

On p -compact topologies on certain Abelian groups S. Garcia-Ferreira ^{a,*}, A.H. Tomita ^b, J. Trianon-Fraga ^b^a Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Apartado Postal 61-3, Santa María, 58089, Morelia, Michoacán, Mexico^b Depto de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010 – CEP 05508-090, São Paulo, SP - Brazil

ARTICLE INFO

ABSTRACT

Article history:

Received 16 November 2023

Received in revised form 24 July 2024

Available online 7 July 2025

Dedicated to István Juhász on his 80th birthday

Keywords:

Topological Abelian group

Direct sum

Selective ultrafilter

 p -compactness

Given a selective ultrafilter $p \in \omega^*$, we prove that there exists a p -compact group topology on $\mathbb{Q}^{(\mathfrak{c})}$ without nontrivial convergent sequences and a closed subgroup $H \subseteq \mathbb{Q}^{(\mathfrak{c})}$ which contains an element not divisible by any $n \in \omega$ ($\mathbb{Q}^{(\mathfrak{c})}$ denotes the direct sum of \mathfrak{c} copies of \mathbb{Q}). It also shows that $\mathbb{Z} \oplus \mathbb{Q}^{(\mathfrak{c})}$ does not admit a p -compact topology for any $p \in \omega^*$. Given H a group and G a subgroup of \mathbb{Q} which is not n -divisible, for some prime number $n > 1$, but is m -divisible for each prime number $m \neq n$, we show that a group topology compatible with $H \oplus G$ cannot be p -compact for any $p \in \omega^*$.

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

1. Introduction

P. J. Halmos [11] proved that it is possible to topologize the additive group \mathbb{R} so that it becomes a Hausdorff compact topological group. On the other hand, L. Fuchs [8] (see also [13] and [12]) showed that free Abelian groups do not admit a compact group topology. Moreover, A. H. Tomita [17] showed that these kind of groups do not admit a group topology whose countable power is countably compact. In 1990, M. G. Tkachenko [16] constructed, under the assumption of the Continuum Hypothesis, a countably compact group topology on the free Abelian group of cardinality \mathfrak{c} . His construction modifies the construction of A. Hájnal and I. Juhász [10] of a hereditarily finally dense (HFD) group in $\{0, 1\}^{\mathfrak{c}}$ with the property that all small projections are full. As a consequence, the resulting group never has non-trivial convergent sequences.

* The first author was supported by the research project PAPIIT grant no. IN-100122. The second author received support from FAPESP Processo Número 2019/19924-4 to visit the first listed author where the research for this paper has been conducted. The third author received support from FAPESP Processo Número 2019/12628-0. The second author would like to thank the hospitality and support of Prof. Garcia Ferreira during his stay at UNAM, Campus Morelia.

* Corresponding author.

E-mail addresses: sgarcia@matmor.unam.mx (S. Garcia-Ferreira), tomita@ime.usp.br (A.H. Tomita), jtrianon@ime.usp.br (J. Trianon-Fraga).

Several examples were obtained using different forms of Martin's Axiom with [14] using Martin's Axiom for countable posets. In [15] it was shown that the free Abelian group of cardinality \mathfrak{c} admits a countably compact group topology from the existence of \mathfrak{c} incomparable selective ultrafilters and A. C. Boero, I. Castro Pereira and A. H. Tomita obtained such an example using a single selective ultrafilter [6]. Using $2^\mathfrak{c}$ selective ultrafilters, the example in [15] showed the consistency of a countably compact group topology on the free Abelian group of cardinality $2^\mathfrak{c}$. All forcing examples obtained so far had their cardinalities bounded by $2^\mathfrak{c}$. Two years ago it was proved, in [3], that if there are \mathfrak{c} incomparable selective ultrafilters then, for every infinite cardinal κ such that $\kappa^\omega = \kappa$, there exists a group topology on the free Abelian group of cardinality κ without nontrivial convergent sequences and such that every finite power is countably compact. It is still unknown whether or not there exists such topological group in *ZFC*. A. C. Boero and A. H. Tomita [5] showed from the existence of \mathfrak{c} selective ultrafilters that there exists a free Abelian group of cardinality \mathfrak{c} whose square is countably compact. A. H. Tomita [18] showed that there exists a group topology on the free Abelian group of cardinality \mathfrak{c} that makes all its finite powers be countably compact. In this context of topological products, we mention the following results.

Proposition 1.1 ([17]). *Let G be a non-trivial Abelian semigroup with neutral element 0. Suppose that G is endowed with a semigroup topology which satisfies the following conditions:*

- (1) *G is torsion-free;*
- (2) *for every $x \neq 0$, there exist infinitely many primes p such that $p^n \nmid x$ for some $n \in \mathbb{N}$; and*
- (3) *there exist $x \in G \setminus \{0\}$, $A \in [\omega]^\omega$ and an enumeration p_1, p_2, \dots of all but finitely many primes such that $0 \notin \overline{\{(p_1 \dots p_n)^n x : n \in A\}}$.*

Then G^ω is not countably compact.

