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Abstract: Pesticides are commonly used to control weeds, diseases, and pests in soybean crops, al-
though natural enemies are also key components of integrated pest management programs protecting
soybean from pests. The predatory mite Neoseiulus idaeus Denmark & Muma is commonly found in
soybeans associated with tetranychid mites. We determined the compatibility of some pesticides
used in Brazilian soybean fields with N. idaeus on the basis of their lethal and sub-lethal effects.
We assessed the acute toxicity of pesticides that are considered harmless to females of N. idaeus
and evaluated the effects on the mite offspring. Acephate as well as imidacloprid and bifenthrin
were most toxic to adult females and were classified as harmful. Chlorfenapyr, indoxacarb, and the
neonicotinoid and pyrethroid mixtures were classified as slightly to moderately harmful. Immatures
of N. idaeus were able to develop and reach the adult stage when treated with chlorantraniliprole,
flubendiamide, glyphosate, and teflubenzuron, but immature survival was reduced to 42 and 64% for
offspring of females treated with chlorantraniliprole or teflubenzuron, respectively. Reproduction
was most affected in females exposed to chlorantraniliprole and teflubenzuron; these females had
daily oviposition rates of 0.5 and 0.4 egg/female/day, respectively, and mean fecundities of 2.7
and 5.8 eggs/female, respectively. On the basis of sublethal effects and life table parameters, chlo-
rantraniliprole was classified as moderately harmful, while the other pesticides tested were classified
as harmless. In considering the use of pesticides while targeting the conservation of N. idaeus as a
predator of important pests in soybean crops, one must prioritize pesticides that will most likely have
less harmful effects on this predator in the field.

Keywords: phytoseiids; natural enemies; chemical control; sublethal effects

1. Introduction

Soybean (Glycine max (L.) Merrill) is one of the main foods consumed in the world [1–3]
due to its highly nutritious composition, including edible proteins used in human and
animal diets [4]. Soybean also has important social and economic roles, generating em-
ployment and income though production chains. World soybean production in 2021–2022
was 352.74 million metric tons for 130.43 million hectares planted [5]. In Brazil, the largest
global soybean producer, the 2021–2022 harvest corresponded to 126.00 million metric tons
per hectare of planted area, with a productivity of 3.07 metric tons per hectare [6].

Soybean production can be affected by weeds, diseases, and pests throughout the
production cycle. Major lepidopteran soybean pests are Anticarsia gemmatalis Hübner
(Erebidae), Chrysodeixis includens (Walker), Helicoverpa armigera (Hübner), and the Spodoptera
complex (Noctuidae) [7–13]. Stink bugs represent another group of important soybean
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pests, primarily Nezara viridula (Linnaeus), Piezodorus guildinii (West.), and Euschistus heros
(Fabricius) (Hemiptera: Pentatomidae) [14–17]. Moreover, many species of tetranychid
mites occasionally occur in soybean fields [18–24]. For example, Mononychellus planki
(McGregor) and Tetranychus urticae Koch (Acari: Tetranychidae) have been reported to
damage soybean and other crops [25–28].

Indiscriminate use of pesticides causes ecological problems, including contamination
of soil and water, adverse effects on non-target organisms, and pest resistance to insecti-
cides [29,30]. Integrated pest management aims to rationalize the use of control tactics,
especially to reduce the application of broad-spectrum insecticides and to promote the
integration of different pest-control tactics, mainly through the use of culture methods and
biological-control agents [31–33]. Finding ecofriendly methods to control pests is vital. For
this reason, biological control of pests using pathogens, parasitoids, and predators has
received considerable attention in recent years.

Among predators, phytoseiid mites have been considered for their potential as control
agents for phytophagous mites as well as certain insects, including whiteflies and thrips
[34–37]. The family Phytoseiidae contains approximately 2557 valid species [38,39] and is
one of the best-studied groups among Acari. Neoseiulus idaeus Denmark & Muma (Acari:
Phytoseiidae) is a type III generalist predator [36], which feeds on different types of prey
but develops and reproduces better on a diet of tetranychid mites. This predatory mite
has a broad distribution in Brazil [38,39] and has been reported on several crop plants,
including soybean [23,40].

Laboratory studies have shown that N. idaeus develops better when fed with Tetranuchus lu-
deni Zacher (Acari: Tetranychidae) and T. urticae, two important spider mites in soy-
bean [41,42]. Reichert et al. [41,42] discussed the importance of N. idaeus as a control agent
for tetranychids. In addition, the potential of N. idaeus to control T. urticae has been reported
in laboratory and semi-field conditions [43–46].

In this study, we tested the compatibility of the main pesticides used in Brazilian
soybean fields with the predator N. idaeus under laboratory conditions. In addition to the
acute toxicity to the predatory mites, we evaluated the sublethal effects of five pesticides
that caused very low mortality. For this, we assessed the development and reproductive
parameters with a life table and fertility study, using the offspring of a pesticide-treated
parental generation.

2. Materials and Methods

The experimental bioassays were conducted at the Integrated Pest Management Lab-
oratory of the Department of Entomology and Acarology at Luiz de Queiroz College of
Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil.

