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1 Introduction and conclusions

The purpose of this paper is to evaluate the gauge invariant, dynamically conserved charges,

proposed in [1, 2], for the BPS multi-dyon solutions of a Yang-Mills-Higgs theory associated

to any compact semi-simple gauge group G. Such conserved charges are obtained from the

integral equations of Yang-Mills theory and can be obtained either from a volume ordered

integral on the whole tridimensional space, or as a surface ordered integral on its border,

which is the two-sphere S2
∞ at spatial infinity. The latter form is simpler to evaluate in

general, and the conserved charges correspond to the eigenvalues of the operator

Q = P2e
ie

∫
S2
∞

dτdσW−1 (αFµν+βF̃µν)W
dxµ

dσ
dxν

dτ (1.1)

where P2 means surface ordered integration as we explain below, Fµν = ∂µAν − ∂νAµ +

i e [Aµ , Aν ], is the field tensor and F̃µν ≡ 1
2 εµνρλ F

ρλ, its Hodge dual. W is the Wilson

line, i.e. the holonomy of the connection Aµ along paths scanning S2
∞, and α and β are

arbitrary parameters. Such charges are conserved in time for any solution of the Yang-

Mills equations in the presence of sources, as long as the following boundary conditions are

satisfied: Fµν → 1/r3/2+δ and Jµ → 1/r2+δ′ , with δ , δ′ > 0, for r → ∞, r being the radial

distance, and Jµ is the current associated with the external fields like fermions, Higgs fields,

etc (see [1, 2] for details). In this paper we are concerned with time-independent solutions

of the BPS equations [3–10]

Bi = cos γ Diφ Ei = sin γ Diφ D0φ = 0 (1.2)

where Bi ≡ −1
2 εijk Fjk and Ei ≡ F0i, i, j, k = 1, 2, 3, are the non-abelian magnetic and

electric fields respectively, φ is the Higgs field transforming under the adjoint representation

of the gauge group G, Di = ∂i ∗ +i e [Ai , ∗ ], and γ is an arbitrary angle. Since we

are considering time-independent solutions, the last two equations of (1.2) can be solved

by taking

A0 = − sin γ φ (1.3)
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The first equation in (1.2) has been studied extensively and it can be solved exactly through

a variety of techniques. Two and multi-monopole solutions have been constructed using

the Nahm transform (ADHMN) [11–14], twistors [15–19], Backlünd transformations [20–

22], rational maps [23–25], and other direct methods [26, 27] . In addition, many exact

properties of BPS monopoles have been obtained [6–8, 28–33].

In order to evaluate the charges (1.1) one needs the analytic expressions for the asymp-

totic form of the gauge fields at spatial infinity. Despite the many developments on BPS

monopoles and dyons, the asymptotic form of the gauge fields is not easy to extract from the

known exact solutions. The asymptotic form of the Higgs field is better studied, specially

its modulus [30, 31, 33], but that does not help much on the evaluation of the charges (1.1).

A result which is really relevant is the so-called generalised inverse square law where the

asymptotic form of the magnetic field is assumed to be [5, 34]

Bi =
1

e

r̂i
r2

g (r̂) Di g (r̂) = 0 r → ∞ (1.4)

with r̂ = ~r/r being the unit vector in the radial direction, and g (r̂) being an element of the

Lie algebra of the gauge group G. Obviously the first equation in (1.4) is what characterizes

a monopole or multi-monopole solution, but the second equation is an assumption which

even though seems to be true for large classes of known monopole solutions, has not been

proven in general. Indeed, in the literature the equations (1.4) are used to calculate the

magnetic charges as topological charges through homotopy arguments, and they are shown

to be related to the co-weights of the little group H to which the gauge group G has been

spontaneously broken [5, 7, 8, 31, 34, 37, 38]. In addition, it is known that for large classes

of BPS multi-monopole solutions the Higgs field at spatial infinity behaves as

φ = φ0 (r̂) +
φ1 (r̂)

r
+ . . . r → ∞ (1.5)

where φ0 (r̂) and φ1 (r̂) are Lie algebra elements of the gauge group G, and where the

remaining terms decay algebraically and exponentially with r.

Instead of trying to extract the asymptotic behavior of the gauge fields (at spatial

infinity) from the known exact solutions, we shall assume an asymptotic ansatz for them,

which is compatible with all known facts about dyons solutions, and then impose the BPS

equation (1.2) asymptotically. We shall work in a gauge where

r̂ · ~A = 0 (1.6)

and assume the following asymptotic form for the gauge fields

Ai = −
1

e
εijk r̂j

[
Kk (r̂)

r
+

Lk (r̂)

r2
+ . . .