Proposition 1.2 ([17]). *Let G be a non-trivial Abelian semigroup with the neutral element 0. Suppose that G is endowed with a semigroup topology which contains a proper open subgroup. If conditions (1) and (2) of Theorem 1.1 are satisfied, then G^ω is not countably compact.*

By showing that an infinite free Abelian topological group contains a proper open subgroup, A. H. Tomita concluded that:

Theorem 1.3 ([17]). *Let G be an infinite free Abelian group endowed with a group topology. Then, G^ω is not countably compact.*

Another consequence of Theorem 1.3 is that $\mathbb{Z}^{(\mathfrak{c})}$ does not admit a p -compact topology for any $p \in \omega^*$.

Thus, we observe that clause (2) of Proposition 1.1 suggests that a good candidate for a torsion-free group that admits a p -compact topology might be a divisible group, such as \mathbb{Q} . Indeed, in [1] it has been proved that if $p \in \omega^*$ is a selective ultrafilter and $\kappa = \kappa^\omega$, then $\mathbb{Q}^{(\kappa)}$ admits a p -compact group topology without non-trivial convergent sequences.

After these results, divisibility seemed to play a role. Thus, it became interesting to check 'how much' divisibility is necessary to have p -compact group topologies.

We show that full divisibility is not necessary to obtain a compact group nor a p -compact group without non-trivial convergent sequences for p selective ultrafilter. In the third section, we show that the group $\mathbb{Z} \oplus \mathbb{Q}^{(\mathfrak{c})}$ does not admit a p -compact topology for any $p \in \omega^*$. In particular, this answers the following question proposed in [2]:

Question 1.4. Let $p \in \omega^*$. Is there a p -compact group topology (without non-trivial convergent sequences) compatible with $\mathbb{Z}^{(c)} \times \mathbb{Q}^{(c)}$, for some ultrafilter p ? A group topology whose ω -th power is countably compact? What about $\mathbb{Z} \times \mathbb{Q}^c$?

Besides, we also show that, given H a group and G a subgroup of \mathbb{Q} which is not n -divisible, for some prime number $n > 1$, but is m -divisible for each prime number $m \neq n$, a group topology compatible with $H \oplus G$ cannot be p -compact for any $p \in \omega^*$.

2. Preliminaries

All groups will be assumed to be Abelian. The symbol “|” denotes the division in \mathbb{Z} . The unitary circle T will be identified with the Abelian group \mathbb{R}/\mathbb{Z} . Given an infinite cardinal κ , for each $g \in \mathbb{Q}^\kappa$ we define $\text{supp}(g) = \{\alpha < \kappa : g(\alpha) \neq 0\}$ and we will denote the direct sum of κ copies of \mathbb{Q} by

$$\mathbb{Q}^{(\kappa)} := \{g \in \mathbb{Q}^\kappa : |\text{supp}(g)| < \omega\}.$$

We remark that \mathbb{R} can be algebraically identified with the group $\mathbb{Q}^{(c)}$. An ultrafilter on ω is called *free* if $\cap p = \emptyset$ and ω^* will stand for the set of all free ultrafilters on ω . For an ultrafilter $p \in \omega^*$, we define an equivalence relation on $(\mathbb{Q}^{(c)})^\omega$ by letting $f \equiv_p g$ if $\{n \in \omega : f(n) = g(n)\} \in p$. We let $[f]_q$ be the equivalence class determined by f and $(\mathbb{Q}^{(c)})^\omega/p$ be $(\mathbb{Q}^{(c)})^\omega/\equiv_p$. This set has a natural \mathbb{Q} -vector space structure. We call the group $(\mathbb{Q}^{(c)})^\omega/p$ with this structure the p -ultrapower of $\mathbb{Q}^{(c)}$ and it is denoted by $\text{ult}_p(\mathbb{Q}^{(c)})$.

We recall the following concepts of Algebra that are remarkable in this paper:

- An Abelian group G is *divisible* if, for each $n \in \omega \setminus \{0\}$ and $g \in G$, there is $y \in G$ so that $g = ny$.
- Given a prime number $n \in \omega$, we say that an Abelian group G is n -divisible if, for each $g \in G$, there is $y \in G$ so that $g = ny$.

The following notion has been around in different topics of mathematics and we may assert that it belongs to the mathematical folklore.

- Let p be an ultrafilter and $(x_n)_{n < \omega}$ be a sequence in a space X . We say that $x \in X$ is a p -limit point of $(x_n)_{n < \omega}$, in symbols $x = p - \lim_{n \rightarrow \omega} x_n$, if $\{n < \omega : x_n \in V\} \in p$ for every neighborhood V of x .

It is evident that if X is Hausdorff, then the p -limit point is unique when it exists. It is not hard to prove that a space X is countably compact if every sequence of points in X has a p -limit point in X for some ultrafilter p . In connection with this fact, the following class of spaces was introduced by A. R. Bernstein [4].

Definition 2.1. Let p be an ultrafilter. A space X is said to be p -compact if for every sequence $(x_n)_{n < \omega}$ of points of X there is $x \in X$ such that $x = p - \lim_{n \rightarrow \omega} x_n$.

