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A B S T R A C T

Hydrodynamic models with rain-on-the-grid capabilities are usually computationally expensive for automatic
parameter estimation. In this paper, we present a global optimization-based algorithm to calibrate a fully
distributed hydrologic-hydrodynamic and water quality model (HydroPol2D) using observed data (i.e., dis-
charge, or pollutant concentration) as input. The algorithm finds near-optimal set of parameters to explain
observed gauged data. This framework, although applied in a poorly-gauged urban catchment, is adapted for
catchments with more detailed observations. The results of the automatic calibration indicate NSE = 0.99 for
the V-Tilted catchment, RMSE = 830 mg L-1 for salt concentration pollutograph in a wooden-plane (i.e., 8.3% of
the event mean concentration), and NSE = 0.89 in a urban real-world catchment. This paper also explores the
issue of equifinality (i.e., multiple parameters giving the same calibration performance) in model calibration
indicating the performance variation of calibrating only with an outlet gauge or with multiple gauges within
the catchment.
Software availability

Name of software: HydroPol2D
Developer: Marcus Nóbrega Gomes Júnior, Ph.D.
Contact address: Department of Hydraulics and Sanitation, University
of São Paulo, São Carlos School of Engineering, Av. Trab. São Carlense,
400 - Centro, São Carlos, 13566-590.
Email: marcusnobrega.engcivil@gmail.com
Software required: MATLAB version 2021a or higher.
Programming language: MATLAB
Program size: Approximately 25 MB
Availability: Open source (github license available in Gomes Jr. (2024))

1. Introduction

The advances in computational processing, high resolution GIS
data availability, and relatively more complete physically-based models
enables the application of fully distributed hydrodynamic and pol-
lutant transport and fate models (Yang et al., 2010; Gomes Júnior
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et al., 2022). Although the application of fully distributed models
(i.e., models that discretize the catchment domain into finite cells)
remotes to the late 1970s (Zhang et al., 1990), the demands for high-
resolution modeling, especially for flood and pollution assessment,
make optimization-based calibration (i.e., herein referred to as auto-
matic calibration) complex, time-consuming, and dependent on prior
knowledge of the modeler (Blasone et al., 2008) due to the relatively
high computational effort required to perform numerical hydrodynamic
simulations with high-resolution data (Blasone et al., 2008; Brath et al.,
2004).

The complexity comes because the Shallow-Water-Equations dy-
namic problem forms a set of hyperbolic partial differential equations
with no analytical solution for complex real-world cases (Bermudez and
Vazquez, 1994), requiring finite-volume or finite-difference numerical
schemes to solve the problem (Brunner, 2016). The hydrodynamic
problem can be simplified into diffusive-like problems when local accel-
eration and inertial terms can be neglected (Akan and Iyer, 2021) and
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these can reduce computational effort (Gomes et al., 2023a); however,
the number of required simulations for a full calibration still makes the
process laborious. Since the governing equations of flow and pollutant
routing are generally performed for each element in the grid domain
either as a matrix-wise expression or as an element-wise approach, the
numerical modeling process can be challenging for finer mesh grids,
such as the ones required for flood mapping (do Lago et al., 2023).
This might be one of the reasons why only a few articles attempted
to develop automatic calibration algorithms for 2D hydrodynamic and
pollutant transport and fate models (Afshar et al., 2011).

The parameter discretization of distributed models is usually per-
formed by the discrete categorical values of Land Use and Land Cover
(LULC) and Soil type classifications. This information is entered as geo-
referenced maps, and each cell of the computational domain is assigned
with the parameters associated with each input map. For example, in
HydroPol2D (Gomes et al., 2023a), hydrological parameters (i.e. Green-
Ampt parameters) are assigned with the Soil raster, and hydrodynamic
(i.e., Manning’s roughness coefficient and initial abstraction) and water
quality (i.e., build-up and wash-off parameters) are assigned according
to the LULC raster.

The automatic calibration of distributed models can be a taunting
task due to the degrees of freedom of the optimization problem and
the number of calibration variables that could increase proportionally
to the number of land uses and soil classifications (Debele et al.,
2008). Moreover, due to the nonlinear behavior of hydrology and
hydrodynamics, the use of convex optimization to find global optima is
unfeasible, unless several simplifications are performed in the modeling
equations (Wang et al., 2020). Additionally, defining the appropriate
ranges for model parameters can also lead to unrealistic parameter esti-
mations, especially when the physical boundaries of the parameters are
incorrectly treated (Domeneghetti et al., 2012). Due to the complexity
of automatic parameter estimations, several studies have successfully
performed manual calibrations using distributed models (Ardıçlıoğlu
and Kuriqi, 2019; Phillips et al., 2005; Li et al., 2021). Despite these
challenges, calibrating a complex model with a relatively large number
of parameters can be even more difficult.

Although successful calibrations are presented in the literature, one
of the yet unsolved and considerably complex problem is the total
reduction of equifinality for a relatively large number of model param-
eters and ranges (Fatichi et al., 2016). This paper does not attempt to
provide a definitive solution to this issue; rather, we explore the factors
associated with the chances of finding parameter equifinality in auto-
matic calibration. We investigate the trade-offs between the number
of observation points, intensity of rainfall events, and combination of
different associations of gauges that can affect parameter equifinality.

Several physically-based hydrologic-hydrodynamic models are avail-
able in the literature, such as the Hydrologic Engineering Center - River
System Analysis (Brunner, 2016), the Stormwater Management Model -
SWMM (Rossman et al., 2010), and the Gridded Surface and Subsurface
Analysis (Downer and Ogden, 2004). However, only a few studies used
the aforementioned commercial models or developed new models that
can take advantage of automatic calibration capabilities (Cho and Lee,
2015; Dung et al., 2011; Hong et al., 2019).

Research conducted in Cho and Lee (2015) used a genetic algorithm
solver to calibrate observations with modeling results; however, as most
studies in automatic calibration of hydrologic models (Gupta et al.,
1999; Confesor and Whittaker, 2007) they used a semi-distributed
model that cannot account for some important hydrodynamic features
such as backwater effects or hydrologic characteristics such as spatial
distribution of soil moisture and pollutants inside the subcatchments.
Other recent research using the SWMM model attempts to develop
automatic calibration algorithms for semi-distributed models, as shown
in Behrouz et al. (2020) and Swathi et al. (2019).

The research conducted in Hong et al. (2019), however, considered
a physically based fully distributed model that assumes various wash-
2

off processes such as detachment and transport of particulate, resulting
in six wash-off parameters that, in addition to the water quantity model
parameters, must be calibrated altogether. This dramatically increases
the decision variable space and might result in relatively longer sim-
ulations, as well as increase the chance of finding a different set of
parameters that could explain the modeling results within a defined
physically-based parameter range (i.e., Equifinality effect Beven and
Freer, 2001). In addition to calibrating the model, an essential part is
the model validation/evaluation that can be done to understand the
model capability to represent the behavior of the system outside the
calibration range (Shen et al., 2022).

The validation of conceptual lumped-parameter hydrological mod-
els as the ones presented in Shen et al. (2022) does not require
detailed description of the surface topography. For fully distributed
models, however, if all parameters are correct but the Digital Elevation
Model (DEM) does not allow proper continuity of the flow, the model
performance is affected. Poor DEMs are one of the limiting factors
of applying distributed models. DEMs usually contain noises, bridges,
and are affected by vegetation (Hawker et al., 2018). Raster-based
algorithms such as HydroPol2D might be hydraulically affected by such
issues in the DEM, requiring a pre-processing filtering to allow proper
flow paths and continuity. To this end, filtering algorithms to smooth
DEM flow paths (Schwanghart and Scherler, 2014), remove vegetation
noises (De Paiva et al., 2013), reduce sharp elevations (Conrad et al.,
2015), or smooth hillslopes (Milledge et al., 2009), can be applied
to treat develop more accurate DEMs suitable for flood inundation
modeling.

1.1. Paper objectives and contributions

As shown above in the literature, although several studies suc-
cessfully calibrated distributed hydrodynamic models, most of the
calibration studies were performed manually. With advances in compu-
tational processing and parallel computing, models that take advantage
of these techniques can be applied and used for automatic optimization-
based calibration. Only a few studies developed automatic calibra-
tion algorithms for fully distributed, high-resolution, hydrological-
hydrodynamic models. This is likely due to complexity of due to the
complex computational models with a high number of cells, states, and
relatively high nonlinear underlying physical laws.

The objective of this paper is to derive a flexible framework to
apply a formal HydroPol2D (Hydrodynamic and Pollution 2D model)
calibration-optimization problem (i.e., a 2D distributed water quantity
and quality model) using only source data at observed gauges as input.
Although we use HydroPol2D in this paper, the methods developed
here are valid for any other hydrodynamic model used to estimate
information at gauge stations.

More specifically, in this paper, we develop a modeling framework
that calibrates HydroPol2D for gauged information such as hydro-
graphs and/or stage hydrographs and/or pollutographs using rainfall,
initial soil moisture and initial water surface depths from the warm-up
process as initial conditions for the model. All other hydrological-
hydrodynamic and pollutant transport and fate parameters can be
automatically obtained by the calibrator module developed in this
paper. The method is of particular interest in catchments that already
have point source gauged data in observed nodes (e.g., outlet), and
these data can be used to generate spatiotemporal information within
the catchment by running a calibrated HydroPol2D model (Brath et al.,
2004).

The fundamental contributions of this paper are:

• We develop an automatic calibration routine to estimate Hy-
droPol2D parameters requiring only point-source information
such as depths, flows, or pollutant concentrations.