]
r → ∞ (1.7)

with i, j, k = 1, 2, 3, and Ki (r̂) and Li (r̂) being Lie algebra elements depending only on

the radial direction r̂, but not on the radial distance r. The remaining terms in (1.7) decay

algebraically and exponentially as r → ∞. The results we obtain can be summarized

as follows:
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1. The covariant derivative of the leading term of the Higgs field in (1.5) decays faster

than 1/r, i.e.

r Di φ0 → 0 as r → ∞ (1.8)

2. The leading and next to leading terms in (1.5) commute, i.e.

[φ0 , φ1 ] = 0 (1.9)

and so, φ1 belongs to the Lie algebra of the little group H to which the gauge group

G has been spontaneously broken.

3. For a compact and semisimple gauge group G it is quite reasonable to assume that

φ0 is a semisimple element of the Lie algebra G of G, in the sense that its adjoint

action splits G into image and kernel without any intersection. More precisely, we

assume that

G = Keradjφ0
+ Imadjφ0

(1.10)

with

[φ0 , Keradjφ0
] = 0 Imadjφ0

= [φ0 , G ] Keradjφ0
∩ Imadjφ0

= 0 (1.11)

If that is so, then it follows that the covariant derivative of the next to leading term

of the Higgs field in (1.5) also decays faster than 1/r, i.e.

r Di φ1 → 0 as r → ∞ (1.12)

As a consequence of (1.8) and (1.12), it follows that

Diφ = −
r̂i
r2

φ1 (r̂) +O

(
1

r3

)
(1.13)

4. The BPS equation (1.2) implies that g (r̂) defined in (1.4) must be given by

g (r̂) = −e cos γ φ1 (r̂) (1.14)

Therefore, the second condition in (1.4) follows from (1.12). Note that the BPS equa-

tions (1.2) alone are not sufficient to imply the generalized inverse square law (1.4).

One needs to assume that φ0 is a semisimple element of G.

5. The fact that φ0 is a semisimple element of G, as defined in (1.10) and (1.11), implies

that the surface ordering P2 is not necessary in the evaluation of the dynamically

conserved charges (1.1), and the operator Q given in (1.1) becomes

Q = e−i 4π e (αQB+β QE) (1.15)

where

QB =
1

4π

∫

S2
∞

dΣiW
−1BiW = − cos γ φ1 (r̂R) =

g (r̂R)

e
(1.16)

QE =
1

4π

∫

S2
∞

dΣiW
−1EiW = − sin γ φ1 (r̂R) = tan γ

g (r̂R)

e
(1.17)
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where the integration is over the two-sphere S2
∞ at spatial infinity, and φ1 (r̂R) is

the value of the Lie algebra element φ1, defined in (1.5), on an arbitrarily chosen

point r̂R of S2
∞. The physical magnetic and electric charges, which are dynamically

conserved, are the eigenvalues of the operators QB and QE respectively, and those

are determined by the eigenvalues of the operator φ1 (r̂R). Such eigenvalues do not

depend upon the choice of the point r̂R of S2
∞ (see [1, 2]).

As it is well known the charges of magnetic monopole solutions in a gauge theory

with symmetry spontaneously broken by the Higgs mechanism are topological charges

determined by the second homotopy group of the Higgs vacua. The magnetic and electric

charges we have evaluated here are dynamically conserved, and so are not of a topological

nature. They are conserved in fact for any solution of the Yang-Mills equations that

satisfy the boundary conditions discussed above. However, the values of the magnetic

charges (1.16) coincide with those obtained by topological methods. Indeed, the eigenvalues

of φ1 (r̂R), and so of g (r̂R) (see (1.14)), must relate to the integers appearing in the so-

called skyline diagram used in the ADHMN construction [7, 31, 39]. In addition, it is

known that the modulus of φ1 gives the monopole number [29, 30]. Perhaps the best way

of understanding the relation among our dynamical magnetic charges and the topological

ones is through the homotopy considerations of [5, 34]. Indeed, those authors have shown

that the homotopy classes, and so the magnetic charges, are related to path dependent

phase factors which are in fact elements of the little group H to which the gauge group

G has been spontaneously broken. Such elements can be evaluated using the non-abelian

Stokes theorem and the magnetic charges can be expressed in the same form as in (1.16).

They do not obtain however the electric charges. Indeed, to construct the charges (1.1) and

show their conservation one has to use a higher non-abelian Stokes theorem involving a two-

form connection [1, 2], and not just a one-form connection like in the usual Stokes theorem.

