieLens and LastFM are presented in Table 2.
The best models achieved the following parameters: For

the MovieLens dataset, in the TransE model K was 200,
λ was 0.001, B was 256, and negative sampling was not
used; for the ComplEX model K was 400, B was 128, with
negative sampling; in the RotatE model K was 200, λ was
0.001, B was 128, with negative sampling. For the LastFM
dataset, in the TransE model K was 200, λ was 0.001,
B was 256, and negative sampling was not used; for the
ComplEX model K was 200, B was 128, without negative
sampling; in the RotatE model K was 200, λ was 0.001, B
was 128, with negative sampling.

Table 2. Test set metrics for different graph embedding algorithms
for the KG of the MovieLens and LastFM datasets. H@n is the Hit
Rate metric of the model for correctly completing a triple consider-
ing the n nearest nodes.

TransE RotatE ComplEX

MovieLens

H@1 0.0317 0.0982 0.0115
H@3 0.0956 0.1595 0.0209
H@5 0.1282 0.1927 0.0261
H@10 0.1727 0.2418 0.0362

LastFM

H@1 0.0570 0.1852 0.0029
H@3 0.1135 0.2725 0.0076
H@5 0.1481 0.3154 0.0118
H@10 0.1998 0.3735 0.0219

4.2 Syntactic Explanation Algorithms
Three syntactic algorithms were implemented for compar-
ison with the four results obtained through the application
of the graph embedding method in the evaluation approach
described in Section 4.1. Unlike embedding-based methods,
syntactic approaches use the occurrence of the attribute
node related to the item node to determine its relevance.
The ExpLOD method [Musto et al., 2016] ranks proper-

ties in the Knowledge Graph (KG) using an adapted TF-IDF
approach. The relevance of an attribute is determined by the
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frequency of references to the attribute from both interacted
and recommended items relative to the total references to
the attribute across all items. Equation 5 illustrates the
calculation for the relevance value of an attribute p, where
np,Iu represents the number of links from the set of items
interacted with by the user Iu to the attribute p. Similarly,
np,Ir

denotes the number of links connecting the attribute
p to the recommended items Ir, and IDF (p) stands for the
Inverse Document Frequency of p, calculated as log( |C|

np,IC
),

where |C| represents the total number of items in the catalog
and np,IC

is the total number of items referencing the
attribute p. The values α and β are weights and were set to
0.5 according to Musto et al. [2016].

explod(p, Iu, Ir) = (αnp,Iu

|Iu|
) + (β np,Ir

|Ir|
) ∗ IDF (p) (5)

Equation 6 shows the calculation for ranking attributes in
ExpLOD v2 [Musto et al., 2019], which is very similar to
its previous version but also encompasses broader attributes.
For example, consider the film ’La La Land’ from 2016,
which is classified with the attribute ’romance’ in the
Wikidata KG. This classification implies that the film is also
associated with broader attributes like ’interpersonal rela-
tionship’ and ’love’ since ’romance’ is a subclass of these
attributes. As a result, for broader KG attributes b that have
subclasses, the relevance is the sum of Equation 5 for all
attributes pbi in the setPc(b) that are children of b, multiplied
by the IDF of the broader class (IDF (b)). Therefore, the
ExpLOD algorithms rank attributes that are popular among
the set of interacted items but rare in the catalog items set.

explod(b, Iu, Ir) =
|Pc(b)|∑

i=1
explod(pbi, Iu, Ir) ∗ IDF (b)

(6)
The scoring mechanism used in the Property-based

Explanation Model (PEM) is represented by Equation 7 and,
unlike the ExpLOD algorithms, considers the number of
interacted items that reference the attribute instead of the
number of links. To score an attribute p, first, the number
of interacted items that reference the attribute is considered,
|I(p, Iu)|, where Iu represents the set of items with which
the user interacted. This value is then normalized by the total
number of items the user interacted with, denoted by |Iu|.
Furthermore, the equation considers the number of items

in the catalog C connected to the attribute |I(p, C)|. Similar
to the previous term, this value is normalized by the total
number of items in the catalog, denoted by |C|. Finally, the
logarithm of the total number of items in the catalog con-
nected to the attribute log(|I(p, C)|) is calculated to amplify
the importance of relatively rare attributes in the catalog.

score_pem(p, Iu, Ir, C) = |I(p, Iu)|/|Iu|
|I(p, C)|/|C|

∗ log(|I(p, C)|)

(7)
For all the algorithms, the path with the highest average

attribute relevance is chosen as the explanation. Addition-
ally, the maximum path length was set to five, and the

maximum number of interacted items for a recommended
item was three.

4.3 Explanation Metrics
In their study, Balloccu et al. [2022] conducted an online sur-
vey to explore what users perceive as quality explanations.
The findings revealed that:

Definition: A quality explanation is characterized by
three key attributes: the recency of items connecting
the interacted and recommended items, the popularity
of the attributes linking these items, and the diversity
of these attributes across various explanations.