• We provide a framework capable of calibrating HydroPol2D for

various events for water quantity and/or water quality modeling.
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• We improved the model presented in Gomes et al. (2023a) by
allowing not only a Von-Neumann (4-D) cell topology but also
by adding a Moore grid (8-D) topology (i.e., four in the cardinal
direction and four in the diagonal directions), allowing cells to
have more flow directions, eventually decreasing the flow paths.

• We also expand Gomes et al. (2023a) by allowing raster-based
DEM pre-processing algorithms to enhance flow continuity in
coarse-resolution DEMs.

• We explore the equifinality problem for flood and water quality
modeling.

• We explore the effects of calibrating a 2D hydrologic-
hydrodynamic model with only outlet gauge data in comparison
with a scenario where more stream gauges are available within
the catchment.

. Model background

HydroPol2D model is a 2D model hydrodynamic and water quality
ransport and fate model. The watershed is discretized into finite cells
ith known spatial resolution 𝛥𝑥 and the equations of conservation of

unoff mass, momentum and conservation and transport of pollutant
ass are all solved matrix-wise. For a more complete description of

he model, please refer to Gomes et al. (2023a).
The mass balance equation is solved for each finite element of the

omain. For a cell (𝑖, 𝑗) in the 2D meshgrid of catchment, the runoff
ass balance is given by:
𝑡+𝛥𝑡 = ℎ𝑡 + 𝛥𝑡

(

∑

𝑄𝑡in −
∑

𝑄𝑡out + (𝑟𝑡 − 𝑓 𝑡) + 𝑆𝑡
)

, (1)

where ℎ is the water depth [L], 𝛥𝑡 is the computational time-step, 𝑄in,
𝑄out , 𝑟, 𝑓 , and 𝑆 are the inflow, outflow, rainfall, infiltration rate, and
sink/source discharge rates, respectively [L ⋅ T−1].

The infiltration capacity is estimated with an explicit Green-
mpt formulation such that (Green and Ampt, 1911):

𝑡 = 𝑘sat
[ (ℎ𝑡 + |𝜓|)𝛥𝜃

𝐹 𝑡
]

, (2)

where 𝐶 is the infiltration capacity [L ⋅T−1], 𝛥𝑡 is the time-step [T], 𝑘sat
is the saturated hydraulic conductivity [L ⋅ T−1], 𝜓 is the wetting front
suction head [L], 𝛥𝜃 is the moisture deficit [-], and 𝐹 is the cumulative
infiltrated depth into the soil media [L].

The evolution of the infiltrated depth is derived from a soil-matrix
ass balance considering the infiltration rate at the surface (i.e., the
inimum between the infiltration capacity and the inflow rate) and the

xfiltration through the groundwater replenishing rate (𝑓𝑔), resulting
n:
𝑡+𝛥𝑡 = 𝐹 𝑡 + 𝛥𝑡

[

min
(

𝑓 𝑡, 𝑖𝑡 +𝑄𝑡 + ℎ𝑡∕𝛥𝑡 − 𝑓𝑔
)]

, (3)

where 𝑓𝑔 is the groundwater replenishing rate [L ⋅ T−1] as function of
the soil 𝑘sat and moisture deficit (Rossman et al., 2010; Gomes et al.,
023b, 2024).

The remaining terms of Eq. (1) (∑𝑄𝑡in and ∑

𝑄𝑡out) are fundamen-
tally derived from momentum equations to the flow direction cartesian
axes, as in other models such as LISFLOOD (Van Der Knijff et al.,
2010) or HEC-RAS (Brunner, 2016). Current version of HydroPol2D
accounts for local-inertial, (Bates et al., 2010), kinematic-wave, and
diffusive-like SWE approximations. In this paper, the latter is used.
To ensure relatively faster computational times, a cellular automata
approach is applied in the diffusive-wave solution by only calculating
the friction slope for the steepest water surface elevation gradient
only once per cell (Gomes et al., 2023a; Guidolin et al., 2016). This
approximation ensures faster simulations and allows the application of
heuristic calibration that relies on extensive exploration of the decision
space.

The cellular automata algorithm  collects the states at time 𝑡 and,
according to heuristic mass-conservative rules, estimate flow discharges
3

based on available void volumes from neighborhood cells using a c
weighted cellular automata approach (Guidolin et al., 2016). The total
outflow rate of a cell (i, j), assuming a Von-Neumann grid, can be
written as:
𝑛b
∑

𝑚=1
𝑄𝑡out,m = 

(

𝑠𝑡f ,max, 𝑛, ℎ0, 𝑉
𝑡, 𝑉 𝑡

(𝑖−1,𝑗), 𝑉
𝑡
(𝑖+1,𝑗), 𝑉

𝑡
(𝑖,𝑗−1), 𝑉

𝑡
(𝑖,𝑗+1)

)

, (4)

where 𝑛b is the number of neighboring cells, 𝑛 is the Manning’s rough-
ness coefficient (T ⋅L−1∕3), ℎ0 is the initial abstraction [L], and 𝑉 is the
void volume from the central cell to the neighborhood cells [L3].

By using a flow direction matrix derived from the water surface
elevation map at time 𝑡, one can define which cells receive runoff from
the neighbors, such that:
𝑛b
∑

𝑚=1
𝑄𝑡in,m = 

(

𝑄out,(i−1,j), 𝑄out,(i+1,j), 𝑄out,(i,j−1), 𝑄out,(i−1,j+1)

)

, (5)

here  estimates the total inflow rate in cell (i, j) based on the outflow
ates of the neighborhood cells and based on the flow directions.

Both equations Eq. (4) and (5) can be easily expanded for a Moore
rid (Torres et al., 2022) by adding the flow components in the non-
artesian axes. For a detailed mathematical formulation, including a
seudocode of the cellular automata algorithm, please refer to the
upplemental material (Gomes et al., 2023a).

During dry weather periods, the initial mass of pollutant available
n the catchment domain varies according to each Land Use and Land
over (LULC) classification (Rossman et al., 2010), and can be calcu-

ated using the build-up equation, for a cell (𝑖, 𝑗) in the domain, as
ollows:
𝑡+𝛥td = 𝐶1

(

1 − e𝐶2×𝛥td
)

+ 𝐵𝑡, (6)

here 𝐵 is the pollutant mass [M], 𝐶1 is the buildup maximum accu-
ulation (M ⋅ L−2), 𝐶2 is a fitted decreasing factor that varies with the
ollutant simulated [T−1] and 𝛥𝑡𝑑 is the antecedent dry days duration
T] measured within two consecutive rainfall events where pollutant
uildup is assumed to increase (Deletic and Orr, 2005; Gomes et al.,
021).

During wet-weather periods, the total pollutant wash-off rate leav-
ng the cell (𝑖, 𝑗) to downstream cells is given by:
𝑛b
∑

𝑚=1
𝑊 𝑡

out,m = 𝛥𝑡
𝑛b
∑

𝑚=1

[

𝐶3𝑄
𝑡
out,m(ℎ

𝑡)𝐶4𝐵𝑡
]

, (7)

here ∑𝑛b
𝑚=1 𝑾

𝑡
out (𝑡) is the total wash-off rate [M ⋅ T−1] that leaves

ell (i, j) for directions from 1 to 𝑛b, 𝐶3 is the wash-off coefficient
(L ⋅ T−1)C4 ⋅ T−1], and 𝐶4 is the wash-off exponent [-].

Similarly to Eq. (5), a flow direction algorithm is used to determine
hich neighborhood cells contribute to incoming pollutant that enters

ell (𝑖, 𝑗) for a Von-Neumann grid, such that:
𝑛b
∑

𝑚=1
𝑾 𝑖

in(𝑡) = 
(

𝑊out,(i−1,j), 𝑊out,(i+1,j), 𝑊out,(i,j−1), 𝑊out,(i−1,j+1)

)

, (8)

By using an Eulerian forward finite difference scheme, we can derive
pollutant mass balance dynamical equation, such that:

𝑡+𝛥𝑡 = 𝐵𝑡 + 𝛥𝑡
(

𝑛b
∑

𝑚=1
𝑾 𝑖

in(𝑡) −
𝑛b
∑

𝑚=1
𝑊 𝑡

out,m + 𝑆𝑏
)

, (9)

here 𝑆𝑏 is the source/sink pollutant rate [M ⋅ T−1].
The dynamical Eqs. (1), (3), and (9) are solved for the total simula-

ion timespan.

.1. Decision variables in HydroPol2D automatic calibration problem

In HydroPol2D, parameters are spatially derived as a function of
he LULC and Soil rasters. The minimum and maximum values of each
ecision variable are entered for each classification of these rasters. Let
𝑙 be the number of land use classifications and 𝑛𝑠 be the number of soil

𝑙
lassifications in a catchment. Also, let 𝑛𝑣 be the number of decision
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variables related to the LULC map and 𝑛𝑠𝑣 be those related to the soil
map; therefore, we have a decision vector 𝒙 ∈ R𝑛𝑥 with 𝑛𝑥 = 𝑛𝑙𝑛𝑙𝑣+𝑛𝑠𝑛

𝑠
𝑣.