Note that using either the usual non-abelian Stokes theorem or its higher version

involving a two-form connection (see next section for details) one observes that the operator

Q has to be unity for α = 1 and β = 0, i.e. (see (1.15), (1.16) and (1.14))

Q (α = 1 , β = 0) = e−i 4π eQB = e−i 4π g(r̂R) = 1l (1.18)

and that is the usual quantization of the magnetic charges for monopole solutions [5, 34].

Another point to stress is that the charge operator Q given in (1.1) depends on two

arbitrary parameters α and β. If one expands Q as a power series in those parameters

(see (2.8)), it follows from our construction that each coefficient in such expansion is an

independent conserved charge, and so one obtains an infinite number of non-local conserved

charges involving higher powers of the field tensor and its Hodge dual. It is not clear yet

the physical relevance of such infinity of charges. In the case of BPS multi-dyon solutions

discussed in this paper, the condition (1.12) implies that the higher charges are in fact

powers of the first order magnetic and electric charges, and so Q becomes an ordinary

exponential as given in (1.15). The same charges were evaluated in [1, 2] for the SU(2)

’tHooft-Polyakov monopole and Julia-Zee dyon, as well as for the Wu-Yang monopole,

and the same thing happens, i.e. the higher charges are powers of the first ones. Again,
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the mathematical reason for that is the fact that the Lie algebra elements determining

the magnetic and electric charges are covariantly constant at spatial infinity. It would

be interesting to investigate if there is a no-go theorem involving the infinity of charges

coming from the expansion of the operator Q, given in (1.1), in powers of α and β. Perhaps,

extending the calculations of the present paper to non-BPS monopoles and dyons for higher

gauge groups, to show that they also have only a finite number of charges, would clarify

such point.

We point out that the charges (1.1) differ from the usual dynamically conserved electric

and magnetic charges discussed in the literature. Such charges can be obtained directly

from the differential form of Yang-Mills equations or through the Noether theorem, and

are given by

QYM
B =

1

4π

∫

S2
∞

dΣiBi QYM
E =

1

4π

∫

S2
∞

dΣiEi (1.19)

As pointed out already by C.N. Yang and R. Mills in their original paper [40], as well as in

many text-books (see for instance [41]), the charges (1.19) are not really gauge invariant.

They are invariant only under gauge transformations that go to a constant at spatial infin-

ity. In addition, they vanish when evaluated in the ’tHooft-Polyakov or Wu-Yang monopole

solutions, in the Julia-Zee dyon [10, 42], and perhaps in many other monopole solutions.

We also point out that our charges (1.16) relate to the topological charges of magnetic

monopoles used in the literature. Indeed, for BPS monopoles such topological charges are

given by [3–10]

QTop.
B =

1

2

∫

R3

d3rTr (BiDiφ) =
1

2

∫

S2
∞

dΣiTr (Bi φ) =
1

2 e

∫

S2
∞

dΩTr (g (r̂) φ0 (r̂))

(1.20)

where we have used (1.4) and (1.5), and where dΣi = r̂i r
2 dΩ, with dΩ being the solid

angle element. Through a gauge transformation, we can rotate the φ0-component of Higgs

field defined in (1.5), at the reference point r̂R, into the Cartan sub-algebra of the gauge

group G, i.e.

φ0 (r̂R) = ~v · ~h (1.21)

where hj are the elements of the Cartan-Weyl basis of the Cartan sub-algebra of G, nor-

malized as Tr (hj hk) = δj k. Therefore, the modulus of the vector ~v is the v.e.v. of the

Higgs field, i.e. φ2
0 = ~v2. We can now perform a gauge transformation of the unbroken

gauge group H ⊂ G, which leaves φ0 invariant, to rotate the next to leading term φ1 of the

Higgs field (see (1.5)), at the reference point r̂R, into the Cartan sub-algebra of the gauge

group G as well. From (1.14) one then gets that

g (r̂R) = ~ω · ~h (1.22)

The quantization condition (1.18) however implies that [34–36]

~ω =
rankG∑

a=1

na
~αa

α2
a

(1.23)

– 5 –
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where na are integers, and ~αa are the simple roots of the Lie algebra of the gauge group

G. The reason for that is that the elements of Chevalley basis of the Cartan sub-algebra

of G, namely 2 ~αa ·~h/α
2
a, have integer eigenvalues in any finite dimensional representation

of the gauge group G. It can then be shown that the topological charge (1.20) becomes

QTop.
B =

2π

e
~v · ~ω =

2π

e

rankG∑

a=1

na
~αa · ~v

α2
a

(1.24)

If the vector ~v is not orthogonal to any simple root ~αa, then the gauge group G is broken

to H = [U(1)]rankG. Therefore, in this case the topological charge depends on all magnetic

weights na. However, if ~v is orthogonal to m of the simple roots then G is broken to

H = K ⊗ [U(1)]rankG−m, where K is a non-abelian group which simple roots are the m

simple roots of G otrthogonal to ~v. In such a case m of the magnetic weights na do not

contribute to the topological charge.

