RT-MAE-9019 BAYES AND MINIMAX PREDICTION IN FINITE POPULATIONS

by .

Bolfarine, H. and Zacks, S.

Palavras Chaves: Finite populations; Bayes predictors; Minimax (Key words) predictors; Superpopulations.

Classificação AMS: 62D05 (AMS Classification)

BAYES AND MINIMAX PREDICTION IN FINITE POPULATIONS

H. Bolfarine and S. Zacks University of Sao Paulo, Brasil and SUNY, Binghamton, USA

Abstract: We consider Bayesian and minimax prediction of some finite population quantities. The usual best linear unbiased predictor of the population total T is shown to be minimax under normality and the squared error loss function. A general Bayesian predictor is derived for the population variance S_y^2 . A minimax predictor of S_y^2 is presented for the location model. Bayes, minimax and best unbiased prediction is also considered for the finite population regression coefficient β_N .

AMS Subject Classification: 62D05

Key Words: Finite populations; Bayes predictors; Minimax predictors; Superpopulations.

1. Introduction

Let $\mathcal{P} = \{1, \dots, N\}$ denote a finite population of N units, where N is known. Associated with the k-th unit of \mathcal{P} , there are p+1 quantities, $y_k, x_{k1}, \dots, x_{kp}$, where all but y_k are known, $k = 1, \dots, N$. Let $\mathbf{y} = (y_1, \dots, y_N)$, and $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_N)'$, where $\mathbf{X}_k = (x_{k1}, \dots, x_{kp})'$, $k = 1, \dots, N$. Relating the two sets of variables, we consider the linear model

$$y = X\beta + e, \tag{1}$$

where $e \sim N(0, V)$. Let $\psi = (\beta, V)$ denote the parameter in model (1). The Bayes model assumes that β is a normal random vector with mean vector **b** and covariance matrix **B**, that is,

$$\beta \sim N(\mathbf{b}, \mathbf{B}).$$
 (2)

The Bayes model defined by (1) and (2) is designated by ψ_B .

Let $\theta(y)$ be a population quantity of interest. Examples of such quantities are: the population total, $T = \sum_{i=1}^{N} y_i$; the population variance $S_y^2 = \sum_{i=1}^{N} (y_i - \bar{y}_N)^2/N$, where $\bar{y}_N = T/N$ is the population mean and the finite population regression coefficient

$$\beta_N = (X'V^{-1}X)^{-1}X'V^{-1}y.$$
 (3)

A sample s of size n is selected from \mathcal{P} according to some specified sampling plan in order to obtain information on some $\theta(y)$. Let $r = \mathcal{P} - s$. After the sample s has been selected, we may reorder the elements of y so that we have the corresponding partitions of y, X and V; that is,

$$\begin{pmatrix} \mathbf{y}_s \\ \mathbf{y}_r \end{pmatrix}, \quad \begin{pmatrix} \mathbf{X}_s \\ \mathbf{X}_r \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \mathbf{V}_s & \mathbf{V}_{sr} \\ \mathbf{V}_{rs} & \mathbf{V}_r \end{pmatrix}.$$

In Section 2 we present the general framework for Bayesian prediction, with respect to the normal model ψ_B . Sections 3 and 4 are devoted to the Bayesian prediction of the population total, T, the population regression coefficient β_N and the population variance S_g^2 . Section 5 presents basic results for minimax prediction of population quantities. In

Section 6 we present examples of Bayes and minimax predictors of T, S_y^2 and β_N for various regression models.

2. Bayesian Prediction of Population Quantities

Let $L(\hat{\theta}(\mathbf{y}_s); \theta(\mathbf{y}))$ be a loss function for predicting $\theta(\mathbf{y})$ by $\hat{\theta}(\mathbf{y}_s)$. For a Bayes model ψ_B , the ψ_B -Bayes prediction risk of $\hat{\theta}(\mathbf{y}_s)$ is defined as

$$E_{\psi_B}[L(\hat{\theta}(\mathbf{y}_s); \theta(\mathbf{y}))].$$

Notice that the expectation operator in the above expression is performed with respect to the joint distribution of y and ψ . The Bayes predictor is the one minimizing the ψ_B -Bayes prediction risk. In particular, for the squared error loss function, the Bayes predictor of $\theta(y)$ is

$$\hat{\theta}_B(\mathbf{y}_s) = E_{\psi_B}[\theta(\mathbf{y}) \mid \mathbf{y}_s]. \tag{4}$$

The Bayes prediction risk is

$$E_{\psi_B}[(\hat{\theta}_B(\mathbf{y}_s) - \theta(\mathbf{y}))^2] = E_{\psi_B}\{\operatorname{Var}_{\psi_B}[\theta(\mathbf{y}) \mid \mathbf{y}_s]\}.$$
 (5)

The next theorem specifies the Bayes-predictive distribution of y_r given y_s , for the case where the covariance matrix V is known. (Bolfarine et al., 1987).

THEOREM 1. Under the Bayesian model ψ_B , the Bayes predictive distribution of y_τ given y_s , is multivariate normal with mean vector

$$E_{\psi_B}[y_r \mid y_s] = X_r \hat{\beta}_B + V_{rs} V_s^{-1}(y_s - X_s \hat{\beta}_B), \tag{6}$$

and covariance matrix

$$Var_{\psi_{B}}[y_{r} \mid y_{s}] = V_{r} - V_{rs}V_{s}^{-1}V_{sr} + (X_{r} - V_{rs}V_{s}^{-1}X_{s})(X_{s}'V_{s}^{-1}X_{s} + B^{-1})^{-1}(X_{r} - V_{rs}V_{s}^{-1}X_{s})',$$
(7)

where

$$\hat{\beta}_B = (X_s' V_s^{-1} X_s + B^{-1})^{-1} (X_s' V_s^{-1} y_s + B^{-1} b).$$
 (8)

A result of Royall and Pfeffermann (1982) is a special case of the above theorem, for a "non-informative" prior, obtained as the limit of N(b; B) when $B^{-1} \to 0$.

Suppose now that $V = \sigma^2 W$, where W is known and $W_{rs} = 0$, but σ^2 is unknown.

THEOREM 2. Under the "noninformative" prior distribution of (β, σ^2) , according to which, the prior density is

$$\zeta(\beta, \sigma^2) \propto \frac{1}{\sigma}$$
 (9)

the following results hold:

$$E_{\psi_B}[\mathbf{y}_r \mid \mathbf{y}_s] = \mathbf{X}_r \hat{\boldsymbol{\beta}}_s \tag{10}$$

$$Var_{\psi_{B}}[\mathbf{y}_{r} \mid \mathbf{y}_{s}] = \frac{n-p}{n-p-2}\hat{\sigma}^{2}\{\mathbf{W}_{r} + \mathbf{X}_{r}(\mathbf{X}_{s}'\mathbf{W}_{s}^{-1}\mathbf{X}_{s})^{-1}\mathbf{X}_{r}'\},$$
(11)

where

$$\hat{\beta}_s = (X_s^i W_s^{-1} X_s)^{-1} X_s^i W_s^{-1} y_s,$$
 (12)

$$\hat{\sigma}^2 = (\mathbf{y}_s - \mathbf{X}_s \hat{\beta}_s)' \mathbf{W}_s^{-1} (\mathbf{y}_s - \mathbf{X}_s \hat{\beta}_s) / (n - p)$$
 (13)

