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Abstract: In recent years, novel technologies in smart healthcare systems have opened
significant opportunities for diagnosis and treatment across various medical fields. Fed-
erated Learning (FL), a decentralized machine learning approach, trains shared models
using local data from devices like wearables and hospital systems without transferring
sensitive information, offering a promising solution to privacy challenges in areas such
as cancer prediction, COVID-19 detection, drug discovery, and medical image processing.
This literature survey reviews FL architectures (e.g., FedHealth, PerFit), applications, and
recent advancements, demonstrating their impact on healthcare through enhanced predic-
tive models for patient care. Key findings include improved accuracy in wearable-based
diagnostics and secure multi-institutional collaboration, though limitations persist. We
also highlight open challenges, such as security risks, communication costs, and data
heterogeneity, which require further research attention.

Keywords: smart healthcare; federated learning; artificial intelligence

1. Introduction
Research on Artificial Intelligence (AI) has led the world into a journey of generating

new technologies to allow machines to perform tasks similar to humans. This is technically
based on the ability to learn from data [1,2]. One of the most important approaches
to this concept is the application of machine learning (ML) algorithms. ML algorithms
have shown superb results in different domains, including economics and finance [3,4],
manufacturing [5,6], transportation [7,8], healthcare [9,10], cybersecurity [11,12], and many
more [13]. Deep learning (DL), as a subset of ML, is also attracting more attention regarding
its benefits for solving complex problems by learning from large datasets. It is a repetitive
cycle of learning from data causing better performance [14].

However, the healthcare system presents unique challenges due to the sensitivity of
patient data, which are generated by institutions, hospitals, and individuals. Regulations
such as the Health Insurance Portability and Accountability Act (HIPAA) and the General
Data Protection Regulation (GDPR) impose strict policies to protect medical records, pri-
oritizing patient privacy [15,16]. Consequently, health data are highly restricted, limiting
access for research communities even with anonymization, as their usage remains tightly

Electronics 2025, 14, 1750 https://doi.org/10.3390/electronics14091750

https://doi.org/10.3390/electronics14091750
https://doi.org/10.3390/electronics14091750
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5746-2914
https://orcid.org/0000-0001-7472-0842
https://orcid.org/0000-0002-9631-6370
https://orcid.org/0000-0001-9118-1756
https://orcid.org/0000-0002-4436-3474
https://orcid.org/0000-0002-4865-5896
https://doi.org/10.3390/electronics14091750
https://www.mdpi.com/article/10.3390/electronics14091750?type=check_update&version=1


Electronics 2025, 14, 1750 2 of 40

regulated [17]. While ML and DL rely on large, centralized datasets, these privacy con-
straints and the complexity of health data hinder traditional approaches, necessitating
innovative solutions. Federated learning (FL) has emerged as a promising approach by
enabling model training on decentralized data, keeping sensitive patient information
local, such as on hospital servers or wearables, while sharing only model updates, of-
ten encrypted, with a central server [18]. This aligns with HIPAA’s Privacy Rule by
minimizing data exposure [15] and GDPR’s data protection by design through secure
aggregation [16], as seen in real-world applications like multi-hospital collaborations [19].
However, challenges such as ensuring the right to erasure of GDPR in distributed models
persist [20]. Despite the growing adoption of Federated Learning (FL) to address these
issues, a critical gap remains: existing literature lacks a comprehensive survey that sys-
tematically integrates FL architectures, applications, and challenges in smart healthcare,
particularly in tackling privacy, regulatory compliance, and data heterogeneity. This survey
aims to fill this gap by providing a comprehensive review of the role of FL in advancing
secure, privacy-preserving healthcare solutions.

Additionally, the heterogeneity of health data can be a major hurdle in utilizing tradi-
tional ML in the healthcare domain [21]. For instance, variability in electronic health records
(EHRs), such as differences in data formats, missing values, and unstructured clinical notes,
often complicates the application of traditional ML models, which typically require stan-
dardized and homogeneous inputs [22]. Similarly, the diverse nature of medical imaging
data—stemming from variations in acquisition protocols and patient demographics—can
limit the generalizability of conventional ML approaches [23]. These challenges highlight
the need for advanced techniques to address the complexity of healthcare data.

To date, a new privacy-preserving ML technique, called federated learning
(FL) [24,25], has shown promising effects in data-sensitive domains, especially health-
care, by safeguarding more data rather than ML algorithms [18]. Unlike other distributed
learning approaches such as data parallelism, where data are split across nodes but still
require centralized aggregation of raw data, FL distinctly trains models locally on each
participating device or institution and only shares model updates with a central server,
never the raw data. The concept of FL was first coined by authors in 2017 [26] as a de-
centralized training method designed to improve data privacy. In essence, FL enables
a global model to be trained by aggregating insights from locally trained models across
various institutions, allowing sensitive data to remain at its source while still contributing
to collaborative learning.

In the healthcare domain, the FL technique can be utilized to train a global ML model
that incorporates health data from different sources (healthcare systems, hospitals) while
addressing concerns about privacy of health data. It performs training on the client side
for each individual data set without having any access to their data. Then, the local FL
models captured from different sources are aggregated as a global FL model [18]. To be
more specific, the FL can be implemented for various purposes regarding the distributions’
situations including massively, not independent and identically, and unbalanced. First,
an example of massive distribution can be smartphones that collect a huge amount of
data through their sensor. A not identically and independently distributed distribution of
data can also be the different types of patients. Furthermore, the amount of data can vary
based on the source of data collection, such as the variety of patients in a hospital suffering
from a specific disease [26]. In addition, FL can improve the healthcare infrastructure by
integrating with medical device networks and improving healthcare delivery systems,
particularly in urban and regional contexts where diverse data sources and connectivity
challenges are prevalent [27]. In general, the domain that can benefit the most from FL
techniques has been recognized as healthcare [18].
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1.1. Motivation

As health data gain more attention from data science communities and authorities,
various studies have been conducted on these data using different technologies. With the
emergence of the FL technique, FL is becoming a major popular method of distributed
learning from sensitive data. In the healthcare domain, FL can have a huge impact on
healthcare systems by securely training models in different areas. Various research studies
have already been conducted on this topic. This leads to a need for reviewing articles
based on FL and healthcare. Moreover, we also review the existing challenges of FL in this
domain. This study aims to integrate the recently adopted approaches on this subject. To
the best of our knowledge, no comprehensive research has been conducted regarding FL
and healthcare considering different architectures, applications, and challenges.

1.2. Methodology
1.2.1. Research Questions

We conduct a comprehensive overview of all the approaches proposed so far regarding
FL in the healthcare domain. We begin the journey of this paper by discovering the main
research questions (RQ) behind the scene. The first question fits into our introduction in
order to offer a general idea to the reader.

RQ1: What is FL and how can it assist the health sector?
Next, the various proposed architectures based on FL lead us to the second question.
RQ2: What are the most common FL architectures that can be adopted for the health-

care domain?
After reviewing existing architectures, a high number of ML approaches in the different

fields of healthcare have led us to the next question.
RQ3: Which sectors in the healthcare domain can benefit the most from FL technology

and what are the state-of-the-art FL applications in those fields?
Although FL has shown promising results with respect to privacy compared to cen-

tralized ML techniques, it can be vulnerable to different challenges. This brings us to the
last question in our review paper.