Notice that, since ~v is a vector in the root space of the Lie algebra of G, it can

be expanded in terms of the fundamental weights ~λb (satisfying 2~λb · ~αa/α
2
a = δa b), as

~v =
∑rankG

a=1 va ~λa. Therefore QTop.
B = π

e

∑rankG
a=1 na va.

As we have shown above, the dynamically conserved charges we have constructed, are

the eigenvalues of the operator QB, and so of QE , given in (1.16) and (1.17). Therefore,

our charges are given by

qB = eigenvalues of QB =
1

2 e

rankG∑

a=1

na

(
m(1)

a , m(2)
a , . . . , m(d)

a

)
(1.25)

where

m(s)
a = eigenvalues of 2~αa · ~h/α

2
a (1.26)

and d is the dimension of the representation of the gauge group where the eigenvalues are

being evaluated. Note that m
(s)
a are integers in any finite dimensional representation of the

gauge group, since they are the eigenvalues of the elements of the Chevalley basis of the

Cartan sub-algebra of G. Therefore such charges satisfy the quantization condition (1.18)

in any finite representation. So, our charges are vectors in a given representation, and do

not involve a projection onto the v.e.v. ~v of the Higgs field. So, unlike the topological

charge (1.20), our dynamically conserved charges do not miss some of the magnetic weights

na , when there is a non-abelian factor K in the unbroken gauge group H. The missing of

such magnetic weights has been an issue in the literature (see for instance [8, 10]). Notice

that the integers m
(s)
a are fixed by the choice of the representation. If we change the

representation the size of the vector qB changes, as well as its entries. However, they will

be different combinations of the same magnetic weights na. Consequently, the dynamically

conserved charges are essentially the magnetic weights. Even though they are widely used

in the literature, they were never shown to be conserved either dynamically or topologically.

The charges (1.1) not only solve the problem of the non gauge invariance of (1.19),

but also shows that the topological charges discussed in the literature can be expressed in

terms of dynamically conserved charges. So, they unify in a simple and elegant way many

– 6 –
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facets and properties of classical Yang-Mills solutions. Even though the magnetic charges

of monopoles and dyons have been constructed and studied as topological charges, the

electric and magnetic charges of any Yang-Mills solution are dynamically conserved and

gauge invariant, i.e. the eigenvalues of the operator (1.1). Such property of classical Yang-

Mills theories can not be disclosed by the differential form of the Yang-Mills equations.

They need the integral form of those equations.

2 The detailed arguments and calculations

As we mentioned in the introduction the charge operator Q given in (1.1) can be calculated

either by a surface ordered integral or a volume ordered integral. The two forms of it are

given by

Q = P2 e
ie

∫
S2
∞

dτdσW−1 (αFµν+βF̃µν)W
dxµ

dσ
dxν

dτ = P3 e
∫
R3 dζdτV J V −1

(2.1)

where R3 is the spatial sub-manifold of four dimensional Minkowski space-time, and S2
∞ is

the two-sphere at spatial infinity. The very same formulas apply to curved space-time but

we shall restrict ourselves to flat Minkowski space-time (see [1, 2] for details). P2 and P3

mean surface and volume ordered integrations respectively, as we now explain. We choose

a reference point xR on S2
∞ and scan R3 with closed two-dimensional surfaces, labelled

by ζ, based on xR, such that ζ = 0 corresponds to the infinitesimal surface around xR,

and ζ = 2π corresponds to S2
∞. We then scan each one of those two-dimensional surfaces

with loops, labelled by τ , starting and ending at xR, such that τ = 0 corresponds to the

infinitesimal loop around xR, and τ = 2π corresponds to another infinitesimal loop around

the other side of xR, obtained after the loops have spanned the whole surface. Each loop is

paremeterized by σ, such that σ = 0 and σ = 2π correspond to its initial and final points

respectively, both at xR (see [1, 2] for details).

