

20 a 23 de outubro de 2025

Majestic Hotel - Águas de Lindóia - SP - Brasil

Synthesis of silver nanoparticles mediated by NADES: Preparation, characterization and application as a composite electrode modifier

Suysia. R. D'A. Slusarenco ¹ and Rafael. M. Buoro² Instituto de Química de São Carlos - USP, São Carlos - SP - Brazil *e-mail: <u>suysiadalmeida@usp.br</u>

In this work, silver nanoparticles (AgNPs) had been synthetized mediated by NADES based on Choline chloride (HBA) and Urea (HBD). Then, the reline_AgNPs were incorporated into composite electrode for electrochemical detection of Bisphenol-A. The syntheses of reline and AgNPs were prepared adapting the method proposed by Abbott and Lemes [1,2]. The UV-vis analysis of reline_AgNPs showed a maximum absorption peak of 370 nm, indicating the formation of AgNPs. The TEM analysis showed that the AgNPs were well distributed in the NADES. In the FTIR-ATR analysis of reline AgNPs, one can highlight the shift in the stretching vibrational band of the Urea amide group from 1680 and 1620 cm⁻¹ to 1670 and 1610 cm⁻¹ due to interactions with Choline chloride. It is also possible to detect a blue shift of the signals corresponding to the -CH₃ and -NH₂ groups in the spectra of reline_AgNPs (3180 cm⁻¹ and 3320 cm⁻¹) when compared to Choline chloride (-CH₃ at 3230 cm⁻¹) and urea spectra (-NH₂ at 3440 cm⁻¹, 3340 cm⁻¹). The composite electrode was prepared by substituting a fraction (10%) of the binder (mineral oil) by the reline_AgNPs. The equivalent circuit used for EIS fitting showed lower resistance to charge transfer for reline_AgNPs-10%/CPE when compared to the bare electrode. DPV voltammograms for reline_AgNPs-10%/CPE enhanced the analytical response for 100 µmol L-1 bisphenol A in phosphate buffer (pH 8.0), with two-fold increase in the currents, compared to the CPE.

Acknowledgments:

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, CNPq and São Paulo Research Foundation - FAPESP (2023/09747-3).

References:

- [1] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chemical Communications 9 (2003) 70–71.
- [2] G.M. Lemes, M.L. Castilho, L. Raniero, Influência da concentração de citrato de sódio na formação nanopartículas de prata, 2017.