We classify the decision variables into water quantity variables
superscript 𝑟), water quality variables (superscript 𝑤), and soil related
arameters (subscript 𝑠). Furthermore, we classify the variables as
ULC-based and soil-based into subscripts 1 to 𝑛𝑙 and 1 to 𝑛𝑠, respec-
ively. The decision variable of the calibration problem can be written
s 𝒙 = [𝒙𝑟𝑙 , 𝒙

𝑤
𝑙 , 𝒙

𝑟
𝑠]
T, such that:

𝒙𝑟𝑙 = [𝑛1, … , 𝑛𝑛𝑙 , ℎ0,1, … , ℎ0,𝑛𝑙 ]
T (10a)

𝑤
𝑙 = [𝐶1,1, … , 𝐶1,𝑛𝑙 , 𝐶2,1, … , 𝐶2,𝑛𝑙 , 𝐶3,1,…𝐶3,𝑛𝑙 , 𝐶4,1, …𝐶4,𝑛𝑙 ]

T

(10b)

𝒙𝑟𝑠 = [𝑘sat,1, … , 𝑘sat,𝑛𝑠 , 𝛥𝜃1, … , 𝛥𝜃𝑛𝑠 , 𝜓1, …𝜓𝑛𝑠 ]
T, (10c)

2.2. Initial values for the simulation

In addition to the parameters, in the automatic calibrator of the
HydroPol2D model, we can enter initial maps of water surface depth
and soil moisture to represent the initial conditions for simulation for
each event accurately. The code is designed to calibrate a maximum
of 10 events with 10 observation points of discharge, water depth, and
pollutant concentration within the catchment. Another input map that
could be entered is the distributed pollutant mass in the catchment
domain before the simulation; however, in this paper, we opted to
calculate this mass in terms of the antecedent dry days and assume that
it is uniformly distributed according to the land use classification due
to the lack of observed data.

2.3. Fitness functions

In this section we show the fitness functions allowed in the auto-
matic calibrator. These functions can be used to calibrate hydrographs,
stage-hydrographs, and pollutographs at the catchment outlet. Detailed
mathematical descriptions of these functions are available in the Sup-
plemental Material. In this paper, we use the Nash-Sutcliffe-Efficiency
(NSE) (Nash and Sutcliffe, 1970), the coefficient of determination (𝑟2),
the root-mean-square-error (RMSE) (Fisher et al., 1920), the Peak Flow
Bias, and the relative runoff volume error.

In addition to the previously defined functions, users can have the
flexibility to write their fitness functions since all codes are open source.
Some examples that are predefined in the model and not fully detailed
here for the sake of parsimony are the (i) mean average error, (ii) event
mean concentration, (iii) PBIAS, and (iv) runoff volume mean error.

2.4. Optimization constraints

The optimization problem is subject to four constraints. First, the
model is constrained to HydroPol2D dynamical model that has con-
servation of mass and momentum constraints, and pollutant transport
and fate dynamics. Moreover, the optimization problem can also have
equality constraints (e.g., the case where a parameter is a linear com-
bination of other parameters). Finally, we can set the minimum and
maximum parameter ranges for each decision variable.

2.5. Objective function

We can calibrate a single or multiple events together. Therefore,
let the index 𝑗 represent the 𝑗th event used for calibration. Moreover,
let 𝑓 collect fitness functions such that a possible scenario of objective
functions could be 𝑓1 = −NSE, 𝑓2 = −𝑟2, 𝑓3 = −RMSE, and 𝑓4 = 𝜂q,
for example. The problem is set as a single-objective minimization
problem, and the objective function used in this paper can be written
4

as a function of linear combinations between each fitness function for
each event, such that:

𝑂𝑓 =
𝑛𝑒
∑

𝑗=1
𝛽𝑗
[(

𝑛𝑓
∑

𝑖=1
𝛼𝑖𝑓𝑖

)]

, (11)

where 𝑛𝑓 is the number of fitness functions used in the optimization
𝛼 defines the relative weight of each function 𝑓𝑖, 𝑛𝑒 is the number
of events used in the calibration, and 𝐵𝑗 is the weight given by the
objective function values for each event.

It is important to mention that the factor 𝛼𝑖 must be such that it
normalizes the varied objective functions used to avoid over-weighting
in fitness functions with different scales of magnitude and units.

2.6. Automatic calibration optimization problem

In this section, we define the automatic calibration optimization
problem. Although the nature of hydrological model calibration can be
inherently multiobjective (Shafii and De Smedt, 2009), for the sake of
parsimony and to allow practical application, we focus on developing
a single objective automatic calibration problem. It can be written by
minimizing the objective function, subject to HydroPol2D dynamics. An
example of calibration problem such that we can write the problem as:

min
𝒙

𝑂𝑓 =
𝑛𝑒
∑

𝑗=1
𝛽𝑗
[(

𝑛𝑓
∑

𝑖=1
𝛼𝑖𝑓𝑖

)]

(12a)

s.t. HydroPol2D Dynamics in Eqs. (1)-(9) (12b)

𝑨eq𝒙 = 𝑩eq (12c)

𝒙𝑙 ≤ 𝒙 ≤ 𝒙𝑚, (12d)

where 𝒙𝑙 and 𝒙𝑚 are the lower and upper bounds of the decision vector
𝒙.

The problem posed in Eq. (12) is non-linear and non-convex. The
use of evolutionary strategies such as the Shuffled Complex Evolution
(SCE) (Naeini et al., 2019) has been used for this type of calibra-
tion problems (Tigkas et al., 2016). In Matlab, several solvers are
available to solve problems as Eq. (12), such as Global-Search, Patter-
Search or Genetic-Algorithms (GA) (Higham and Higham, 2016). Herein,
we choose GA due to its flexibility to deal with non-linear prob-
lems (Giacomoni and Joseph, 2017) and its ability to use parallelization
in Matlab. Other software, such as SWMM and HEC-HMS, have ap-
plications that follow a similar approach to the one presented in
this paper (Behrouz et al., 2020; Dariane et al., 2016). The GA is
a population-based probabilistic optimization method that emulates
the principles of genetics and natural selection (Tigkas et al., 2016).
Since the goal of hydrologic-hydrodynamic model calibration is not
essentially finding the global optima but a physically possible set of
parameters trying to avoid equifinality, we set all problems to run with
a relatively low number of generations, but still with a relatively large
population size to allow a proper exploration of the decision variable
space.

The genetic algorithm is defined for a certain number of genera-
tions and population size. By population we mean a set of feasible
individuals. An individual is a feasible (e.g., within the minimum and
maximum expected values) set of the model parameters, and each
model parameter is the genes of each individual. During the genera-
tions, only the 50% best individuals (i.e., with the best fitness function)
of the population survive, recombine, and mutate, leading to the novel
population set for the next generation. The process is repeated until a
convergence criterion is met or if the maximum number of generations
is reached (Giacomoni and Joseph, 2017).
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Fig. 1. Automatic calibrator flowchart. First, the model reads the automatic calibration inputs, and then it runs a pre-processing file, defining the required numerical input for
HydroPol2D, such as the DEM, LULC, and Soil Maps. Following this phase, the model runs the GA solver, which uses HydroPol2D to estimate the objective function values, and
this process is looped until the stopping criteria are reached.
2.6.1. Genetic algorithm properties
We set the problem to run for (10-40) generations with a 100 popu-

lation. The stopping criteria were twofold: (i) simulation would stop if
the number of maximum generations is reached, (ii) if no improvement
in the objective function was found in 30 min. All genetic algorithm pa-
rameters are set as standard values from Matlab (Higham and Higham,
2016). A flowchart of the optimization process is presented in Fig. 1.

2.7. Input data

To run the automatic calibration procedure defined in this paper,
it is necessary to build a HydroPol2D model and to enter the observed
input data and climatologic forcing. All HydroPol2D model input data
are entered in excel user interfaces allowing users to control time-
stepping parameters, DEM, LULC, and SOIL raster directories, and etc.
For detailed explanation on how to set up the model, please refer to the
model manual in Gomes Jr. (2024). In addition to the built model, users
then have to fill an excel spreadsheet with gauge coordinate and at least
one time series of discharge and pollutant concentration. Screenshots
of the interfaces to enter the data are presented in the SI.

3. Case studies

3.1. Numerical case study 1 - V-tilted catchment

The objective of this numerical case study is to test the ability of
the optimization model to predict Manning’s roughness coefficient of
the catchment and to check if the model can predict that there are no
5

initial abstractions and infiltration in this case study. Essentially, we
want to answer the following question:

• Q1: Does the automatic calibration algorithm can identify the Man-
ning’s roughness coefficients of hillslopes and main channel, as well
as the initial abstraction values of these land uses? In addition, can it
identify whether infiltration is being considered in this case study?

We choose the V-Tilted catchment as a virtual experiment inverse
problem (Fatichi et al., 2016). The catchment has 4050 cells of 20 𝑥
20 m in size and has a reasonable fast computation, allowing the use
of metaheuristics that rely on multiple computations of the objective
function. To answer Q1, we define the decision vector of this problem
as:

𝒙 = [𝑛1, 𝑛2, ℎ0,1, ℎ0,2, 𝑘sat,1, 𝛥𝜃1, 𝜓1]T,

where subscripts 1 and 2 are the LULC classifications in the catchment
(i.e., 1 are the hillslopes, and 2 is the channel, see Fig. 2(a)). The
optimization problem mathematical description of this case is presented
in Eq. S1. It is assumed that there is only one type of soil in the
catchment, such that 𝑛𝑠 = 1. We add an equality constraint in Eq. S1 by
entering the known parameters to set only the water quantity variables
as decision variables. In this problem, we choose the NSE as the
objective function since we are focused on calibrating the modeled flow
discharge with the observed discharge at the outlet. This case study has
no infiltration or initial abstraction and is a reverse problem since we
know the right parameters (Kollet and Maxwell, 2006); however, we
decided to include infiltration variables in the optimization problem
formulation to see if the algorithm can identify this condition.
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Fig. 2. Numerical Case Study 1 and 2 digital elevation models in meters. Part (a) is the V-Tilted Catchment, whereas part (b) is the Wooden-Board catchment. The parameters
of each case are shown in the figure, where 𝑖𝑝 is the constant rainfall rate, 𝑠outlet𝑓 is the friction slope at the outlet, 𝛥𝑥 is the pixel size, 𝛥𝑡 is the constant time-step assumed, 𝑡𝑓 is
the end of the simulation, and 𝛼 is the Courant number.
This is a problem with a relatively short decision space, in which
equifinality effects are hypothesized to be minimized.