For all bioassays, the experimental units consisted of a cylindrical acrylic container
(2.5 × 1.5 cm) with a base of carrageenan, where a disc of soybean leaf, variety “BMX
Power RR” (2.0 cm in diameter) sprayed with a pesticide or water (negative control), was
placed. The top of the cylinder was sealed with cling film (Magipack®, MP Magipack
Embalagens, Criciuma, SC, Brazil) to prevent the mites from escaping. The experimental
design of the bioassays was completely randomized. All bioassays were conducted in a
climate-controlled chamber at 25 ± 2 ◦C, 75 ± 10% RH, and 12 h photoperiod.

2.1. Mites

The predatory mites were initially collected in February 2021 from soybean plants
in the experimental area of the Department of Entomology and Acarology, ESALQ/USP.
The mites were kept in rearing units like those described by McMurtry and Scriven [47],
which consisted of a rectangular plastic container with a hydrophilic sponge saturated
with water. A leaf of Canavalia ensiformis (Linnaeus) DC. (Fabaceae) was placed on
the sponge, and a layer of hydrophilic cotton on the leaf’s edges prevented the mites
from escaping and maintained leaf turgidity. The mites were kept in a room (22–27 ◦C,
75 ± 10% RH, in darkness), and were continually fed with two-spotted spider mites (60%
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eggs and 40% immature stages). The initial colony of spider mites was obtained by Promip
Manejo Integrado LTDA, Engenheiro Coelho, SP, Brazil. These mites were reared on
C. ensiformis plants in a climate-controlled chamber at 25 ± 3 ◦C, 75 ± 10% RH, and 14 h
photoperiod. Every seven days, a new rearing unit was assembled, and the predatory mites
were transferred to it. Identification of the T. urticae and N. idaeus specimens was confirmed
by Geovanny Barroso.

2.2. Pesticides

The pesticides selected for the bioassays were chosen on the basis of the Brazilian
Phytosanitary Agrochemicals System (Agrofit) list [48]. They were tested at the maximum
dosage recommended by the manufacturer for their biological target (Table 1).

Table 1. Common pesticides used to control weeds and pests in Brazilian soybean fields.

Active Ingredient Trade Name Chemical Group Concentration
(g or mL. L–1)

I.A. * C.P. **

Acephate Orthene® 75 SP, UPL Brazil,
Ituverava, SP, Brazil.

Organophosphate 2.50 3.20

Acetamiprid and
fenpropathrin

Bold® EW, Iharabras S.A.
Sorocaba, SP, Brazil

Neonicotinoid and
pyrethroid 0.24 + 0.36 3.20

Acetamiprid and
alpha-cypermethrin

Fastac Duo® 40 SC, BASF S.A.,
São Paulo, SP, Brazil.

Neonicotinoid and
pyrethroid 0.32 + 0.64 3.20

Chlorantraniliprole Premio 20 SC, FMC LTDA,
Campinas, SP, Brazil. Anthranilic diamide 0.64 3.20

Chlorfenapyr Pirate 24 SC, BASF S.A., São
Paulo, SP, Brazil. Pyrazole analog 1.92 8.00

Flubendiamide Belt® 48 SC, Bayer S.A., São
Paulo, SP, Brazil.

Phthalic acid diamide 1.68 3.50

Glyphosate Roundup Ultra® SL, Monsanto
LTDA, São Paulo, SP, Brazil.

Ammonium-salt
glyphosate 2.52 3.50

Imidacloprid and bifenthrin Galil® 25 SC, ADAMA SA,
Londrina, PR, Brazil.

Neonicotinoid and
pyrethroid 0.10 + 0.02 0.40

Indoxacarb Avatar® 15 SC, FMC LTDA,
Campinas, SP, Brazil.

Oxadiazine 0.18 1.20

Methoxyfenozide and
spinetoram

Intrepid® Edge SC, Dow
AgroSciences, Barueri, SP,

Brazil.

Diacylhydrazine and
spinosyn 0.90 + 0.18 3.00

Teflubenzuron Nomolt® 15 SC, BASF S.A.,
São Paulo, SP, Brazil.

Benzoylurea 0.22 1.5

Thiamethoxam and
lambda-cyhalothrin

Engeo Pleno® SC, Syngenta
LTDA, São Paulo, SP, Brazil.

Pyrethroid and
neonicotinoid 0.14 + 0.10 1.00

* Corresponds to the concentration for the Active Ingredient (I.A.). ** Corresponds to the concentration for the
Commercial Product (C.P.).

2.3. Acute Toxicity to Adult Females

Each pesticide was sprayed (1.5–2.0 mg solution cm–2) onto a disc of soybean leaf using
a calibrated Potter tower (Burkard Scientific, Uxbridge, UK) with the pressure adjusted to
0.7 kg cm–2, corresponding to a deposit of 1.8 ± 0.1 mg cm–2 of leaf area, as recommended
by the International Organization for Biological and Integrated Control of Noxious Animals
and Plants (IOBC) [49,50]. A few minutes after the spraying, the leaf disc was placed in
an experimental unit and dried for 2 h in a climate-controlled room in the dark. Then, a
single adult female of N. idaeus (mated and up to 48 h after emergence) was transferred
to each unit. A leaf fragment with all life stages of spider mites (ad libitum) was added
as the food source for the predator 4 h after the female N. idaeus was transferred to ensure
that this predator was in contact with the previously sprayed disc during that time. The
numbers of live and dead mites were evaluated 24 and 48 h after the application of the
treatments. Mites were considered dead when they did not react to being touched with a
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fine brush. In total, the experiment had 12 treatments (pesticides) and a negative control
(distilled water), with each treatment repeated 20 times, and each replicate contained one
predator (adult female).

