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tities. The usual best linear unbiased predictor of the population total T' is shown to be
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the finite population regression coefficient fy.
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1. Introduction

"Let P = {1,---,N} denote a finite population of N units, where N is known. As-
§ociated with the k-th unit of P, there are p + 1 quantities, yx,zs1,--* ,Zkp, Where all
but yx are known, k=1,--- ,N. Let y = (y1,-- ,yn), and X = (Xy,-- »yXnY, 'where
X = (21, yZap)', k= 1,--- ,N. Relating the two sets of variables, we consid;r the
linear model

y=XB+e, (1)

where e ~ N(0, V). Let ¢ = (8, V) denote the parameter in model (1). The Bayes model
assumes that 4 is a normal random vector with mean vector b and covariance matrix B ,' ;
that is,

B ~ N(b,B). 2

The Bayes model defined by (1) and (2) is designated by ¥ 5.

Let 8(y) be a populatlon quantity of interest. Examples of such quantities are: the

52 Z(y, — §n)*/N, where

i=1

gn =T/N is the populatlon mean and the finite population regression coefficient

population total, T = Zy,, the population variance

Bv = (X'VIX) X'V-ly. (3

~

A sample s of size n is selected from P according to some specified sampling plan in order
to obtain information on some #(y). Let r = P —s. After the sample s has been selected,
we may reorder the elements of y so that we have the corresponding partitions of y, X
and V; that is,
B G-I €9 R G

In Section 2 we present the general framework for Bayesian prediction, with respect to
the normal model 5. Sections 3 and 4 are devoted to the Bayesian prediction of the
population total, T, the population regression coefficient S5 and the population variance

S2. Section 5 presents basic results for minimax prediction of population quantities. In
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Section 6 we present examples of Bayes and minimax predictors of T, S? and Ay for

various regression models.

2. Bayesian Prediction of Population Quantities
Let L(6(y,);6(y)) be a loss function for predicting 6(y) by 6(y,). For a Bayes model
¥p, the Yg-Bayes prediction risk of 9(y,) is defined as

Eya[L(B(ys); 6(y)))-

Notice that the expectation operator in the above expression is performed with respect to
the joint distribution of y and 4. The Bayes predictor is the one minimizing the 1 -Bayes
prediction risk. In particular, for the squared error loss function, the Bayes predictor of -
y) is

88(y.) = Eval0(y) | ¥a]. @

The Bayes prediction risk is

Eys[(65(ys) ~ 8(9))*] = By {Verys [6(y) | yal}- (®)

The next theorem specifies the Bayes-predictive distribution of y, given y,, for the case

where the covariance matrix V is known. (Bolfarine et al., 1987).

THEOREM 1. Under the Bayesian model g, the Bayes predictive distribution of y, given

¥s, 1 mullivariate normal with mean vector

Eyplyr | yd = X85 + Ve Vi (y, - Xaﬁa), (6)

and covariance mairiz
Varga[yr | Y2l =V, — V,.V:‘V., o
+(X, — V. VX)X VX, + B ) (X, - Vi Vis XN *
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where
. 1

Bs = (X,V]'X, + B™)"(X,V; 'y, + B7'b). (8)
A result of Royall and Pfeffermann (1982) is a special case of the above theorem, for a
“non-informative” prior, obtained as the limit of N(b; B) when B~ — 0.

Suppose now that V = 0?W, where W is known and W,, = 0, but o? is unknown.

THEOREM 2. Under the “noninformative” prior distribution of (8, 02), according to which,

the prior density is

1
(Bro®) x = | ©
the following results hold: B
Eyplyr | sl = X/, (10)
Varga [y | ¥l = -7 50% (W + XX, WKL) X, Q1)
where
Be = (X, WX, X, W Ny, (12)
&%= (rs — xaBn)IW:I(Ya = x-ﬁn)/(n -p) (13)

PRrOOF: Formula (10) is obtained from (6) and (8) by letting B~! — 0, since V;, = 0.
Also, from formula (7) we obtain

Varg, [Yr | Yoy 0] = 03 (W, + XX, W;'X,) 1 X)),

Furthermore,
Varyg, [Yr | Yol = Eps {Vary[yr | ¥,,0) | Y2} + Vary, {Eylyr | ¥a,0] | ¥,
= Egylo? | y.l{W, + X (X, W;1X,)7' X} ).
" Finally, the result follows from the fact that,

n—p .
Eyslo* |y = n—_?_—zﬂz-
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3. Bayes Prediction of Linear Quantities
Let §, = I'y, where I' = (I},]\) is known, be any linear quantity. The next theorem

follows immediately from (4) and (5).