The Linking Interaction Recency (LIR) metric measures
the recency of the items interacted with by the user that
form an explanation; the Shared Entity Popularity (SEP )
measures the popularity of the attributes displayed in expla-
nations for a single user, and the Explanation Type Diversity
(ETD) measures the number of different attributes in the
explanations. Thus, the metrics proposed by Balloccu et al.
[2022] to evaluate explanation quality define that quality
explanations find different paths (ETD), but use popular
attributes (SEP ) and connect recommended items with
recently interacted items (LIR). All metrics range from 0
to 1, where 1 is the optimal value, except for ETD, which
can be greater than 1 if the path has more than one attribute.
Equations 8 and 9 represent the metrics for LIR and

SEP , respectively. These metrics are calculated based on
the mean of normalized exponentially weighted moving
average equations for each interacted item and attribute
within an explanation.
For LIR, the values of the interacted items (pi) are

calculated using their respective timestamps (ti), which are
normalized using the min-max method to range between 0
and 1. The recursive nature of the function ensures that the
value of a property i depends on i − 1, with values ordered
in ascending order of timestamps. Thus, LIR(p1, t1) is
equivalent to t1. The parameter β is typically set to 0.3,
as suggested in Balloccu et al. [2022]. Consequently,
LIR assigns higher values to explanations that connect
recommendations with more recently interacted items.

LIR(pi, ti) = (1− β) ∗ LIR(pi−1, ti−1) + β ∗ ti (8)

In Equation 9, the Shared Entity Popularity metric (SEP )
quantifies the popularity of attributes considering the num-
ber vi of item nodes connected to the attribute ei. Min-max
sorting and normalization are also applied to the number
of references an attribute has to other nodes. Consequently,
SEP (e1, v1) corresponds to v1, representing the attribute
with the smallest number of references in the KG. High
values of SEP indicate that the attributes in explanations
are popular.

SEP (ei, vi) = (1− β) ∗ SEP (ei−1, vi−1) + β ∗ vi (9)

Finally, Equation 10 defines the Explanation Type Di-
versity metric (ETD), which quantifies the diversity of
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attributes in explanations associated with recommendations.
It calculates the ratio of the number of properties in the
recommended list |ωLu

| to the minimum between the
length of the recommendation list k and the total number of
possible attributes ωL that could form an explanation. ETD
provides insight into the variety of attributes presented in
explanations and helps to assess whether the explanation
algorithm tends to favor repetitive attributes. Higher values
of ETD indicate a greater diversity of attributes.

ETD(S) = |ωLu
|

min(k, |ωL|)
(10)

4.4 Calibration Approach
Calibration in recommendation systems is a re-ranking
method that aims to align the recommendation list with user
preferences, i.e. minimize the divergence between them. To
quantify this divergence, several methods such as Jensen-
Shannon Divergence, Chi-Squared Test, Kullback-Leibler
can be employed. In this work, we use Kullback-Leibler
divergence because it is well adopted in literature [Steck,
2018; da Silva et al., 2021; Alves et al., 2024]. The equation
11 presents the mathematical formulation. Similar to Steck
[2018], we set α = 0.01 as a regularization term to prevent
division by zero, and denote c for the category, i.e., edge type
(genre, award received, and so on).

DKL(p ∥ q) =
∑
c∈C

p(c|u) log
(

p(c|u)
q̂(c|u)

)
(11)

q̂(c|u) = (1− α) · q(c|u) + α · p(c|u) (12)

where p(c|u) denotes the target distribution, while q̂(c|u) rep-
resents the approximating distribution.
On the other hand, Equation 13 defines the optimization

function used to derive the optimal calibrated set of items,
I∗

u, i.e., the re-ranked recommendation list for user u.

I∗
u = max

Iu

(
(1− λ) · s(Iu)− λ ·DKL(p, q(Iu))

)
(13)

where λ is a trade-off parameter from 0 to 1 that balances
accuracy and fairness. The term s(Iu) represents the sum
of scores for the recommended items for the user u, while
DKL(p, q(Iu)) measures the Kullback-Leibler divergence
between the target distribution p and the approximating dis-
tribution q(Iu).

4.5 Calibration Metrics
To evaluate the calibrated re-ranking list, we consider
metrics to capture the relevance (accuracy) and fairness
(calibration) of the recommendation. Achieving a balance
between these two factors is essential to ensure that recom-
mendations are accurate and aligned with user preferences.
To evaluate the recommended items’ relevance, we use

Mean Average Precision (MAP) and Mean Reciprocal Rank
(MRR), where higher values indicate better performance.
MAP metric considers both the position and precision of
recommended items. It is calculated using the formula in

Equation 14, where U represents the set of users, and AP
denotes the average precision for a specific user u. Average
precision is calculated as shown in Equation 15. In this equa-
tion, R represents the number of relevant items for a user,
N denotes the total number of items recommended, P@k is
the precision in position k, and relk is a binary indicator that
specifies whether the item at position k is relevant or not.

MAP = 1
U

∑
u∈U

APu (14)

APu = 1
R

N∑
k=1

P@k · relk (15)

MeanReciprocal Rank (MRR)measures the relevance of a
recommended item by considering its position in the ranking.
It assigns higher scores when relevant items appear earlier in
the list. Equation 16 details the definition to calculate MRR.

MRR = 1
|U |

∑
u∈U

1
ranku

(16)

where U denotes the set of users, and ranku represents the
position of the first relevant item in the recommendation list
for user u.
On the other hand, to assess calibration, we employ the

Mean Rank Miscalibration (MRMC) metric proposed by
da Silva et al. [2021]. Unlike relevance-basedmetrics, where
higher values indicate better performance, lowerMRMC val-
ues signify a closer alignment between recommended items
and the user profile. MRMC quantifies the overall miscal-
ibration by averaging the Rank Miscalibration (RMC) val-
ues, which, in turn, are derived from themeanMiscalibration
(MC) values.