The Wilson line W is defined on any curve, parameterized by σ, through the equation

dW

dσ
+ i eAµ

d xµ

d σ
W = 0 (2.2)

where xµ (µ = 0, 1, 2, 3) are the coordinates on the four dimensional space-time. The

quantity V is defined on any surface through the equation

d V

d τ
− V T (A, τ) = 0 (2.3)

with

T (A, τ) ≡ ie

∫ 2π

0
dσW−1

[
αFµν + βF̃µν

]
W

dxµ

dσ

dxν

dτ
(2.4)

In addition, J , appearing in (2.1), is given by

J =

∫ 2π

0
dσ

{
ieβJ̃W

µνλ

dxµ

dσ

dxν

dτ

dxλ

dζ

+ e2
∫ σ

0
dσ′

[ (
(α− 1)FW

κρ + βF̃W
κρ

) (
σ′
)
,
(
αFW

µν + βF̃W
µν

)
(σ)

]

×
d xκ

d σ′

d xµ

d σ

(
d xρ (σ′)

d τ

d xν (σ)

d ζ
−

d xρ (σ′)

d ζ

d xν (σ)

d τ

)}
(2.5)
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where J̃µνλ is the Hodge dual of the matter current, i.e. Jµ = 1
3!ε

µνρλ J̃νρλ. The matter

current may be due the Higgs fields, spinor matter fields, or any other fields carrying

charges that couple to the Yang-Mills field Aµ. To simplify the formulas we have used the

notation XW ≡ W−1XW , with W being the Wilson line, and X standing for the field

tensor, its Hodge dual, or the dual of the matter currents.

The integral Yang-Mills equations correspond to the equality between the volume and

surface integrals in (2.1) on any three-dimensional volume Ω and its border ∂Ω [1, 2]. Then

by considering a closed three-dimensional volume Ωc (without border), it follows that the

surface integral should be unity and so one gets P3 e
∫
Ωc

dζdτV J V −1

= 1l. That statement

is a conservation law in a way very similar to that used in integrable field theories. In

fact it follows that A =
∫
dτV J V −1, is a flat connection in generalized loop space. That

conservation law implies that, after imposing the boundary conditions

Jµ ∼
1

r2+δ
and Fµν ∼

1

r
3

2
+δ′

for r → ∞ (2.6)

with δ, δ′ > 0, the operator Q has and iso-spectral evolution, i.e.

Q (t) = U (t) Q (0) U−1 (t) (2.7)

and so its eigenvalues are conserved in time (see [1, 2] for details).

Note that the parameters α and β are arbitrary in all those formulas. Therefore, we

can expand Q in a power series in those parameters to get (using the surface integral form

of Q, and so integrating (2.3))

Q = 1l + α

∫ 2π

0
dτ S (τ) + β

∫ 2π

0
dτ S̃ (τ)

+α2

∫ 2π

0
dτ

∫ τ

0
dτ ′ S

(
τ ′
)
S (τ) + β2

∫ 2π

0
dτ

∫ τ

0
dτ ′ S̃

(
τ ′
)
S̃ (τ)

+αβ

∫ 2π

0
dτ

∫ τ

0
dτ ′

[
S̃
(
τ ′
)
S (τ) + S

(
τ ′
)
S̃ (τ)

]
+ . . . (2.8)

with

S (τ) ≡ ie

∫ 2π

0
dσW−1 Fµν W

dxµ

dσ

dxν

dτ
; S̃ (τ) ≡ ie

∫ 2π

0
dσW−1 F̃µν W

dxµ

dσ

dxν

dτ
(2.9)

Therefore, from (2.7) and the independency of the parameters we should get that each

term of the series is independently conserved, leading to an infinity of conserved charges.

Note that if we take α = 1 and β = 0 one gets that the quantity J in (2.5) vanishes.

Therefore, (2.1) implies that

P2 e
ie

∫
S2
∞

dτdσW−1 Fµν W dxµ

dσ
dxν

dτ = 1l (2.10)

and that is the equation that leads to the quantization of the magnetic charges as given

in (1.18). Such relation could also have been obtained by the usual non-abelian Stokes

theorem for one-form connection, and that is how (1.18) was obtained in [5, 34]. One could

– 8 –
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interpret (2.10) as the integral form of the Bianchi identity. However, the true integral

Bianchi identity is obtained by setting β = 0 and leaving α arbitrary. One then gets from

the integral Yang-Mills equations that

P2 e
ie α

∫
∂Ω

dτdσW−1 Fµν W dxµ

dσ
dxν

dτ = P3 e
α(α−1)

∫
Ω
dζdτVKV −1

(2.11)

with Ω being any three-dimensional volume and ∂Ω its border, and where

K = e2
∫ 2π

0
dσ

∫ σ

0
dσ′

[
FW
κρ

(
σ′
)
, FW

µν (σ)
] dxκ
dσ′

dxµ

dσ

(
dxρ (σ′)

dτ

dxν (σ)

dζ
−

dxρ (σ′)

dζ

dxν (σ)

dτ

)

Of course, one can expand (2.11) in powers of α, and each coefficient on one side of the

equation should equal the corresponding coefficient on the other side. We have checked

that equation up to order α2 for the exact SU(2) BPS one-monopole solution and it is

satisfied exactly [43].