THEOREM 3. For any linear quantity §; = l'y, the Bayes predictor under the squared
Y q P q

error loss and any g model for which Vary, [y, | y,] ezists, is

85L(Ys) = LYe + LEy, [y | ya).
The Bayes risk of this predictor is

Ey, [(éBL(Y-) = 9L(Y))2] =1 Vary, [yr | Yollr

COROLLARY 1. The Bayes predictor of the population total T under the normal regression
model Yp and squared error loss function is

TB(y!) =Ly, + lixrﬁBv

where

B = (X,V'X, + B) (X, V;y, + B~'b). (14
The corresponding Bayes prediction risk is
By, [To(ys) = TP = 1,V, 1, + 1,X (X, V;IX, + B™)™1X!1,. (15)

COROLLARY 2. The Bayes predictor of T uader the normal regression model Yp with

V = 0?*W, where W is known and W,, =0, and noninformative prior (9) on (8,0?) is
Tp = 1,y, + 1:X.8,. . (16)
The Bayes prediction risk of (16) is

Eyy[Ts - TP = u_iiam',w,l, + X (X, W1X,)"1X1, ). an
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Another type of vector valued linear quantity is the population regression coefficient 8y .
The estimation of By was studied by Konijn (1962), Fuller (1975), Hartley and Sielken
(1975), Sarndal (1982) and others.

In relation to the model ¥ =(8,V), with V,. =0, one can write

Bn = Alﬁo + A8, (18)

where
A, = (X'VIX)“IX| VX,

A, =(X'VIX)TIXLVIIX,
and where f, is given in (12). B, is a weighted least squares “estimator” of 8 based on
X,, V. and y,. Since y, has not been observed, 8. is treated as an unknown vector

valued quantity. Notice that
Ar+A, = Ip|

where I, is the p-dimensional identity matrix.
We consider here a Bayes predictor for Sy with respect to a ¥ -generalized prediction
risk given by .
Rgys [Bn, B = EgsIN (BN — BN)(Bn — BNY M), (19)

for some vector A. A Bayes predictor with respect to (19) is
Ban = Ey, (BN | ¥4l : (20

The corresponding Bayes risk is

4

Rges [BBN, Bn] = X'Ey,[Vary, [Bw | yollA. - (21)

THEOREM 4. Consider the Bayes normal model ¥p with V,r = 0. The Bayes predictor
of By with respect to the generalized risk (19) is

ﬁBN = Acﬁa + ArﬁB (22)
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The corresponding g -generalized Bayes prediction risk is
Rgyy [Ban.BN] = N (X'VT X)X VL VX A(X'VTIX) I, (23)

where fig and T, = Vary, [y, | v.] are given by (8) and (7), respectively.

Notice that (22) yields 8, as a limit of Bayes predictors, when B~! — 0.

4. Bayes Prediction of 57
We present in the present section the general formula of the Bayes predictor of S}, under

the squared error loss, for the normal regression model yg. We start with the expression
n n n. _ = ‘
si= g+ (1-5) [55 + g - 07, (29)

where §, and 33 are the mean and variance of y,; 3, and SE, are the mean and variance
of yr. Accordingly, we should derive the Bayes predictor of S?, + F(#, — §)*. Let
ne(¥.) = E[y, | y.] as in (6), and let £, be the covariance matrix (7). The Bayes

predictive distribution of j,, given y,, is normal with mean

1 '
hiy,) = N = nlrﬂr(Yl) (25)
and variance
2 _ 1 ?
D = (_N " 1.2,1,. (26)