PROOF: Formula (10) is obtained from (6) and (8) by letting $B^{-1} \to 0$, since $V_{ro} = 0$. Also, from formula (7) we obtain

$$\operatorname{Var}_{\psi_B}[\mathbf{y}_r \mid \mathbf{y}_s, \sigma] = \sigma^2(\mathbf{W}_r + \mathbf{X}_r(\mathbf{X}_s' \mathbf{W}_s^{-1} \mathbf{X}_s)^{-1} \mathbf{X}_r').$$

Furthermore,

$$\begin{split} \operatorname{Var}_{\psi_B}[\mathbf{y}_r \mid \mathbf{y}_s] &= E_{\psi_B}\{\operatorname{Var}_{\psi}[\mathbf{y}_r \mid \mathbf{y}_s, \sigma] \mid \mathbf{y}_s\} + \operatorname{Var}_{\psi_B}\{E_{\psi}[\mathbf{y}_r \mid \mathbf{y}_s, \sigma] \mid \mathbf{y}_s\} \\ &= E_{\psi_B}[\sigma^2 \mid \mathbf{y}_s]\{\mathbf{W}_r + \mathbf{X}_r(\mathbf{X}_s'\mathbf{W}_s^{-1}\mathbf{X}_s)^{-1}\mathbf{X}_r'\}. \end{split}$$

Finally, the result follows from the fact that,

$$E_{\psi_B}[\sigma^2\mid \mathbf{y}_s] = \frac{n-p}{n-p-2}\hat{\sigma}^2.$$

3. Bayes Prediction of Linear Quantities

Let $\theta_L = l'y$, where $l' = (l'_s, l'_r)$ is known, be any linear quantity. The next theorem follows immediately from (4) and (5).

THEOREM 3. For any linear quantity $\theta_L = l'y$, the Bayes predictor under the squared error loss and any ψ_B model for which $Var_{\psi_B}[y_r \mid y_s]$ exists, is

$$\hat{\theta}_{BL}(\mathbf{y}_s) = \mathbf{l}_s' \mathbf{y}_s + \mathbf{l}_r' E_{\psi_B} [\mathbf{y}_r \mid \mathbf{y}_s].$$

The Bayes risk of this predictor is

$$E_{\psi_B}[(\hat{\theta}_{BL}(\mathbf{y}_s) - \theta_L(\mathbf{y}))^2] = \mathbf{l}_r' \ \mathrm{Var}_{\psi_B}[\mathbf{y}_r \mid \mathbf{y}_s] \mathbf{l}_r.$$

COROLLARY 1. The Bayes predictor of the population total T under the normal regression model ψ_B and squared error loss function is

$$\hat{T}_B(\mathbf{y}_*) = \mathbf{1}'_*\mathbf{y}_* + \mathbf{1}'_r\mathbf{X}_r\hat{\beta}_B,$$

where

$$\hat{\beta}_B = (X_s^i V_s^{-1} X_s + B^{-1})^{-1} (X_s^i V_s^{-1} y_s + B^{-1} b). \tag{14}$$

The corresponding Bayes prediction risk is

$$E_{\psi_B}[\hat{T}_B(\mathbf{y}_s) - T(\mathbf{y})]^2 = \mathbf{1}_r' \mathbf{V}_r \mathbf{1}_r + \mathbf{1}_r' \mathbf{X}_r (\mathbf{X}_s' \mathbf{V}_s^{-1} \mathbf{X}_s + \mathbf{B}^{-1})^{-1} \mathbf{X}_r' \mathbf{1}_r.$$
 (15)

COROLLARY 2. The Bayes predictor of T under the normal regression model ψ_B with $V = \sigma^2 W$, where W is known and $W_{ar} = 0$, and noninformative prior (9) on (β, σ^2) is

$$\hat{T}_B = \mathbf{1}'_{\mathfrak{s}} \mathbf{y}_{\mathfrak{s}} + \mathbf{1}'_{\mathfrak{r}} \mathbf{X}_{\mathfrak{r}} \hat{\boldsymbol{\beta}}_{\mathfrak{s}}. \tag{16}$$

The Bayes prediction risk of (16) is

$$E_{\psi_B}[\hat{T}_B - T]^2 = \frac{\nu}{\nu - 2} \hat{\sigma}^2 \{ \mathbf{1}_r' \mathbf{W}_r \mathbf{1}_r + \mathbf{1}_r' \mathbf{X}_r (\mathbf{X}_s \mathbf{W}_s^{-1} \mathbf{X}_s)^{-1} \mathbf{X}_r' \mathbf{1}_r \}. \tag{17}$$

Another type of vector valued linear quantity is the population regression coefficient β_N . The estimation of β_N was studied by Konijn (1962), Fuller (1975), Hartley and Sielken (1975), Sarndal (1982) and others.

In relation to the model $\psi = (\beta, V)$, with $V_{sr} = 0$, one can write

$$\beta_N = A_s \hat{\beta}_s + A_r \beta_r, \tag{18}$$

where

$$A_s = (X'V^{-1}X)^{-1}X'_sV_s^{-1}X_s,$$

$$A_r = (X'V^{-1}X)^{-1}X'_rV_r^{-1}X_r$$

and where $\hat{\beta}_r$ is given in (12). β_r is a weighted least squares "estimator" of β based on X_r , V_r and y_r . Since y_r has not been observed, β_r is treated as an unknown vector valued quantity. Notice that

$$\mathbf{A}_r + \mathbf{A}_s = \mathbf{I}_p,$$

where I, is the p-dimensional identity matrix.

We consider here a Bayes predictor for β_N with respect to a ψ_B -generalized prediction risk given by

$$R_{G\psi_{\mathbb{R}}}[\hat{\beta}_{N}, \beta_{N}] = E_{\psi_{\mathbb{R}}}[\lambda'(\hat{\beta}_{N} - \beta_{N})(\hat{\beta}_{N} - \beta_{N})'\lambda], \tag{19}$$

for some vector λ . A Bayes predictor with respect to (19) is

$$\hat{\beta}_{BN} = E_{\psi_B}[\beta_N \mid \mathbf{y}_s]. \tag{20}$$

The corresponding Bayes risk is

$$R_{G\psi_B}[\hat{\beta}_{BN}, \beta_N] = \lambda' E_{\psi_B}[\text{Var}_{\psi_B}[\beta_N \mid \mathbf{y}_s]]\lambda. \tag{21}$$

THEOREM 4. Consider the Bayes normal model ψ_B with $V_{sr}=0$. The Bayes predictor of β_N with respect to the generalized risk (19) is

$$\hat{\beta}_{BN} = \mathbf{A}_{a}\hat{\beta}_{a} + \mathbf{A}_{r}\hat{\beta}_{B} \tag{22}$$

The corresponding \(\psi_B \)-generalized Bayes prediction risk is

$$R_{G\psi_B}[\hat{\beta}_{BN}, \beta_N] = \lambda'(X'V^{-1}X)^{-1}X_r'V_r^{-1}\Sigma_rV_r^{-1}X_r(X'V^{-1}X)^{-1}\lambda, \tag{23}$$

where $\hat{\beta}_B$ and $\Sigma_r = \text{Var}_{\psi_B}[y_r \mid y_s]$ are given by (8) and (7), respectively.

Notice that (22) yields β_s as a limit of Bayes predictors, when $B^{-1} \to 0$.