It is known and easy to prove that every compact space is p -compact and every p -compact space is countably compact for every ultrafilter p . Also, we know that p -compactness is preserved under arbitrary products, for each ultrafilter p . Hence, a countably compact space whose product with itself is not countably compact is an example of a countably compact space which is not p -compact for any ultrafilter p . J. Ginsburg and V. Saks [9] showed that all powers of a space X are countably compact iff there is free ultrafilter p for which X is p -compact.

3. The results and their proofs

We start this section with a elementary lemma.

Lemma 3.1. For each $c \in \mathbb{Z}$ there exists $r \in \mathbb{Z}$ so that $r \nmid 2^n + n! - c$ for all but finitely many $n \in \omega$.

Proof. For the case when $c = 0$ we have that $r \nmid 2^n + n!$ for every odd natural number r and $2 \leq n \in \omega$. First, suppose that $c = 2^k l$ for some $k > 0$ and odd $l \in \mathbb{Z}$. If $n > 2^{k+1}$, we have that $2^{k+1} \mid 2^n$ and $2^{k+1} \mid n!$, but $2^{k+1} \nmid 2^k l$, hence $2^{k+1} \nmid 2^n + n! - c$. Finally, if c is an odd number, it is clear that if $r = 2$ and $n > 1$, $r \nmid 2^n + n! - c$. \square

Theorem 3.2. For every topological; Abelian group G , we have that $\mathbb{Z} \oplus G$ does not admit a p -compact topology for any $p \in \omega^*$.

Proof. Suppose that $\mathbb{Z} \oplus G$ admits a p -compact topology for some $p \in \omega^*$, and consider a non-trivial sequence $(x_n)_{n \in \omega}$ of elements of \mathbb{Z} . Choose $g_1 \in G$ and $c \in \mathbb{Z}$ so that

$$p - \lim_{n \in \omega} x_n = c + g_1.$$

Fix $r \in \mathbb{Z}$ with $|c| < \frac{r}{2}$. Now, for each $n \in \omega$, let $e_n \in \mathbb{Z}$, $0 \leq e_n < r$, and $y_n \in \mathbb{Z}$ be so that

$$x_n = ry_n + e_n,$$

and $A \in p$ be so that $e_n = e \in \mathbb{Z}$ for every $n \in A$. We claim $c = e$. Indeed, as $\mathbb{Z} \oplus G$ is a p -compact topological group, there are $g_2 \in G$ and $b \in \mathbb{Z}$ such that

$$p - \lim_{n \in \omega} y_n = b + g_2.$$

Then, we have that

$$c + g_1 = p - \lim_{n \in \omega} x_n = p - \lim_{n \in \omega} (ry_n + e) = (rb + e) + rg_2.$$

Hence, we obtain that $rb + e = c$ and $rg_2 = g_1$. This implies that $r|(c - e)$ and since $|c| < \frac{r}{2}$ and $0 \leq e < r$, we obtain that $c = e$. This shows the claim.

In order to get a contradiction, we consider the sequence $(x_n)_{n \in \omega}$ of elements of \mathbb{Z} where $x_n = 2^n + n!$, for every $n \in \omega$. Let $c \in \mathbb{Z}$ for this sequence $(x_n)_{n \in \omega}$. According to Lemma 3.1, we can choose two integers $r_1, r_2 \in \mathbb{Z}$ so that $r_1 \nmid x_n - c$ and $r_2 \nmid x_n$ for all but finitely many $n \in \omega$. Consider also $r \in \mathbb{Z}$ so that $\frac{r}{2} > |c|$ and $r_1 r_2 \mid r$. Applying the claim there is $A \in p$ such that $c = e$ and $x_n - c = x_n - e = x_n - e_n = ry_n$ for every $n \in A$. It follows from $r_1 \mid r$ that $r_1 \mid x_n - c$, contradicting the choice of r_1 . \square

Theorem 3.3. Let G be a subgroup of \mathbb{Q} and $r > 1$ be a prime number such that G is t -divisible for each prime $t \neq r$ but is not r -divisible. Then, for every group H the group topology compatible with $H \oplus G$ cannot be p -compact for any $p \in \omega^*$.

Proof. Suppose that $H \oplus G$ is endowed with a p -compact group topology for some $p \in \omega^*$. Let $g \in G$ be so that $g \neq rh$ for each $h \in G$. Now, we inductively define a sequence $(m_k)_{k \in \omega}$ of elements of ω inductively as follows: Put $m_0 = 1$ and for $1 < k \in \omega$ we select $m_k \in \omega$ so that

$$r^{m_k} > k \sum_{l=0}^{k-1} r^{m_l} + k,$$

for each $k > 0$. Let $h_1 \in H$ and $c \in \mathbb{Q}$ be such that

$$p - \lim_{n \in \omega} \left(\sum_{k=0}^n r^{m_k} g \right)_n = h_1 + cg,$$

where $c = \frac{u}{v}$, and $u, v \in \mathbb{Z}$ so that $\gcd(u, v) = 1$. Without loss of generality, we may assume that $v > 0$. Fix $n_0 \in \omega$ so that $n_0 > \max(|u|, |v|)$ and set

$$S := v \sum_{k=0}^{n_0-1} r^{m_k} - u > 0.$$

Then, for each $n \geq n_0$,

$$v \sum_{k=0}^n r^{m_k} - u = v \sum_{k=n_0}^n r^{m_k} + S,$$

and

$$r^{m_{n_0}} > n_0 \sum_{k=0}^{n_0-1} r^{m_k} + n_0 \geq v \sum_{k=0}^{n_0-1} r^{m_k} - u = S > 0.$$