RQ4: What are the major challenges of using FL in the healthcare domain?

1.2.2. Search Strategy

We conducted a systematic search across various databases, including Google Scholar,
SpringerLink, ScienceDirect, ACM Digital Library, IEEE Xplore, and arXiv, using specific
search terms such as “federated learning”, “federated machine learning”, and “healthcare”.
The search process involved several stages:

• Selection and Screening: Initially, we screened papers based on their titles and ab-
stracts, focusing on those related to federated learning and its application in healthcare.
We applied the following inclusion criteria: (1) peer-reviewed articles, (2) studies that
explicitly discuss federated learning or related techniques, and (3) research relevant to
healthcare applications.

• Exclusion Criteria: We excluded papers that were not directly related to healthcare,
those without empirical analysis or practical applications, and those published in
languages other than English.

• Evaluation: After screening, we evaluated the full texts of the selected papers for
quality and relevance, considering factors such as research methodology, sample size,
and applicability to current trends in the field.

The search period covered November 2021 to December 2024, as this time frame
captures the rapid evolution of federated learning applications in healthcare following
the increased adoption of decentralized data approaches during the COVID-19 pandemic.
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We selected this range to ensure the inclusion of foundational studies while maintaining
relevance to recent advances in the field.

1.3. Difference with Other Review Papers

With the recent emergence of FL technology in healthcare, there are some review
articles on this topic. Xu et al. [28] demonstrated the main challenges of FL with respect
to recent advances in it. They also briefly described some of the FL applications within
healthcare. Since overcoming FL challenges is vital for designing effective models, several
authors have focused primarily on these challenges. The authors in [29] conducted a review
that focuses on the advantages of FL for healthcare care and the associated challenges. In
addition to security challenges, Kaissis et al. [30] provided an overview of appropriate
technologies for better data protection with a focus on medical imaging. The purpose of
this paper is to provide a comprehensive review of the latest federated learning approaches,
achievements, and challenges in the healthcare domain.

1.4. Outline

The remainder of this paper is organized as follows: Section 2 covers different FL-
based architectures applicable in healthcare. In the second Section 3, the applications and
use cases of FL in the medical system are discussed. Then, Section 4 reviews the main
challenges and considerations of the FL in the same domain. Section 5 provides some
future research directions. Section 6 presents the concluding remarks.

2. Architectures
Due to recent research, various architectures and libraries have been adopted by

federated learning (FL) technology. Horizontal FL (HFL) [18], Vertical FL (VFL) [18],
Federated Transfer Learning (FTL) [31], and others represent general architectures designed
to address specific problems across various domains. However, domain-specific approaches
have also emerged. Here, we focus on architectures proposed for the healthcare system.
To the best of our knowledge, nine key FL-based architectures, FedHealth, Federated-
Autonomous Deep Learning (FADL), Ethereum Blockchain-based, PerFit, FEEL, DMFL-Net,
FedCare, Sensor-based HAR, and FedHome are tailored to healthcare challenges and are
discussed in detail below. Table 1 provides a comparative analysis of these architectures,
summarizing their methodologies, strengths, limitations, and contexts of application to
enhance clarity and facilitate quick comparisons.

Table 1. Quantitative Comparison of FL Architectures for Healthcare Systems.

Architecture Methodology Context of
Application Strengths Limitations Dataset Perf.

Metrics
Baseline

Comparison

FedHealth [19] FL + Transfer
Learning (TL)

Wearable
healthcare (e.g.,

activity
monitoring)

Higher
accuracy, per-
sonalization

Computationally
intensive

UCI Smart-
phone Acc = 98.8 Acc = 85 (CNN

baseline)

PerFit [32] FL + TL,
Distillation

IoT healthcare
(e.g., activity
recognition)

Handles
heterogeneity,

high
performance

Complex per-
sonalization

process
MobiAct Acc = 95.37

> FedAvg
Acc = 85 (cCNN

baseline)

FedHome [33]

FL +
Generative

CNN
Autoencoder

In-home
elderly

monitoring

Good
performance,

privacy

Imbalanced
data handling N/A Acc = 95.41 Acc = 87.92 (CNN

baseline)
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Table 1. Cont.

Architecture Methodology Context of
Application Strengths Limitations Dataset Perf.

Metrics
Baseline

Comparison

FADL [34] FL + Neural
Network

EHR-based
mortality

prediction

Higher
accuracy,
balanced
models

Limited to
structured
EHR data

eICU AUC =
0.79

AUC=0.75 (FL-Avg
baseline)

Ethereum
Blockchain [35]

FL +
Blockchain,
Encryption

Healthcare
consortium
data sharing

Strong privacy
protection

High
computational

cost
N/A Not

specified N/A

FEEL [36]
FL +

Differential
Privacy

Mobile
healthcare (e.g.,

cancer
detection)

High efficiency,
privacy

Potential
accuracy
trade-off

Breast
cancer

Acc = 86,
F1 = 0.90

Acc = 88, F1 = 0.91
(Centralized

Learning baseline)

DMFL-Net [37] FL + Neural
Network

COVID-19 and
chest disease

detection

High accuracy,
fast

classification

Specific to
imaging data

CXR
images

Acc =
92.25,

F1 = 92.21

Acc = 90, F1 = 90
(default FL
baselines)

FedCare [38] FL + Split
Learning

IoMT for
rural/elderly
monitoring

Reduced
training time,

scalability

Limited
evaluation

scope
N/A Acc = 90.32 N/A

Sensor-based HAR
[39]

FL +
Homomorphic

Encryption

Wearable
devices (e.g.,

activity
recognition)

Strong privacy,
high accuracy

Encryption
overhead

Sport,
DaLiAC Acc = 89.5 Acc = 94.6 (3D

CNN baseline)

2.1. FedHealth

Within the enhancement of technologies, a new area of smart healthcare has been de-
fined in order to perform various tasks such as diagnosing, monitoring, etc. The widespread
adoption of wearable devices in smart healthcare has enabled machine learning algorithms
to successfully train massive personal data from users [40]. Although smart healthcare
itself is a great success regarding the issues in the healthcare industry, it faces two important
challenges as well. The first one is that the data cannot be shared in various institutions
due to the privacy concerns and regulations [41,42]. Another critical challenge is the lack
of personalization, which happens when a specific trained model is distributed to various
users with different characteristics. In order to solve these challenges in wearable devices,
authors in [19] implemented a federated transfer learning framework named FedHealth.
This framework is claimed to be capable of forming efficient machine learning models by
collecting the data from separate institutions with respect to the privacy preserving of the
users. By having the cloud built, transfer learning is adopted to personalize the model
learning. Using FL, a cloud model of all the institutions’ models is provided. The FedHealth
architecture incorporates three different technologies, including wearable devices, transfer
learning, and FL. To personalize the data collected from the institutions, the authors imple-
ment the transfer learning technique. They also apply a Convolutional Neural Network
(CNN) in order to achieve a more generalized model. The UCI Smartphone dataset [43] was
applied to evaluate the model. It includes regular activities such as walking, standing, etc.,
captured from 30 users. Moreover, it has been shown that the performance of FedHealth is
higher than that of traditional algorithms.

The authors also demonstrate the positive effect of FedHealth on recognition accu-
racy. Moreover, they highlight the framework’s potential for use in the healthcare system,
particularly for real-time diagnosis of Parkinson’s disease in the future.