It follows that the Bayes predictive distribution of F(#- — #.)*, given y,, is like that of

n o2 2,
NDrX [l‘l’\]l

where

w, (h(ys) — 7a)?
A= T},'
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x2[1; A] denotes the noncentral chi squared distribution with 1 degree of freedom and

noncentrality parameter A. The above implies that,

Eup |50 =0 132 = 502 +((32) - 0. Cen

Using the theorem about the expected value of a symmetric quadratic form (see, Seber,
1977, pp. 13), we obtain

E[S,z., | ¥o] = tr[E o] + 0e(¥s) Eene(Ys), -(28)

where

1 1
E. = N-n (Ir- N_nJr)s
- 1,-is the identity matrix of dimension N —n and J, = 1,1.. Substituting (27) and (28)

above, we obtain

THEOREM 5. The Bayes predictor of S; under model ¢'p and squared error loss is

i
I

f,%. = Ey, [53 |yl = 1%"2 + (1 - %) {tr[B-Ze] + ne(ys) Erne(ys)

n o (29)
+ N—'(Dr + (h(ys) = 7a) )}

5. Minimax Prediction Of Population Quantities
The notion of minimaz predictor is introduced here. Let 6 be a member of a class M
of predictors. Assume that the parameter ¥ of the superpopulation model belongs to a

parameter space ¥, such that
p*(8) = sup Ry[8,6] < co.
vew
_ A predictor 0, is called minimax in ¥, if
*(6.) = inf p°(6),
p*(6.) jich2 )
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and if
| R = g L A

We state here, without proof, several key results on minimax prediction in finite popula-
 tions for which there are equivalent results in minimax estimation theory (see Zacks (1971)
Ch. 6-8; Lehmann (1983) Ch. 4). Let ((1) be a prior density (or probability function)
over ¥, and let 8(y,; () be the corresponding Bayes predictor, having a Bayes prediction
risk p(d3,¢).

RESULT 1. If 85(y.;C) is a Bayes predictor and if Ry[0a(-;C),8) is independent of v,

then, 8p(y,;() is minimax.
RESULT 2. Let {{s;k = 1,2,---} be a sequence of prior densities over ¥, and let
{08(;¢), k=1,2,---} and {p(63;C1), k =1,2,---} be the corresponding Bayes pre-
dictors and Bayes risks. If 6(y,) is a predictor such that

sup Ry[6,6] < limsup p(f5; (i)

i‘ew k—s00
then @ is a minimax predictor.

RESULT 3. If the prediction risk of 8 is constant over ¥, and if there exists a sequence
{Ci; k=1,2,---} of prior distributions over ¥, such that

Jim p(6p; Ce) = Ryl0,6] = p°(9),
then 0 is a minimax predictor.

As shown by Royall (1976), the minimum variance linear unbiased predictor of the.

population total, TaLup, is of the form
TBLUP = 1'.)'- + 1'1‘[X'5l + V,.,V.—l(y. = XIBJ)]'

In the following theorem we prove that, when V;, = 0, the BLUP of T is a minimax
predictor.



THEOREM 6. Consider the normal superpopulation Bayes model ¥g, with V,, = 0. The

minimaz predictor of T with respect to the squared error loss is

¥

Tu =1y, +1,X.4, - (30)
with prediction risk
Ey[Tm —TP =1V, 1, + I'X (X, V1X,) X! 1,. (31)

PROOF: Consider a sequence of prior distributions N(b; B¢) such that ||Bs|| = k, where
?
the norm of the covariance matrix B is ||B|| = EB;,- . The corresponding Bayes predictors

=1

T, converge, as k — 00, to the Best Linear Unbiased Predictor, BLUP, (see Royall, 1976)
ToLup = nifs + 1.X.8,.

Moreover, from (5) and (15), the Bayes prediction risks p(T'g, ; b, Bx) converge, as k — oo,

to the predicition risk of TaLyp, namely
Ey[TaLup - TP = 1.V, 1, + 1'X, (X, V;IX,) "1 X 1,.

Since this prediction risk is independent of 8, TerLup is, according to Result 2, a minimax
predictor of T'.

The following result from the theory of minimaxity allows us to show that the above
minimax predictors of T are minimax also for distribution free superpopulation models,
with bounded variances (could be unknown).

RESULT 4. Let y1,--- ,yn be jointly distributed according to the distribution F, belong-
ing to a family of distributions F;. Suppose that Ty is a minimax predictor of T when
Ferhch.I

sup Er{Ty — TP = sup Er[Tym - TP,
FeF, FeF



then T\, is minimax for F;.