Hence, $r^{m_{n_0}} \nmid v \sum_{k=0}^n r^{m_k} - u$ for any $n \geq n_0$ since $v \sum_{k=0}^n r^{m_k} - u = v \sum_{k=n_0}^n r^{m_k} + S$. Let $(y_n)_{n \geq n_0}$ be a sequence in \mathbb{Z} so that, for each $n \geq n_0$,

$$r^{m_{n_0}} y_n = v \sum_{k=n_0}^n r^{m_k}.$$

Then, there are $h_2 \in H$ and $d \in \mathbb{Q}$ so that $dg \in G$ and

$$p - \lim_{n \in \omega} \left(\frac{y_n}{v} g \right) = h_2 + dg,$$

with $d = \frac{i}{j}$, $\gcd(i, j) = 1$. We assert that $r \nmid j$. Indeed, suppose that $l > 0$ is such that $j = r^l s$, with $s \in \mathbb{Z}$ and $r \nmid s$. As i cannot be divisible by r , there exists $g_1 \in G$ such that $dg = ig_1$. Therefore, we have that

$$\frac{i}{r^l s} g = ig_1 \text{ which implies that } g = r^l s g_1,$$

but this is a contradiction. Thus, we obtain that $r \nmid j$. Now, since

$$p - \lim_{n \in \omega} \left(\frac{r^{m_{n_0}} y_n}{v} g \right) = r^{m_{n_0}} h_2 + r^{m_{n_0}} dg,$$

then we have that

$$\begin{aligned} h_1 + cg &= p - \lim_{n \in \omega} \left(\sum_{k=0}^n r^{m_k} g \right) \\ &= p - \lim_{n \in \omega} \left(\sum_{k=n_0}^n r^{m_k} g + \sum_{k=0}^{n_0-1} r^{m_k} g \right) \end{aligned}$$

$$\begin{aligned}
&= \sum_{k=0}^{n_0-1} r^{m_k} g + p - \lim_{n \in \omega} \left(\frac{r^{m_{n_0}} y_n}{v} g \right) \\
&= \sum_{k=0}^{n_0-1} r^{m_k} g + r^{m_{n_0}} h_2 + r^{m_{n_0}} dg.
\end{aligned}$$

Hence,

$$c - \sum_{k=0}^{n_0-1} r^{m_k} = \frac{u}{v} - \sum_{k=0}^{n_0-1} r^{m_k} = -\frac{S}{v} = r^{m_{n_0}} d = r^{m_{n_0}} \frac{i}{j},$$

and so $-Sj = r^{m_{n_0}} iv$, which is impossible since $r \nmid j$ and $0 < S < r^{m_{n_0}}$. \square

Lemma 3.4. *Let $\psi : \mathbb{Q}^{(\mathbb{C})} \rightarrow \mathbb{T}$ be a nontrivial morphism and $g \in \mathbb{Q}^{(\mathbb{C})}$ be so that $\psi(g) \neq 0$ has order r . Then,*

$$\psi^{-1}[\{\mathbb{Z}, \frac{1}{r} + \mathbb{Z}, \dots, \frac{r-1}{r} + \mathbb{Z}\}]$$

is not a r -divisible group.

Proof. Set

$$G := \psi^{-1}[\{\mathbb{Z}, \frac{1}{r} + \mathbb{Z}, \dots, \frac{r-1}{r} + \mathbb{Z}\}].$$

It is clear that $g \in G$ and as $\{mg : m \in \mathbb{Z}\}$ is an infinite subset of G , we must have that G is an infinite group. Suppose that there exists $h \in G$ so that $rh = g$. Then,

$$r\psi(h) = \psi(g) \neq 0,$$

and hence $\psi(h) \neq 0$. Since $\psi(h) \in \{\mathbb{Z}, \frac{1}{r} + \mathbb{Z}, \dots, \frac{r-1}{r} + \mathbb{Z}\}$, the order of $\psi(h)$ must be r , a contradiction. Therefore, G is not a r -divisible group. \square

Theorem 3.5. *There is an Abelian, torsion-free, non-divisible topological group which is compact.*

Proof. It is known that the additive group \mathbb{R} admits a compact topological group topology (see [11]). Hence, by algebraically identifying \mathbb{R} with $\mathbb{Q}^{(\mathbb{C})}$, we may consider $\mathbb{Q}^{(\mathbb{C})}$ as a compact group topological group. Since $\mathbb{Q}^{(\mathbb{C})}$ is, in particular, totally bounded, we can fix a nontrivial homeomorphism $\psi : \mathbb{Q}^{(\mathbb{C})} \rightarrow \mathbb{T}$ (see [7]).