4. Bayes Prediction of S_*^2

We present in the present section the general formula of the Bayes predictor of S_y^2 , under the squared error loss, for the normal regression model ψ_B . We start with the expression

$$S_{y}^{2} = \frac{n}{N} s_{y}^{2} + \left(1 - \frac{n}{N}\right) \left[S_{ry}^{2} + \frac{n}{N} (\bar{y}_{s} - \bar{y}_{r})^{2}\right], \tag{24}$$

where \bar{y}_s and s_y^2 are the mean and variance of y_s ; \bar{y}_r and S_{ry}^2 are the mean and variance of y_r . Accordingly, we should derive the Bayes predictor of $S_{ry}^2 + \frac{n}{N}(\bar{y}_s - \bar{y}_r)^2$. Let $\eta_r(y_s) = E[y_r \mid y_s]$ as in (6), and let Σ_r be the covariance matrix (7). The Bayes predictive distribution of \bar{y}_r , given y_s , is normal with mean

$$h(\mathbf{y}_s) = \frac{1}{N-n} \mathbf{1}_r' \eta_r(\mathbf{y}_s) \tag{25}$$

and variance

$$D_r^2 = \frac{1}{(N-n)^2} \mathbf{1}_r' \Sigma_r \mathbf{1}_r. \tag{26}$$

It follows that the Bayes predictive distribution of $\frac{n}{N}(\bar{y}_r - \bar{y}_s)^2$, given y_s , is like that of

$$\frac{n}{N}D_r^2\chi^2[1;\lambda],$$

where

$$\lambda = \frac{(h(\mathbf{y}_s) - \bar{y}_s)^2}{2D_s^2}.$$

 $\chi^2[1;\lambda]$ denotes the noncentral chi squared distribution with 1 degree of freedom and noncentrality parameter λ . The above implies that,

$$E_{\psi_B} \left[\frac{n}{N} (\bar{y}_r - \bar{y}_s)^2 \mid \mathbf{y}_s \right] = \frac{n}{N} (D_r^2 + (h(\mathbf{y}_s) - \bar{y}_s)^2).$$
 (27)

Using the theorem about the expected value of a symmetric quadratic form (see, Seber, 1977, pp. 13), we obtain

$$E[S_{r_H}^2 \mid \mathbf{y}_s] = tr[E_r \Sigma_r] + \eta_r(\mathbf{y}_s)' E_r \eta_r(\mathbf{y}_s), \tag{28}$$

where

$$E_r = \frac{1}{N-n} \left(\mathbf{I_r} - \frac{1}{N-n} \mathbf{J_r} \right),$$

· I_r is the identity matrix of dimension N-n and $J_r = 1_r 1_r'$. Substituting (27) and (28) above, we obtain

THEOREM 5. The Bayes predictor of S_y^2 under model ψ_B and squared error loss is

$$\hat{S}_{By}^{2} = E_{\psi_{B}}[S_{y}^{2} \mid \mathbf{y}_{s}] = \frac{n}{N} s_{y}^{2} + \left(1 - \frac{n}{N}\right) \left\{ tr[E_{r}\Sigma_{r}] + \eta_{r}(\mathbf{y}_{s})' E_{r} \eta_{r}(\mathbf{y}_{s}) + \frac{n}{N} (D_{r}^{2} + (h(\mathbf{y}_{s}) - \bar{y}_{s})^{2}) \right\}.$$
(29)

5. Minimax Prediction Of Population Quantities

The notion of minimax predictor is introduced here. Let $\hat{\theta}$ be a member of a class \mathcal{H} of predictors. Assume that the parameter ψ of the superpopulation model belongs to a parameter space Ψ , such that

$$\rho^*(\hat{\theta}) = \sup_{\psi \in \Psi} R_{\psi}[\hat{\theta}, \theta] < \infty.$$

A predictor $\hat{\theta}_*$ is called minimax in \mathcal{H} , if

$$\rho^*(\hat{\theta}_*) = \inf_{\hat{\theta} \in \mathcal{H}} \rho^*(\hat{\theta}),$$

and if

$$\inf_{\theta \in \mathcal{H}} \sup_{\psi \in \Psi} R_{\psi}[\hat{\theta}, \theta] = \sup_{\psi \in \Psi} \inf_{\hat{\theta} \in \mathcal{H}} R_{\psi}[\hat{\theta}, \theta].$$

We state here, without proof, several key results on minimax prediction in finite populations for which there are equivalent results in minimax estimation theory (see Zacks (1971) Ch. 6-8; Lehmann (1983) Ch. 4). Let $\zeta(\psi)$ be a prior density (or probability function) over Ψ , and let $\hat{\theta}_B(\mathbf{y}_s;\zeta)$ be the corresponding Bayes predictor, having a Bayes prediction risk $\rho(\hat{\theta}_B,\zeta)$.

RESULT 1. If $\hat{\theta}_B(\mathbf{y}_{\bullet};\zeta)$ is a Bayes predictor and if $R_{\psi}[\hat{\theta}_B(\cdot;\zeta),\theta]$ is independent of ψ , then, $\hat{\theta}_B(\mathbf{y}_{\bullet};\zeta)$ is minimax.

RESULT 2. Let $\{\zeta_k; k=1,2,\cdots\}$ be a sequence of prior densities over Ψ , and let $\{\hat{\theta}_B(\cdot;\zeta_k), k=1,2,\cdots\}$ and $\{\rho(\hat{\theta}_B;\zeta_k), k=1,2,\cdots\}$ be the corresponding Bayes predictors and Bayes risks. If $\hat{\theta}(y_s)$ is a predictor such that

$$\sup_{\psi \in \Psi} R_{\psi}[\hat{\theta}, \theta] \leq \limsup_{k \to \infty} \rho(\hat{\theta}_B; \zeta_k)$$

then $\hat{\theta}$ is a minimax predictor.

RESULT 3. If the prediction risk of $\hat{\theta}$ is constant over Ψ , and if there exists a sequence $\{\zeta_k; k=1,2,\cdots\}$ of prior distributions over Ψ , such that

$$\lim_{k\to\infty}\rho(\hat{\theta}_B;\zeta_k)=R_{\psi}[\hat{\theta},\theta]=\rho^*(\hat{\theta}),$$

then $\hat{\theta}$ is a minimax predictor.

As shown by Royall (1976), the minimum variance linear unbiased predictor of the population total, \hat{T}_{BLUP} , is of the form

$$\hat{T}_{\text{BLUP}} = \mathbf{1}'_{s}\mathbf{y}_{s} + \mathbf{1}'_{r}[X_{r}\hat{\beta}_{s} + V_{rs}V_{s}^{-1}(\mathbf{y}_{s} - X_{s}\hat{\beta}_{s})].$$

In the following theorem we prove that, when $V_{rs} = 0$, the BLUP of T is a minimax predictor.