TUEROEM 7. Under the superpopulation model (1), if the diagonal elements of V belong

to a closed interval [0, M], 0 < M < 0, then Ty given by (30) is minimaz.

Results 2 and 4 can be extended to vector valued linear predictors, by considering the
V-generalized risk function (19). We obtain then that J3, is a minimax predictor of Ay,
with respect to (19). Minimax predictor of S: can be obtained from (29), by letting

B~! = 0, as will be shown in some examples.

6. Examples

In the present section we provide several examples in which Bayea and minimax predic-
tors are derived for some special normal regression models.
Example 1. Consider the location model under normality in which V = ¢21, where o?
is known, X = 1n, # is a scalar with prior distribution N(b; B). The Bayes estimator of
B, Bp is given by

> vilo* +b/B
p? — i€s
B njo? +1/B

Thus, in this special case, 5,(y,) = fp1, and

1

=2
Z, = 0¥l + gl

Moreover, h(y,) = Bs,

2 _ OF N-n et il G
D'-N—n(1+n+¢rz/3)’ trlE.Z;]=0c (1 N—n)

ﬂr(yn)'Erﬂr(ya) =0.
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Substituting all these terms into (29), we obtain that the Bayes predictor of S? is

(b 8) () 5 () |
(32)

?
In the case of “noninformative” prior we obtain as a limiting case (when B — o),

Sk, = Ilvs§+ (1 - 1)02

e = 2.3 LA P
Smy =53+ (1 N)o i (33)
In addition, if o? is also unknown, the noninformative prior (9) yiclds the Bayes predictor

N N-3 n
S'='_‘__'_—N n—-s.s:.

This predictor was derived by Ericson (1969) and Zacks and Solomon (1981).

We show here that the predictor (33) of S} is minimax, for the squared error loss. Under
this model, the unknown parameter is 8 (o2 is known). For this purpose we derive the
Bayes prediction risk p(SA'},'; b, B). As shown above, the Bayes predictive distribution of
Y-, given ¥,, is N(Bp1,; S,), where B, = 0*(I, + J,/(n + 02/ B)). The Bayes prediction

risk of 3},, is the expected value of the posterior variance of 52, i.e.,
- n n, _ -
P(Shyib B) = By, {Vary, [(1- 7 ) [$% + 5@ -0 3] |}

Let y'Ay be a symmetric quadratic form and 1'y be a linear form. We have
(i) ¥'Ay ~ x*[p; ] if, and only if AT is idempotent of rank p. Moreover, A = }u'Apu.
(ii) If AT1 =0, then y’Ay and 1’y are independent.
Accordingly, since 57, = yf.Eryr/(‘N —n), with E, = (I, -~ J,/(N —n)), and since

4

1 1
—EZr = (I~ 3/(N = n)) (Ir Yt )

is idempotent of rank N — n, the Bayes predictive distribution of S?,, given y,, is like
that of rFx?[N —n — 1]. Indeed,

. 1 4
A = r.iﬂzﬂl'fE"I' = 0-
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Hence,

P 3] B e = 1 1)
¥elYry L (N_n)z

Moreover, since §, = 1.y, /(N —n), and E,Z,1, = 0, Sfy and §, are conditionally

independent, given y,. Thus,
Covyy [S7y(#s — 5-)* | ya] = 0.

It remains to compute Var g, [(#, — #r)? | ¥o]- The Bayes predictive distribution of §,—,,
given y,, is normal with mean and variance given, repsectively, by

s a? o2
Bs — 4, and N—n+ n+02/3'

Therefore,

(85 - 0. ] .

1 1
Fr — ) | ys ~o? ( + )X2 [11
N - 2
n n+o02/B 262( 1n|n 1

It follows that

2 3 7 )2
Vary, [(§r — §s)° | ¥a] = 20* (N - + g 12 ) (1 + 2Pp = %) . (35)
=y i o* (w5 + vy

Taking the expected value of (35) with respect to the marginal distribution of y,, we
obtain from (32)-(34) that, the Bayes prediction risk of §3, is _ -
204

p($hyi0,B) = (1- %)2 (N_—n)z{N —n—-1

G (+550) (1 Tafis ;gﬁ;g)(%w)) }

Hence,
204N —n)
N2 ’

Finally, the right hand side of (36) is the risk function of the predictor (33), and is inde-
pendent of 8. Hence, according to Result 2, 5'},. is a minimax predictor of S7.