First, we claim that there exist a prime number $k \in \omega$ and $g \in \mathbb{Q}^{(\mathbb{C})}$ so that $\psi(g) \neq 0$ has order k . Indeed, assume that there exists an irrational ζ so that $\zeta + \mathbb{Z} \in \psi[\mathbb{Q}^{(\mathbb{C})}]$. In this case, $\psi[\mathbb{Q}^{(\mathbb{C})}]$ is dense in \mathbb{T} . Since $\psi[\mathbb{Q}^{(\mathbb{C})}]$ is compact and therefore closed in \mathbb{T} , it follows that $\psi[\mathbb{Q}^{(\mathbb{C})}] = \mathbb{T}$, and hence we can take any $n > 1$ and find $g \in \mathbb{Q}^{(\mathbb{C})}$ so that $\psi(g) \neq 0$ and $n\psi(g) = 0$. In the case when such irrational does not exist, it is clear that there is a prime number $k \in \omega$ and an element $g \in \mathbb{Q}^{(\mathbb{C})}$ so that $\psi(g)$ has order k .

Consider the prime number k from above and the element $g \in \mathbb{Q}^{(\mathbb{C})}$ found in the previous paragraph. Our group will be

$$G := \psi^{-1}[\{\mathbb{Z}, \frac{1}{k} + \mathbb{Z}, \dots, \frac{k-1}{k} + \mathbb{Z}\}].$$

According to Lemma 3.4, we have that G is infinite and it is not k -divisible. In the topological context, it is evident that G is a closed subgroup of $\mathbb{Q}^{(\mathbb{C})}$, and so it is a compact topological group. \square

To show next the main results of the paper we will use a construction similar to the one made in [1]. For this purpose we shall use some notation and results from this paper:

Let \mathcal{C} be the set of all homomorphisms $\phi : \mathbb{Q}^{(C)} \rightarrow \mathbb{T}$, where $C \in [\mathfrak{c}]^\omega$ is a suitably closed set, satisfying the condition:

$$p - \lim_{n \in \omega} \phi\left(\frac{1}{N} f_\xi(n)\right) = \phi\left(\frac{1}{N} \chi_\xi\right),$$

for each $\xi \in I \cap C$ and $N \in \omega$.

- For each $C \subseteq \mathfrak{c}$, we define

$$\mathbb{Q}^{(C)} := \{g \in \mathbb{Q}^{(\mathfrak{c})} : \text{supp}(g) \subseteq C\}$$

which is a subgroup of $\mathbb{Q}^{(\mathfrak{c})}$.

- Let $\{J_0, J_1\}$ be a partition of $[\omega, \mathfrak{c}]$ such that $\omega + \omega \in J_1$ and $|J_0| = |J_1| = \mathfrak{c}$.
- Let $\{f_\xi : \xi \in J_0\}$ be an enumeration of $(\mathbb{Q}^{(\mathfrak{c})})^\omega$ such that

$$\bigcup_{n \in \omega} \text{supp}(f_\xi(n)) \subset \xi, \text{ for each } \xi \in J_0.$$

- For $\xi \in \mathfrak{c}$, we denote χ_ξ the element of $\mathbb{Q}^{(\mathfrak{c})}$ so that $\text{supp}(\chi_\xi) = \{\xi\}$ and $\chi_\xi(\xi) = 1$.
- For $\mu \in \mathfrak{c}$, we define $\vec{\mu} : \omega \rightarrow \mathfrak{c}$ by $\vec{\mu}(n) = \mu$ for every $n \in \omega$.
- For $A \subseteq \omega$ and $\zeta : A \rightarrow \mathfrak{c}$, we define $\chi_\zeta : A \rightarrow \mathbb{Q}^{(\mathfrak{c})}$ by $\chi_\zeta(n) = \chi_{\zeta(n)}$ for every $n \in A$. Observe that if $\mu \in \mathfrak{c}$, then $\chi_{\vec{\mu}}(n) = \chi_\mu$ for every $n \in \omega$.
- Let $I \subseteq J_0$ be such that $\{[f_\xi]_p : \xi \in I\} \cup \{[\chi_{\vec{\mu}}]_p : \mu \in \mathfrak{c}\}$ is a \mathbb{Q} -basis for $\text{ult}_p(\mathbb{Q}^{(\mathfrak{c})})$.
- A set $C \in [\mathfrak{c}]^\omega$ is called *suitably closed* if $\bigcup_{n \in \omega} \text{supp}(f_\xi(n)) \subseteq C$ for every $\xi \in C \cap I$.

Next we shall extend each homomorphism $\phi \in \mathcal{C}$ to a homomorphism $\bar{\phi}$ defined in $\mathbb{Q}^{(\mathfrak{c})}$ satisfying that

$$p - \lim_{n \in \omega} \bar{\phi}\left(\frac{1}{N} f_\xi(n)\right) = \bar{\phi}\left(\frac{1}{N} \chi_\xi\right),$$

for each $\xi \in I$ and $N \in \omega$, in a similar way to what is done in Lemma 3.6 of [1]. The difference will be that we wish to control the value of the homomorphisms ϕ_β , when $\beta \in [\omega, \omega + \omega)$, in the element $\chi_{\omega + \omega}$.