3.2. Numerical case study 2 - Wooden-Board catchment - pollutant concen-
tration

The objective of this numerical case study is to test the ability of
the optimization model to predict the salt concentrations at the outlet
of the catchment, the initial salt mass, and the wash-off parameters of
the model. This is a fairly more complex optimization problem if not
only the water quantity parameters are required to calibrate, but also
the water quality ones. In addition, the water quality parameters have
a wider sensitivity, as shown in Gomes et al. (2023a). The optimization
problem mathematical description of this case is presented in Eq. S2.
In this problem, we assume that the water quantity parameters (i.e., 𝑛
and ℎ0) are already calibrated (Zhang et al., 2020), so that the decision
vector for this problem is 𝒙𝑤𝑙 = [𝐶1,1, 𝐶2,1, 𝐶3,1, 𝐶4,1]T. To set only the
water quality variables as the decision variables, we add an equality
constraint in Eq. S2. In this problem, we only choose RMSE as the
fitness function.

This case study is a controlled experiment in a wooden-catchment
as shown in Fig. 2(b). The wooden-board has 4.5 m2 and 300 cells. The
initial mass of the solute is 125 g, and it is assumed that it is uniformly
distributed in the catchment area (Zhang et al., 2020). However, in this
paper, we do not assume that the initial solute mass is known, and we
let the model search for the near-optimal solute mass considering 𝐶1
and 𝐶2 as decision variables. Naturally, this controlled experiment is
not a direct case of applying the build-up equation that calculates the
available mass of the pollutant in terms of the 𝛥𝑡𝑑 , as shown in Eq. (6).
However, fixing 𝛥td = 10 days, for example, we can estimate 𝐶1 and
𝐶2, calculate the initial build-up by solving Eq. (6) and compare with
the initial mass of 125 g known from the experiment. Ultimately, what
matters for HydroPol2D is the initial pollutant mass available in each
domain cell. The reason we consider build-up as a function of 𝛥𝑡𝑑 and
LULC is that in most cases, the initial pollutant mass varying cell-by-
cell is unknown, and these direct measurements are either intractable,
hardly ever available, and would result in an intractable decision-
space if all cells are treated individually in the optimization problem.
6

The parameter ranges were estimated using a 60% variation from the
previous calibrated ones, assuming that the initial pollutant mass was
125 g (Gomes et al., 2023a). In this Numerical Case Study, we want to
answer the following question:

• Q2: Assuming the water quantity parameters known, can the algo-
rithm find the initial mass of salt (build-up model parameters) and
the wash-off parameters to match with the observed pollutograph at
the outlet?

3.3. Numerical case study 3 - Gregorio catchment in Sao Carlos / Brazil

The Gregório catchment is located in the municipality of São Carlos
in the state of São Paulo, Brazil. The climate in the state of São
Paulo is influenced by Atlantic Tropical and Continental and Atlantic
Polar air masses, complemented by Continental Equatorial air masses
coming from the Western Amazon. The months with the largest rainfall
events are in summer, from October to March, and the dry weather
period varies from April to September in winter. The average annual
precipitation of the city of São Carlos is approximately 1492 mm (de
Meteorologia, 2022) and the city has been prone to critical rainfall
events yearly (Abreu, 2019). The catchment area is 18.64 km2, the
length of the main channel is 8.6 km and its morphological charac-
teristics indicate an elongated to strongly elongated catchment, which
presents a compactness coefficient (𝐶𝑐) of 2.030, a circularity ratio (𝑅𝑐)
of 0.120 and a form factor (𝑅𝑓 ) of 0.289, as shown in Fig. 3. Although
the morphometric characteristics would indicate a resilient catchment
to floods, the large impervious rate, mean slope, and the channelization
of the main creek increase the vulnerability of the area in terms of
floods.

To perform hydrodynamic modeling, we built maps of the Digi-
tal Elevation Model (DEM), Land Use Land Cover (LULC) and Soil
Texture as presented in Fig. 4. Due to the lack of high-resolution
data in the catchment, we use freely available worldwide datasets for
all input maps; therefore, the methods applied here are replicable in
other poorly-gauged catchments (Gomes et al., 2023a). However, when
available, higher resolution maps can be used.
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Fig. 3. Gregorio Catchment location map with hypsometric curves of elevation and slope, and a figure of the flood-related impacts in the Local Market point of Sao Carlos.
The pedology of the catchment is composed of yellow-red latosoil
(YRL) and small areas of purple latosoil (PL) (de Geografia e Estatística
(IBGE), 2022). The soil texture within the catchment can be classified
into medium and clayey texture (de Geografia e Estatística (IBGE),
2022) (see Fig. 4). The headwaters of Gregorio catchment remains
relatively undeveloped, with a predominance of pervious areas with
crops, grass, and shrub areas. Downstream the creek, impervious rates
dramatically increase with urbanization, which almost makes the catch-
ment impervious towards the outlet, as presented in Figs. 3 and 4.
This catchment covers large proportion of the urbanized area in the
municipality of São Carlos with the most commercial activities of the
city being carried out in this area. For this reason, due to the climatic
and hydraulic characteristics of the catchment, floods are constantly
recorded, especially in the summer. A recent flood picture is shown
in Fig. 3 in the Local Market (Abreu, 2019; Sarmento Buarque et al.,
2020).

The specific question of this Numerical Case Study is:

• Q3: Given the reality of scarce data in poorly-gauged catchments, can
the algorithm find the near-optimal hydrodynamic parameters, within
physical limits, to match with the observed hydrograph? Can this set
of parameters be used to estimate catchment-scale information?

3.3.1. DEM - preprocessing
A 30-m DEM might be considered high-resolution for rural catch-

ments. For urban areas, however, the complexity of the built envi-
ronment with detailed infrastructure would require a more detailed
resolution. Information in such detail is typically unavailable in de-
veloping countries. Nonetheless, poorly-gauged areas are usually those
that often suffer from floods (Fava et al., 2020). Raster-based flood
routing models are, therefore, affected by DEM quality. Typically,
DEMs are required to be hydrologically corrected, ensuring that the
7

flow directions are continuous and connected towards the outlet. How-
ever, especially in urban areas with bridges, culverts, and stormwater
reservoirs, DEMs usually have to be burned to allow proper flow
directions and connection. Herein, we provide 4 algorithms to treat
low-quality DEMs (i.e., the gaussian filter Young and Van Vliet, 1995),
the constrained regularized smoothing of the channel length profile
(CRS) (Schwanghart and Scherler, 2014), and the method of reducing
the DEM elevation to consider water surface depths based on De Paiva
et al. (2013). These methods are detailed in the Supplemental Material.

3.3.2. Data collection
Rainfall intensity and depth of the water surface are recorded in a

limited way each minute and upscaled to 5 min intervals, and the rain-
fall and stream gauge station is shown in Fig. 3. From the monitoring
campaign provided in Souza (2008), only one event had a sufficiently
large rainfall volume and quality discharge observations. To collect
data, a Campbell Scientific® CR10 station was installed and calibrated
to record the data to be collected after each rainfall event (Souza,
2008). A calibrated rating curve (Gomes et al., 2023c) converts water
depth into flow discharge by the following relationship (Lima et al.,
2007):

𝑄(ℎ) = 8.278ℎ2.2517, 𝑟2 = 0.99, (13)

where 𝑄 is the observed flow discharge at the gauge station, and ℎ is
the measured water depth taken from the channel invert.

The recorded level was converted into flow discharges using Eq. (13)
and used for the calibration of HydroPol2D.

3.3.3. Initial conditions
We assumed the initial soil moisture in the soil calculated with

the cumulative rainfall prior to the event coupled with the SCS-
CN (SCS, 1986) infiltration model. A Curve-Number map was devel-
oped by Souza (2008) to estimate spatial infiltration in pervious areas.
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Fig. 4. Input maps to the hydrodynamic simulation in HydroPol2D for the Gregorio catchment, where (a) is the digital elevation model, (b) is the soil texture map, and c) is the
land use and land cover map.
Table 1
Parameter ranges and calibrated values for the LULC-Based parameters of HydroPol2D
for Numerical Case Study 3.

Classification 𝑛min 𝑛max 𝑛 ℎ0,min ℎ0,max ℎ0
[s ⋅m−1∕3] [s ⋅m−1∕3] [s ⋅m−1∕3] [mm] [mm] [mm]

Water 0.0250 0.0400 0.0400 0.00 0.00 0.00
Trees 0.0250 0.0400 0.0268 0.00 10.00 0.8259
Grass 0.0200 0.0350 0.0244 0.00 5.00 0.2740
Flooded vegetation 0.0250 0.0400 0.0381 0.00 10.00 1.2281
Crops 0.0200 0.0350 0.0236 0.00 10.00 0.1564
Scrub/Shrub 0.0300 0.0400 0.0358 0.00 10.00 7.6289
Built areas 0.0150 0.0300 0.0216 0.00 2.00 0.0625
Bare ground 0.0200 0.0300 0.0260 0.00 2.00 1.6101

For the initial water surface depth, previous modeling results indicate
that no warm-up is necessary, and current visits to the study area
indicate a minimum effect of non-hortonian flows. It is also seen from
the observed hydrographs that the initial flow is null, indicating an
intermittent creek.