Figure 1 illustrates the FedHealth architecture, showing wearable devices collecting
local sensor data, training models on site, and sending encrypted updates to a cloud
server for FL aggregation. The global model is then refined with TL for user-specific
personalization, visually linking the process to privacy preservation and adaptability.
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This workflow highlights how FedHealth addresses the dual challenges of restricted data
sharing and personalization, though its reliance on deep neural networks may strain
resource-constrained wearables, and its Parkinson’s application lacks broader validation.
These limitations suggest areas for further optimization in scalable deployments. The
authors also showcase FedHealth’s superior recognition accuracy and its potential for
real-time healthcare applications, such as auxiliary diagnosis of Parkinson’s disease, where
it achieved average accuracies of 84.3% (arm droop) and 74.9% (postural tremor) across
three hospitals, narrowing the gap with an ideal centralized model (92.6% and 83.1%,
respectively). However, FedHealth is not without limitations. Its reliance on deep neural
networks may pose computational challenges for resource-constrained wearable devices,
potentially limiting scalability in low-power settings. Additionally, the framework assumes
sufficient data similarity across users for effective transfer learning, which may not always
hold true given the heterogeneity of real-world health data. These factors could impact its
performance in broader deployments.

Figure 1. FedHealth framework architecture [19]. Wearable devices collect sensor data (e.g., ac-
celerometer, gyroscope) and train local models. Encrypted updates are aggregated via federated
learning on a cloud server into a global model, which is personalized using transfer learning for
individual users, ensuring privacy and tailored healthcare applications like activity recognition and
Parkinson’s diagnosis.

2.2. PerFit

PerFit is another FL-based architecture proposed in [32]. In sort, PerFit is designed to
be applied for the Internet of Things (IoT) devices, but it is also capable of assisting various
devices that are applicable to the healthcare system. The heterogeneity challenges are dis-
cussed in the proposed model where they cover heterogeneity with respect to IoT devices,
statistical variations, and model differences. Figure 2 depicts the PerFit architecture, show-
ing IoT devices unloading local models to a cloud server, which aggregates them via FL and
applies federated distillation for personalization. This three-stage process—unloading,
learning, and personalization—illustrates how PerFit mitigates device heterogeneity
and statistical skew in healthcare IoT, as validated on the MobiAct dataset [43] with
95.37% accuracy.
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Figure 2. PerFit framework architecture [32]. IoT devices unload local models to a cloud server for
federated learning aggregation, followed by federated distillation to personalize models for individual
users, addressing device and data heterogeneity in healthcare applications like activity recognition.

2.2.1. Heterogeneity of Devices

There are a variety of IoT devices used in healthcare domain based on their character-
istics such as hardware, network, etc. Due to the heterogeneity of IoT devices in healthcare,
communication costs can critically lower the efficiency of the FL model.

In addition, loss of connection or energy can also negatively impact the FL system
and must be considered. Later, in Section 4.1, we discuss the communication efficiency
challenges and its solutions regarding FL and healthcare.

2.2.2. Statistical Heterogeneity

As mentioned previously, data distribution situations can highly impact the FL system.
More specifically, the data captured from different devices can differ vastly in healthcare
domain [28]. The paper demonstrates that the Federated Averaging (FedAvg) algorithm
cannot solve the challenge of skewed data distribution, which leads to developing PerFit
(we further explain the data skewing challenge in Section 4.3) [26].

2.2.3. Model Heterogeneity

In order to achieve an adaptable FL global model, all of the devices have to agree on
following a specific framework. However, local models differ from each other when it
comes to the IoT devices in healthcare. Consequently, all the model weights need to be
shared, which is not acceptable due to privacy concerns regarding the medical data.

Overall, PerFit architecture, which is cloud-based FL, aims to address the aforemen-
tioned challenges by adopting personalized FL approaches (Figure 2) in three stages (below)
to fully learn the model:

Unloading

The IoT devices send their learning models to the cloud for faster data processing.

Learning

Each of the devices and the cloud are calculated based on the data samples and build
a local model. Then, the model information is transferred to the server to generate a global
model. After a number of iterations, the appropriate global model is sent back to the cloud
and devices for the next stage.
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Personalization

Based on each device’s local data, a personalized model is trained for further analysis.
The validation of the proposed framework is demonstrated by using a human activity

recognition dataset called MobiAct [44], which is basically a collection of captured activities.
The authors implemented FTL and Federated Distillation for personalizing the model, and
claimed good performance of PerFit with respect to the aforementioned challenges [32].

2.3. FedHome

With the population’s aging growth in the world, providing health assistance to
the elderly is becoming crucial. Smart healthcare era has responded well enough to this
essential growing need by adopting various types of IoT devices, specifically wearables.
However, as we discussed previously, this era could face some major challenges, especially
privacy of the collected data. Authors in [33] proposed FedHome, a personalized approach
by adopting FL technology to better protect the user’s data within the cloud server for
in-home monitoring. They applied FL in order to avoid data leakage, which can be
caused by uploading the sensitive data. This means the global model is trained using
collected updated models, not the user’s data. The FedHome architecture is basically
designed with three main parts, including cloud, FL, and personalization technique. Since
personalized data can impact the efficiency of the model, the authors implemented a
Generative Convolutional Autoencoder (GCAE) approach within the FL framework. This
autoencoder enables the framework to positively deal with the imbalanced data by learning
the features. Moreover, CNN was chosen as the major algorithm for both encoder and
decoder of the GCAE architecture.

FedHome was validated on a human activity recognition dataset for in-home monitor-
ing, achieving 95.41% accuracy (Table 1), outperforming traditional CNNs (87.92%) and
other FL methods [33]. Figure 3 illustrates the FedHome architecture, depicting wearable
devices collecting activity data, training local models, and sending updates to a cloud
server for FL aggregation. The GCAE then personalizes the global model, visually empha-
sizing how FedHome balances privacy and performance for elderly care. This workflow
underscores its strengths in privacy preservation and communication efficiency, though its
reliance on GCAE may increase computational demands, a limitation not fully explored in
resource-constrained settings.

Figure 3. FedHome architecture overview [33]. Wearable devices collect activity data (e.g., motion,
vital signs) and train local models. Updates are aggregated via federated learning on a cloud server
into a global model, which is personalized using a Generative Convolutional Autoencoder (GCAE)
to address imbalanced data, ensuring privacy and effective in-home monitoring for the elderly.
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2.4. FADL

Electronic Health Records (EHRs) are defined as health data captured by various
institutions or devices, constituting the patient’s electronic medical history [45]. Using EHR
data to develop different predictive ML models constitutes a major component of data-
driven learning in healthcare. However, privacy and security regulations pose significant
concerns in the utilization of EHR data. Authors in [34] demonstrated the weakness of
a traditional FL approach, which unevenly distributed data for training, and proposed
a more efficient FL-based model called Federated-Autonomous Deep Learning (FADL).
They used an available EHR dataset of ICU records, captured from 58 different hospitals, to
predict patient mortality rates [46]. The FADL has been tested over the ICU datasets. This
framework was built on an artificial neural network with three fully connected layers. It
was concluded that the FADL model has outperformed the traditional FL. Tested against
traditional FL, FADL achieved superior performance, with an AUC of 0.79 compared to
0.75 for FL-Avg (Table 1), highlighting its ability to handle distributed EHR data effectively.
Figure 4 illustrates the FADL workflow, showing local EHR data from hospitals being
processed by autonomous deep learning models, with updates aggregated via FL into
a global model on a central server. This visualization emphasizes how FADL mitigates
uneven data distribution by enabling localized training while preserving privacy, a key
improvement over traditional FL. Though effective for structured EHRs, its limitation
lies in its specificity to such data, potentially restricting applicability to unstructured or
multimodal datasets.