RMCu =
∑N

k=1 MC(p, q(I@k))
N

(17)

MRMC =
∑

u∈U RMCu

|U |
(18)

In Equation 17, the MC metric quantifies the divergence
between the distributions p and q(I@k), where q(I@k) de-
notes the distribution at rank k. Consequently, the RMCu

metric indicates how well the recommendations for the user
u align with their preferences. Finally, the MRMC metric
(see Equation 18) represents the average of RMC across all
users, providing a measure of the overall misalignment be-
tween the recommended items and user profiles.

5 Results
To address the research questions RQ1 and RQ2, we applied
the syntactic algorithms ExpLOD, ExpLOD v2, and PEM,
as well as the embedding approach using the TransE, RotatE,
and ComplEX algorithms. This analysis was conducted for
all users in the MovieLens and LastFM datasets, focusing
on the top five items recommended by the algorithms Most
Popular, BPR-MF, PageRank, UserKNN, EASE, and NCF,
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Table 3. Table of LIR, ETD, and SEP metrics for explanations of the top five recommended items in the MovieLens dataset. For each
recommendation algorithm (row) and each metric, values in bold indicate the highest, and underlined values indicate the lowest across the
explanation algorithms (columns).

TransE RotatE ComplEX ExpLOD ExpLOD v2 PEM

Most Popular
LIR 0.03147 ± 0.12 0.0275 ± 0.11 0.0234 ± 0.09 0.0945 ± 0.15 0.0834 ± 0.14 0.0320 ± 0.07
ETD 0.6718 ± 0.21 0.6842 ± 0.20 0.9537 ± 0.31 0.5809 ± 0.19 0.5947 ± 0.19 0.9390 ± 0.12
SEP 0.52104 ± 0.18 0.6869 ± 0.13 0.5625 ± 0.15 0.6322 ± 0.14 0.6107 ± 0.12 0.1430 ± 0.13

Page Rank
LIR 0.0310 ± 0.11 0.0312 ± 0.12 0.0241 ± 0.10 0.0939 ± 0.15 0.0872 ± 0.15 0.0323 ± 0.08
ETD 0.7335 ± 0.21 0.6570 ± 0.22 0.9305 ± 0.31 0.5563 ± 0.20 0.6043 ± 0.19 0.9389 ± 0.12
SEP 0.4662 ± 0.20 0.7022 ± 0.15 0.5557 ± 0.16 0.6250 ± 0.16 0.5606 ± 0.15 0.1095 ± 0.11

UserKNN
LIR 0.03327 ± 0.12 0.0352 ± 0.12 0.0234 ± 0.10 0.1010 ± 0.14 0.0914 ± 0.13 0.0322 ± 0.08
ETD 0.7055 ± 0.24 0.6849 ± 0.22 0.9859 ± 0.33 0.6593 ± 0.19 0.6409 ± 0.19 0.9452 ± 0.11
SEP 0.5202 ± 0.23 0.2311 ± 0.15 0.6103 ± 0.16 0.5803 ± 0.16 0.5275 ± 0.14 0.131 ± 0.12

BPR-MF
LIR 0.0408 ± 0.16 0.0298 ± 0.11 0.0244 ± 0.09 0.1048 ± 0.14 0.0945 ± 0.13 0.0306 ± 0.07
ETD 0.6826 ± 0.26 0.6934 ± 0.24 0.9855 ± 0.32 0.6891 ± 0.19 0.6937 ± 0.19 0.9583 ± 0.10
SEP 0.5755 ± 0.23 0.2151 ± 0.15 0.5013 ± 0.16 0.6113 ± 0.14 0.5428 ± 0.14 0.1400 ± 0.12

EASE
LIR 0.0312 ± 0.12 0.0295 ± 0.11 0.0209 ± 0.09 0.1000 ± 0.14 0.0912 ± 0.14 0.03193 ± 0.08
ETD 0.7345 ± 0.24 0.6751 ± 0.23 0.9724 ± 0.31 0.6204 ± 0.20 0.6328 ± 0.19 0.9459 ± 0.11
SEP 0.4952 ± 0.49 0.6583 ± 0.17 0.6089 ± 0.16 0.5743 ± 0.17 0.5274 ± 0.15 0.1350 ± 0.13

NCF
LIR 0.0320 ± 0.13 0.0244 ± 0.09 0.0199 ± 0.08 0.1181 ± 0.13 0.1035 ± 0.12 0.0380 ± 0.08
ETD 0.6966 ± 0.29 0.8080 ± 0.25 1.0100 ± 0.32 0.8432 ± 0.16 0.8161 ± 0.16 0.9885 ± 0.05
SEP 0.6122 ± 0.22 0.2511 ± 0.14 0.3955 ± 0.14 0.5868 ± 0.14 0.5350 ± 0.13 0.1613 ± 0.11

while considering the LIR, ETD, and SEP metrics. Addi-
tional results for other metrics, such as precision and diver-
sity, along with examples of explanations generated by each
algorithm, are available on Appendix 2 and Appendix 3, re-
spectively.
Tables 3 and 4 show the mean and standard deviation of