2.4. Sublethal Effects on Offspring

The sublethal effect was evaluated for the pesticides that caused corrected mortality
(Cm) of up to 25% in adult females and were, therefore, classified as harmless according
to the IOBC [51]. For this, a new adult female (48 h old) was transferred to a pesticide-
treatment experimental unit as in the previous bioassay. Each egg laid by that female was
carefully transferred to a new, pesticide-free experimental unit. Initially, each treatment
consisted of approximately 50 repetitions. In this case, each repetition contained one
12-hour-old egg. Survival and duration of immature stages (larvae, protonymphs, and
deutonymphs) were evaluated every 12 h until the adults emerged. The newly emerged
adult females and males were placed in new experimental units to determine the pre-
oviposition and oviposition periods, fecundity (number of eggs laid by females), egg
viability (number of hatched larvae), and longevity of females. As the number of males in
the treatments was insufficient to form all the couples, males of indeterminate age were
collected in the rearing colonies and confined with the remaining females. The mites were
fed daily ad libitum with a mixture of all spider mite stages (75% eggs and immatures).

The viability of eggs from the adult females treated with pesticides (parental genera-
tion, F0) was determined on the basis of the number of hatched larvae in each experimental
unit. Likewise, the first 50 eggs laid by adult females of the offspring (maternal generation,
F1) were evaluated. Eggs that did not progress to larvae within seven days were considered
non-viable.

2.5. Data Analysis

The data for mortality and viability of eggs laid by exposed adult females (F0), and
viability of the eggs laid by their offspring (F1) were analyzed with a generalized linear
model with a binomial distribution. The goodness of fit was confirmed using the “hnp”
package [52]. The comparisons were performed by contrasts from a binomial generalized
linear model using the glht function from the multcomp package [53]. The R software
4.1.2 [54] was used for these analyses.

The sublethal effects on mites assessed for each pesticide were expressed as:
E% = 100 − (100 − Cm) × Er, where Er is the coefficient of reduction or toxicity, de-
termined by: Er = (Ftreatment/Fcontrol) × (Vtreatment/Vcontrol), where F is the ratio of
the total number of eggs laid per female in the specified treatment (Ftreatment) to the total
number in the control (Fcontrol); V is the ratio of the total number of larvae that hatched
from eggs in this treatment (Vtreatment) to those in the control (Vcontrol) at the end of the
test; and Cm is the percentage mortality calculated according to Abbott [55]. The data were
analyzed considering the recommendations of the IOBC-WPRS [50,51], and toxicity classes
were assigned on the basis of overall effects (E) to classify each pesticide as follows: Class
1 = harmless (E < 25%); Class 2 = slightly harmful (25 ≤ E ≤ 50%); Class 3 = moderately
harmful (50% ≤ E ≤ 75%); and Class 4 = harmful (E > 75%).

The effects of the pesticides on the offspring (F1) were estimated from life table
data [56], using the Age–Stage method developed by Chi [57] with the TWOSEX-MSChart
software [57,58]. The means and standard errors of the biological parameters were obtained
using a paired bootstrap test, as proposed by Huang and Chi [59], with 100,000 bootstraps.
The mean and standard errors were estimated for Dunn’s test with Bonferroni correction
(p < 0.05) when this was not possible using the Age–Stage method.

3. Results
3.1. Acute Toxicity to Adult Females

Mortality rates differed among the pesticides and were highest for acephate and for
imidacloprid and bifenthrin (Table 2). These insecticides were toxic over the short term
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and caused 100% mortality within 48 h. Mortality rates higher than 25% were observed for
the pesticides formulated with a ready-mix of neonicotinoid and pyrethroid. In contrast,
chlorantraniliprole, glyphosate, and teflubenzuron caused low mortality to the mite and,
therefore, were classified as harmless.

Table 2. Mortality rate ± standard error (SE) and confidence intervals (CI) of Neoseiulus idaeus females
24 and 48 h after contact with pesticide residues on soybean leaves, corrected mortality (Cm) after 48
h, and IOBC-WPRS classification of pesticides.