Let us now evaluate the charges for the BPS dyon solutions assuming the asymptotic

form the of the Higgs and gauge fields as given in (1.5) and (1.7) respectively. Using (1.7)

one gets that the magnetic field is given by

~B =
1

e

[
r̂

r2
g (r̂) +

1

r3

(
~L (r̂) + r̂ h (r̂)

)
+ . . .

]
r → ∞ (2.12)

where

g (r̂) = −2 r̂ · ~K −
i

2
εijk r̂i [Kj , Kk ] + r ~∇ · ~K (2.13)

and

h (r̂) = −3 r̂ · ~L− i εijk r̂i [Kj , Lk ] + r ~∇ · ~L (2.14)

We now use the fact that the space derivatives of any function of the radial direction only

(and not of the radial distance) are of the order of 1/r. In addition, the gradients of such

functions do not have radial component. Since we are working in the gauge (1.6) it follows

that the covariant derivates of functions of r̂ only do not have radial components either.

Using such facts we can expand the covariant derivative of the Higgs field, given in (1.5),

in powers of 1/r as

Diφ =
1

r

[
r D

(1)
i φ0

]
+

1

r2

[
−r̂i φ1 + r D

(1)
i φ1 − i εijk r̂j [Lk (r̂) , φ0 ]

]
+O

(
1

r3

)
(2.15)

where we have denoted (see (1.7))

D
(1)
i ∗ ≡ ∂i ∗+i e

[
A

(1)
i , ∗

]
with A

(1)
i = −

1

e
εijk r̂j

Kk (r̂)

r
(2.16)

Note that the magnetic field given in (2.12) does not have terms of order 1/r. There-

fore, when we impose the first BPS equation in (1.2), one gets by comparing (2.12)

and (2.15) that

D
(1)
i φ0 = 0 (2.17)

Therefore, the first non-vanishing term of the covariant derivative of φ0 is of order 1/r2,

and so it follows the result (1.8). The term of order 1/r2 in (2.12) has radial components
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only. Consequently, by comparing (2.12) and (2.15) one gets that the first BPS equation

in (1.2) implies the relation (1.14) together with

D
(1)
i φ1 = i εijk

r̂j
r

[Lk (r̂) , φ0 ] (2.18)

Using the first BPS equation in (1.2) one has that

εijkDjBk = cos γ εijkDjDkφ =
i e

2
cos γ εijk [Fjk , φ ] = − i e cos γ [Bi , φ ] (2.19)

According to (2.12) and (1.7), the leading term of [Bi , φ ] is 1
e
r̂i
r2

[ g , φ0 ], and so it is of

order 1/r2. The leading term of εijkDjBk however, is only of order 1/r3. Therefore, (2.19)

implies that

[ g , φ0 ] = 0 (2.20)

and so together with (1.14) it implies the relation (1.9). Now from (2.17), (1.9) and the

Jacobi identity we have

0 =
[
φ1 , D

(1)
i φ0

]
= D

(1)
i [φ1 , φ0 ]−

[
D

(1)
i φ1 , φ0

]
= −

[
D

(1)
i φ1 , φ0

]
(2.21)

But together with (2.18) that implies that

[ [
r̂ ∧ ~L , φ0

]
, φ0

]
= 0 (2.22)

Assuming that φ0 is a semisimple element of G, it follows from (1.11) and (2.22) that

[r̂ ∧ ~L, φ0] belongs to Keradjφ0
. But again from (1.11) one sees that by definition [r̂ ∧ ~L, φ0]

is an element of Imadjφ0
. Since kernel and image do not have any common element it

follows that [
r̂ ∧ ~L , φ0

]
= 0 (2.23)

and so from (2.18) one gets that

D
(1)
i φ1 = 0 (2.24)

Consequently the first non-vanishing term in the covariant derivative of φ1 has to be of

order 1/r2 and so it follows the relation (1.12). Using all such results one gets that (2.15)

reduces to the form given in (1.13).