the SEP, ETD, and LIR explanation quality metrics for all
users in the MovieLens and LastFM datasets, respectively,
focusing on the top five items recommended by each algo-
rithm. The first columns correspond to the recommendation
algorithm and the quality metric. The subsequent three
columns provide results for the proposed method using three
different embedding algorithms, while the last three columns
show results for the three syntactic methods. Values in bold
are the highest among the algorithms, and underlined values
are the lowest. We highlight the highest and lowest values
to emphasize the trade-off between explanation objectives
and quality attributes.
An important aspect of item attributes is that they follow

a long-tail distribution, where only a few attribute nodes are
linked to many item nodes in the KG [Ferraro, 2019]. As
a result, including more attributes in explanations increases
the likelihood of selecting a less popular attribute [Tintarev
and Masthoff, 2015; Balloccu et al., 2022; Balog and
Radlinski, 2020].
To address research question RQ3, we applied three

syntactic algorithms: ExpLOD, ExpLOD v2, and PEM.
Additionally, from the embedding-based approaches, we
selected the ComplEX algorithm, as it outperformed both
TransE and RotatE in our evaluations.
Our experiments were conducted using the MovieLens

dataset and evaluated five recommender algorithms: Most
Popular, BPR-MF, UserKNN, EASE, and NCF. To assess
calibration, we used the MAP, MRR, and MRMC metrics,
and to evaluate the quality of explanations, we employed the
LIR, ETD, and SEP metrics. Figure 9 and 10 represent the

result for relevance of recommendations, while Figure 11 rep-
resents the results for alignment of recommendations for user
profile. These results provide insights into how effectively
the models balance relevance and personalization across dif-
ferent categories and trade-offs. On the other hand, Figures
4, 5, 6, 7, 8 present the results related to the quality of the
explanation in combination with the calibration of different
categories in the best trade-offs (Table 5, which is provided
in Appendix 1 - Calibration Trade-Offs) concerning Equa-
tion 13.

5.1 Answer to RQ1: What is the impact of
different types of graph embedding algo-
rithms on the quality of explanations gen-
erated for recommender systems?

To address RQ1 and differentiate the impact of various
embedding algorithms on explanation generation, the first
three columns of the tables present the explanation quality
results for the model-agnostic method, utilizing the graph
embedding algorithms TransE [Lin et al., 2015], RotatE
[Sun et al., 2019], and ComplEX [Trouillon et al., 2016].
Regarding the TransE [Lin et al., 2015] and RotatE

[Sun et al., 2019] methods, which belong to the family
of translational graph embedding algorithms, the HitRate
metrics in the training set of the graph embedding model in
Table 2 demonstrate that the RotatE algorithm [Sun et al.,
2019] represents an advancement over the TransE [Lin
et al., 2015] translational model. In the LastFM dataset, this
advancement in state-of-the-art techniques was reflected in
the improved explanation quality metrics, with both ETD
and SEP showing better results for the RotatE algorithm
compared to TransE. However, this improvement was not
observed in the MovieLens dataset, where enhancements in
HitRate metrics for the same model type did not necessarily
translate to better explanation quality metrics. Thus, even
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Table 4. Table of LIR, ETD, and SEP metrics for explanations of the top five recommended items in the LastFM dataset. For each
recommendation algorithm (row) and each metric, values in bold indicate the highest, and underlined values indicate the lowest across the
explanation algorithms (columns).

TransE RotatE ComplEX ExpLOD ExpLOD v2 PEM

Most Popular
LIR 0.0104 ± 0.06 0.0100 ± 0.06 0.0123 ± 0.08 0.0182 ± 0.09 0.0189 ± 0.11 0.0143 ± 0.08
ETD 0.8247 ± 0.27 0.9319 ± 0.25 1.1394 ± 0.28 0.7023 ± 0.17 0.4927 ± 0.22 0.9212 ± 0.12
SEP 0.5084 ± 0.22 0.6617 ± 0.21 0.5181 ± 0.16 0.7097 ± 0.17 0.7537 ± 0.23 0.1214 ± 0.08

Page Rank
LIR 0.0108 ± 0.07 0.008 ± 0.06 0.0125 ± 0.07 0.0191 ± 0.10 0.0212 ± 0.12 0.0134 ± 0.07
ETD 0.7683 ± 0.25 0.8704 ± 0.30 1.0769 ± 0.32 0.6100 ± 0.20 0.5447 ± 0.19 0.9440 ± 0.10
SEP 0.4820 ± 0.18 0.6359 ± 0.17 0.5022 ± 0.18 0.6501 ± 0.21 0.7164 ± 0.21 0.1209 ± 0.09

UserKNN
LIR 0.0102 ± 0.07 0.0090 ± 0.05 0.0117 ± 0.07 0.0183 ± 0.10 0.0191 ± 0.11 0.0158 ± 0.08
ETD 0.7760 ± 0.26 0.8688 ± 0.31 1.0624 ± 0.32 0.5335 ± 0.20 0.5355 ± 0.18 0.9106 ± 0.14
SEP 0.5071 ± 0.19 0.6088 ± 0.18 0.4540 ± 0.18 0.5288 ± 0.26 0.2810 ± 0.22 0.1417 ± 0.10