Figure 4. FADL framework architecture [34]. Hospitals process local EHR data (e.g., ICU records)
using autonomous deep learning models with three fully connected layers. Model updates are
aggregated via federated learning on a central server into a global model, enhancing mortality
prediction while preserving patient privacy across 58 institutions.

2.5. Blockchain-Based Ethereum

The urgent demand for securing the privacy of health data has led researchers in [35]
to propose an architecture of FL based on the Ethereum blockchain for the healthcare
system. The architecture was developed in order to address different aspects including
ethical, legal, economic, and technical. These aspects are integral to addressing the data
privacy challenge. The distribution of data can have a significant impact on models. It
can be divided into two major areas including mobile devices and a consortium. Here,
the main focus of the paper is on a consortium in healthcare, which is a set of clinical
institutions. It does not have the same large number of parties or institutions as mobile
devices, but each institution can maintain a large amount of data. Moreover, having proper
computational and storage resources and the ability to train at any time during a day
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with a reliable network can positively impact on the efficiency of the model. Figure 5
demonstrates the overview of different parties of the proposed system. Each party of the
architecture is identified by its Ethereum account in order to collaborate with other parties.
The architecture’s setting is formed by three different characteristics as below sections.

Figure 5. Ethereum blockchain architecture [35]. The Model Owner registers the model and retrieves
checkpoints via the Orchestrator. Data Workers train local models, encrypt updates using EIP1024,
and push them to IPFS. The Secure Aggregator, operating in SEV-protected memory, aggregates
gradients, ensuring privacy and secure collaboration across healthcare institutions.

2.5.1. Data Policy

By implementing the Ethereum blockchain in the architecture, the data privacy chal-
lenge can be addressed within the healthcare consortium. Different tools have been applied
within the Ethereum platform including Hyperledger Besu [47] and an Orchestrator smart
contract [48] to perform different tasks such as viewing, transacting, communicating, and
monitoring the network. Overall, these allow data owners to define the policies of accessi-
bility to their data.

2.5.2. Secure Aggregation

The number of parties for the FL setting within the healthcare system is pretty low, and
it can be further reduced by the filters and rules for model selection. Since the institutions
may know each other, posing significant security risks, the AMD’s Secure Encrypted
Virtualization (SEV) has been proposed within the architecture. This, as a trusted third party,
enables better memory encryption to prevent attackers from accessing the private data.

2.5.3. Peer-to-Peer Transition

One of the most important aspects during training is to secure weights that are
transferred between workers and Secure Aggregator (SA). The reason is that they contain
sensitive private data. Since the institutions in the system may be interested in the raw
updates from others, it is crucial to encrypt both traffic and communication across the
network. In order to achieve this, the authors implemented Ethereum Improvement
Proposal 1024 [49] for encrypting the new weights from each worker. The encryption is
processed before the weights are transferred to the aggregator.

Although the aggregator provides proper privacy by hiding the data during the
transmission of updates to the model, there is a possibility that an attacker can access
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the information by assuming the identity of institutions. To prevent this concern, the
architecture implements two approaches as below.

Selecting Randomly

After gradient updates are computed by all the workers, SA randomly chooses weights
in order to train the model. After the aggregation, neither does the SA remember the un-
picked weights, nor do the workers know if they contributed. This approach is implemented
to prevent training rounds from being reverse-engineered [50]. The architecture can also be
enhanced by implementing Differential Privacy [51].

Audit Trail

Within the proposed architecture, the events of learning stages are captured using
the audit trail, which is an important part of data privacy in the consortium. During
the aggregation, each round is assigned a random nonce, and the encryption of data is
applied by using the Diffie–Helmann [52] method, which exchanges the keys between the
worker and SA. Consequently, if the mentioned keys remain private, there is no attack to
be concerned about.

2.6. FEEL

With recent advances of AI in healthcare, hospitals have adopted mobile wearable
devices to better link patients and health authorities. Training a neural network model can
efficiently achieve better accuracy, which poses a great privacy risk due to the decentralized
data collection. Moreover, training data on local datasets may not be very comprehensive
when it comes to the matter of healthcare. Authors in [36] proposed a federated learning
approach to only collect model updates instead of actual data by training the data locally.
Although this model might achieve an appropriate accuracy, it can lead to inefficiency and
security risks. They utilized edge computing to reduce communication overhead between
the model and mobile devices. The model, called the Federated Edge Learning system
(FEEL), also implemented differential privacy to better protect the data [36].

The authors demonstrated their proposed system by three major aspects as below:

• Mobile Healthcare Devices,
• Hospital Private Server,
• Cloud Data Center.

Figure 6 depicts the workflow of the FEEL system with respect to its design using three
different modules. First, edge-based model training and health monitoring are performed
by processing and analyzing the collected data. Then, they are sent to local hospitals to
improve efficiency. Second, the local models are gathered in the cloud center in order to
generate a global model. The global model is sent to local hospitals for several iterations
to capture the data characteristics. Ultimately, the authors applied differential privacy to
better secure the sensitive health data.

FEEL was evaluated using a breast cancer dataset to detect benignity or malignity
of the cancer [53]. The data were distributed among 100 hospitals to assess the model’s
performance. Shortly, the model demonstrated appropriate results including efficient
training, accurate diagnosis, and descent privacy protection [36].
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Figure 6. FEEL system implemented for mobile healthcare devices [36]. Mobile devices perform
edge-based training, sending local model updates to hospital servers (e.g., Community Hospital,
Cancer Hospital) via a differential privacy scheme. Local models are aggregated in the cloud data
center into a global model, enabling efficient training, health monitoring, and privacy preservation
across 100 hospitals.

2.7. DMFL-Net

The global impact of the COVID-19 pandemic as a significant healthcare crisis em-
phasizes the importance of timely detection to prevent widespread infection. Therefore,
machine learning and deep learning methods are used on medical images like chest X-rays
as a promising method for efficient COVID-19 detection and that of other chest diseases
including lung cancer (LC), tuberculosis (TB), pneumothorax (PneuTh), and pneumo-
nia (Pneu). However, privacy breaches in medical data raise concerns about using the
centralized machine learning method in the healthcare system. To ensure medical data
privacy, federated learning is a proposed solution that provides local training without
sharing data for healthcare organizations. To address privacy issues, in [37], the authors
proposed a decision-making-based federated learning network (DMFL-NET) framework
for the classification of COVID-19-positive cases among various chest diseases such as
lung cancer (LC), tuberculosis (TB), pneumothorax (PneuTh), and pneumonia (Pneu) using
CXR images. The framework employs deep neural networks (DNNs) like DenseNet-169,
VGG-16, and VGG-19 for feature extraction and classification, achieving 92.25% accuracy
for COVID-19 detection (Table 1) across publicly available CXR datasets [37]. Similarly,
recent advancements in FL for medical imaging have explored hybrid models to enhance
multi-disease classification. For instance, Bilal et al. [54] proposed a hybrid model com-
bining Extreme Learning Machines (ELMs) with quantum-inspired optimization for early
multi-cancer detection, achieving high accuracies (96.98% for lung cancer) across diverse
cancer types, demonstrating the potential of FL-based approaches in privacy-preserving
medical diagnostics.