THEOREM 6. Consider the normal superpopulation Bayes model ψ_B , with $V_{rs}=0$. The minimax predictor of T with respect to the squared error loss is

$$\hat{T}_M = \mathbf{1}'_{\mathfrak{s}} \mathbf{y}_{\mathfrak{s}} + \mathbf{1}'_{\mathfrak{r}} \mathbf{X}_{\mathfrak{r}} \hat{\boldsymbol{\beta}}_{\mathfrak{s}}, \tag{30}$$

with prediction risk

$$E_{\psi}[\hat{T}_{M} - T]^{2} = \mathbf{1}_{r}^{\prime} \mathbf{V}_{r} \mathbf{1}_{r} + \mathbf{1}_{r}^{\prime} \mathbf{X}_{r} (\mathbf{X}_{s}^{\prime} \mathbf{V}_{s}^{-1} \mathbf{X}_{s})^{-1} \mathbf{X}_{r}^{\prime} \mathbf{1}_{r}. \tag{31}$$

PROOF: Consider a sequence of prior distributions $N(\mathbf{b}; \mathbf{B}_k)$ such that $||\mathbf{B}_k|| = k$, where the norm of the covariance matrix B is $||\mathbf{B}|| = \sum_{i=1}^{p} B_{ii}$. The corresponding Bayes predictors \hat{T}_{B_k} converge, as $k \to \infty$, to the Best Linear Unbiased Predictor, BLUP, (see Royall, 1976)

$$\hat{T}_{\rm BLUP} = n\bar{y}_s + \mathbf{1}_r' \mathbf{X}_r \hat{\boldsymbol{\beta}}_s.$$

Moreover, from (5) and (15), the Bayes prediction risks $\rho(\hat{T}_{B_k}; \mathbf{b}, \mathbf{B}_k)$ converge, as $k \to \infty$, to the prediction risk of \hat{T}_{BLUP} , namely

$$E_{\psi}[\hat{T}_{\rm BLUP} - T]^2 = \mathbf{1}_r' \mathbf{V}_r \mathbf{1}_r + \mathbf{1}_r' \mathbf{X}_r (\mathbf{X}_s' \mathbf{V}_s^{-1} \mathbf{X}_s)^{-1} \mathbf{X}_r' \mathbf{1}_r.$$

Since this prediction risk is independent of β , \hat{T}_{BLUP} is, according to Result 2, a minimax predictor of T.

The following result from the theory of minimaxity allows us to show that the above minimax predictors of T are minimax also for distribution free superpopulation models, with bounded variances (could be unknown).

RESULT 4. Let y_1, \dots, y_N be jointly distributed according to the distribution F, belonging to a family of distributions \mathcal{F}_1 . Suppose that \hat{T}_M is a minimax predictor of T when $F \in \mathcal{F}_0 \subset \mathcal{F}_1$. If

$$\sup_{F\in\mathcal{F}_0} E_F[\hat{T}_M-T]^2 = \sup_{F\in\mathcal{F}_1} E_F[\hat{T}_M-T]^2,$$

then \hat{T}_{M_i} is minimax for \mathcal{F}_1 .

THEROEM 7. Under the superpopulation model (1), if the diagonal elements of V belong to a closed interval [0, M], $0 < M < \infty$, then \hat{T}_M given by (30) is minimax.

Results 2 and 4 can be extended to vector valued linear predictors, by considering the ψ -generalized risk function (19). We obtain then that $\hat{\beta}_{\bullet}$ is a minimax predictor of β_N , with respect to (19). Minimax predictor of S_y^2 can be obtained from (29), by letting $B^{-1} \to 0$, as will be shown in some examples.

6. Examples

In the present section we provide several examples in which Bayes and minimax predictors are derived for some special normal regression models.

Example 1. Consider the location model under normality in which $V = \sigma^2 I$, where σ^2 is known, $X = 1_N$, β is a scalar with prior distribution N(b; B). The Bayes estimator of β , $\hat{\beta}_B$ is given by

$$\hat{\beta}_B = \frac{\displaystyle\sum_{i \in \mathfrak{s}} y_i/\sigma^2 + b/B}{n/\sigma^2 + 1/B}.$$

Thus, in this special case, $\eta_r(y_s) = \hat{\beta}_B 1_r$ and

$$\Sigma_r = \sigma^2 (\mathbf{I}_r + \frac{1}{n + \sigma^2/B} \mathbf{J}_r).$$

Moreover, $h(y_s) = \hat{\beta}_B$,

$$D_r^2 = \frac{\sigma^2}{N-n} \left(1 + \frac{N-n}{n+\sigma^2/B} \right), \ tr[E_r \Sigma_r] = \sigma^2 \left(1 - \frac{1}{N-n} \right)$$

and

$$\eta_r(\mathbf{y}_*)'E_r\eta_r(\mathbf{y}_*)=0.$$

Substituting all these terms into (29), we obtain that the Bayes predictor of S_*^2 is

$$\hat{S}_{B_y}^2 = \frac{n}{N} s_y^2 + \left(1 - \frac{n}{N}\right) \sigma^2 \left[1 - \frac{\sigma^2}{(N-n)B} \left(\frac{1}{n} - \frac{1}{N}\right) \left(1 + \frac{\sigma^2}{nB}\right)^{-1} + \frac{n}{N} \left(\frac{\hat{\beta}_B - \bar{y}_s}{\sigma}\right)^2\right]. \tag{32}$$

In the case of "noninformative" prior we obtain as a limiting case (when $B \to \infty$),

$$\hat{S}_{My} = \frac{n}{N} s_y^2 + \left(1 - \frac{n}{N}\right) \sigma^2. \tag{33}$$

In addition, if σ^2 is also unknown, the noninformative prior (9) yields the Bayes predictor

$$\hat{S}_{y} = \frac{N-3}{N} \frac{n}{n-3} s_{y}^{2}.$$

This predictor was derived by Ericson (1969) and Zacks and Solomon (1981).

We show here that the predictor (33) of S_y^2 is minimax, for the squared error loss. Under this model, the unknown parameter is β (σ^2 is known). For this purpose we derive the Bayes prediction risk $\rho(\hat{S}_{By}^2; b, B)$. As shown above, the Bayes predictive distribution of y_r , given y_s , is $N(\hat{\beta}_B 1_r; \Sigma_r)$, where $\Sigma_r = \sigma^2(I_r + J_r/(n + \sigma^2/B))$. The Bayes prediction risk of \hat{S}_{By}^2 is the expected value of the posterior variance of S_y^2 , i.e.,

$$\rho(\hat{S}_{By}^2;b,B) = E_{\psi_B} \left\{ \operatorname{Var}_{\psi_B} \left[\left(1 - \frac{n}{N} \right) \left[S_{ry}^2 + \frac{n}{N} (\bar{y}_r - \bar{y}_s)^2 \mid \mathbf{y}_s \right] \right] \right\}.$$

Let y'Ay be a symmetric quadratic form and 1'y be a linear form. We have

- (i) $y'Ay \sim \chi^2[p; \lambda]$ if, and only if $A\Sigma$ is idempotent of rank p. Moreover, $\lambda = \frac{1}{2}\mu'A\mu$.
- (ii) If $A\Sigma 1 = 0$, then y'Ay and 1'y are independent.