BPR-MF
LIR 0.0110 ± 0.06 0.0096 ± 0.06 0.0113 ± 0.07 0.0191 ± 0.10 0.0204 ± 0.11 0.0164 ± 0.08
ETD 0.8403 ± 0.26 0.9219 ± 0.31 1.1021 ± 0.31 0.6145 ± 0.21 0.6196 ± 0.19 0.9450 ± 0.11
SEP 0.5312 ± 0.18 0.6002 ± 0.17 0.5984 ± 0.18 0.5605 ± 0.23 0.6302 ± 0.19 0.1759 ± 0.12

EASE
LIR 0.0102 ± 0.07 0.0092 ± 0.05 0.0111 ± 0.07 0.0188 ± 0.11 0.0194 ± 0.11 0.0154 ± 0.08
ETD 0.7934 ± 0.25 0.8753 ± 0.32 1.0707 ± 0.32 0.5474 ± 0.20 0.5585 ± 0.18 0.9246 ± 0.13
SEP 0.5026 ± 0.19 0.5870 ± 0.19 0.4639 ± 0.18 0.5307 ± 0.25 0.2861 ± 0.21 0.1466 ± 0.10

NCF
LIR 0.0098 ± 0.06 0.0106 ± 0.06 0.0131 ± 0.07 0.0182 ± 0.09 0.0162 ± 0.08 0.0162 ± 0.08
ETD 0.9409 ± 0.27 1.0318 ± 0.32 1.2057 ± 0.29 0.7775 ± 0.18 0.7867 ± 0.18 0.9589 ± 0.09
SEP 0.6302 ± 0.17 0.6509 ± 0.16 0.6153 ± 0.17 0.5904 ± 0.19 0.5514 ± 0.20 0.2748 ± 0.15

simpler graph embedding models can produce vector
representations that lead to quality explanations.
In this context, the ComplEX algorithm [Trouillon

et al., 2016], from the family of bilinear graph embedding
algorithms, achieved the most consistent results across both
datasets. This algorithm notably attained ETD above 0.65
and SEP above 0.45 for all datasets and algorithms. This
success is due to the use of bilinear forms in generating
graph vector representations, which allows for the modeling
of more complex patterns between nodes and edges. In
contrast, translational models create embeddings by ap-
proximating vectors through translations, which limits their
expressiveness.

Therefore, in answering RQ1, using an embedding
model that captures more complex relationships
between nodes and edges has led to improved
explanation quality metrics.

5.2 Answer to RQ2: Are graph embedding-
based strategies actually capable of gen-
erating better explanations in recom-
mender systems compared to syntactic ap-
proaches?

To address RQ2 and compare the differences between
syntactic and semantic approaches, we considered the
models ExpLOD [Musto et al., 2016], ExpLOD v2 [Musto
et al., 2019], and PEM [Du et al., 2022], as shown in the
last three columns of Table 3 and Table 4. It becomes clear
that, in both datasets, syntactic algorithms, particularly
ExpLOD and ExpLOD v2, outperformed other algorithms
regarding the LIR and SEP metrics. Conversely, embedding
approaches excelled in the ETD diversity metric.
For example, with the RotatE algorithm, the SEP and

ETD metrics performed better compared to syntactic algo-
rithms when applied to the Most Popular and PageRank in
the MovieLens dataset and UserKNN, BPR-MF, EASE, and
NCF in LastFM. This demonstrates embedding methods’ ca-
pacity to offer diverse explanatory paths across recommenda-
tions while maintaining attribute popularity. However, em-
bedding algorithms showed lower levels of LIR, likely due to
their training methodology. While they find diverse paths for
explanations, they only incorporate the interacted item in the
pooling sum process to produce the explanation path and user
embeddings. In contrast, syntactic methods prioritize inter-
acted item nodes that connect strongly with attribute nodes in
the KG to determine the most relevant path for explanation.
An exception is the PEM algorithm, which shows a trade-

off between diversity and attribute popularity. Although it
achieves high diversity, it exhibits the lowest SEP across
metrics. This is because, unlike ExpLOD algorithms based
on TF-IDF, PEM normalizes the number of items referenc-
ing an attribute against those in the item catalog. Given the
catalog’s size, PEM tends to present more diverse items.
Thus, syntactic algorithms rely on a trade-off between

the connections of attribute nodes with item nodes to
define explanation path relevance. These algorithms select
explanations that feature attribute nodes linked to many
interacted items by the user, but less so to the entire item set.
Particularly, ExpLOD [Musto et al., 2016] and ExpLOD v2
[Musto et al., 2019] prioritize popularity, while PEM [Du
et al., 2022] focuses on diversity. On the other hand, embed-
ding models are trained to complete triples in graphs. For
a node h and a relation r, these algorithms learn to identify
the correct node t in the triple (h, r, t) in the KG. As a result,
explanation algorithms utilizing vector representations tend
to be balanced concerning SEP and ETD metrics.
Our findings for RQ2 reveal that syntactic methods are

more influenced by popularity, as they select explanations
based on the number of connections an attribute node has
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with item nodes. In contrast, embedding-based methods
choose explanation paths based on the similarity of vector
representations of nodes and edges within the graph. Conse-
quently, the popularity of attribute nodes among item nodes
does not significantly affect the choice of explanation for
a recommended item, making embedding-based methods
more balanced and, therefore, superior to syntactic methods.

In conclusion, the response to RQ2 is that syntactic
methods are influenced by popularity because they
depend on the number of connections between
attribute and item nodes to select explanations.
Conversely, embedding-based methods utilize
vector representation similarities, resulting in a
more balanced and effective approach to selecting
explanations.