Figure 7 illustrates the DMFL-Net framework’s process, detailing both server-side
and client-side workflows. On the server side, the process begins with creating a task,
collecting training times from clients, and updating waiting times to ensure all clients are
synchronized before aggregating updates into a global model. On the client side, healthcare
organizations download the task, train local models (e.g., on CXR data for COVID-19, LC,
TB), evaluate model accuracy, and upload weights only if the local model outperforms the
previous version, with a decision point to skip rounds if not. This visualization highlights
DMFL-Net’s decision-making mechanism for client selection and its use of waiting times to
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optimize communication efficiency, ensuring privacy through local training. However, the
framework’s reliance on DNNs may pose computational challenges for resource-limited
clients, a potential limitation for broader adoption.

Figure 7. The overview of the DMFL-Net approach [37]. The server side creates a task, collects client
training times, and aggregates updates into a global model after synchronization. The client side
trains local models on CXR data (e.g., for COVID-19, lung cancer, tuberculosis), evaluates accuracy,
and uploads weights only if performance improves, ensuring privacy, efficiency, and accurate chest
disease classification.

The study presents a mechanism that considers the training time of each client. Clients
are selected based on the performance of their local models, with updates sent to the
server only when they improve the overall model. The central server calculates waiting
times for each client based on the duration of their prior training cycles. The proposed
method is evaluated in federated learning (FL) on aspects such as accuracy, recall, precision,
F1-measure, specificity, and communication efficiency. The study primarily focuses on
improving the identification of multiple-source chest X-ray images, fostering secure data
exchange, and ensuring patient anonymity using the DMFL-Net framework. Additionally,
deep neural network models, including DenseNet-169, VGG-16, and VGG-19, are used for
efficient feature extraction and classification, specifically to differentiate COVID-19 from
four other distinct chest disorders in publicly available CXR image datasets.
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2.8. FedCare

The Internet of Medical Things (IoMT) devices are part of IoT systems that are capable
of being deployed in the healthcare industry. These systems involve medical devices that
autonomously establish communication and relationships while working collaboratively.
IoMT devices aim to enhance real-time and remote health monitoring, which can be
particularly beneficial in rural areas with a lack of healthcare centers and monitoring the
elderly in the social system. These devices collect sensitive human body data, such as heart
rate, blood pressure, and body temperature. In social systems, cameras are one of the most
important IoMT devices for monitoring people. For instance, with the help of cameras, it
is possible to obtain the vital signs of elderly people without requiring multiple sensors.
However, these cameras collect users’ facial videos and then train them at a central location
or in the cloud, which could lead to privacy violations. To avoid privacy breaches and solve
heterogeneity issues in federated learning, in [38], the authors proposed an FL-based IoMT
framework in the healthcare environment to help rural people and monitor their health
condition by camera-based IoMT devices. Figure 8 shows the architecture of the Fedcare
framework for social IoMT devices.

Figure 8. Fedcare framework for social IoMT devices [38]. IoMT devices (e.g., kiosks with cameras)
in the personalization layer perform local training, sending updates We

k (j) to edge nodes E. Edge
nodes aggregate local models into We(j), which are further aggregated in the cloud into a global
model W(j), using split training Ws

k to optimize resource use while ensuring privacy and efficiency
for rural health monitoring.

In the FedCare system, each edge node selects a device for local training, which is
responsible for data extraction. In the first phase, when the first round starts, each edge
node selects the device for local training. During each round, the device remains connected
to its node. Then, the central server, responsible for the global aggregation, identifies
the node for this process, and another round begins. The performance of the proposed
framework is evaluated, considering parameters such as accuracy, training time, CPU usage,
memory consumption, and data rates. Remarkably, the FedCare framework achieves a
global accuracy of 90.32%. Additionally, the proposed system significantly reduces training
time, achieving efficiency with a concise duration of 3.6 hours.
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2.9. Sensor-Based HAR

In [39], the authors propose a federated learning-based framework to address privacy
concerns in the context of smart healthcare services utilizing the Internet of Medical Things
(IoMT). The integration of wearable sensor-based devices connected to the Internet is
vulnerable to security threats, particularly the risk of personally identifiable information
being compromised. The paper introduces a federated learning approach that enables
training models directly on-device data without centralizing it on servers to overcome the
privacy issue. Also, the use of the bitwise XOR operator for data encryption is proposed to
further safeguard biomedical data during transmission over the Internet. Figure 9 illustrates
the high-level architecture of the sensor-based HAR framework, showing two servers
(Server A and Server B) performing global averaging on encrypted updates from clients
(Client A1 to An, Client B1 to Bm). Each client trains local models on sensor data (SGD),
encrypts the data using the server’s unique key (Key A or Key B), and uploads updates
to the respective server. The servers cannot infer data from each other due to the distinct
encryption keys, ensuring privacy during global model aggregation. This visualization
highlights the framework’s use of encryption to prevent unauthorized access and its ability
to maintain privacy in IoMT applications, though the slight accuracy drop with FL suggests
a need for further optimization in heterogeneous data settings.

Figure 9. Architecture of sensor-based HAR federated learning approach [39]. Clients (A1 to An, B1
to Bm) train local models on sensor data using SGD, encrypt updates with server-specific keys (Key
A, Key B), and upload them to Server A or Server B for global averaging. Distinct encryption keys
prevent servers from inferring each other’s data, ensuring privacy and security for physical activity
recognition in IoMT applications.

The methods involve three-dimensional convolutional neural networks for physical
activity recognition using various sensors. Also, the proposed encryption technique is then
extended to both traditional federated learning and federated learning based on multi-
key homomorphic encryption. Each server employs its unique encryption key to provide
security for client data. This specific key prevents other servers from using the global model,
which is trained on the original server, without the appropriate access key. Therefore, the
hacker who obtains the trained model through networks cannot trace back the model and
utilize it in a different database. Consequently, the proposed sensor-based HAR framework
serves as an effective method to decrease the possibility of privacy breaches. Also, the
experimental results show high accuracies of 94.6% and 94.9% (without federated learning)
on the Sport and DaLiAC datasets, respectively. The proposed method slightly reduces
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accuracy to 89.5%, but it still shows promise compared to state-of-the-art methods using
raw data alone.

3. Applications
Federated learning (FL) has emerged as a transformative technology, widely adopted

across domains to enhance data privacy while enabling collaborative model training. In
healthcare, FL addresses critical challenges by allowing institutions to train models locally
without sharing sensitive patient data. Organizations such as Melloddy [55] and King’s
College London [56] have integrated FL into their workflows to improve privacy and
predictive capabilities. This section surveys FL applications in healthcare, covering areas
such as drug discovery, medical imaging, disease prediction, and more. Table 2 summarizes
these applications, detailing their focus, approaches, techniques, datasets, and performance
outcomes. To provide deeper insight, a critical assessment of their real-world applicability,
maturity level, and scalability is presented at the end of this section.