Accordingly, since $S_{ry}^2 = y_r' E_r y_r / (N-n)$, with $E_r = (I_r - J_r / (N-n))$, and since

$$\frac{1}{\sigma^2} E_r \Sigma_r = \left(\mathbf{I}_r - \mathbf{J}_r / (N - n) \right) \left(\mathbf{I}_r + \frac{1}{n + \sigma^2 / B} \mathbf{J}_r \right)$$

is idempotent of rank N-n, the Bayes predictive distribution of S_{ry}^2 , given y_s , is like that of $\frac{\sigma^1}{(N-n)}\chi^2[N-n-1]$. Indeed,

$$\lambda = \frac{1}{2\sigma^2} \hat{\beta}_B^2 \mathbf{1}_r' E_r \mathbf{1}_r = 0.$$

Hence,

$$\operatorname{Var}_{\psi_B}[S_{ry}^2 \mid \mathbf{y}_s] = \frac{2\sigma^2}{(N-n)^2}(N-n-1).$$

Moreover, since $\bar{y}_r = \mathbf{1}'_r \mathbf{y}_r / (N - n)$, and $E_r \Sigma_r \mathbf{1}_r = 0$, S_{ry}^2 and \bar{y}_r are conditionally independent, given \mathbf{y}_s . Thus,

$$Cov_{\psi_B}[S_{ry}^2(\bar{y}_s - \bar{y}_r)^2 \mid y_s] = 0.$$

It remains to compute $\operatorname{Var}_{\psi_{\bar{\sigma}}}[(\bar{y}_{\bar{\sigma}} - \bar{y}_{r})^{2} \mid \mathbf{y}_{\bar{\sigma}}]$. The Bayes predictive distribution of $\bar{y}_{r} - \bar{y}_{\bar{\sigma}}$, given $\mathbf{y}_{\bar{\sigma}}$, is normal with mean and variance given, repsectively, by

$$\hat{\beta}_B - \bar{y}_s$$
 and $\frac{\sigma^2}{N-n} + \frac{\sigma^2}{n+\sigma^2/B}$.

Therefore,

$$(\bar{y}_r - \bar{y}_s)^2 \mid \mathbf{y}_s \sim \sigma^2 \left(\frac{1}{N-n} + \frac{1}{n+\sigma^2/B} \right) \chi^2 \left[1, \frac{(\hat{\beta}_B - \bar{y}_s)^2}{2\sigma^2 \left(\frac{1}{N-n} + \frac{1}{n+\sigma^2/B} \right)} \right].$$
 (34)

It follows that

$$\operatorname{Var}_{\psi_{B}}[(\bar{y}_{r} - \bar{y}_{s})^{2} \mid \mathbf{y}_{s}] = 2\sigma^{4} \left(\frac{1}{N-n} + \frac{1}{n + \sigma^{2}/B} \right)^{2} \left(1 + \frac{2(\hat{\beta}_{B} - \bar{y}_{s})^{2}}{\sigma^{2} \left(\frac{1}{N-n} + \frac{1}{n + \sigma^{2}/B} \right)} \right). (35)$$

Taking the expected value of (35) with respect to the marginal distribution of y_s , we obtain from (32)-(34) that, the Bayes prediction risk of \hat{S}_{By}^2 is

$$\begin{split} \rho(\hat{S}_{By}^2;b,B) &= \left(1-\frac{n}{N}\right)^2\frac{2\sigma^4}{(N-n)^2}\bigg\{N-n-1\\ &+ \left(\frac{n}{N}\right)^2\left(1+\frac{N-n}{n+\sigma^2/B}\right)^2\left(1+\frac{2(N-n)}{\sigma^2\left(1+\frac{N-n}{n+\sigma^2/B}\right)\left(\frac{\sigma^2}{n}+B\right)}\right)\bigg\}. \end{split}$$

Hence,

$$\lim_{B \to \infty} \rho(\hat{S}_{By}^2; b, B) = \frac{2\sigma^4(N-n)}{N^2}.$$
 (36)

Finally, the right hand side of (36) is the risk function of the predictor (33), and is independent of β . Hence, according to Result 2, $\hat{S}_{M_u}^2$ is a minimax predictor of S_y^2 .

Example 2. Suppose that the superpopulation model (1) is such that $X = (x_1, \dots, x_N)'$ and that $V = \sigma^2 \operatorname{diag}(x_1, \dots, x_N)$, where σ^2 is known. Considering a noninformative prior on β , it follows that the posterior distribution of β is normal with mean and variance given, respectively, by

$$\hat{\beta}_s = \frac{\bar{y}_s}{\bar{x}_s}$$
 and $V(\hat{\beta}) = \frac{\sigma^2}{\sum_{i \in s} x_i}$.

It can be shown, after some algebraic manipulations that

$$\begin{split} D_r^2 &= \frac{\sigma^2 N}{n(N-n)} \, \frac{\bar{x}\bar{x}_r}{\bar{x}_s}, \\ h(\mathbf{y}_s) - \bar{y}_s &= \hat{\beta}_s \bar{x}_r - \bar{y}_s, \\ \eta_r(\mathbf{y}_s) &= \mathbf{X}_r \hat{\beta}_s, \quad \eta_r'(\mathbf{y}_s) E_r \eta_r(\mathbf{y}_s) = \hat{\beta}_s^2 S_{rx}^2, \\ tr[E_r \Sigma_r] &= \left(1 - \frac{1}{N-n}\right) \bar{x}_r + \frac{S_{rx}^2}{n \bar{x}_s}, \end{split}$$

where \bar{x} is the mean of X, \bar{x}_s is the mean of X_s , \bar{x}_r and S_{rx}^2 are the mean and variance of X_r . Collecting all the above results, it follows from (29) that

$$\hat{S}_{By}^{2} = \frac{n}{N} s_{y}^{2} + \left(1 - \frac{n}{N}\right) \left\{ \left(1 - \frac{1}{N}\right) \sigma^{2} \bar{x}_{r} + S_{rz}^{2} [\hat{\beta}_{s}^{2} + V(\hat{\beta}_{s})] + \frac{n}{N} [(\bar{y}_{s} - \hat{\beta}_{s} \bar{x}_{r})^{2} + \bar{x}_{r}^{2} V(\hat{\beta}_{s})] \right\}.$$
(37)

Let $Z_r = W_r^{-1/2} y_r$, where $W_r = \text{diag}(x_i, i \in r)$, then

$$Z_r \sim N(Q_r \beta; \sigma^2 I)$$

where $Q_r = X_r^{1/2}$. Hence according to Seber (1977),

$$\mathrm{Var}_{\psi}[S_{ry}^2] = 2\sigma^4 tr[\mathbf{B}_r^2] + 4\sigma^2\beta^2 \mathbf{Q}_r' \mathbf{B}_r^2 \mathbf{Q}_r,$$

with

$$B_r = W_r^{1/2} (I_r - J_r/(N-n)) W_r^{1/2}.$$

This expression is reduced to

$$\begin{split} \mathrm{Var}_{\psi}[S_{ry}^2] &= \frac{2\sigma^4}{N-n} \left[\left(1 - \frac{2}{N-n} \right) m_{rz}^{(2)} + \frac{\bar{x}_r^2}{N-n} \right] \\ &+ \frac{4\beta^2 \sigma^2}{N-n} [m_{rz}^{(3)} - \bar{x}_r m_{rz}^{(2)} - \bar{x}_r S_{rz}^2], \end{split}$$

where $m_{rx}^{(j)} = \sum_{i \in r} x_i^{(j)} / (N-n), j = 2, 3$. Furthermore, since

$$(\bar{y}_s - \bar{y}_r)^2 \sim \sigma^2 \left(\frac{\bar{x}_s}{n} + \frac{\bar{x}_r}{N-n}\right) \chi^2[1, \lambda^*],$$

with

$$\lambda^{\star} = \frac{\beta^2 (\bar{x}_{\star} - \bar{x}_r)^2}{2\sigma^2 \left(\frac{\bar{x}_{\star}}{n} + \frac{\bar{x}_r}{N-n}\right)},$$

it follows that

$$\operatorname{Var}_{\psi}[(\bar{y}_s - \bar{y}_r)^2] = 2\sigma^4 \left(\frac{\bar{x}_s}{n} + \frac{\bar{x}_r}{N-n}\right)^2 \left(1 + \frac{2\beta^2(\bar{x}_s - \bar{x}_r)^2}{\sigma^2 \left(\frac{\bar{x}_s}{n} + \frac{\bar{x}_r}{N-n}\right)}\right).$$