In order to evaluate the charge operator Q given in (1.1) we have to consider, on the

sphere S2
∞ at spatial infinity, the quantity

W−1 (αFij + βF̃ij)W
dxi

dσ

dxj

dτ
= (α cos γ + β sin γ) W−1 φ1W Σ+O

(
1

r

)
(2.25)

where we have used (1.13), the BPS equations (1.2), and have denoted Σ = 1
r2

εkij r̂k
dxi

dσ
dxj

dτ ,

such that Σ dσ dτ is the area element on the sphere S2
∞. Using the definition of the Wilson

line (2.2) and (1.12) one gets that

d

d σ

(
W−1 φ1W

)
= W−1Diφ1W

dxi

dσ
∼ O

(
1

r

)
(2.26)
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Therefore, the quantity W−1 φ1W is constant along the loops scanning the sphere S2
∞ at

spatial infinity, and so it must equal the value of φ1 at the reference point xR where W = 1l,

i.e. W−1 φ1 (r̂) W = φ1 (r̂R), with r̂R being the unit vector perpendicular to S2
∞ at the ref-

erence point xR. So, the quantity (2.25) is constant on S2
∞, and the relations (1.15), (1.16)

and (1.17) follow.

If we change the choice of the reference point to x′R, then WxR→x′

R
φ1 (r̂R) W

−1
xR→x′

R
=

φ1 (r̂
′
R), where WxR→x′

R
is the Wilson line evaluated on the curve from xR to x′R. There-

fore, the eigenvalues of φ1 (r̂
′
R) and φ1 (r̂R) are the same, and so the charges given by

the eigenvalues of the operators (1.16) and (1.17) are independent of the choice of the

reference point.

In addition, under a general gauge transformation Aµ → g Aµ g
−1+ i

e ∂µg g
−1, we have

that W−1 Fµν W → g (xR) W
−1 Fµν W g−1 (xR), and so QB/E → g (xR) QB/E g−1 (xR).

Therefore the charges, which are the eigenvalues of QB and QE , are invariant under any

gauge transformation. Note however, that we have worked in the radial gauge (1.6), and

so in the definition of φ0 and φ1 in (1.5), we have assumed that gauge. Consequently

the last equalities in (1.16) and (1.17) are valid if one allows gauge transformations that

do not depend upon the radial distance r. Since the Higgs field transforms under the

adjoint representation it follows that under that class of gauge transformations we have

that φ1 (r̂R) → g (xR) φ1 (r̂R) g
−1 (xR), and so compatible with the transformation of QB

and QE .

3 A couple of examples

In order to clarify even further the nature of the dynamically conserved charges (1.1)

we consider two examples corresponding to the cases where the gauge group is SU(2)

and SU(3). Note that the charges (1.1) are conserved for any solution of the Yang-Mills

equations that satisfies the boundary conditions (2.6). Therefore, in the SU(2) case we

discuss not only the BPS monopole and dyon solutions, but also the Wu-Yang and ’tHooft-

Polyakov monopoles and dyons.

3.1 G = SU(2)

The gauge field and field tensor for the Wu-Yang, the ’tHooft-Polyakov, and the BPS

monopoles, as well as for the corresponding dyons, all associated to the gauge group G =

SU(2), have the same behavior at infinity. Indeed, the gauge field and field tensor at

infinity, for the dyon solutions, are given by (see [1] for other details of this example)

Ai = −
1

e
εijk

r̂j
r
Tk ; Fij =

1

e
εijk

r̂k
r2

r̂ · T (3.1)

A0 =
M

e
r̂ · T +

κ

e

r̂ · T

r
+O

(
1

r2

)
; F0i =

κ

e

r̂i
r2

r̂ · T +O

(
1

r3

)

where Ti are the generators of the SU(2) Lie algebra satisfying

[Ti , Tj ] = i εijk Tk i, j, k = 1, 2, 3 (3.2)
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In addition, M and κ are parameters of the solution. The next to leading terms of Ai and

Fij for the ’tHooft-Polyakov, and the BPS dyons are exponentially decaying. In the case

of the Wu-Yang dyon, i.e. when there is no Higgs field and no symmetry breaking, the

formulas (3.1) are true everywhere and not only at spatial infinity. In other words, there

are no terms of order r−2 and r−3 in A0 and F0i respectively. Therefore, comparing with

the ansatz (1.7), we conclude that the operator Lk (r̂) vanishes in the SU(2) case for single

dyon and monopole solutions. By comparing (3.1) with (1.4) we get that in this case

g (r̂) = −r̂ · T (3.3)

Using (3.1) one can explicitly check that

Di r̂ · T = ∂i r̂ · T + i e [Ai , r̂ · T ] = 0 (3.4)

and so g (r̂) does satisfies the so-called generalized inverse square law given in (1.4). There-

fore, using (2.2) one gets that

d

dσ

(
W−1 r̂ · T W

)
= 0 → W−1 r̂ · T W = r̂R · T (3.5)

where r̂R is the reference point on the two sphere at infinity S2
∞ where the loops, scanning

it, start and end. Consequently, we observe from (2.8) and (2.9) that the higher charges in

that expansion are powers of the first one, not only for the BPS dyon as shown above, but

also for the Wu-Yang and ’tHooft-Polyakov monopoles and dyons. Therefore, using (3.1)

and (3.5) one gets that the magnetic and electric charges become (notice that the results

in (1.16) and (1.17) are valid for BPS solutions only)