5.3 Answer to RQ3: What is the impact of cal-
ibration strategies on the explanations of
recommendation systems?

To address RQ3, we experimented with the combination of
recommender algorithms, category calibration, and expla-
nation algorithms. We used five recommender algorithms,
the Most Popular, BPR-MF, UserKNN, EASE, and NCF.
For category calibration, we adopted the approach proposed
by Steck [2018], and considered genre and award-received
from KG properties. To generate the explanations, we
applied three syntactic explanation algorithms: ExpLOD
[Musto et al., 2016], ExpLOD v2 [Musto et al., 2019],
and PEM [Du et al., 2022], and ComplEX algorithm as
the most representative from embedding approaches. This
setup allowed us to analyze recommendations in terms of
relevance, fairness, and explainability.
Analyzing theMAPmetric for recommendation relevance

under calibration (see Figure 9) reveals that MAP scores
varied depending on based on trade-off values and the
category calibration applied. Among the evaluated recom-
mended algorithms (Most Popular, BPR-MF, UserKNN,
and NCF), MAP scores remained stable or even improved
relative to the baseline across several trade-offs, indicating
that these models can effectively incorporate calibration
without significantly compromising relevance. In Contrast,
the EASE recommender algorithm did not show the same
positive behavior, regardless of the category calibration
used or trade-off values.
A similar trend is observed when analyzing the MRR

metric, which measures the ranking position of the first
relevant recommendation (see Figure 10). Consistent with
MAP results, MRR scores for Most Popular, BPR-MF,
UserKNN, and NCF remained stable or improved across
multiple trade-offs and category calibrations. The strong
correlation betweenMAP andMRR suggests that calibration
primarily shifts ranking positions rather than disrupting the
overall ranking order entirely.
In the case of EASE recommender algorithm, its MAP

andMRR scores failed to outperform the baseline, indicating
that EASE may be more sensitive to calibration constraints
and have difficulty balancing relevance and fairness.

Moreover, the findings indicate that genre calibration
has a minimal negative impact on relevance compared to
award-received calibration and baseline.
Now, analyzing the MRMC metric, which measures cali-

bration (see Figure 11), we observe that applying calibration
with both genre and award received has a consistently posi-
tive impact across all recommender algorithms and tradeoff
values. This result indicates that calibration effectively
aligns recommendations with user profiles by reducing
the divergence between the recommended items and user
preferences.
Overall, these findings underscore the importance of in-

corporating calibration mechanisms in recommendation sys-
tems to ensure that recommendations remain both relevant
and fair for users. The consistent reduction in MRMC values
across all models suggests that calibration is an effective
tool for mitigating recommendation biases, improving user
personalization and increasing user confidence in the system.
To understand how calibration affects explanation quality,

we evaluated its impact on five recommender algorithms
(Most Popular, BPR-MF, UserKNN, EASE, and NCF). We
measured three explanation quality metrics (LIR, ETD,
and SEP), and compared results between the baselines
and calibrated versions (using genre and award-received
calibration) for four explanation algorithms: ExpLOD,
ExpLOD v2, PEM, and ComplEX.
Figure 4 presents the results for the Most Popular recom-

mender. For LIR metric, no calibrated version outperformed
the baseline. In contrast, the ETD metric shows in PEM
algorithm with both genre and award-received calibration
a better result than the baseline. Additionally, ExpLOD v2
and ComplEX showed improvements with genre calibration.
Regarding the SEP metric, ExpLOD outperformed the base-
line with award-received calibration, while both ExpLOD
v2 and ComplEX outperformed the baseline when calibrated
using either genre or award-received category.

Figure 4. Measurement of Explanation Quality with Calibration – Results
for the Most Popular Recommender Algorithm

For BPR-MF (see Figure 5), no calibrated versions
surpassed the baseline in the LIR. However, the ETD metric
reveals in PEM, ExpLOD, and ExpLOD v2 algorithms with
genre calibration outperformed baseline, and ComplEX with
both genre and award-received calibration outperformed
baseline. In terms of SEPmetric, the PEM algorithm showed
that calibration leads to notable improvement with both
genre and award-received, while ExpLOD and ExpLOD
v2 performed well with award-received calibration, and
ComplEX with genre calibration presented a significant
improvement over the baseline.
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Figure 5. Measurement of Explanation Quality with Calibration – Results
for the BPR-MF Recommender Algorithm

For the UserKNN recommender (see Figure 6), no
calibrated version surpassed the baseline in LIR metric.
However, for the ETD metric, PEM with genre calibration
outperformed the baseline, as do ExpLOD and ExpLOD v2
when calibrated with genre. Furthermore, ComplEX outper-
formed the baseline with genre and award-received calibra-
tion. Regarding the SEP metric, both PEM and ExpLOD
v2 showed improvements over the baseline with calibration
based on both genre and award-received calibration.

Figure 6. Measurement of Explanation Quality with Calibration – Results
for the UserKNN Recommender Algorithm

For EASE (see Figure 7), CompLEX with genre calibra-
tion outperformed the baseline in the LIRmetric. In the ETD
metric, both PEM and ComplEX outperformed the baseline
using either genre and award-received calibration, while Ex-
pLOD v2 outperformed the baseline with genre calibration.
In the SEP metric, PEM with award-received calibration
outperformed the baseline, ExpLOD showed improve-
ments with both genre and award-received calibration, and
ComplEX with genre calibration also surpassed the baseline.