Similarly, it can be shown that

$$\operatorname{Cov}_{\psi}[S_{ry}^{2};(\bar{y}_{s}-\bar{y}_{r})^{2}] = \frac{2\sigma^{4}S_{rx}^{2}}{(N-n)^{2}} + \frac{4\beta^{2}\sigma^{2}S_{rx}^{2}}{N-n}(\bar{x}_{r}-\bar{x}_{s})$$

and

$$\operatorname{Cov}_{\psi}[\hat{\beta}_{s}^{2};(\bar{y}_{s}-\bar{y}_{r})^{2}] = \frac{2\sigma^{4}}{n^{2}} + \frac{4\sigma^{2}\beta^{2}}{n}(\bar{x}_{s}-\bar{x}_{r}).$$

Collecting all the above results, we obtain that the prediction risk of \hat{S}_{By}^2 is, for large N,

$$E_{\psi}[\hat{S}_{By}^2 - S_y^2]^2 \simeq \frac{4\sigma^2 S_{rx}^4}{n\bar{x}_s} \left[\frac{\sigma^2}{n\bar{x}_s} + \beta^2\right].$$

This prediction risk is minimized by a sample maximizing $\sum_{i \in s} x_i$. If σ^2 is unknown and the noninformative prior (9) is used for (β, σ^2) , the Bayes predictor of S_y^2 is as given by (37) with σ^2 replaced by

$$\frac{n-1}{n-3}\hat{\sigma}^2$$
, where $\hat{\sigma}^2 = \frac{1}{n-1}\sum_{i \in a} \frac{1}{x_i}(y_i - \hat{\beta}_s x_i)^2$.

Example 3. Consider the superpopulation model (1) with $X = (x_1, \dots, x_N)'$ and $V = \sigma^2 I_N$, where I_N is the identity matrix of dimension N. With noninformative prior on β , it follows that the posterior distribution of β is normal with mean and variance given respectively by

$$\hat{\beta}_s = \frac{\sum_{i \in s} x_i y_i}{\sum_{i \in s} x_i^2} \text{ and } V(\hat{\beta}_s) = \frac{\sigma^2}{\sum_{i \in s} x_i^2}.$$
 (38)

Thus, in this special case, $\eta_r(y_s) = X_r \hat{\beta}_s$ and

$$\Sigma_r = \sigma^2 \left\{ \mathbf{I}_r + \frac{\mathbf{X}_r \mathbf{X}_r'}{\sum_{i \in \mathbf{a}} x_i^2} \right\}.$$

Moreover, $h(\mathbf{y}_s) = \hat{\beta}_s \bar{x}_r$, $\eta_r(\mathbf{y}_s)' E_r \eta_r(\mathbf{y}_s) = \hat{\beta}_s^2 S_{rx}^2$,

$$D_r^2 = \sigma^2 \left\{ \frac{1}{N-n} + \frac{\bar{x}_r^2}{\sum_{i \in s} x_i^2} \right\} \text{ and } tr[E_r \Sigma_r] = \sigma^2 \left\{ 1 - \frac{1}{N-n} + \frac{S_{rx}^2}{\sum_{i \in s} x_i^2} \right\}.$$

It follows from (29), that the Bayes predictor of S_y^2 is

$$\hat{S}_{By}^{2} = \frac{n}{N} s_{y}^{2} + \left(1 - \frac{n}{N}\right) \left\{ \left(1 - \frac{1}{N}\right) \sigma^{2} + S_{rx}^{2} [\hat{\beta}_{s}^{2} + V(\hat{\beta}_{s})] + \frac{n}{N} [(\bar{y}_{s} - \hat{\beta}_{s}\bar{x}_{r})^{2} + \bar{x}_{r}^{2} V(\hat{\beta}_{s})] \right\},$$
(39)

where $\hat{\beta}_s$ and $V(\hat{\beta}_s)$ are given in (38). If σ^2 is unknown, the Bayes predictor of S_y^2 , under the noninformative prior (9), is again given by formula (39), with $\hat{\beta}_s$ and $\sigma^2(\hat{\beta}_s)$ given in (38) and σ^2 replaced by

$$\frac{n-1}{n-3}\hat{\sigma}^2$$
, where $\hat{\sigma}^2 = \frac{1}{n-1}\sum_{i \in s}(y_i - \hat{\beta}_s x_i)^2$.

References

Arnold, S.F. (1981). The theory of linear models and multivariate analysis. John Wiley.

Bolfarine, H., Percira, C.A.B. & Rodrigues, J. (1987). Robust Linear Prediction in Finite Populations-A Bayesian Perspective. Sankhya, Vol. B49, pp. 23-35.

Cochran, W.G. (1977). Sampling Techniques. Third Edition. John Wiley.

Fuller, W.A. (1975). Regression Analysis for Sample Survey. Sankhya, Vol. C37, 117-132.

Hartley, H.O. & Sielken, R.L. (1975). A Superpopulation Viewpoint to finite population sampling. *Biometrics*, 31, 411-422.

Konijn, H.S. (1962). Regression Analysis in Sample Surveys. Journal of the American Statistical Association, 57, 590-606.

Lehmann, E.L. (1984). Theory of point estimation. John Wiley.

Rodrigues, J., Bolfarine, H. & Rogakto, A. (1985). A General Theory of Prediction in Finite Populations. *International Statistical Review*, 53, 3, 239-254.

Royall, R.M. & Herson, J. (1973). Robust Estimation in Finite Populations. Journal of the American Statistical Association, Vol. 68, pp. 880-889.

Royall, R.M. & Pfefferman, D. (1982). Balanced Samples and Robust Bayesian Inference in Finite Sampling. *Biometrika*, Vol. 69, pp. 401-409.

Royall, R.M. (1976). The Linear Least Squares Approach to Two-Stage Sampling. Journal of the American Statistical Association, 71, 657-664.

Sandal, C.E. (1982). Implications of Survey Design for Generalized Regression estimation of Linear functions. Journal of Statistical Planning and Inference 7, 155-170.

. Seber, G. (1977). Regression Analysis. John Wiley.

Zacks, S. (1971). The Theory of Statistical Inference. John Wiley.

Zacks, S. & Solomon, H. (1981). Bayes equivariant estimators of the variance of a finite population: Part I, simple random sampling, Communications in Statistics, Theory and Methods, 10, (5), 407-426.

RELATORIO

<u>D0</u>

Indication and article 2 to the restaudual Administration of the Particle 2 to the Contract of the Particle 2 to the Par

DEPARTAMENTO DE ESTATISTICA

TITULOS PUBLICADOS EM 1987

- 8701 ACHCAR, J.A. & BOLFARINE, H.; Constant Hazard Against a

 Change-Point Alternative: A Savesian Approach with

 Censored Data, São Paulo, IME-USP, 1987, 20p.
- 8702 RODRIGUES, J.; Some Results on Restricted Baves Least

 Squares Predictors for Finite Populations. São Paulo,

 IME-USP, 1987, 16p.
- 8703 LEITE, J.G., BOLFARINE, H. & RODRIGUES, J.; Exact

 Expression for the Posterior Mode of a Finite Population

 Size: Capture-Recapture Sequential Sampling, São Paulo,

 IME-USP, 1987, 14p.
- 8704 RODRIGUES, J., BOLFARINE, H. & LEITE, J.G.; A Bayesian

 Analysis in Closed Animal Populations from Capture

 Recapture Experiments with Trap Response, São Paulo,

 IME-USP, 1987, 21p.