Table 2. Applications of FL in Healthcare

Focus Reference Approach Technique Dataset

Drug
[57] Cross-silo FL DNN AqSolDB [58]
[59] FL-QSAR QSAR, HFL Kaggle datasets [60]
[61] Adverse drug reactions SVM, LM LCED [62]

Mortality and stay time
[63] CBFL Encoder, K-means eICU [46]
[64] Privacy of EHRs DP-SGD eICU [46]
[65] Data privacy DP, LR, MLP MIMIC-III [66]

Hospitalization [67] COVID-19 LASSO, MLP MSHS [67]
[68] Cardiac events SVM, cPDS Boston Medical Center [69]

Preterm birth prediction [70] FUALA RNN Center Health Facts [70]

Brain segmentation
[71] Whole brain segmentation DNN MALC [72]
[61] Brain tumor segmentation FL, IIL, CIIL BraTS [73]
[74] Brain tumor segmentation DP, DNN BraTS [75]

Functional MRI [76] Autism Spectrum Disorders DP, MLP ABIDE [77]

COVID-19 detection

[78] CT scan VGG, Resnet, etc. CC-19 [78]
[68] Chest X-ray images MobileNet, ResNet18, etc. COVIDx [79]

[80] Dynamic fusion GhostNet, ResNet50,
ResNet101

CT , Radiography,
Xray [81–83]

Medical records
[84] Lung nodules detection Vnet 3D, ResNet LIDC [85]
[86] Cardiovascular detection 3D-CNN ACDC, M&M [87,88]

[89] Thyroid image recognition DNN Thyroid Nodule Clinical
Data [89]

Patient similarity learning [90] Privacy preserving Hashing MIMIC-III [66]
[91] Federated Patient Hashing Hashing MIMIC-III [66]

Phenotyping [92] Privacy preserving Tensor Factorization, ADMM MIMIC-III, UCSD [66,93]
[94] Clinical data NLP, SVM MIMIC-III [66]

Communication overhead [95] Arrhythmia detection DNN PhysioNet 2017 [96]

Meta-analysis of brain data [97] PCA ADMM ADNI, PPMI
MIRIAD, UK Biobank [98–101]

3.1. Drug Discovery

The healthcare industry is very dependent on the drug consortium, which attracts
significant attention to it. In order to improve and perform better actions regarding the
drug system, FL can be implemented. Two real time examples of implementing FL for drug
purposes can be Melloddy [55] and King’s College London [56], which aim to provide data
privacy and predict recommended treatments, respectively.



Electronics 2025, 14, 1750 17 of 40

3.1.1. Cross-Silo FL

Authors in [57] built a cross-silo FL framework with a database consisting of seven
drug datasets. They intend to address the biased data issues, which can influence the
accuracy of the training model due to the skewed data. This framework handles the model
by having a coordinator server and collaborators who aim to support the FL client. These
collaborative clients can include different data sources or silos including big pharmacies,
biotech startups, and academic labs. The implementation of the model in this work consists
of four steps as shown in Figure 10, which repeats during each round of training. First,
the coordinator server transmits the last updated model to each one of the clients. Second,
each client performs training locally and manages the updates, which is in general the
local training. Next, in order to share the locally trained models with the server, each client
encrypts its model and sends it to the server via a protocol. Lastly, after the models are
received by the server, the global model is updated with regard to the local changes. The
authors demonstrate good performance of the federated model regarding the significant
biased values within their seven datasets. They evaluate their model by comparing it
against a centralized method, which performs better in dealing with non-independent
identically distributed (non-IID) data.

Figure 10. Federated learning for drug discovery [57]. The coordinator server broadcasts the model to
clients (Big Pharma, Biotech Startup, Academic Lab) for local training. Clients encrypt updates, which
are securely aggregated by the server, followed by model selection and rollout, ensuring privacy and
addressing biased data challenges in cross-silo drug discovery.

3.1.2. FL-QSAR

Quantitative structure–activity relationship analysis (QSAR) has been applied for
improving drug discovery. It is important that pharmaceutical institutions have a good
collaboration together, which can enhance the QSAR performance. However, other factors
including intellectual property can slow down this process. In short, QSAR has been
applied to forecast different properties of compounds, which is considered an important
initial step in drug discovery consortia. In the second paper, authors [59] proposed a new
FL model, which is integrated with the QSAR called FL-QSAR. Within this platform, the
horizontal FL architecture was applied on a database of fifteen datasets. Shaoqi Chen et
al. provided results by making comparisons of different aspects, including comparisons
between the horizontal framework and a traditional privacy-preserving framework, public
and HFL framework and collaboration of the HFL and single client. The proposed study
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demonstrated the efficiency of FL-QSAR and HFL as a solution to the QSAR analysis
challenges among different institutions.

3.1.3. Adverse Drug Reaction

Another research is proposed as a predictive approach for adverse drug reaction,
which has been implemented using a FL framework. It uses the locally spread data over
different institutions. This model can achieve a descent and efficient amount in each of the
parameters including precision, recall, and accuracy [61].

3.2. Prediction

As the FL mission is needed to provide better integrity and privacy by training the
model on the client side, it can be applied as a prediction methodology across various
models in the healthcare domain.

3.2.1. Mortality and Stay Time Prediction
CBFL

When it comes to the healthcare domain, one of the most important parts is Electronic
Medical Records (EMRs). They are used for different tasks such as disease prediction,
a patient’s response to treatment, etc. The EMRs have been analyzed and implemented
by the traditional ML algorithms. Since EMRs are created by patients while they are in
different institutions, storing EMRs in a centralized location is not applicable. Because of
that, traditional ML algorithms are not a good fit for handling these data. As concerns are
increasing regarding the security, privacy, and expenses, authors have applied FL. It is called
community-based federated learning (CBFL), proposed for solving this issue. Authors
have implemented this algorithm in order to predict mortality and hospital stay time of
patients using drug features. Similar to the FADL framework, they have used the dataset of
ICU records. To summarize CBFL, it basically makes predictions on the proposed dataset
using a decentralized clustering with the implementation of FL. CBFL is more efficient than
traditional FL approaches because in its implementation, EMRs are clustered into different
communities. Moreover, each community has its own trained model. The main objective of
this study is based on three parameters from the database, which are mortality, ICU stay
time, and drug features. As an independent variable, drug features are used to predict
other two parameters. Additionally, the evaluation of the model is performed by three
different metrics including Area Under the Receiver Operating Characteristic Curve (ROC
AUC), Area Under the Precision–Recall Curve (PR AUC), and communication leads. The
model has shown a descent accuracy in prediction tasks regarding the non-IID challenge
within a decentralized method compared to the centralized one.

Privacy of EHRs

Since the privacy of data is extremely important, authors in [64] proposed a federated
averaging [26] framework with differentially private stochastic gradient descent (DP-
SGD) [102] in order to predict mortality and hospital stay time. This study is performed on
thirty one hospitals from an eICU database [46]. The authors demonstrated the benefits
of their framework (FL with DP) using various experiments including different trainings
(local, centralized, centralized with DP), and FL alone.

Data Privacy

Similarly, authors in [65] demonstrated superior performance of their FL framework
compared to traditional approaches. The framework was implemented to predict pa-
tient mortality in hospitals. ICU data were used to train the global model. CoMind FL
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toolkit [103] was used to distribute training and testing data among the clients. Overall,
maintaining data privacy can lead to high performance in FL applications.