Pesticide Mortality

24 h 48 h Cm (%) 1 Class 2

Mean SE CI Mean SE CI

Control 10.0 0.06 (03.0–33.0) b 15.0 0.08 (05.0–38.0) cd – –
Acephate 100 0.00 (0.0–0.0) * 100 0.00 (00.0–00.0) * 100 4

Acetamiprid and
fenpropathrin 45.0 0.11 (26.0–67.0) ab 50.0 0.11 (30.0–71.0)

bcd 41 2

Acetamiprid and
alpha-cypermethrin 40.0 0.11 (22.0–63.0) ab 65.0 0.10 (43.0–83.0) bc 59 3

Chlorantraniliprole 5.0 0.05 (01.0–29.0) b 15.0 0.08 (05.0–38.0) cd 0 1

Chlorfenapyr 55.0 0.11 (34.0–65.0) ab 60.0 0.11 (38.0–79.0)
bcd 53 3

Flubendiamide 5.0 0.05 (01.0–29.0) b 15.0 0.08 (05.0–38.0) cd 0 1

Glyphosate 5.0 0.05 (01.0–29.0) b 20.0 0.09 (08.0–43.0)
abcd 6 1

Imidacloprid and
bifenthrin 65.0 0.10 (43.0–83.0) a 90.0 0.06 (68.0–98.0) b 88 4

Indoxacarb 30.0 0.10 (15.0–53.0) ab 40.0 0.11 (22.0–63.0)
bcd 29 2

Methoxyfenozide
and spinetoram 10.0 0.06 (03.0–23.0) b 35.0 0.10 (18.0–58.0)

abcd 24 1

Teflubenzuron 5.0 0.05 (01.0–29.0) b 10.0 0.06 (03.0–33.0) d 0 1
Thiamethoxam and
lambda-cyhalothrin 60.0 0.11 (38.0–79.0) ab 70.0 0.10 (48.0–86.0) ab 65 3

χ2 67.24 69.29 – –
p-value <0.00001 <0.00001 – –

Means followed by the same letter in a column do not differ significantly by contrasts from binomial generalized
linear model; p ≤ 0.05. * Treatments excluded from the analysis since there was no variability. 1 Corrected
mortality (Cm) by the Abbott formula. 2 Toxicological class according to IOBC-WPRS in which Class 1 = harmless
(Cm < 25%); Class 2 = slightly harmful (25 ≤ Cm ≤ 50%); Class 3 = moderately harmful (51 ≤ Cm ≤ 75%); and
Class 4 = harmful (Cm > 75%).

3.2. Sublethal Effects on Offspring
3.2.1. Development Time and Survival Rates of Immature Stages

Offspring of N. idaeus could develop and completed their life cycle when the progenitor
females were exposed to chlorantraniliprole residue. Nevertheless, this pesticide reduced
the egg viability most, achieving 69% survival (Table 3). The offspring of females exposed
to flubendiamide had a shorter egg development time, significantly different from all
treatments (χ2 = 67.5; df = 4; p < 0.001). Likewise, the larvae that emerged from viable eggs
had a shorter mean duration in the teflubenzuron, which differed from chlorantraniliprole
and flubendiamide but was equal to glyphosate and control treatments (χ2 = 33.4; df = 4;
p < 0.001). Significant differences in protonymph duration were detected (χ2 = 22.9; df = 4;
p < 0.001); however, post hoc tests revealed the only difference observed was for individuals
in the teflubenzuron treatment (χ2 = 22.9; df = 4; p < 0.001). In contrast, deutonymphs in
the glyphosate treatment lasted longer than all but those whose mothers were treated with
chlorantraniliprole (χ2 = 28.6; df = 4; p <0.001). Despite the statistical differences observed
in the duration of each immature stage, the total development time (egg–adult) was similar
for all treatments (χ2 = 8.1, df = 4; p = 0.09).
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Table 3. Mean duration of the different developmental stages ± SE (% survival) of Neoseiulus idaeus
after contact with residues of pesticides used on soybean crops, at 25 ± 1 ◦C, 75 ± 10% RH, and 12 h
photoperiod.

Developmental
Stage Control Chlorantraniliprole Flubendiamide Glyphosate Teflubenzuron

Egg 1.8 ± 0.2 a (100) 1.5 ± 0.2 a (69) * 1.1 ± 0.2 b (100) 1.8 ± 0.3 a (100) 1.6 ± 0.2 a (98)
Larva 0.7 ± 0.1 ab (100) 0.9 ± 0.2 a (91) 0.8 ± 0.1 b (100) 0.7 ± 0.1 ab (100) 0.6 ± 0.1 a (100)

Protonymph 1.6 ± 0.3 b (100) 1.8 ± 0.4 b (80) 1.8 ± 0.3 b (100) 1.5 ± 0.2 b (86) 2.2 ± 0.4 a (76)
Deutonymph 1.7 ± 0.3 b (98) 2.0 ± 0.4 ab (84) 1.7 ± 0.3 b (96) 2.2 ± 0.4 a (86) 1.7 ± 0.2 b (86)

Egg–Adult 5.5 ± 0.9 a (98) 5.1 ± 1.2 a (42) * 5.5 ± 1.0 a (94) 6.0 ± 1.0 a (74) 5.4 ± 1.0 a (64) *
In each row, means followed by the same letter are not significantly different (post hoc test using Dunn’s test with
Bonferroni correction or paired bootstrap test, p > 0.05). * Statistically significant difference in survival compared
with control by paired bootstrap test, p < 0.05.