3.3.4. Boundary conditions and running control parameters
The model is simulated with a space-invariant and time-variant

rainfall hyetograph distributed to all cells of the grid. In addition, we
assume a gradient outlet boundary condition at the outlet with the
friction slope 𝑠𝑓 = 0.02 m ⋅m. Although we assume normal flow at the
catchment outlet, the flow is considered transient in the gauging station
as it is an internal domain node (see Fig. 3). To guarantee numerical
stability, we define minimum and maximum time steps of 0.1 and 5 sec,
respectively, and we set HydroPol2D model to change time-steps each
60 s of the simulation time. We use a Courant number bound of 0.4, so
time-steps are adapted to match this input (Gomes et al., 2023a). The
model is run for 120 min of simulation, and point and raster results are
retrieved each 5 min.

3.3.5. Parameter ranges
The parameter ranges used for calibration for the construction of

the calibration optimization problem of Eq. (12) are given in Tables 1
and 2. The physically bounds used in this paper were derived from the
literature and recently published papers, and manuals (Soliman et al.,
2022; Rossman et al., 2010; Brunner, 2016).
8

3.3.6. Sensitivity analysis
A one-at-the-time sensitivity analysis is performed in the model to

identify the most sensitive parameters before the automatic calibration
procedure (Gomes et al., 2023b). We define three output functions and
calculate the variance of each perturbation in the decision variables
in terms of the variance in the output functions. We evaluated the
output variance of Peak Flow, Runoff Volume, and Time to Peak, as
they are closely related to the hydrograph properties. We also assessed
flood areas. More details of the output functions are found in the
Supplementary Material. The parameters ranged from 10% to 190%
of the baseline parameters, with 10% intervals. In addition, they are
defined as the arithmetic average of the parameter ranges presented in
Tables 1 and 2.

3.4. Numerical case study 4 - exploring equifinality

In this case study, our objective is to explore the parameter equifi-
nality problem in the calibration of the hydrological and hydrodynamic
model. Equifinality tends to decrease with the number of observations
and with the decrease in the model parameters (Her et al., 2019). To
this end, we create a synthetic case study without uncertainty in rain-
fall, initial soil moisture, and observed discharge, mimicking a perfect
gauging system. Therefore, the error in the parameter calibration is
most likely due to equifinality, although calibration solver properties
such as the number of generations, population size, or genetic algo-
rithm properties that might change the behavior of the exploration of
the decision space can play a role. The spatial-variability of rainfall
is a challenge that could also be explored, but is out of the scope of
this paper. To explore the equifinality problem in a scenario of certain
rainfall and perfect measurements in the gauges, we formulate the
following question.

• Q4-1: How does parameter equifinality affect the calibration of Hy-
droPol2D for different parameter ranges, number of events, the mag-
nitude of the rainfall intensity, and location of the gauging stations?

Therefore, we assess the near-optimal calibrated parameters in an
inverse problem using the V-Tilted catchment as a surrogate case study,
varying the number of gauges, the number of rainfall events, and their
intensities. This catchment is used as a virtual laboratory to test the
hypothesis raised in this case study (Fatichi et al., 2016). We altered the
original watershed to have 3 classifications of soils and LULC, following
the left hillslope (1), the middle channel (2), and the right hillslope
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Table 2
Parameter ranges and calibrated values for the SOIL-Based parameters of HydroPol2D for Numerical Case Study 3.

Type 𝑘sat,min 𝑘sat,nax 𝑘sat 𝛥𝜃min 𝛥𝜃max 𝛥𝜃 𝜓min 𝜓min 𝜓
[mm.h−1] [mm.h−1] [mm.h−1] [-] [-] [-] [mm] [mm] [mm]

Medium 1.00 10.00 1.14 0.25 0.60 0.29 0.00 230.00 33.56
Clayey 0.20 10.00 6.23 0.25 0.60 0.40 0.00 312.50 281.10
Fig. 5. Modeling Results of Numerical Case Studies 1 and 2. Parts (a) - (c) are the hydrograph, objective function chart, and relative error of parameters for the V-Tilted
catchment. Parts (d) - (f) represent the pollutograph, objective function chart, and relative error chart for the Wooden-Plane catchment. Only the best and the worst individuals
of each generation are plotted in (a) and (d). Only the parameters of the best individuals are plotted in (c) and (f).
(3), each of them with different 𝑛, ℎ0, 𝑘sat , 𝛥𝜃, and 𝜓 . The left and
right hillslopes can be classified into hydrologic units with the same
roughness and infiltration properties. Consequently, having a gauge
station in each of the hillslopes would possibly reduce the uncertainty
in the parameters.

The problem has ten unknown parameters (i.e., five parameters
for each hillslope) and five known parameters (i.e., the main channel
parameters are kept constant). We apply the model to calibrate three
different storms of 10.8 mm ⋅ h−1, 21.6 mm ⋅ h−1, and 32.4 mm ⋅ h−1 with
90-min duration and later we calibrate only using the first event of
10.8 mm ⋅ h−1. Detailed results of the modeling of each of the three
rainfall events are presented in the Supplemental Material. The number
of gauges (1 - outlet, 2 - left hillsope, and 3 - right hillslope) is
combined, resulting in 7 possible cases (1-2-3, 1-2, 1-3, 2-3, 1, 2, and
3). The left and right gauges are defined by the channel neighborhood
cell located at the half middle of the V-tilted length (i.e., 𝑦 = 500 m)
spanned 20 m from the channel i.e (𝑥 = 780 m, and 𝑥 = 820 m, see
Fig. 2(a)).

We formulate the calibration problem with a wide parameter range
(see Supplemental Material) mimicking no prior knowledge of the
system except by the input data that discretize the domain into 3 areas
(i.e., left hillslope, channel, right hillslope). We compare the results of
this case with a condition with more knowledge of the system, that is,
the parameter range is half of the previous one, hence reducing the
decision space.

The calibration of hydrological models is inherently multi-
objective (Shafii and De Smedt, 2009). For example, minimizing RMSE
9

might give good objective function values, correctly matching the
peaks, but might fail during the recession time, thus altering the
overall mass balance that is accounted for in soil moisture, for exam-
ple (Lindström, 1997). To this end, we use two metrics as our composite
objective function, that is, the NSE and the relative volume error.
The NSE varies from −∞ to 1 and the relative volume error should
be minimized, such that we would want to maximize the NSE while
minimizing the volume error. By introducing a penalizing factor as a
function of the relative volume error in the NSE, we seek solutions
with a good NSE and reduced volume errors. Therefore, the objective
function also varies from −∞ to 1, where 1 indicates a perfect NSE and
no volume error.

To transform this hypothesis into a minimizing optimization prob-
lem, we assume that each gauge has the same importance (i.e., 𝛾 =
1∕𝑛𝑔 , with 𝑛𝑔 as the number of gauges), assuming the NSE with weight
𝛼1 = 1 and the volume error with weight 𝛼2 = 0.5 as well, and we
assume that each event also has the same importance (i.e., 𝛽𝑗 = 1∕𝑛𝑒 ∀ 𝑗,
with 𝑛𝑒 being the number of events). Therefore, we can write the
objective function (11) as (Lindström, 1997):

𝑂𝑓 = −1
𝑛𝑒

𝑛𝑒
∑

𝑗=1

[ 1
𝑛𝑔
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, (14)

where 𝑖 is the gauge index, 𝑗 is the event index, and 𝑘 is a time-step
index.
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The previous objective function attempts to maximize NSE while
rying to maintain important hydrological features such as volume
onservation (Gomes et al., 2023b; Lindström, 1997). The negative sign
n the first fraction is to transform the objective function suitable for
he minimization of the optimization problem.

The calibration of hydrologic-hydrodynamic models is a necessary
ut not sufficient condition to apply the model under different input
anges. The validation process is usually performed with different
ydrologic conditions, typically represented by storms different from
hose used for the calibration. We provide a validation test under dif-
erent storm volumes, intensities, temporal distributions, and volumes
o gain confidence in the estimated parameters. To address these issues,
e formulate the following question:

• Q4-2: Using only the observed data at the outlet, is it possible to
obtain a sufficiently accurate model that can be used not only for the
calibration events but also for the validation under different storms
intensities, durations and temporal distributions?

To answer Q4-2, we calibrate the model with only the outlet gauge
s the source information for the optimization calibration algorithm.
o ensure different rainfall characteristics, we change the durations
10

𝑘

nd volumes andthe rainfall temporal distribution. The rationale is to
ave rainfall events with 50 or 150% values from the calibration events
henever possible to represent relatively different conditions from the

alibration phase. Therefore, we alter the durations from the 90-min
ainfall duration used from the calibration events, resulting in rainfall
urations of either 45 or 135 min. However, reducing the rainfall
olumes to 50% of the smallest rainfall event used for calibration would
enerate events without runoff. Therefore, for this case, we fix the
ntensity as 10.8 mm ⋅ h−1 but change the duration of the rainfall.
o consider the effect of unsteady-state rainfall, we use the Huff 1st
uartile hyetograph (Huff, 1967) as a proxy rainfall distribution to
epresent the temporal dynamics of the rainfall.