3.2.2. Hospitalization Prediction
COVID-19

According to Vaid A. et al. [67], a FL technique was implemented in order to make
predictions on the mortality rate of hospitalized patients who are infected with COVID-19.
The electronic health records of patients including their past health records were used
for evaluating the model. Classifiers such as Logistic Regression (LASSO) and Multilayer
Perceptron (MLP) were deployed to train the dataset using three different distribution
methods: local, pooled, and FL. The federated MLP and federated LASSO showed better
performance compared to their local training counterparts.

Cardiac Events

A new framework has been developed to address the sparse Support Vector Machine
problem. This framework enhances scalability and prevents the exchange of raw data
within healthcare systems. Specifically, the authors proposed a FL model that predicts the
likelihood of hospitalization for patients with cardiac diseases. This model uses Electronic
Health Records distributed across various sources [69].

3.2.3. Preterm Birth Prediction-Federated Uncertainty-Aware Learning Algorithm
(FUALA)

A large number of EHRs are being generated at each clinical institution everyday,
and ML approaches have been widely developed for better analyzing data. However, due
to privacy concerns and regulations, sharing data with the server for model training is
inappropriate. As a result, FL enables secure training of models for prediction using EHRs,
keeping data protected [18]. The concept of preterm birth has been critically affecting
society by either babies’ death or long-term disabilities. Moreover, it is costly to care and
healthily deliver a baby [104]. In [70], the authors proposed a FL model to forecast preterm
birth based on an EHR dataset from 50 hospitals. The prediction should be performed
3 months before delivery of the baby. The authors trained the models using Recurrent
Neural Networks within FL setup. This approach improves the previously adopted FedAvg
framework [26] to include uncertainty modeling. FUALA aims to predict preterm birth in
two stages: assessing generalization performance and measuring the ultimate model. It
demonstrates a more descent performance compared to other models.

3.3. Medical Imaging

Medical imaging is one of the valuable techniques for clinical analysis, which is
widely adopted in the healthcare system. Privacy concerns in patient data have led to
the deployment of FL, which enables models’ training from different clinical institutions
without data leakage [105].

3.3.1. Brain Segmentation

Medical segmentation is one of the most important approaches in medical imaging. In
order to capture brain characteristics and measure its structure, brain magnetic resonance
imaging (MRI) has been applied. Moreover, many different brain segmentation methods
have been implemented [106]. For a comprehensive understanding of human brain seg-
mentation methods using MRI, readers are encouraged to refer to the work in [106]. Since
labeling the image data can be costly and time consuming, machine learning algorithms
have been widely applied in different medical settings, especially in brain segmenta-
tion [107]. Although ML models have demonstrated promising results in medical imaging,
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they might not be the best fit due to limitations in the quality and variety of training data.
Privacy regulations can be one of the reasons for this, preventing sharing patient data in a
centralized manner. This issue can lead to the use of FL, which is compatible because it
involves sharing only the model, not the data, and is decentralized.

Whole Brain Segmentation

A decentralized framework, called BrainTorrent, was proposed to facilitate peer-to-
peer communications between multiple institutions [71]. As a result, the framework does
not require a server for node communication, as depicted in Figure 11. Also, it trains
the global model without sharing any raw data among institutions and allows for rapid
updates to local models. The authors utilized the QuickNAT [108] architecture to segment
brain scans within the network. Authors of [71] demonstrated BrainTorrent’s efficient
performance by comparing it with a traditional FL approach that uses a server. This
comparison is based on results from two specifically defined experiments. Not only does
the proposed approach eliminate the need for a server during training, but it also achieves
similar performance to training on a pooled dataset aggregated from various institutions.

Figure 11. Peer-to-peer federated learning [71]. Part (a) shows traditional FL with a server S, where
clients C1 to C5 send updates (red dashed arrows) for aggregation and receive the global model (green
arrows). Part (b) depicts BrainTorrent’s P2P serverless FL, where clients directly share models (green
dashed arrows) after local training (purple arrows), using ping requests (black arrows) to coordinate,
ensuring privacy and efficiency in brain scan segmentation.

Brain Tumor Segmentation

Research in [109] introduced the first use of FL for brain tumor segmentation, involving
collaboration between various clinical institutions. The authors designed a deep learning
(DL) model using FL in order to train various institutions without sharing data [109]. The
model is trained on various brain images. The model’s evaluation is based on compar-
isons between FL and two other collaborative learning methods: Institutional Incremental
Learning (IIL) and Cyclic Institutional Incremental Learning (CIIL). In IIL, the client trains
the model once according to its preference. CIIL essentially repeats the IIL process until
the correct epoch number is achieved for each client. Overall, FL outperforms the pro-
posed learning methods and achieves 99% model performance compared to when data are
shared [109].

The authors in [74] proposed using differential privacy to secure patient data within
a FL framework. They reduced the number of randomly selected parameters in each
round. To evaluate the federated model, they compared it with centralized data training. It
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demonstrated superior FL performance due to shorter training times and the advantage of
not sharing data.

3.3.2. fMRI—Autism Spectrum Disorders

As we discussed earlier, medical data are very sensitive when used for training models.
As a result, data privacy is a major concern within the healthcare consortium. Various
regulations and policies have been applied to the use of data based on characteristics
including data content, identifiability, and more. These regulations can differ based on
case-by-case scenarios [110,111]. Consequently, there is a lack of availability and quality
in healthcare data. The authors in [76] proposed a privacy-preserving FL framework for
functional MRI (fMRI) analysis, incorporating two domain adaptation methods to enhance
neuroimage analysis. Gaussian and Laplace mechanisms have also been implemented
to add noise and improve privacy [112]. The FL framework was compared across four
different strategies. The main contribution of FL and domain adaptation was proposing a
classification framework aimed at enhancing performance. It was claimed that the domain
adaptation can enhance the performance of the FL framework. The authors aimed to detect
Autism Spectrum Disorders or identify healthy controls. Overall, the proposed model can
assist clinical institutions in securely training local models. This is particularly applicable
when the diseases are rare and the number of patients is low.

3.3.3. COVID-19 Detection

The recent COVID-19 pandemic has resulted in a significant number of deaths, totaling
2,022,405 as of January 18 [113]. This has led researchers to apply various technologies to
combat this infectious disease. As a result, surveys on the applicability of these technologies,
including AI [114], ML [115], Big Data [116], and IoT [117], have been conducted. In this
discussion, we explore various approaches to detecting COVID-19.

CT Scan

One of the most applicable approaches of medical imaging is the use of Computed
Topography (CT) scans. As of the time of writing this paper, CT scans have been widely
used for diagnosing the novel Coronavirus, which causes COVID-19 disease. Millions of
people died due to this virus. Although machine learning analyses of COVID-19 patient
CT scans have been widely studied, the importance of data privacy in these analyses
must be considered. Authors in [78] have developed a framework for detecting COVID-19
using deep learning (DL) models within the CT scans, which can assist practitioners in
faster detection of COVID-19. In deep learning model training, data leakage is a major
concern. The study involves a large dataset from various institutions, comprising records of
89 patients (68 positive and 21 negative cases). Within this approach, they deployed various
DL models for recognizing the patterns in patients’ lung CT images. The training was
performed using a Capsule Network, which resulted in better performance. In addition to
preventing leakage of the data, FL was used. It facilitated data capture, model training, and
sharing on a public network in a decentralized manner. This approach allows hospitals
to share only the model weights and gradients via blockchain, not the patients’ data. This
study demonstrated better performance due to the better accuracy. Moreover, FL enhanced
data privacy across various institutions.