- 8705 PAULINO, C.D.M., Analysis of Categorical Data with Full and
 Partial Classification: A Survey of the Conditional
 Maximum Likelihood and Weighted Least Squares Approaches,
 São Paulo, IME-USP, 1987, 52p.
- 8706 CORDEIRO, G.M. & BOLFARINE, H.; Prediction in a Finite

 Population under: a Generalized Linear Model, São Paulo,

 IME-USP, 1987, 21p.
- 8707 RODRIGUES, J. & BOLFARINE, H.; Nonlinear Bayesian

 Least-Squares Theory and the Inverse Linear Regression,

 São Paulo, IME-USP, 1987, 15p.
- 8708 RODRIGUES, J. & BOLFARINE, H.; A Note on Bayesian

 Least-Squares Estimators of Time-Varying Regression

 Coefficients, São Paulo, IME-USP, 1987, 11p.
- 8709 ACHCAR, J.A., BOLFARINE, H. & RODRIGUES, J.: Inverse

 Gaussian Distribution: A Bayesian Approach. São Paulo,

 IME-USP, 1987, 20p.
- 8710 CORDEIRO, G.M. & PAULA, G.A.; <u>Improved Likelihood Ratio</u>

 <u>Statistics for Exponential Family Nonlinear Models</u>, São

 Paulo, IME-USP, 1987, 26p.
- 8711 SINGER, J.M.; PERES, C.A. & HARLE, C.E.; On the

 Hardy-Weinberg Equilibrium in Generalized ABO Systems, São

 Paulo, IME-USP, 1987, 16p.

- 8712 BOLFARINE, H. & RODRIGUES, J.; A Review and Some Extensions

 on Distributions Free Basesian Approaches for Estimation
 and Prediction, São Paulo, IME-USP, 1987, 199.
- 8713 RODRIGUES, J.; BOLFARINE, H. & LEITE, J.G.; A Simple

 Nonparametric Bayes Solution to the Estimation of the Size

 of a Closed Animal Population, São Paulo, IME-USP, 1987,

 11p.
- 8714 BUENO, V.C.; Generalizing Importance of Components for Multistate Monotone Systems, São Paulo, IME-USP, 1987, 12p.
- 8801 PEREIRA, C.A.B. & WECHSLER, S.; On the Concept of P-value,
 São Paulo, IME-USP, 1988, 22p.
- 8802 ZACKS, S., PEREIRA, C.A.8. & LEITE, J.G.; Bayes Sequential

 Estimation of the Size of a Finite Population, São Paulo,

 IME-USP, 1988, 23p.
- 8803 BOLFARINE, H.; Finis Population Prediction Under Dunamic Generalized Linear Models, São Paulo, IME-USP, 1988, 21p.
- 8804 BOLFARINE, H.; Minimax Prediction in Finite Populations, São Paulo, IME-USP, 1988, 18p.
- 8805 SINGER, J.M. & ANDRADE, D.F.; On the Choice of Appropriate

 Error Jerms for Jesting the General Linear Hypothesis in

 Profile Analysis, São Paulo, IME-USP, 1988, 23p.

- 8806 DACHS, J.N.W. & PAULA, G.A.; <u>Testing for Ordered Rate Rations</u>

 in Follow-up Studies with <u>Incidence Density Data</u>, São
 Paulo, IME-USP, 1988, 18p.
- 8807 CORDEIRO, G.M. & PAULA; G.A.; Estimation, Significance Tests
 and Diagnostic Methods for the Non-Exponential Family
 Non-linear Models, São Paulo, IME-USP, 1988, 29p.
- 8808 RODRIGUES, J. & ELIAN, S.N.; The Coordinate Free Estimation in Finite Population Sampling, São Paulo, IME-USP, 1988, Sp.
- 8869 BUENO, V.C. & CUADRADO, R.Z.B.; On the Importance of

 Components for Continuous Structures, São Paulo, IME-USP,

 1988, 14p.
- 8810 ACHCAR, J.A., BOLFARINE, H. & PERICCHI, L.R.; Some

 Applications of Bayesian Methods in Analysis of Life Data,
 São Paulo, IME-USP, 1988, 30p.
- 8811 RODRIGUES, J.; A Bayesian Analysis of Capture-Recapture

 Experiments for a Closed Animal Population, São Paulo,

 IME-USP, 1988, 10p.
- 8812 FERRARI, P.A.; <u>Ergodicity for Spin Systems</u>, São Paulo, IME-USP, 1988, 25p.

- 8813 FERRARI, P.A. & MAURO, E.S.R.; A Method to Combine

 Pseudo-Random Number Generators Using Xor, São Paulo,

 IME-USP, 1988, 10p.
- 8814 BOLFARINE, H. & RODRIGUES, J.; Finite Population Prediction

 Under a Linear Functional Superpopulation Model a Bayesian

 Perspective, São Paulo, IME-USP, 1988, 22p.
- 8815 RODRIGUES, J. & BOLFARINE, H.: A Note on Asymptotically

 Unbiased Designs in Survey Sampling, São Paulo, IME-USP,

 1988, 6p.
- 8816 8UENO, V.C.: Bounds for the a Availabilities in a Fixed Time

 Interval for Continuous Structures Functions, São Paulo,

 IME-USP, 1988, 22p.
- 8817 TOLOI, C.M.C. & MORETTIN, P.A.; Spectral Estimation for lime

 Series with Amplitude Modulated Observations: A Review, São

 Paulo, IME-USP, 1988, 16p.
- 8818 CHAYES, J.T. CHAYES, L.; GRIMMETT, G.R.; KESTEN, H. &

 SCHONMANN, R.H.; <u>The Correlation Length for the High</u>

 Density Phase of Bernoulli Percolation, São Paulo, IME-USP,

 1988, 46p.
- 8819 DURRETT, R.; SCHONMANN, R.H. & TANAKA, N.I.; <u>The contact</u>

 Process on a Finite Set. <u>III: The Critical Case</u>, São Paulo,

 IME-USP, 1988, 31p.

- 8820 DURRETT, R.; SCHONMANN, R.H. & TANAKA, N.I.; Correlation

 Lengths for Oriented Percolation, São Paulo, IME-USP,

 1988. 18p.
- 8821 BRICMONT, J.; KESTEN, H.; LEBOWITZ, J.L. & SCHONMANN, R.H.; A

 Note on the Ising Model in High Dimensions, São Paulo,

 IME-USP, 1988, 21p.
- 8822 KESTEN, H. & SCHONMANN, R.H., Behavior in Large Dimensions of the Potts and Heisenberg Models, São Paulo, IME-USP, 1988, 61p.
- 8823 DURRETT, R. & TANAKA, N.I.; Scaling Inequalities for Oriented

 Percolation, São Paulo, IME-USP, 1988, 21p.
- 8901 RODRIGUES, J.; Asymptotically Design Unbiased Predictors to

 Iwo-Stage Sampling, São Paulo, IME-USP, 1989, 9p.
- 8902 TOLOI, C.M.C. & MORETTIN, P.A.; Spectral Analysis for

 Amplitude Modulated Time Series, São Paulo, IME-USP, 1989,

 24p.
- 8903 PAULA, G.A.; Influence Measures for Generalized Linear Models
 with Restrictions in Parameters, São Paulo, IME-USP, 1989,
 18p.