. Results and discussion

.1. Numerical case study 1

The modeling results of the V-Tilted catchment calibration problem
re presented in Fig. 5(a)-(c). The near-optimal value of the decision
ector is found after 20 generations with 100 population are 𝑛1 =
.0132 s ⋅ m−1∕3, 𝑛2 = 0.1703 s ⋅ m−1∕3, ℎ0,1 = 0.02 mm, ℎ0,2 = 0.46 mm,

= 0, 𝛥𝜃 = 0.07 cm3 ⋅ cm−3, and 𝜓 = 15.21 mm. The hydrographs
sat
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t the catchment outlet are presented in Fig. 5(a), where the best
nd worst individual’s hydrographs are plotted for each generation.
y individual, we mean a feasible set of parameters following Eq. (S1)
hat produces an outlet hydrograph response in the catchment. Some
f the worst individuals had no outflow due to large values of initial
bstraction and/or 𝑘sat , likely due to the decision space exploration of
A. However, as the generation moves, the worst individuals predict
etter hydrographs with NSE closing to unity as shown in Fig. 5(b), that
hows the performance of the best and worst individuals throughout
he generations. In nearly 1 generation, it is possible to note that
he best individual already gets good results for hydrological models
i.e., NSE > 0.85) (Nash and Sutcliffe, 1970).

The best individuals rapidly move to NSE closer to the unit, even
though the parameters are not 100% correct. Some of the parameter
ranges used in this case study had nearly a 200% variation from the
minimum and maximum values (e.g., 𝑛1 and 𝑛2, as shown in Eq. S1
and the model still had minor errors compared to the expected values,
as shown in Fig. 5c). The model also predicted that no infiltration
would occur in this catchment since the near-optimal 𝑘sat is 0 mm ⋅ h−1.

owever, it predicted some initial abstraction of 0.02 mm, but this
alue is nearly negligible. Overall, the optimization problem resulted
n a near-optimal solution that, at least for hydrological purposes, is
ufficient and physically based. It preserves the peak flow and overall
hape of the hydrograph and has an optimal NSE compared to the outlet
ydrograph. However, relying solely on NSE might produce acceptable
olutions within the parameter ranges, equifinality is presented as
hown in Fig. 5(c). One can note in this figure that Manning’s roughness
oefficient had a range of approximately 20% around the expected
11

alues, although NSE values were optimized. t
Table 3
Known parameters of the inverse problem of Numerical Case Study 4.

Classification 𝑛 ℎ0 𝑘sat 𝛥𝜃 𝜓
[s ⋅m−1∕3] [mm] [mm ⋅ h−1] [−] [mm]

Left Hillslope 0.06 1 8 0.6 20
Channel 0.15 0 0 0.1 0
Right Hillslope 0.015 4 2 0.15 100

4.2. Numerical case study 2

The modeling results of the Wooden-Plane catchment are presented
in Fig. 5(d)-(f). In this problem, the RMSE was chosen as the ob-
jective function, and the nearly-optimal objective function value was
approximately 630 mg ⋅ L−1. For other modeling pollutants, such as
copper, zinc, or phosphate, a RMSE of this magnitude would result
in an inaccurate model (Batalini de Macedo et al., 2021); however,
we are modeling salt concentrations that had mean concentrations of
approximately 30.000 mg ⋅ L−1, as shown in Fig. 5(d). The goodness of
fitness can also be visualized in the inserted chart in Fig. 5(d), where
the model nearly predicted the same concentrations as the observations.

The values of the objective function for each generation’s best
and worst individuals re also shown in Fig. 5(e). Results are already
relatively good for the 1st generation and find a near-optimal plateau
after the 5th generation. Although the optimization model found good
results for fitting the observed concentrations, it came at the cost of
estimating a larger mass of salt at the beginning of the simulation. The
overprediction of 𝐶1 and 𝐶2 can be seen in Fig. 5(f), where 𝐶1 = 323.68,
𝐶2 = 1.081, 𝐶3 = 12.045, 03, 𝐶4 = 0.2763. In particular, the combined
alues of 𝐶1, 𝐶2, and 𝛥𝑡𝑑 would result in an initial salt mass of 145 g,
hich is approximately 16% more than the value reported by Hong
t al. (2019). The black dashed line in this figure is the result of

he same problem, using the same model (HydroPol2D), calibrating
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Fig. 8. Calibration problem results with the catchment simulated with 30 m spatial resolution under an observed rainfall event. Part (a) shows the hydrographs of the best and
worst individuals for each generation, as well as the rainfall intensity. Part (b) shows the objective function (i.e., −NSE) values for the best and worst individuals.
Fig. 9. Near-Optimal normalized parameter, where 0 and 100% are the boundaries of the decision vector 𝒙. LULC-Based subscripts 1 = water, 2 = trees, 3 = Grass, 4 = Flooded
Vegetation, 5 = Crops, 6 = Schrub/Scrub, 7 = Built Areas, and 8 = Bare Ground. Soil-Based subscripts 1 = Medium and 2 = Clayey.
for 𝐶3 and 𝐶4, but assuming the initial mass of 125 g (Gomes et al.,
2023a). It is inferred that a larger mass was expected with a larger
washing capacity, since all water quality parameters were larger for
the simulations presented in this numerical case study.

4.3. Numerical case study 3

The model has 8 LULC and 2 Soil classifications, resulting in 22
hydrologic-hydrodynamic parameters (16 from LULC and 6 from the
soil parameters). Using the average of the parameter range presented
in Tables 1 and 2, the one-at-the-time sensitivities of these parameters
are depicted in Figs. 6 and 7. The average of the parameters might
be the baseline used when only the parameter ranges are known. The
output functions used for this evaluation are mainly related to the
hydrograph shape. We used peak flow, runoff volume at the end of
the event, and time-to-peak variances as hydrograph shape evaluation
functions. Furthermore, we evaluate the sensitivity of the parameters to
flood areas (i.e., areas with maximum flood depth greater than 0.5 m).
From Fig. 6 it is observed that the most sensitive parameters in terms
of hydrograph shape are the Manning’s roughness coefficient of the
Built Areas (i.e., the watershed has nearly 70% of built areas), followed
by those in the areas of trees. A reduction in roughness is fairly more
expressive than an increase in peak flow. However, for runoff volume,
time to peak, and flooded areas, Manning’s variation seems to follow a
linear relationship with these outputs.

It is interesting to note that reducing the 𝑛 values reduces the total
volume that leaves the catchment at the end of the event and decreases
12
flooded areas, which does not necessarily mean that areas with risks
of human instability would also decrease (Rotava et al., 2013). The
larger velocities that resulted from the reduced Manning’s coefficient
might increase areas of instability risks. The initial abstraction (ℎ0)
also had some sensitivity, but presented a very non-linear behavior for
all output functions used, indicating that it could be assumed in some
cases rather than calibrated. This non-linear behavior might be due to
allowing storage and infiltration in cells even when depths are smaller
than or equal to ℎ0. We hypothesize that ℎ0 would have more influence
for values larger than 10 mm. This parameter can represent the storage
of low-impact development (LID) facilities that do not change surface
roughness, such as rain barrels. Parameters 𝑛 and ℎ0 can be proxy
representations of LID facilities such as rain barrels (i.e., increasing ℎ0
in pixels), green roofs, permeable pavements, or bioretention systems,
as they represent the storage and delay of the flood wave passing
through cells (Damodaram et al., 2010).

These parameters associated with the infiltration parameters shown
in Fig. 7 can be used to assess the effects of retrofitting the catchment
into a more sustainable scenario with green infrastructure (McClymont
et al., 2020) or can also represent a scenario of increase in urbanization
and hence represent the effects of post-development conditions (Gomes
et al., 2023b). Due to the limited area for infiltration in the catchment,
the results presented in Fig. 7 indicate that the soil properties have less
influence than the roughness coefficients but greater influence than the
initial abstraction, especially 𝑘sat,2, which can be seen from Fig. 4 that
most of the pervious areas are derived from this type of soil.

The model calibration results are presented in Fig. 8. Part (a) shows
the hydrograph for the best and worst individuals of each generation,
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Fig. 10. Relative Parameter Error for Numerical Case Study 4, assuming no prior knowledge of the parameter boundaries where 1 = Outlet, 2 = left gauge, 3 = right gauge. Black
ashed lines are the expected values. Part (a) is the relative error for cases where the outlet and at least one more gauge are observed and case, Part (b) is single gauges or a
ombination of gauges that are not at the outlet, and Part (c) is the objective function values given by Eq. S1. All cases were simulated with 10 generations and 100 populations.
s
t
o
v
t
a
c
l
l
c

t
c

4

e
s
a
c
i
a

hile part (b) shows the evolution of the objective function (i.e., - NSE)
hrough the generations. The calibration results present a NSE = 0.89,
MSE = 7.3 m3 ⋅ s, and 𝑟2 = 0.95, and 𝜂𝑝 = 3.58%. Although we ran the
ptimization algorithm for 10 generations, 100 population, the model
till could not properly capture the two-peak observed hydrograph and
he observed runoff volume in the falling limb of the hydrograph. Other
bjective functions could also be tested, especially those that account
or peak flows and runoff volumes, but for the sake of simplicity,
e only used the NSE. Several factors might have influenced this
ehavior, and we hypothesize that the most important ones are the
uality of the digital elevation model, the spatial variability of rainfall
n the catchment, and the uncertainty in the rainfall measurements
nd transformation of stage into discharge, as well as the inherent
ncertainty of the conceptual model of HydroPol2D. The calibrated
arameters are shown in Tables 1 and 2.

As in Numerical Case Studies 1 and 2, after the first generation,
he model performs similarly to the last generation (i.e., NSE = 0.85),
ndicating that relatively fewer simulations can be required to reach
ccepted modeling results (Moriasi et al., 2015). As shown in Fig. 9,
one of the parameters reached the boundaries of the range defined
or the upper and lower bounds. However, a relatively large Manning’s
oughness coefficient is noted. Using a coarser DEM and filtering the
EM with Gaussian filters, CRS, and carving water surface depths in

he channel, we hypothesized that the flow paths were shortened and
13
moothed so that increasing 𝑛 was necessary. However, not including
hese filters might cause water ponding in areas with DEM noise
riginating from natural imprecisions of the DEM or the influence of
egetation (De Paiva et al., 2013). Furthermore, using a 30-m DEM,
he terrain details that would be captured with a higher resolution DEM
re not considered. Higher resolution DEMs can eventually create more
ontact area between the runoff and the surface, resulting in larger head
osses. Therefore, to compensate for the relatively smoother terrain, a
arger value 𝑛 was required. Similar findings of the one presented here
an be seen in Bellos and Tsakiris (2015).