Figure 7. Measurement of Explanation Quality with Calibration – Results
for the EASE Recommender Algorithm

Finally, for NCF (see Figure 8), no calibrated version
surpassed the baseline in LIR. However, for ETD metric,
PEM with genre calibration outperformed the baseline, and
ExpLOD v2 surpassed the baseline with both genre and

award-based calibration. Additionally, ComplEX outper-
formed the baseline with award-received calibration. In the
SEP, PEM showed improvements over the baseline with both
genre and award-received calibration, and ComplEX also
outperformed the baseline with award-received calibration.

Figure 8. Measurement of Explanation Quality with Calibration – Results
for the NCF Recommender Algorithm

Overall, these results suggest that while calibration does
not improve the LIR metric (which reflects the recency of
user interactions) across most recommender algorithms, it
does improve explanation quality by promoting Diversity
(ETD) and relevance (SEP).
Our findings for RQ3 indicate that category calibration

enables recommendation systems to achieve two benefits:
maintaining relevance and aligning recommendations with
user preferences, while also enhancing explanation quality
by increasing diversity and relevance. This improvement
acts as a mechanism to mitigate bias, boost personalization,
and finally foster user trust in the recommender system.

In response to RQ3, our findings indicate that cat-
egory calibration significantly reduces bias while
preserving recommendation relevance, although
some recommender systems (such as EASE) ap-
pear more sensitive to calibration constraints in
terms of relevance. Overall, calibration enhances
explanation quality by boosting both diversity and
relevance, thereby improving personalization and
mitigating bias.

6 Limitations
The evaluation approach introduced in this study systemati-
cally compares explanation strategies and quantifies the im-
pact of calibration in explanation quality, yet several limita-
tions warrant discussion.
First, the method relies on a knowledge graph derived

from Wikidata and implicitly assumes that this graph is both
accurate and complete. In practice, Wikidata can exhibit
sparsity, outdated links, or noise, which may lower the qual-
ity of generated explanations, particularly for items or at-
tributes with limited or inconsistent representation.
Second, explanation quality is assessed exclusively

through offline metrics. Although these metrics facilitate
controlled, head-to-head comparisons, they do not necessar-
ily reflect how real users perceive relevance or interpretabil-
ity. Incorporating user studies would therefore provide valu-
able complementary insight.
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Figure 9. MAP results for recommender algorithms (Most Popular, BPR-MF, UserKNN, NCF, and EASE), comparing the baseline (uncalibrated) and
calibrated versions across different trade-offs using genre and award-received categories

Figure 10. MRR results for recommender algorithms (Most Popular, BPR-MF, UserKNN, NCF, and EASE), comparing the baseline (uncalibrated) and
calibrated versions under different trade-offs, considering genre and award-received categories
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Figure 11. MRMC results for recommender algorithms (Most Popular, BPR-MF, UserKNN, NCF, and EASE) are compared between the baseline (uncali-
brated) and calibrated versions across different trade-offs, considering genre and award-received categories

Third, the experiments are conducted on two benchmark
datasets (MovieLens and LastFM) and a limited set of
knowledge-graph attributes. Extending the evaluation to ad-
ditional datasets and domains would strengthen the external
validity of the findings.
Finally, the embeddingmodels employed in the studywere

trained on static snapshots of the knowledge graph. When the
graph evolves rapidly, frequent retraining may become nec-
essary, which can impede scalability. Addressing this limita-
tion represents a promising avenue for future research.

7 Conclusions
This work presents a comparative and reproducible approach
to analyzing the impact of different graph embedding algo-
rithms on generating quality explanations in model-agnostic
recommendation systems (RS) using knowledge graphs
(KGs). By employing three explainability metrics—the
recency of items and the diversity and popularity of
attributes—each algorithm’s explanations were evaluated
across two datasets and six recommendation systems. The
findings indicate that embedding-based approaches better
balance the popularity and diversity of attributes compared
to syntactic approaches. Additionally, training metrics of
various embedding methods do not necessarily correlate
with improvements in explanation quality metrics.
In addition, we also investigated the effect of calibration

to explanation in recommender systems. We employed
the method proposed by Steck [2018] to align the user
preferences of interacted and recommended items based on
two KG attributes: genres and awards received. The results
revealed that explanations were robust to the changes in
the recommendation list made by the calibration algorithm.

As a result, calibration strategies can be used along with
explanation algorithms in recommender systems.
For future work, we will seek to investigate if generative

models could assist in multi-parameter optimization and
incorporate all three explanation quality metrics. This
is important because syntactic explanation algorithms
typically prioritize either attribute popularity or diversity
while embedding models do not emphasize the recency of
items. In addition, we can also investigate the perception
of explanation to calibrated recommendations under the
user perspective in order to further understand the effects of
stacked post-processing steps with a user centric-evaluation.
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Appendix 1 - Calibration Trade-Offs

Table 5. Configurations of calibration trade-offs with high score
for MAP, MRR and MRMC combination metrics.
Recommender algorithm - Category Score Trade-off

Most Popular - Genre 0.027019 0.95
Most Popular - Award Received 0.012894 0.95

BPR-MF - Genre 0.091179 0.55
BPR-MF - Award Received 0.030948 0.45

UserKNN - Genre 0.062192 0.45
UserKNN - Award Received 0.026600 0.25

NCF - Genre 0.040256 0.80
NCF - Award Received 0.005608 0.15

EASE - Genre 0.011905 0.05
EASE - Award Received 0.011113 0.05

Appendix 2 - Recommender Systems
Ranking Metrics

Table 6. Top-5 recommendation ranking metrics for MovieLens
datasets on the 90/10 split used to extract the explanation quality
metrics. Bold values are the highest for a dataset. The metrics
used were: Normalized Discounted Cumulative Gain (NDCG) and
Mean Average Precision (MAP) are ranking accuracy metrics and
Aggregate Diversity (AGG-DIV), Gini Index (Gini), Entropy and
Catalog Coverage (Coverage) are beyond accuracy metrics.