QB =
1

4π

∫

S2
∞

dΣiW
−1BiW = −

1

e
r̂R · T (3.6)

QE =
1

4π

∫

S2
∞

dΣiW
−1EiW =

κ

e
r̂R · T (3.7)

Choosing the reference point to be on the negative z-axis, i.e. the south pole of S2
∞ , we

get r̂R · T = −T3, and so

qB = eigenvalues of QB =
1

e
(j , j − 1 , j − 2 , . . . , −j + 1 , −j) (3.8)

and similarly for the eigenvalues of QE , with j being the spin (integer or half-integer) of

the representation of SU(2) where the eigenvalues are evaluated. Notice that such charges

do satisfy the quantization condition (1.18) in any representation. So, the Wu-Yang, the

’tHooft-Polyakov, and the BPS monopoles, as well as the corresponding dyons, all have

the same dynamically conserved charges, even though they are quite different from the

topological point of view, i.e. there is no definition of topological charge for the Wu-Yang

monopole.
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3.2 G = SU(3)

We now consider SU(3) BPS monopole solutions, and so all the formulas discussed in

sections 1 and 2 apply to this case. We first discuss the maximal breaking where the v.e.v.

of the Higgs field is not orthogonal to any of the roots. We can take for instance ~v as the

sum of the two simple roots, i.e.

φmax.
0 = ~v · ~h = v (~α1 + ~α2) · ~h = v diag (1 , 0 , −1) (3.9)

where in the last equality we have chosen the triplet representation for the Cartan sub-

algebra generators ha, and have normalized the roots as ~α2
a = 2, and so ~α1 · ~α2 = −1.

The gauge group SU(3) is spontaneously broken to H = U(1)⊗U(1) (generated by h1 and

h2). The topological charge of the solutions is given by the second homotopy group of the

(connected) Higgs vacua

π2 (SU(3)/U(1)⊗U(1)) = Z⊗ Z (3.10)

From (1.24) we then have that the topological charge in this case is

Q
Top.(max.)
B = v

π

e
(n1 + n2) (3.11)

Let us now consider the case of minimum symmetry breaking where the v.e.v. of the Higgs

field is orthogonal to one of the simple roots, let us say ~α1. Then

φmin.
0 = ~v · ~h = v ~λ2 · ~h =

v

3
diag (1 , 1 , −2) (3.12)

where ~λ2 = (2 ~α2 + ~α1) /3 is the second fundamental weight of SU(3), and where we have

used the triplet representation for ha. The gauge group SU(3) in this case is broken to

U(2), and the topological charge is determined by the homotopy group

π2 (SU(3)/U(2)) = Z (3.13)

Again from (1.24) we then have that the topological charge in this case is

Q
Top.(min.)
B = v

π

e
n2 (3.14)

Now, from (1.22) and (1.23) we have

g (r̂) =
1

2
(n1 ~α1 + n2 ~α2) · ~h =

1

2
diag (n1 , n2 − n1 , −n2) (3.15)

where again, in the last equality, we have used the triplet representation. Therefore,

from (1.16) and (1.25), the dynamically conserved charges are given by

qB = eigenvalues of QB =
1

2 e

2∑

a=1

na

(
m(1)

a , m(2)
a , . . . , m(d)

a

)
(3.16)

where m
(s)
a are the eigenvalues of 2~αa · ~h/~α

2
a, in the representation of dimension d. If we

choose the triplet representation, we get

qtripletB =
1

2 e
(n1 , n2 − n1 , −n2) (3.17)
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If we had chosen the adjoint representation instead, we would get

qadjointB =
1

2 e
(n1 + n2 , 2n1 − n2 , −n1 + 2n2 , 0 , 0 , −2n1 + n2 , n1 − 2n2 , −n1 − n2)

(3.18)

So, if the magnetic field has the same magnetic weights na, in the maximal and minimal

symmetry breaking cases, the dynamically conserved charges are equal in both cases. So,

it is insensitive to the pattern of symmetry break. Even though the vectors qB change

from one representation to another, we observe that the dynamically conserved charges

correspond in fact to the magnetic weights na. Even though such weights are widely used

in the literature, they were never shown to be conserved either dynamically or topologically.
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