3.2.2. Reproductive Parameters and Adult Longevities

The pre-oviposition times were relatively longer for the offspring of females treated
with chlorantraniliprole and teflubenzuron, though not significantly different than the
glyphosate and control treatments (Table 4). The oviposition period was shorter for chlo-
rantraniliprole, which was statistically different from the control but similar to fluben-
diamide, glyphosate, and teflubenzuron (χ2 = 14.9; df = 4; p = 0.004). However, the
post-oviposition time had no difference among the treatments (χ2 = 6.1; df = 4; p = 0.188).

Table 4. Mean (±SE) of pre-oviposition, oviposition, and post-oviposition periods (days), fecundity
(eggs per female), eggs/female/day, and longevity of Neoseiulus idaeus after contact with residues of
pesticides used on soybean crops, at 25 ± 1 ◦C, 75 ± 10% RH, and 12 h photoperiod.

Biological
Parameter Control Chlorantraniliprole Flubendiamide Glyphosate Teflubenzuron

Pre-oviposition a 1.6 ± 0.3 ab 3.6 ± 1.1 a 0.9 ± 0.2 b 2.7 ± 0.5 ab 3.2 ± 0.7 a
Oviposition a 11.0 ± 2.6 a 6.4 ± 1.6 b 7.4 ± 1.7 ab 8.3 ± 1.6 ab 6.9 ± 1.4 ab

Post-oviposition a 4.6 ± 1.0 a 2.9 ± 0.9 a 3.1 ± 0.7 a 1.9 ± 0.4 a 3.6 ± 0.8 a
Total fecundity b 392 51 324 227 128
Mean fecundity a 17.9 ± 1.8 a 5.5 ± 2.1 b 16.5 ± 2.4 a 8.5 ± 1.0 b 6.1 ± 1.0 b

Eggs/female/day a 1.2 ± 0.2 a 0.5 ± 0.1 a 0.8 ± 0.2 a 0.7 ± 0.1 a 0.5 ± 0.1 a
Sex ratio 0.76 0.48 0.69 0.72 0.68

♀Longevity a 12.0 ± 0.5 a 12.6 ± 1.0 a 11.6 ± 0.7 a 13.2 ± 0.5 a 12.4 ± 0.7 a
♂Longevity a 7.4 ± 0.3 b 8.4 ± 0.4 ab 8.8 ± 0.4 ab 9.3 ± 0.3 a 8.4 ± 0.3 ab
Number of ♀c 26 10 22 26 21
Number of ♂c 8 11 10 10 10

a In each row, means followed by the same letter are not significantly different (Dunn’s test with Bonferroni
correction or paired bootstrap test, p > 0.05). b Equivalent to the sum of daily oviposition. (Bonferroni t-test) or
paired bootstrap test, p > 0.05. c Number of parental eggs.

The mean fecundity differed in females exposed to chlorantraniliprole, teflubenzuron,
and glyphosate from those exposed to flubendiamide and control (χ2 = 31.9; df = 4,
p = < 0.001). However, no significant differences among treatments were observed in
daily oviposition (χ2 = 6.5; df = 4; p = 0.164) (Table 4).

Newly emerged and mated females showed oviposition peaks between Days 3 and 12
after emergence. Higher oviposition peaks were observed in the control and flubendiamide
treatments (Figure 1). In the control treatment, mortality of adult females occurred begin-
ning with Day 8 and increased progressively until the last adult died on Day 20. Females in
the other treatments showed gradual mortality between the second and third days after
emergence. In the control treatment, the mean daily oviposition increased progressively
from the second day onward, reaching the highest peak on the sixth day after emergence.
The mean longevity of adult females did not differ statistically among treatments (χ2 = 5.7;
df = 4; p = 0.220). In contrast, adult males had longer lifespans in the glyphosate treatment
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than the control, which did not statistically differ from chlorantraniliprole, flubendiamide,
and teflubenzuron (χ2 = 12.4; df = 4; p = 0.014).
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3.2.3. Population Growth Parameters

The net reproductive rate (R0) of N. idaeus was considerably higher in the flubendi-
amide and control treatments, with a projected increase of 8–9 times in each generation,
respectively (Table 5). The intrinsic growth rate (rm), which represents the population
growth rate based on the daily number of females generated by females, was affected
by chlorantraniliprole, glyphosate, and teflubenzuron. The finite increase rate (λ) indi-
cates the ratio of population growth of N. idaeus, which in this case did not differ statis-
tically among treatments. Finally, the mean generation time (T) was longer in the chlo-
rantraniliprole, glyphosate, and teflubenzuron treatments, which were statistically different
from flubendiamide.

Table 5. Life table parameters ± SE of the parental generation of Neoseiulus idaeus after contact with
residues of pesticides used on soybean crops, at 25 ± 1 ◦C, 75 ± 10% RH, and 12 h photoperiod.