Lemma 3.6. *Let p be a free ultrafilter and $C \in [\mathfrak{c}]^\omega$ be a suitably closed set. Then, every homomorphism $\phi : \mathbb{Q}^{(C)} \rightarrow \mathbb{T}$ satisfying*

$$p - \lim_{n \in \omega} \phi\left(\frac{1}{N} f_\xi(n)\right) = \phi\left(\frac{1}{N} \chi_\xi\right),$$

for each $\xi \in I \cap C$ and $N \in \omega$, can be extended to a homomorphism $\bar{\phi} : \mathbb{Q}^{(\mathfrak{c})} \rightarrow \mathbb{T}$ satisfying that

$$p - \lim_{n \in \omega} \bar{\phi}\left(\frac{1}{N} f_\xi(n)\right) = \bar{\phi}\left(\frac{1}{N} \chi_\xi\right),$$

for each $\xi \in I$ and $N \in \omega$. And if $1 \leq m \in \omega$ and $\omega + \omega \notin C$, then we may add the condition $\bar{\phi}(\chi_{\omega + \omega}) = \frac{1}{m} + \mathbb{Z}$.

Proof. To have this done let $\{\xi_\alpha : \alpha < \mathfrak{c}\}$ be a strictly increasing enumeration of $\mathfrak{c} \setminus C$. For each $\alpha \leq \mathfrak{c}$, let $C_\alpha := C \cup \{\xi_\gamma : \gamma < \alpha\}$. Notice, $C_0 = C$, $C_\mathfrak{c} = \mathfrak{c}$ and recall that $\bigcup_{n \in \omega} \text{supp}(f_{\xi_\alpha}(n)) \subseteq \xi_\alpha$ for each

$\alpha < \mathfrak{c}$. In order to get the required extension for every ordinal $\alpha \leq \mathfrak{c}$ we shall recursively define a group homomorphism $\sigma_\alpha : \mathbb{Q}^{(C_\alpha)} \rightarrow \mathbb{T}$ satisfying:

- a) $\sigma_0 = \phi$;
- b) $\sigma_\delta \subseteq \sigma_\alpha$ whenever $\delta \leq \alpha \leq \mathfrak{c}$; and
- c) $p - \lim_{n \in \omega} \sigma_\alpha(\frac{1}{N} f_\xi(n)) = \sigma_\alpha(\frac{1}{N} \chi_\xi)$, for each $\alpha \leq \mathfrak{c}$, $\xi \in C_\alpha \cap I$ and $N \in \omega$.

Indeed, we start setting $\sigma_0 = \phi$. Let $\alpha < \mathfrak{c}$ and suppose that σ_δ as been defined satisfying the above conditions for each $\delta < \alpha$. First, if $g \in \mathbb{Q}^{(\bigcup_{\delta < \alpha} C_\delta)}$, then we define

$$\sigma_\alpha(g) = \left(\bigcup_{\delta < \alpha} \sigma_\delta \right)(g).$$

For the case when $\alpha \in J_1$ and $1 \leq m \in \omega$ is given, we define

$$\begin{cases} \sigma_\alpha(q\chi_{\xi_\alpha}) = 0, & \text{if } \xi_\alpha \neq \omega + \omega \text{ and } q \in \mathbb{Q} \\ \sigma_\alpha(q\chi_{\xi_\alpha}) = q \cdot \left(\frac{1}{m} + \mathbb{Z} \right), & \text{if } \xi_\alpha = \omega + \omega \text{ and } q \in \mathbb{Q}. \end{cases}$$

Finally, if $\alpha \in J_0$, we set

$$\sigma_\alpha(q\chi_{\xi_\alpha}) = q \cdot \left(p - \lim_{n \in \omega} \left(\bigcup_{\delta < \alpha} \sigma_\delta \right) \left(\frac{1}{N} f_{\xi_\alpha}(n) \right) \right),$$

for every $q \in \mathbb{Q}$. It is clear that we can uniquely extend $\sigma_\mathfrak{c}$ to a group homomorphism $\bar{\phi} : \mathbb{Q}^{(\mathfrak{c})} \rightarrow \mathbb{T}$. Observe that $\bar{\phi}$ satisfies the requires conditions since it extends σ_α for every $\alpha \leq \mathfrak{c}$; that is,

$$p - \lim_{n \in \omega} \bar{\phi} \left(\frac{1}{N} f_\xi(n) \right) = \bar{\phi} \left(\frac{1}{N} \chi_\xi \right),$$

for each $\xi \in I$ and $N \in \omega$ and if $1 \leq m \in \omega$, then $\bar{\phi}(\chi_{\omega+\omega}) = \sigma_\mathfrak{c}(\chi_{\omega+\omega}) = \frac{1}{m} + \mathbb{Z}$. \square

Lemma 3.7 ([1], Lemma 3.5). *Fix a selective ultrafilter p . Let $d \in \mathbb{Q}^{(\mathfrak{c})} \setminus \{0\}$, $r \in \mathbb{Q}^{(I)} \setminus \{0\}$ and $B \in p$. Let C be a countably infinite subset of \mathfrak{c} such that $\omega \cup \text{supp}(r) \cup \text{supp}(d) \subseteq C$ and $\bigcup_{n \in \omega} \text{supp}(f_\xi(n)) \subseteq C$ for every $\xi \in C \cap I$. Then there exists a homomorphism $\phi : \mathbb{Q}^{(C)} \rightarrow \mathbb{T}$ such that*