- 8904 MARTIN, M.C. & BUSSAB, W.O.; An Investigation of the

 Properties of Ranking Ratio Estimators for Cell Frequencies

 with Simple Random Sampling, São Paulo, IME-USP, 1989, 11p.
- 8905 WECHSLER, S.; Yet Another Refutation of Allais 'Paradox, São Paulo, IME-USP, 1989, 6p.
- 8906 BARLOW, R.E. & PEREIRA, C.A.B.; Conditional Independence and

 Probabilistic Influence Diagrams, São Paulo, IME-USP, 1989,

 21p.
- 8907 BARLOW, R.E.; PEREIRA, C.A.B. & WECHSLER, S; The Bayesian

 Approach to Ess, São Paulo, IME-USP, 1989, 20p.
- 8908 PEREIRA, C.A.B. & BARLOW, R.E.; Medical Diagnosis Using

 / Influence Diagrams, São Paulo, IME-USP, 1989, 13p.
- 8909 BOLFARINE, H.; A Note on Finite Population Prediction Under

 Asymmetric Loss Functions, São Paulo, IME-USP, 1989, 8p.
- 8910 BOLFARINE, H.; Bayesian Modelling in Finite Populations, São Paulo, IME-USP, 1989, 8p.
- 8911 NEVES, M.M.C. & MORETTIN, P.A.; A Generalized

 Cochrane-Orcutt-Type Estimator for Time Series Regression

 Models, São Paulo, IME-USP, 1989, 29p.

- 8912 MORETTIN, P.A., TOLOI, C.M.C., GAIT, N. & MESQUITA, A.R.;

 Analysis of the Relationships Between Some Natural

 Phenomena: Atmospheric Precipitation, Mean Sea Level and
 Sunspots, São Paulo, IME-USP, 1989, 35p.
- 8913 BOLFARINE, H.; Population Variance Prediction Under Normal

 Dynamic Superpopulation Models, São Paulo, IME-USP, 1989,

 7p.
- 8914 BOLFARINE, H.; Maximum Likelihood Prediction in Two Stage
 Sampling, São Paulo, IME-USP, 1989, 4p.
- 8915 WECHSLER, S.: Exchangeability and Predictivism. São Paulo,
 IME-USP, 1989, 10p.
- 8916 BOLFARINE, H., Equivariant Prediction in Finite Populations, São Paulo, IME-USP, 1989, 13p.
- 8917 SCHONMANN, R.H.; Critical Points of Two Dimensional Bootstrae

 Percolation Like Cellular Automata, São Paulo, IME-USP,

 1989, 6p.
- 8918 SCHONMANN, R.H.; On the Behavior of Some Cellular Automata

 Related to Bootstrap Percolation, São Paulo, IME-USP, 1989,

 26p.
- 8919 PEREIRA, P.L.V.; Local Nonlinear Irends, São Paulo, IME-USP, 1989, 8p.

- 8920 ANDJEL, E.D., SCHINAZI, R.B. & SCHONMANN, R.H.: Edge

 Processes of One Dimensional Stochastic Growth Models, São

 Paulo, IME-USP, 1989, 20p.
- 8921 MARKWALD, R., MOREIRA, A.R.B. & PEREIRA, P.L.V.; Forecasting

 Level and Cycle of the Brazilian Industrial Production

 Leading Indicators versus Structural Time Series Models,

 São Paulo, IME-USP, 1989, 23p.
- 8922 NEVES, E.J. & SCHONMANN, R.H.; <u>Critical Droplets and Metastability for a Glauber Dynamics at Very Low Jemperature</u>, São Paulo, IME-USP, 1989, 33p.
- Procedure for the MSAE Estimaton of Parameters in a

 Dose-Response Model. São Paulo, IME-USP, 1989, 9p.
- 8924 FERRARI, P.A., MARTINEZ, S. & PICCO, P.; <u>Domains of Attraction of Quasi Stationary Distributions</u>, São Paulo, IME-USP, 1989, 20p.
- 9001 JR., HODGES, J.L. RAMSEY, P.H. & WECHSLER, S.; Improved

 Significance Probabilities of the Wilcoxon Test, São Paulo,
 IME-USP, 1990, 30p.
- 9002 PAULA, G.A.; Bias Correction for Exponential Family Nonlinear Models, São Paulo, IME-USP, 1990, 10p.

- 9003 SCHONMANN, R.H. & TANAKA, N.I.; One Dimensional Caricature
 Of Phase Transition, São Paulo, IME-USP, 1990, 16p.
- 9004 ZACKS, S. & BOLFARINE, H.; Maximum Likelihood Prediction in Finite Populations, São Paulo, IME-USP, 1990, 15p.
- 9005 ZACKS, S. & BOLFARINE, H.: Equivariant Prediction of the

 Population Variance Under Location-Scale Superpopulation

 Models, São Paulo, IME-USP, 1990, 8p.
- 9006 BOLFARINE, H.: Finite Population Prediction Under Error in Variables Superpopulation Models, São Paulo, IME-USP, 1990,
- 9007 80LFARINE, H.: Ratio and Regression Estimators Under Error-In-Variables Superpopulation, São Paulo, IME-USP, 1990, 16p.
- 9008 BOTTER, D.A. & MOTTA, J.M.; Experiments With

 Three-Treatment Three-Period Crossover Design: Analysis

 Through the General Linear Models, São Paulo, ÎME-USP,

 1990, 15p.
 - 9009 SCHONMANN, R.H.; <u>Finite Size Scaling Behavior of a Biased</u>

 <u>Majority Rule Cellular Automaton</u>, São Paulo, IME-USP,

 1990, 11pg.

- 9010 BUENO, V.C.; A Martingals Version of Multistate Monotone
 Systems, São Paulo, IME-USP, 1990, 5pg.
- 9011 CORDEIRO, G.M. & FERRARI, S.L.P.; A Modified Score Tests

 Statistic Having Chi-Squared Distribution to Order n

 São Paulo, IME-USP, 1990, 12pg.
- 9012 -NEVES, E.J. & SCHONMANN, R.H.; Behavior of Droplets for a

 Class of Glauber Dynamics at very Low Temperature, São

 Paulo, IME-USP, 1990, 33p.
- 9013 FERRARI, P.A.; Schock Fluctuations in Asymmetric Simple Exclusion, São Paulo, IME-USP, 1990, 26pg.
- 9014 MAGALHÃES, M.N. & TANAKA, N.I.; Reverse Processes in M/M /1
 Queues, São Paulo, IME-USP, 1990, 7pg.
- Parametric Tests and Diagnostics for Non-Exponential

 Family Nonlinear Models, São Paulo, IME-USP, 1990, 31pg.

- 9016 CORDEIRD, G.M., FERRARI, S.L.P., PAULA, G.A. <u>Improved Score</u>

 <u>Tests for Generalized Linear Models</u>, São Paulo, IME-USP,

 1990, 25pg.
- 9017 ESTON, V.R. ESTON, GRLVES, A., JACOBI, C.M. & LANGENVIN,

 R.; Dominance Switch Between Two Interacting Species and

 Large Deviations, São Paulo, IME-USP, 1990, 8pg.
- 9018 IRONY, T.Z., PEREIRA, C.A.B. & BARLOW, R.E.: Bayesian Models for Quality Assurance, São Paulo, IME-USP, 1990, 22pg.