Life Table
Parameter Control Chlorantraniliprole Flubendiamide Glyphosate Teflubenzuron

Ro 8.91 ± 1.49 a 1.04 ± 0.50 d 7.90 ± 1.55 a 4.40 ± 0.78 b 2.56 ± 0.58 c
T 16.93 ± 2.52 ab 20.12 ± 2.87 a 16.45 ± 2.57 b 20.04 ± 2.83 a 19.28 ± 2.72 a
λ 1.14 ± 0.16 a 1.00 ± 0.42 a 1.13 ± 0.17 a 1.08 ± 0.49 a 1.05 ± 0.18 a

rm 0.129 ± 0.019 a 0.091 ± 0.013 b 0.127 ± 0.020 a 0.074 ± 0.010 c 0.049 ± 0.006 d

Ro: net reproduction rate (offspring/individual); rm: intrinsic rate of increase (day–1); λ: finite rate of increase
(day–1); T: mean generation time (days). In each row, means followed by the same letter are not significantly
different (paired bootstrap test, p > 0.05).
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3.2.4. Age–Stage Survival Rate

The probability of emergence/hatching and survivability of each of the stages of
N. idaeus after contact with pesticides was estimated by the age–stage survival rate (Sxj),
which represents the probability of a newborn individual surviving to age x at stage
j (Figure 2).
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Figure 2. Age–stage-specific survival rate (Sxj) of Neoseiulus idaeus after contact with residues of
pesticides used on soybean crops, at 25 ± 1 ◦C, 75 ± 10% RH, and 12 h photoperiod.

Consistent with results of the survival of the different mite stages (Section 3.2.1), the
estimated projection in the graph Sxj showed that the survival curves also indicated a lower
survival rate in the egg and deutonymph stages of the offspring of the females treated
with chlorantraniliprole and teflubenzuron, respectively. In all treatments, the overlapping
stages indicated that hatching/emergence rates varied among individuals at each stage of
development.

3.3. Egg Viability

The viability of eggs produced in the parental generation (F0) by females treated
with chlorantraniliprole was 42%, representing a significant decrease compared with other
treatment groups (χ2 = 105.63; p < 0.001). However, for all treatments, the eggs generated
by the maternal (F1) generation had high viability (Table 6), with no statistical differences
among treatments (χ2 = 9.09; p = 0.059).
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Table 6. Mean egg viability ± SE and (CI) of the parental generation (F0) and offspring (F1) of
Neoseiulus idaeus after contact with residues of pesticides used on soybean crops, at 25 ± 1 ◦C,
75 ± 10% RH, and 12 h photoperiod.

Pesticide Parental Generation (F0) Maternal Generation (F1)

Mean SE CI Mean SE CI

Control 100 0.00 (0.0–0.0) * 96.0 0.02 (85.0–99.0) a
Chlorantraniliprole 42.0 0.07 (29.0–56.0) b 100 0.00 (0.0–0.0) *

Flubendiamide 100 0.00 (0.0–0.0) * 100 0.00 (0.0–0.0) *
Glyphosate 100 0.00 (0.0–0.0) * 98.0 0.02 (87.0–99.0) a

Teflubenzuron 98.0 0.02 (87.0–99.0) a 92.0 0.03 (80.0–96.0) a
χ2 105.63 9.09

p-value <0.001 0.059
Means followed by the same letter in a column do not differ significantly by contrasts from binomial generalized
linear model; p ≤ 0.05. * Treatments excluded from the analysis since there was no variability.

3.4. IOBC Sublethal Toxicity Classification

The IOBC-WPRS determines the physiological selectivity of the pesticides on the basis
of lethal and sublethal effects of bioassays under laboratory conditions. The results of these
studies are then used to determine application rates in production settings. In this case, the
pesticides flubendiamide, glyphosate, and teflubenzuron were classified as harmless (Class
1: E < 25%; Table 7). Only chlorantraniliprole was classified as moderately harmful (Class 3:
25% ≤ E ≤ 50%).

Table 7. Sublethal effects on the parental generation (F0) of Neoseiulus idaeus after contact with
residues of pesticides used on soybean crops, at 25 ± 1 ◦C, 75 ± 10% RH, and 12 h photoperiod.

Pesticide * Cm (%) Er E% Class 1

Chlorantraniliprole 0.0 0.4 59 3
Flubendiamide 9.0 1.0 9 1

Glyphosate 0.0 1.0 0 1
Teflubenzuron 0.0 1.0 2 1

* Cm, corrected mortality (Abbott 1925). Er, effect on reproduction. E%, total effect, E% 100 – (100 – Cm) × Er. 1

Toxicological class according to IOBC-WPRS in which Class 1 = harmless (E% < 25%); Class 2 = slightly harmful
(25 ≤ E% ≤ 50%); Class 3 = moderately harmful (50% ≤ E% ≤ 75%); and Class 4 = harmful (E% > 75%).

3.5. Morphological Characteristics of the Stages

Although the morphological characteristics of N. idaeus were not compared statistically,
we provide information on morphology to describe the development cycle and biology of
the predator. Eggs of N. idaeus are elliptical, with a smooth translucent chorion (Figure 3A).
Larvae are opaque white and move slowly (Figure 3B). In all treatments, the larvae did
not feed on any of the immature stages of T. urticae. The protonymphs are more agile and
constantly seek their prey, maintaining the coloration of the larval stages (Figure 3C). The
pale-yellow deutonymphs also search actively for their prey (Figure 3D). Adult males and
females are pale yellow (Figure 3E,F); females are larger and have a pyriform body, while
males are smaller and have a flatter body.
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4. Discussion

Several studies have determined the lethal and sublethal effects of pesticides on
predatory mites to evaluate their compatibility for inclusion in integrated pest management
programs. Such studies reduce ecological and environmental risks and the consequences to
agricultural systems. Here, we observed that the acute toxicity of pesticides to N. idaeus
was highest for acephate and for imidacloprid and bifenthrin, causing mortality of 100%,
and for thiamethoxam and lambda-cyhalothrin, causing mortality of 75%. On the basis of
the highly toxic effects on the predator, we do not recommend their use in the field without
studies in semi-field and field conditions.