Jim p(83,:5,B) = (36)
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Ex‘am‘plg 2. Suppose that the superpopulation model (1) is such that X = (z;,--- »ZN)
and that V = o2diag(z;,--- ,zn), where o? is known. Considering a noninformative prior
on f, it follows that the posterior distribution of 8 is normal with mean and variance given,
respectively, by '

b, and V()=

II
l‘)l IQI

S ‘

i€s
It can be shown, after some algebraic manipulations that
N _zz,
n(N-n) z,’
h(y') —Us = Bair = Usy
ne(y.) = xrﬁn ﬂ:-(ya)Erﬂr(ya) = stfv
1 57
rlE.Z,)=[1- ¥ T, + ,

-n nz,

D=

where Z is the mean of X, Z, is the mean of X,, Z, and S2, are the mean and variance

of X,. Collecting all the above results, it follows from (29) that

2 . T 2 B . in, 2 152

Sky =55+ (1 N) { (1 N) o’z + SL,18} + V(A.)] )
+ 3l = iz + 22V}

Let Z, = W.T”’y,, where W, = diag(z;,: € r), then

Z, ~ N(Q.8 0'21)1
where Q, = X2/2. Hence according to Seber (1977),

Vary[S2,] = 20*tr[B2] + 407 4°Q, B2Q,,

with
B, = Wyl-lz(lr -J /(N - "))W'l-ﬂ-
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This expression is reduced to

Vary[S2%] = o [(1- 2 (”+i
v "'—N -n Non)T=TN_n

+ ;ﬂ Un[m(” z,m? - £,.52],

where m{? = Zzsﬂ /(N —n), j =2,3. Furthermore, since
i€r

(§s — §r)? ~ o? (i’ + %) x*[1,2%),

with
- ﬁz(il = E1')2
PR AL
207 (& + 25

it follows that
z T 2 2= __ = \2
' X o\t RS
Similarly, it can be shown that

= = 2 ‘szz 4f%a*S, r:
Cov*['sa';(y‘ = y")’] = (]va_ n)z + i, = (zr == zl)

n

and
402 ﬂ

CovylB3; (8 — )] = =5 u (2, — 2r).

Collecting all the above results, we obtain that the prediction risk of 5’%, is, for large N,

n¥,

2 40? S,.,
B3}, - S = 2 [ ).

This prediction risk is minimized by a sample maximizing Zz.-. If o? is unknown and
i€s
the noninformative prior (9) is used for (8,0?), the Bayes predictor of S} is as given by

(37) with o? replaced by

n—1,

n—3

&%, where &2 = ——E—(y- Buzi)2.
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Example 3. Consider the superpopulation model (1) with X = (z1,- ,zn) and V =
21y, where Iy is the identity matrix of dimension N. With noninformative prior on
B, it follows that the posterior distribution of 8 is normal with mean and variance gnven
respectively by
Z-’Ciyi

b, = ef,f and V(B,) = Z=" (38)
i€s

i€s
Thus, in this special case, 5,.(y,) = X4, aod

XXt
r, =
{355}
i€s
Moreover, h(y.) ﬂ.zr, ﬂr()’a) Er']r(Ya) = ﬂa rz)
1 22 13
R R I ER (B

52,
. ¥t S
i€s

i€s
It follows from (29), that the Bayes predictor of S? is
&2 n o, n 1., a2 3
SBy = ﬁS’ + (1 =J I_V){(l -— N)U + S:.‘,,[ﬂ. + V(ﬂ.)] (39)
+ ﬁ[(ﬁ- - B.3. ) +2V(8.)]}, ..

where 8, and V(8,) are given in (38). If 02 is unknown, the Bayes predictor of S?, under

the noninformative prior (9), is again given by formula (39), with 4, and ¢2(j,) given in
(38) and o? replaced by

A

‘ n—1., 2

a3 where & Z(y. - B,z

lel
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