Using calibrated parameters, HydroPol2D can be applied to de-
ermine flood maps, human instability maps, infiltration, and other
omponents of the water balance as shown in Gomes et al. (2023a).

.4. Numerical case study 4

The relative parameter error assuming a considerably wide param-
ter range representing no prior knowledge about the parameters is
hown in Fig. 10. Overall, the algorithm can find suitable sets of 𝑛
nd 𝑘sat , i.e., the most sensitive parameters using the outlet gauge in
ombination with some of the other gauges, but have larger errors
n the other less sensitive Green-Ampt parameters and in the initial
bstraction, as shown in Fig. 10(a). These other parameters are less
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Fig. 11. Relative Parameter Error for Numerical Case Study 4, assuming a prior knowledge, that is, half of the parameter range from Fig. 10 of the parameter boundaries where
= Outlet, 2 = left gauge, 3 = right gauge. Black dashed lines are the expected values. Part (a) is the relative error for cases where the outlet and at least one more gauge are

observed and case, Part (b) is single gauges or a combination of gauges that are not at the outlet, and Part (c) is the objective function values given by Eq. S1. All cases were
simulated with 10 generations and 100 population.
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sensitive and could have been assumed otherwise without prejudice to
the overall representation of the hydrology and hydrodynamics.

When using gauges 2 or 3, that is, gauges from the left and right
hillslopes, the error in the parameters of the opposite hillslope is
relatively larger since the parameters were randomly chosen because
no information about the discharges of that area is available, as shown
in Fig. 10(b). Using gauges 2 and 3 together, the parameter error is
reduced since information from both hillslopes (i.e., areas with similar
hydrologic characteristics) is available. Using only gauge 1 as the
source of information for calibration, a good objective function value is
found (see Fig. 10(c)). Still, a very poor description of the parameters is
found, as shown in Fig. 10(b), indicating a high chance of equifinality if
no minimum knowledge of the parameters is known. This result shows
the importance of experts defining proper parameter ranges for the sys-
tem prior to the calibration phase. All objective function performances
could be considered feasible for different hydrologists since solutions
with high fitness values were found; although, parameters were off
from the correct ones, illustrating the equifinality issue in calibration.

When comparing the performance of solutions without prior knowl-
edge of the parameters with solutions with a smaller decision space, the
equifinality tends to decrease, as shown in Fig. 10 compared to Fig. 11
and the values of the objective function are generally higher. This result
14

2

indicates that reducing decision space to a more reduced space can
substantially decrease equifinality. Some parameters less influential as
ℎ0,𝑙 had larger errors but little sensitivity and could have been assumed
rather than calibrated.

The number of events in the calibration also plays an important role
in reducing equifinality. By using a relatively small rainfall event that is
not a runoff-producing event in the left hillslope, no quality information
is available to calibrate the hydrodynamic and infiltration parameters
of this hillslope. The left gauge in event 1, with 10.8 mm ⋅ h−1 did not
record runoff. Therefore, any combination of parameters such that all
water infiltrates in the soil is a solution with full performance of the
objective function. An infinite number of combinations of parameters
would satisfy this condition (e.g., ℎ0,l > 16.2 mm, 𝑘sat,l > 10.8 mm ⋅ h−1),
eading to high equifinality due to poor gauging location and selection
f the event for calibration. However, for the right gauge, runoff is
bserved, and the parameters can be relatively well estimated, although
ot perfectly. The problem of distributed physically-based modeling
n small catchments with events that produce little or no runoff is

complex problem, and models typically have lower performance
or hortonian small flows (Senarath et al., 2000; Downer and Ogden,

004).
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Fig. 12. Automatic calibration results of considering the 3 events but only the outlet as the observable gauge. Therefore, the charts (d)-(i) are shown, but the modeled results
were not considered in the calibration of the model and were simulated with the parameters that were obtained by calibrating the model only with the outlet gauge. The first
row are the events of 10.8 mm h−1, followed by 21.6 mm h−1 and 32.4 mm h−1. Parts (a)-(c) are results for the outlet, whereas (d)-(f) are from the left gauge and (g)-(i) are from
the right gauge.
This idea is illustrated in Table 4. By choosing only one poor event,
the calibration performance is nearly optimal for all combinations of
gauges, but the parameter estimation is faulty. Therefore, calibrating
the model for more extended hydrological periods or choosing a combi-
nation of events encompassing relatively high and low flows is desirable
to increase the available information and reduce parameter equifinal-
ity. However, the uncertainty in the boundary conditions and the initial
simulation values, especially the initial soil moisture (Senarath et al.,
2000), is challenging. Even in a perfect virtual experiment without
uncertainty in rainfall values, initial soil moisture, model boundary
conditions, and perfect gauging data, the uncertainty in the parameters
is substantially affected by a poor parameter range.

One of the advantages of this calibration approach is using the
model to calibrate the parameters using only the outlet data as the sole
gauge, which would be the case for many poorly gauged and flood-
prone catchments such as the Gregorio Catchment. To this end, we use
a relatively high optimization resource; that is, we run the optimization
model for 40 generations and 100 population size and optimize Eq. S1
using only the outlet as the observed gauge for all events available.
The rationale behind using a larger number of generations is to ex-
tract the maximum resource of the single-point observed information
since it is only at one gauge. Using a larger number of generations
would likely decrease the possibility of finding local optima in the
optimization model. Therefore, the uncertainty would probably be due
to equifinality since there is no uncertainty in rainfall and observations
in this inverse problem.

In this analysis, we assume the initial abstractions of the left and
right gauges are the correct parameters since they do not play an impor-
tant role in the hydrological response of the catchment, as mentioned
15
above in this section. The other parameter ranges are the same as those
used in the simulated cases with prior knowledge of the system (see
Tab. S1). The results in Fig. 12 show the hydrographs for the outlet (a)-
(c) and for the other gauges not considered in the calibration (i.e., left
gauge (d)-(f), and right gauge (g)-(i)). Even calibrating with only the
catchment outlet, the model can still find a reasonable, physically-
based, and bounded parameter set. However, the parameters are not
equal to those of the inverse problem. This result points to the scenario
that, given a sufficient number of runoff-producing events and reason-
able computational resources, it is possible to calibrate HydroPol2D
only with data at the outlet and later use the calibrated model to
derive important catchment response information such as infiltrated
depths, flood depths, and velocities. The calibrated parameters of this
analysis are 𝑛𝑙 = 0.0536 s ⋅ m−1∕3, 𝑛𝑟 = 0.0168, 𝑘sat,l = 3.56 mm ⋅ h−1,
𝑘sat,r = 1.77 mm ⋅ h−1, 𝛥𝜃𝑙 = 0.625, 𝛥𝜃𝑟 = 0.346, 𝜓𝑙 = 91.36 mm,
𝜓𝑟 = 49.92 mm.

By comparing the calibrated parameters with the ones of the inverse
problem shown in Table 3, it is noticed that a trade-off between 𝑘sat,l
and 𝜓l is found for the left hillslope. While 𝑘sat,l decreases, 𝛥𝜃l and
𝜓l increase, counterbalancing the reduction in 𝑘sat,l. However, even
though the parameter equifinality is evident, the model performance
and the errors are visually minimal, as shown in Figs. 13 and 14. In
addition, the performance metrics are also accepted in most gauges, as
shown in Table 5.

The model presented acceptable results for steady-state events, with
all volume errors smaller than 6% and all NSE larger than 0.996.
For unsteady-state hyetographs, as expected, the model presented a
relatively reduced performance for the left gauge, especially for event
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Fig. 13. Steady-state rainfall validation hydrographs of Numerical Case Study 4, for Events 1 to 4 described in Table 5. Gray dotted lines are modeled results with the calibrated
model using only the outlet gauge data, and black dashed lines are the results with the parameters of the inverse problem.
Table 4
Near-optimal solutions for different combinations of gauges and for only 1 storm of 10.8 mm ⋅ h−1 during 90 min. The known parameters are
𝑛𝑙 = 0.06 s ⋅m−1∕3, 𝑛𝑟 = 0.015, ℎ0,𝑙 = 1 mm, ℎ0,𝑟 = 4 mm, 𝑘sat,l = 8 mm ⋅ h−1, 𝑘sat,r = 2 mm ⋅ h−1, 𝛥𝜃l = 0.6, 𝛥𝜃r = 0.15, 𝜓l = 20 mm, and 𝜓r = 100 mm..