The toxic effects of acephate on natural enemies of pests are well known. Studies
by Mochizuki [60] on Amblyseius womersleyi Schicha, and by Ferla and Moraes [61] on
Euseius concordis (Chant) and Neoseiulus anonymus Denmark & Muma (all Phytoseiidae)
showed that this insecticide is harmful. Silva et al. [62] described a similar effect on two
Brazilian populations of E. concordis. In addition to phytoseiid predators, acephate was also
classified as harmful to Cosmolaelaps sabelisi (Laelapidae) [63]. Mixtures of neonicotinoids
and pyrethroids may have a higher risk of toxicity to natural enemies because of the
possible synergistic effect [64,65]. This phenomenon occurs when combining modes of
action, by additive or potentiation effects [66,67] because, while pyrethroids act by blocking
sodium ions in the presynaptic membrane [68–70], neonicotinoids act as antagonists of
acetylcholine receptors on the postsynaptic neuron [71–73]. Both types of compounds cause
neuron overexcitation, muscle exhaustion, paralysis, and death in exposed individuals.
Therefore, on the basis of the mortality of N. idaeus females, the ready-mix pesticides
were classified, using IOBC toxicity categories, from highest to lowest as: acetamiprid
and fenpropathrin > acetamiprid and alpha-cypermethrin = thiamethoxam and lambda-
cyhalothrin > imidacloprid and bifenthrin.

When females of N. idaeus were treated with a methoxyfenozide and spinetoram mix-
ture, the effects on mortality were less significant than with the other mixtures. The effects
of diacylhydrazine in mixtures with spinosyn on predatory mites have not been studied.
However, the two compounds act specifically in combination. Methoxyfenozide accelerates
molting, binding to the ecdysone receptor [74]. Therefore, the action of diacylhydrazine is
expected to be more evident in immature stages than in adults, as suggested by several
studies that affirmed its innocuity [75–82]. In contrast, the spinosyn-based insecticides
can also be neurotoxic, acting by contact or ingestion [83], and harmful effects on natural
enemies are more evident when they are ingested [84]. For example, higher mortality
rates were observed in females of C. sabelisi (Laelapidae) when they ingested a mixture of
Rabidtella axey (Nematoda) contaminated with spinosyn residues at a dose recommended
for controlling thrips [63]. Driesche et al. [85] found similar effects on Neoseiulus cucumeris
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(Oudemans) and Iphiseius degenerans (Berlese) (Phytoseiidae). After contact with three
different doses of spinosad, a population of Typhlodromus (Typhlodromus) pyri Scheuten
(Phytoseiidae) was significantly affected, with high total mortality rates [86].

In this study, chlorfenapyr caused 53% mortality and was classified as moderately
harmful. Although this insecticide caused significant mortality in females of N. idaeus,
other species of Phytoseiidae have shown higher tolerance. The acute toxicity of any
insecticide to non-target organisms will depend on the dose and detoxification capacity of
an individual. For example, Cloyd et al. [87] tested three different chlorfenapyr doses on
females of Phytoseiulus persimilis Athias-Henriot (Phytoseiidae) and observed that mortality
rates reached 100% on the seventh day of evaluation, while females of Neoseiulus californicus
McGregor (Phytoseiidae), G. aculeifer, and Stratiolaelaps miles (Berlese) (Laelapidae) treated
under similar conditions were less affected. Indoxacarb caused 29% mortality and was
considered moderately harmful. Indoxacarb is a neurotoxin and a sodium channel blocker;
in most studies, contact-exposed predatory mites have shown little sensitivity. For example,
Bostanian et al. [88] reported that females of Neoseiulus fallacis (Garman) (Phytoseiidae)
exposed to 0.05 g A.I. L−1 of indoxacarb showed high survival after 72 hours. Likewise,
Bostanian et al. [89] found that three doses of indoxacarb (0.05, 0.114, and 0.228 g of a.i. L–1)
were harmless to N. fallacis and P. persimilis under laboratory conditions.

Although chlorantraniliprole did not cause significant mortality in females exposed
to residues, the progeny showed sublethal effects, mainly a 56% reduction in survival
of immatures. This high mortality of immature stages affected the sex ratio, resulting
in similar numbers of males and females generated. Although there was a strong trend,
the effect on the pre-oviposition period of newly emerged females and the considerable
reductions in fecundity and daily oviposition were not statistically significant. Thus, we
suggest that effects on reproductive parameters are due to infertility of females and males.
In addition to our study, Khan et al. [90] reported that the development and reproduction
of Paederus fuscipes (Staphylinidae: Coleoptera) were affected after the beetles were exposed
to chlorantraniliprole. Nawaz et al. [91] found that the second and fourth-instar larval
and pupal stages of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) were prolonged
when treated with LC10 (2.42 mg of a.i. L−1) and LC30 (12.06 mg of a.i. L−1) doses of
chlorantraniliprole, and the fecundity and longevity of adult females were also reduced.
However, many other studies have concluded that this insecticide is safe for other natural
enemies, including predatory arthropods [81,92–97].