Metric MostPop BPR-MF PageRank UserKNN EASE NCF
NDCG 0.31702 0.384273 0.402638 0.46454 0.556552 0.43216
MAP 0.254989 0.296985 0.318773 0.374087 0.47013 0.33274

AGG-DIV 46 428 131 248 317 -
Gini 0.99864 0.98342 0.99758 0.99088 0.98905 -

Entropy 1.18239 2.26747 1.4077 2.0344 2.1021 -
Coverage 0.00502 0.04672 0.01430 0.02707 0.03461 -

Table 7. Top-5 recommendation ranking metrics for LastFM
datasets on the 90/10 split used to extract the explanation quality
metrics. Bold values are the highest for a dataset. The metrics
used were: Normalized Discounted Cumulative Gain (NDCG) and
Mean Average Precision (MAP) are ranking accuracy metrics and
Aggregate Diversity (AGG-DIV), Gini Index (Gini), Entropy and
Catalog Coverage (Coverage) are beyond accuracy metrics.

Metric MostPop BPRMF PageRank UserKNN EASE NCF
NDCG 0.15498 0.268951 0.274804 0.367126 0.380198 0.355325
MAP 0.11344 0.201658 0.220805 0.292648 0.312495 0.271229

AGG-DIV 20 402 191 401 386 -
Gini 0.99920 0.99269 0.99805 0.99190 0.99293 -

Entropy 0.98064 1.98878 1.39999 2.05101 1.99260 -
Coverage 0.00180 0.03633 0.01726 0.03624 0.034891 -

Appendix 3 - Explanations Examples

Table 8. Explanations of the top-5 items recommended by the
EASE algorithm for each explanation algorithm. The symbol ->
represents an edge and; indicates that multiple items are related to
the attribute in sequence.

TransE
1 The Terminator ->Terminator ->Terminator 2 Judgment Day
2 Alien ->Alien ->Aliens
3 The Green Mile ->United States of America ->Men in Black
4 Hook ->United States of America ->Die Hard
5 JFK ->Washington, D.C. ->True Lies

Rotate
1 American Beauty ->drama ->Terminator 2 Judgment Day
2 Alien ->Alien ->Aliens
3 Toys ->comedy film ->Men in Black
4 L.A. Confidential ->film based on a novel ->Die Hard
5 Toys ->comedy film ->True Lies

ComplEX
1 Crocodile Dundee ->Australia ->The Thin Red Line ->Academy Award for Best Sound Mixing ->Terminator 2 Judgment Day
2 Crocodile Dundee ->Australia ->The Thin Red Line ->20th Century Studios ->Aliens
3 Dances with Wolves ->United States of America ->Men in Black
4 Crocodile Dundee ->Australia ->Welcome to Woop Woop ->20th Century Studios ->Die Hard
5 Mission Impossible ->London ->Lock, Stock and Two Smoking Barrels ->MTV Movie Award for Best Action Sequence ->True Lies

ExpLOD
1 Independence Day; Platoon; Schindler’s List ->Academy Award for Best Sound Mixing ->Terminator 2 Judgment Day
2 Independence Day; Platoon; Schindler’s List ->Academy Award for Best Sound Mixing ->Aliens
3 Independence Day; Rob Roy; Henry V ->action film ->Men in Black
4 Independence Day; Platoon; Schindler’s List ->Academy Award for Best Sound Mixing ->Die Hard
5 Independence Day; Ghostbusters; Batman Returns ->Academy Award for Best Visual Effects ->True Lies

ExpLOD v2
1 Independence Day; Seven; The Silence of the Lambs ->thriller film ->Terminator 2 Judgment Day
2 Independence Day; Seven; The Silence of the Lambs ->thriller film ->Aliens
3 Independence Day; Rob Roy; Henry V ->action film ->Men in Black
4 Independence Day; Rob Roy; Henry V ->action film ->Die Hard
5 Independence Day; Seven; The Silence of the Lambs ->thriller film ->True Lies

PEM
1 The Terminator; The Abyss; The 13th Warrior ->William Wisher ->Terminator 2 Judgment Day
2 Independence Day; Back to the Future; Groundhog Day ->Hugo Award for Best Dramatic Presentation ->Aliens
3 Howard the Duck; Indiana Jones and the Last Crusade; Star Wars Episode V – The Empire Strikes Back ->George Lucas ->Men in Black
4 Tombstone; Basic Instinct; RoboCop ->Frank J. Urioste ->Die Hard
5 Groundhog Day; The Wedding Singer; Wayne’s World ->MTV Movie Award for Best Comedic Performance ->True Lies
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