Gauges 𝑛l 𝑛r ℎ0,l ℎ0,2 𝑘sat,l 𝑘sat,r 𝛥𝜃l 𝛥𝜃r 𝜓l 𝜓r OF
[s ⋅m−1∕3] [s ⋅m−1∕3] [mm] [mm] [mm ⋅ h−1] [mm ⋅ h−1] [-] [-] [mm] [mm] [-]

1-2-3 0.036 0.019 9.17 5.25 8.986 3.44 0.65 0.04 92.34 8.33 −0.99
1-2 0.047 0.015 9.73 7.68 10.059 1.30 0.52 0.11 14.49 13.80 −0.99
1-3 0.068 0.015 5.36 7.68 5.395 1.78 0.64 0.11 15.26 13.80 −0.98
2-3 0.050 0.014 5.24 5.61 2.761 2.48 0.68 0.16 54.34 20.14 −0.98
1 0.040 0.013 9.95 5.51 3.191 3.12 0.77 0.27 0.61 0.17 −0.99
2 0.063 0.048 7.12 8.76 9.004 0.91 0.74 0.17 36.91 51.51 −1.00
3 0.032 0.020 6.44 5.14 6.630 3.36 0.73 0.04 38.00 23.21 −0.97
6, that is, the event with the smallest duration and volume. As shown
in Fig. 14, event 6 generated a very low runoff rate observed in the
inverse problem and not predicted by the calibrated model. In addition,
for the right gauge, a relatively large volume error can be observed.
For the outlet, however, the results are still quite accurate; although
relatively faulty for the left and right gauges. Disregarding this event,
the simulation results had volume errors smaller than 20% and NSE
larger than 0.992. Overall, using the calibrated parameters obtained
only with the outlet gauge is sufficient to explain the events used for
calibration and can accurately represent the hydrological response of
events outside the hydrological characteristics of the events used for
calibration. Even though some errors are found in the internal gauges,
the model’s performance measured in the outlet can be considered very
16

good for all validation events.
4.5. Limitations, challenges, and opportunities of this modeling approach

Calibrating a fully-distributed hydrodynamic and water quality
model requires not only field observations but also depends extensively
on the quality and resolution of the terrain, soils, land use, and land
cover models. However, as presented in this paper, this modeling
approach can be easily applied worldwide in catchments with scarce
time-series rainfall observations and a representing variable of the flow
dynamics, such as discharge depths, and a variable representing the
pollutant, such as the pollutant concentration. Since pollutant concen-
trations are inherently associated with accurate discharge modeling,
calibrating water quantity, and quality parameters altogether might
result in high equifinality if only pollutographs are the optimization

criteria.
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Fig. 14. Unsteady-state rainfall results of Numerical Case Study 4, for Events 5 to 8 described in Table 5. The rainfall is simulated with Huff 1st quartile hyetograph. Gray dotted
lines are modeled results with the calibrated model using only the outlet gauge data, and black dashed lines are the results with the parameters of the inverse problem.
This approach can be enhanced and easily expanded by allowing
calibration, not only with time series but also with maps of flood extent,
magnitude, or by socio-hydrological information (Fava et al., 2022)
such as maximum depths in certain flood points, especially in catch-
ments with no gauge stations (Gomes et al., 2023a). The challenge,
however, is to find a the suitable single objective cost function that can
normalize different optimization criteria into a single and homogeneous
cost function. In addition, the minimum requirement, however, is the
rainfall intensity time-series in a proper resolution that depends on the
catchment response. Regarding rainfall, this approach could also be
improved by allowing space-variant rainfall that could be derived from
radar, satellite imagery, or by interpolation of source-gauged rainfall
stations.

It is recommended that a sensitivity analysis be performed be-
fore automatic calibration to avoid wasting computational resources
on variables that do not play a substantial role in the catchment’s
hydrologic-hydrodynamic behavior. Although the results presented in
this paper indicate that some parameters might be more sensitive than
others, the results can vary dramatically for different catchments with
different topography, LUCL, and soil properties.

The use of worldwide datasets to represent LULC and SOIL allows
a proper definition of model parameters such as 𝑛 or 𝑘sat , as shown
in Soliman et al. (2022) and Gupta et al. (2021). Studies such as
the aforementioned ones might facilitate the parametrization of fully
17

distributed models and can be opportunities for worldwide application.
5. Conclusions

An optimization-based algorithm was developed and applied to cal-
ibrate a fully distributed hydrological-hydrodynamic and water quality
model (HydroPol2D). The algorithm can find near-optimal parameters
to explain the observed gauged information, such as flow discharge,
pollutant concentration, or flood depths. The answers (A) to the posed
questions of Numerical Case Studies 1 (Q1), 2 (Q2), from the real-world
case study in Numerical Case Study 3 (Q3), and the Equifinality analysis
in Numerical Case Study 4 (Q4-1 and Q4-2) support the following:

• A1: The model can accurately predict not only the Green-Ampt
infiltration parameters but also Manning’s roughness coefficients
and initial abstraction values, as shown in Numerical Case Study
1. The Predicted hydrographs match, with NSE > 0.99 the consid-
ered real observed hydrograph in Numerical Case Study 1.

• A2: The algorithm can find the wash-off parameters and the initial
mass (error < 15%) of the pollutant in the wooden-plane catch-
ment to match the observed pollutograph, as shown in Numerical
Case Study 2. Even though the pollutograph was predicted cor-
rectly, an approximately 20% error was observed in the water
quality parameters, indicating the equifinality.

• A3: The model can still find a physically bounded near-optimal
set of parameters to calibrate the observed hydrograph with NSE
= 0.89, indicating good accuracy. In addition, using this set
of parameters, it was possible to determine distributed model
outputs such as (i) infiltration maps, maximum flow velocities, (ii)
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Table 5
Validation metrics for events outside of the calibration conditions. Each row represents the results of one event for different gauges. Events 1-2
are with the smallest rainfall intensity used in calibration (i.e., 10.8 mm ⋅ h−1, while events 3-4 are with the largest one (i.e., 32.4 mm ⋅ h−1.
Similarly, the events with unsteady-state rainfall follow the same pattern, resulting in the same rainfall volumes but temporally distributed with
Huff 1st quartile hyetographs.

Event Rainfall boundary Rainfall duration Rainfall volume Gauge NSE Vol Error r2 PBIAS
condition [min] [mm] [-] [%] [-] [%]

1 Steady state 135 24.3
Outlet 0.999 1.076 1.000 0.347
Left [-] [-] [-] [-]
Right 0.999 0.951 0.999 0.589

2 Steady state 45 8.1
Outlet 0.993 1.847 0.997 1.184
Left [-] [-] [-] [-]
Right 0.989 1.456 0.995 5.171

3 Steady state 135 48.6
Outlet 0.998 2.121 1.000 0.494
Left 0.990 5.961 1.000 1.269
Right 0.999 0.224 1.000 0.381

4 Steady state 45 36.45
Outlet 0.999 0.378 1.000 0.712
Left 0.996 3.227 1.000 1.696
Right 0.998 −0.483 0.999 1.119

5 Huff 1st Quartile 135 24.3
Outlet 0.997 −2.505 0.999 1.189
Left 0.960 −20.399 0.997 4.777
Right 0.997 0.226 0.999 1.401

6 Huff 1st Quartile 45 8.1
Outlet 0.983 −3.425 0.993 1.862
Left −0.061 [-] [-] 59.408
Right 0.895 6.872 0.946 15.927

7 Huff 1st Quartile 135 48.6
Outlet 0.999 1.310 1.000 0.684
Left 0.996 4.049 1.000 1.358
Right 0.998 0.059 0.999 0.972

8 Huff 1st Quartile 45 36.45
Outlet 0.999 0.708 1.000 1.022
Left 0.992 3.125 0.998 2.573
Right 0.995 −0.424 0.998 2.571
i
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maximum flood depths, and (iii) outlet hydrograph. Therefore,
using the same data as required in the calibration of lumped-
parameter models, one can calibrate HydroPol2D and provide
spatially varied outputs that can be used for water resources
planning and management.

• A4-1: The equifinality problem is reduced by the addition of
runoff-producing events and by choosing at least one gauge in
hydrological unit regions. Using only the outlet gauge as the
information might produce a feasible (i.e., within the parameter
range) but wrong parameter set that explains the observed data.
This set of parameters tends to produce small errors in peaks and
hydrograph shapes and relatively larger errors in runoff volumes.
Using runoff-producing events with different flow parameters
typically produces better parameter estimation. The parameter
estimation error is reduced by a more reduced parameter range
that experts can attach or by GIS available worldwide datasets to
reduce parameter ranges.

• A4-2: The model presented accurate results when calibrated only
with the outlet gauge hydrograph as the sole information for
calibration. Although the equifinality is observed by the com-
pensation of the infiltration parameters, the model presented
acceptable results in most cases of different rainfall volumes,
intensities, and distributions. A reduced model performance is
obtained for events with little or no observed runoff in the gauges.
However, in general, the model presented great results in the
gauges not used for the calibration under different rainfall dura-
tions, volumes, intensities, and rainfall distributions from the ones
used in the calibration, even with the model calibrated with only
the outlet gauge. This indicates an opportunity to move towards
conceptual and simplified lumped models flood assessment to
physically-based, fully-distributed analysis since both models can
be calibrated with the same input data.

Therefore, the methods applied in this paper can be replicated
n all catchments with observations of at least one gauge. The more
auges with runoff observations, the typically better the reduction
18
of equifinality, assuming reliable observed data. Using only freely
available datasets, this method can be applied for catchments with
observations at gauging stations to extrapolate results in the catchment
domain, moving from typically limited lumped-parameter models to
fully-distributed physically-based analysis. However, the methodology
strategy developed in this paper is only applicable if some constraints
are satisfied, such as:

• The overland flow is predominantly hortonian.
• The effect of human made drainage systems such as reservoirs,

dams, polders, or any other hydraulic structure operation does
not govern the whole catchment hydrodynamics.

• The catchment can be modeled with space-invariant precipitation.
• The optimization cost function is relatively fast, allowing multiple

evaluations in a reasonable time.

The requirements above are typically satisfied in relatively small to
mid-size urban catchments. Advancing these limitations and developing
a framework capable of adapting to whatever available data could
help modelers use distributed models and improve flood and water
quality spatial analysis. Future studies can investigate the effect of
different spatial resolutions in the calibration of HydroPol2D and how
that affects the equifinality problem.
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