- a) $\phi(d) \neq 0$;
- b) $p - \lim_{n \in \omega} \phi \left(\frac{1}{N} f_\xi(n) \right) = \phi \left(\frac{1}{N} \chi_\xi \right)$, for each $\xi \in I \cap C$ and $N \in \omega$;
- c) the sequence $(\phi(\sum_{\mu \in \text{supp}(r)} r(\mu) f_\mu(n)))_{n \in B}$ does not converge.

To prove the following result we follow ideas similar to the ones used in the proof of Theorem 3.7 of [1]. But, for the purposes of this article, we have to make some changes to find a suitable element in $\mathbb{Q}^{(\mathfrak{c})}$ which is not divisible by any $n \in \omega$.

Theorem 3.8. *If $p \in \omega^*$ is a selective ultrafilter, then there exists a p -compact group topology on $\mathbb{Q}^{(\mathfrak{c})}$ without nontrivial convergent sequences and a closed subgroup $H \subseteq \mathbb{Q}^{(\mathfrak{c})}$ which contains an element not divisible by any $n \in \omega$.*

Proof. Fix a selective ultrafilter $p \in \omega^*$. We shall equip $\mathbb{Q}^{(\mathfrak{c})}$ with a topology via special characters, part of them are given by Lemma 3.7 (see [1]). Enumerate the set \mathcal{C} by $\{\phi_\beta : \beta \in [\omega, \mathfrak{c})\}$ assuming, without loss of

generality, that given $\beta \in [\omega, \mathfrak{c}]$, $\phi_\beta : \mathbb{Q}^{(C)} \rightarrow \mathbb{T}$ is such that $C \subseteq \beta$. By Lemma 3.6, we shall extend each homomorphism $\phi \in \mathcal{C}$ to a homomorphism $\bar{\phi}$ defined in $\mathbb{Q}^{(\mathfrak{c})}$ satisfying that

$$p - \lim_{n \in \omega} \bar{\phi}\left(\frac{1}{N} f_\xi(n)\right) = \bar{\phi}\left(\frac{1}{N} \chi_\xi\right),$$

for each $\xi \in I$ and $N \in \omega$. Now, we control the value of the homomorphisms ϕ_β , for $\beta \in [\omega, \omega + \omega)$, in the element $\chi_{\omega+\omega}$. For that, consider $\{\beta_n : n \in \omega\}$ an enumeration of $[\omega, \omega + \omega)$.

Consider $\mathbb{Q}^{(\mathfrak{c})}$ endowed with the group topology generated by the homomorphisms from $\bar{\mathcal{C}} := \{\bar{\phi} : \phi \in \mathcal{C}\}$. We denote this topological group by G . It follows from the construction that

$$r\chi_\xi = p - \lim_{n \in \omega} r f_\xi(n),$$

for each $\xi \in I$ and $r \in \mathbb{Q}$. Let $h := (h_n)_{n \in \omega}$ be a sequence of elements in $\mathbb{Q}^{(\mathfrak{c})}$. Choose sets $\{r_\xi : \xi \in I\}$ and $\{s_\mu : \mu \in \mathfrak{c}\}$ of rational numbers, where all but finitely many are 0, such that

$$[h]_p = \sum_{i \in I} r_\xi [f_\xi]_p + \sum_{\mu \in \mathfrak{c}} s_\mu [\chi_\mu]_p.$$

Hence, we obtain that

$$p - \lim_{n \in \omega} h_n = \sum_{i \in I} r_\xi \chi_\xi + \sum_{\mu \in \mathfrak{c}} s_\mu \chi_\mu$$

This shows that G is p -compact.

Now, let g be a one-to-one sequence of elements in G . Again, there are $r \in \mathbb{Q}^{(I)} \setminus \{0\}$ and $s \in \mathbb{Q}^{(\mathfrak{c})}$ such that

$$[g]_p = \sum_{i \in I} r_\xi [f_\xi]_p + \sum_{\mu \in \mathfrak{c}} s_\mu [\chi_\mu]_p.$$

Set $D := \text{supp}(r)$. Then, there exists $B \in p$ so that

$$g(n) = \sum_{\xi \in D} r_\xi f_\xi(n) + \sum_{\mu \in \mathfrak{c}} s_\mu \chi_\mu(n),$$

for every $n \in B$. Let $d \in G \setminus \{0\}$ arbitrary, and C be a suitably closed set containing $\omega \cup D \cup \text{supp}(d)$. Applying Proposition 3.7, we find a homomorphism $\phi : \mathbb{Q}^{(C)} \rightarrow \mathbb{T}$ so that the sequence $(\phi(\sum_{\xi \in D} r_\xi f_\xi(n)))_{n \in B}$ does not converge in \mathbb{T} . As a consequence we have that the sequence $(\sum_{\xi \in D} r_\xi f_\xi(n))_{n \in B}$ does not converge in G , and since $\sum_{\mu \in \mathfrak{c}} s_\mu \chi_\mu$ is constant, we conclude that the sequence $(g(n))_{n \in \omega}$ does not converge either. Therefore, G does not have non-trivial convergent sequences.