Females treated with teflubenzuron showed a 34% reduction in survival of immatures,
although this was not statistically significant. The mean fecundity and daily oviposition
rate (eggs/female/day) were both statistically lower. Souza et al. [98] found that the
reduction in larval hatching and adult emergence of the predator Chrysoperla externa (Ha-
gen) (Neuroptera: Chrysopidae) was one of the most evident sublethal effects caused
by teflubenzuron. Another interesting sublethal effect was reported by Pérez-Aguilar
et al. [99]: the offspring of females of Engytatus varians (Heteroptera: Miridae) derived from
nymphs treated with teflubenzuron were significantly smaller than the offspring from the
control treatment. These authors also reported higher survival rates of nymphs from the
offspring of adult females that had been treated with this insecticide. In addition to these
effects, teflubenzuron reduced the feeding activity of the predator Orius insidiosus (Say)
(Hemiptera: Anthocoridae) [100], as well as the predation rate of Orius laevigatus (Fieber)
(Hemiptera: Anthocoridae) [101]. Teflubenzuron is an insect growth regulator of the ben-
zoylurea group, which inhibits chitin synthesis and is used mainly to control lepidopteran
larvae [102]. In this case, ingestion and contact with particles of this insecticide by predatory
insects and mites can cause problems related to the effects on immature stages. For that
reason, the mortality rate for N. idaeus was significantly higher in the offspring than in the
adult females.

Flubendiamide did not cause significant lethal effects on exposed adult females. How-
ever, the eggs generated by these females hatched more quickly than eggs from the control
females. In this case, even though there was a statistical difference in the duration of the
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egg phase, the observed effects can be ascribed to chance, particularly as such effects have
not been reported for other arthropods exposed to flubendiamide under the conditions
used in our study. Furthermore, the fecundity of the progeny was lower compared with
the control. These effects are a consequence of oocyte maturation, regulated by the ju-
venile hormone and the molting hormone, both of which also play essential roles in the
reproduction of mites and, in this case, may have had negative effects on reproduction.
Similar effects were observed in the progeny of females treated with glyphosate, but in
this case, the reason for the effects on predatory mites is unknown. However, evidence
indicates that glyphosate induces oxidative stress through lipid peroxidation of antioxidant
defenses, reducing immunity in many organisms, including arthropods [103–105]. Here,
this oxidative stress may be related to the reduction in the offspring of females treated with
glyphosate, an hypothesis that needs further investigation.

Life tables summarize the population characteristics of a species whose development,
fecundity, survival rate, and population growth respond to environmental or biotic factors.
In this case, two-sex life tables provide the growth trend of the N. idaeus population on the
basis of the sublethal effects observed during its development and reproduction. The life
table parameters indicated better growth and stability projections for the offspring of mites
exposed to flubendiamide, similar to the control treatment. In this case, the net reproductive
rate (R0) calculated for offspring (F1) females treated with flubendiamide indicated that each
female of N. idaeus produced 7.90 females generated by females every 16.45 days (T), with
daily population growth (λ) of 1.13% for a daily production of 0.127 females/female/day
(rm). In the chlorantraniliprole and teflubenzuron treatments, the instantaneous population
growth rates were very low, indicating that the populations in these treatments were very
close to the rate of decline, due to the lower density of predators produced because of the
negative reproductive effects.

As with chlorantraniliprole, teflubenzuron appears to have lower toxicity to a range
of non-target organisms compared with the broad-spectrum pesticides reported here.
Chlorantraniliprole and flubendiamine are anthranilic and phthalic diamides, respectively,
and function by activating ryanodine receptors, leading to the uncontrolled release of
calcium from intracellular stores [106]. Although these compounds act in a similar way in
organisms that come into contact with or ingest their molecules, their sublethal effects on
predatory mites differed. While chlorantraniliprole was classified as moderately harmful,
flubendiamine was classified as harmless. The sublethal effects of chlorantraniliprole were
driven by the high mortality in the immature stage, which most likely occurred because
this systemic insecticide may have persisted longer than flubendiamide on the treated leaf
discs, thus increasing the exposure time of the mites.

5. Conclusions

Based on all the effects evaluated under laboratory conditions, the pesticides compati-
ble with the predatory mite were flubendiamide, glyphosate, and teflubenzuron. Studies
in semi-field and field conditions are encouraged to evaluate the impact of insecticides
that were not classified as compatible here since their interaction with abiotic factors can
result in weaker responses than those observed under laboratory conditions. In addition,
compatible pesticides for N. idaeus must be evaluated regarding their risk to the many other
natural enemies and pollinators associated with soybean crops in Brazil.
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