Finally, by using Lemmas 3.6 and 3.7, for every positive $n \in \omega$ we can define a group homomorphism $\phi_n : \mathbb{Q}^{(\mathfrak{c})} \rightarrow \mathbb{T}$ in $\bar{\mathcal{C}}$ so that $\phi_n(\chi_{\omega+\omega}) = \frac{1}{n} + \mathbb{Z}$. It is evident that

$$H := \bigcap_{n \in \omega} \phi_n^{-1} \left[\left\{ \mathbb{Z}, \frac{1}{n} + \mathbb{Z}, \dots, \frac{n-1}{n} + \mathbb{Z} \right\} \right]$$

is a nontrivial closed subgroup of G ; hence, it is also p -compact. Besides, $\chi_{\omega+\omega} \in H$. Now, fix $n \in \omega$ and suppose that there is $h \in H$ for which $\chi_{\omega+\omega} = nh$. Then,

$$0 \neq \phi_n(\chi_{\omega+\omega}) = n\phi_n(h) = 0,$$

but this is a contradiction. Therefore, the element $\chi_{\omega+\omega}$ in H is non-divisible in H for every $n \in \omega$. This ends the proof. \square

4. Open questions

We end this paper with the next problems that we consider be interesting.

Question 4.1. *If H is a non-divisible subgroup of \mathbb{Q} and H_0 is a divisible group, does $H \oplus H_0$ admit a topology whose ω -th power is countably compact?*

Question 4.2. *Is there, in ZFC, an Abelian torsion-free topological group which has an element that is not n -divisible for any $n > 1$ and admits a p -compact topology for some $p \in \omega^*$?*

The authors would like to thank the referee for the careful reading of the article that contributed to improving it.

References

- [1] M.K. Bellini, V.O. Rodrigues, A.H. Tomita, On countably compact group topologies without non-trivial convergent sequences on $\mathbb{Q}^{(\kappa)}$ for arbitrarily large κ and a selective ultrafilter, *Topol. Appl.* 294 (2021) 107653.
- [2] M.K. Bellini, A.C. Boero, V.O. Rodrigues, A.H. Tomita, Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters, *Topol. Appl.* 297 (2021) 107703.
- [3] M.K. Bellini, K.P. Hart, V.O. Rodrigues, A.H. Tomita, Countably compact group topologies on arbitrary large free Abelian groups, *Topol. Appl.* 333 (2023) 108538.
- [4] A. Bernstein, A new kind of compactness for topological spaces, *Fundam. Math.* 66 (1970) 185–193.
- [5] A.C. Boero, A.H. Tomita, A group topology on the free Abelian group of cardinality \mathfrak{c} that makes its square countably compact, *Fundam. Math.* 212 (2011) 235–260.
- [6] A.C. Boero, I. Castro-Pereira, A.H. Tomita, Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter, *Acta Math. Hung.* 159 (2) (2019) 414–428.
- [7] W.W. Comfort, K.A. Ross, Topologies induced by groups of characters, *Fundam. Math.* 55 (1964) 283–291.
- [8] L. Fuchs, *Infinite Abelian Groups I*, Academic Press, 1970.
- [9] J. Ginsburg, V. Saks, Some applications of ultrafilters in topology, *Pac. J. Math.* 57 (1975) 403–418.
- [10] A. Hajnal, I. Juhász, A separable normal topological group need not be Lindelöf, *Gen. Topol. Appl.* 6 (2) (1976) 199–205.
- [11] P.R. Halmos, Comment on the real line, *Bull. Am. Math. Soc.* 50 (1944) 877–878.
- [12] E. Hewitt, K.A. Ross, *Abstract Harmonic Analysis I*, Springer-Verlag, 1979.
- [13] K.H. Hofmann, S.A. Morris, *The Structure of Compact Groups*, de Gruyter Studies in Mathematics, vol. 25, Walter de Gruyter and Co., Berlin, 2006.
- [14] P.B. Koszmider, A.H. Tomita, S. Watson, Forcing countably compact group topologies on a larger free Abelian group, *Topol. Proc.* 25 (2000) 563–574.
- [15] R.E. Madariaga-Garcia, A.H. Tomita, Countably compact topological group topologies on free Abelian groups from selective ultrafilters, *Topol. Appl.* 154 (2007) 1470–1480.
- [16] M.G. Tkachenko, Countably compact and pseudocompact topologies on free abelian groups, *Sov. Math.* 34 (5) (1990) 79–86.
- [17] A.H. Tomita, The existence of initially ω_1 -compact group topologies on free Abelian groups is independent of ZFC, *Comment. Math. Univ. Carol.* 39 (1998) 401–413.
- [18] A.H. Tomita, A group topology on the free abelian group of cardinality \mathfrak{c} that makes its finite powers countably compact, *Topol. Appl.* 196 (2015) 976–998.