Chest X-Ray Images

The medical fields, especially medical imaging, have been positively affected by deep
learning techniques. However, these techniques can lead to significant data privacy leaks,
particularly when collecting training data from various institutions. Given the critical need
for COVID-19 detection, deploying deep learning within a federated learning framework
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can significantly enhance data privacy. According to [68], a FL framework was proposed
for training data, with performance demonstrated by comparing four different image
classification models: COVID-Net, ResNet18, ResNeXt, and MobileNet-v2. These models
are implemented with and without FL. Within the implementation, ResNet18 achieved
the highest accuracy across both training and testing datasets when using federated learn-
ing. Regarding the dataset’s labels (which indicate the patient’s condition, including
normal, pneumonia, and COVID-19), ResNeXt showed the best performance in detecting
COVID-19.

Figure 12 illustrates the FL framework for COVID-19 detection, showing a central
server coordinating with multiple institutions (e.g., medical clinics, hospitals). Each insti-
tution trains local models on CXR datasets behind a firewall, ensuring data privacy, and
sends parameter updates to the central server. The server aggregates these updates and
broadcasts the updated global model back to the institutions for further training. This
visualization highlights the framework’s ability to maintain privacy by keeping data local
while enabling collaborative model training for accurate COVID-19 detection, though its
performance may vary with the heterogeneity of CXR data across institutions.

Figure 12. Federated learning for COVID-19 detection [68]. A central server coordinates with
institutions (e.g., medical clinics, hospitals) which train local models on CXR datasets behind firewalls
and send parameter updates. The server aggregates updates and broadcasts the global model,
ensuring privacy and enabling collaborative training for accurate COVID-19 detection.

Dynamic Fusion

The two aforementioned examples were implemented in the default setting of FL,
which can result in high communication costs. Since this can be a critical issue affecting
model performance, a fusion-based FL approach has been proposed to detect COVID-19
cases more efficiently and with better communication [80]. The authors initially proposed a
fusion-based FL architecture for detecting COVID-19 cases. Subsequently, they applied a
dynamic fusion technique to manage participating clients. The trained local model does
not upload any updates until it achieves improved performance. To evaluate performance,
experiments were conducted using three different Convolutional Neural Network mod-
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els: GhostNet, ResNet50, and ResNet101. The results demonstrated improved accuracy,
reduced training times, and better communication performance compared to the default
setting of FL.

3.3.4. Lung Nodules

With respect to the capabilities of CT scan images, authors in [84] proposed a FL
approach for detecting lung nodules. The approach is based on two models: lung nodule
detection and confirmation. By evaluating the model using a dataset of 1010 CT images,
the authors demonstrated more time-efficient method for maintaining privacy of data in
a decentralized matter of model distribution. In comparison to the existing models, the
proposed approach indicated better prediction accuracy.

3.3.5. Cardiovascular Disease Detection

Cardiovascular disease diagnosis in the medical field is challenging because of data
scarcity. The lack of sufficient data raises concerns about the generalizability of automated
diagnosis studies across institutions. To solve these issues, federated learning can facilitate
multi-center studies by enabling distributed training while protecting patient privacy.
Authors in [86] presented a federated learning framework focused on cardiovascular
magnetic resonance (CMR) imaging. They used data from four centers derived from
M&M and ACDC datasets to detect hypertrophic cardiomyopathy. The study used a 3D-
CNN network to train data along with various data augmentation techniques. Although
the study used a small dataset (180 subjects from four centers), the experimental results
demonstrated that the proposed federated learning framework achieved results similar to
those of traditional centralized learning.

3.3.6. Thyroid Image Recognition

The author in [89] investigates the utilization of federated learning to analyze ultra-
sound images to determine whether thyroid nodules are benign or malignant. The aim
of this study is to show whether the performance of a federated learning framework is
comparable with centralized learning techniques while simultaneously preserving the
privacy of medical data. They use a dataset which contains 8457 ultrasound images from
six institutions. The dataset is used for both federated learning and centralized deep
learning models. ResNet 50, VGG19, ResNext50, SE-ResNext50, and SE-ResNet50 models
are employed as base models to compare with the federated learning model. Internal
validation is conducted on a subset of images, while external validation is performed on
images from another institution. The experimental results show that for internal validation,
the area under the receiver operating characteristic (AUROC) curve ranges from 78.88% to
87.56% for federated learning and from 82.61% to 91.57% for centralized deep learning. For
external validation, AUROC ranges from 75.20% to 86.72% for federated learning and from
73.04% to 91.04% for centralized deep learning. Based on the results of this study, federated
learning appears to achieve comparable performance to centralized deep learning while
employing decentralized data, suggesting that it could be useful for medical image analysis
while safeguarding the privacy of patients.

3.4. Patient Similarity Learning

Adopting global frameworks is one of the principal approaches in order to analyze
different institutions comprehensively without privacy concerns. However, among the
proposed FL frameworks in healthcare, only a few approaches exist that address patient
similarity. In general, it is based on developing algorithms in order to discover specific
similarities in medical datasets or patients [118].
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Privacy Preserving

Although patient similarity search can be tough to discover due to the issues of
captured data, the authors in [90] proposed a privacy-preserving FL framework to efficiently
find similar patients across different institutions. The implementation of their model uses
the hashing technology. It enables discovering hash codes of patients’ information across
various hospitals. Authors performed the experiments based on two hashing technologies
including multi-hash and uni-hash. The results demonstrated better usability for the
multi-hash approach. Additionally, homomorphic encryption was applied to prevent
security concerns while the FL system looks for similarities. This approach was evaluated
based on the Multiparameter Intelligent Monitoring in the Intensive Care-III (MIMIC-III)
database to indicate the performance of the algorithm within five different categories of
diseases [66]. To recap, the proposed algorithm is a solution for efficiently finding the
patients’ similarities among different hospitals with respect to the privacy preservation
within the FL system [90].

FPH

According to the study in [91], another framework for patient similarity search was
proposed in a federated setting based on hashing technology. This framework, which is
called Federated Patient Hashing (FPH), demonstrates patient similarity search among
different institutions without sharing private data. In order to optimize federated setting,
two learning methods, namely centralized and decentralized, have been adopted. Addi-
tionally, authors demonstrate the convergence of the model by depicting same behavior of
different training samples. Similar to the previous research, authors in this study use the
MIMIC-III database to evaluate the framework, which results in good performance of the
model [66,91].

3.5. Phenotype Discovery

As previously mentioned in the above sections, the EHRs deal with different chal-
lenges such as skewed data, heterogeneity, etc. Data scientists usually prefer to work on
concise concepts in the healthcare domain rather than complicated data. This is where
phenotypes become involved in capturing specifically related details of patients. Phenotype
is basically a disease and its subtypes. Moreover, the challenge of merging EHRs into the
phenotypes still exists due to its limitations including slow and manual adoption [119].
Tensor factorization is an appropriate method to overcome different challenges that are
applied to the phenotypes by capturing them from complex datasets [92,120]. However,
in order to capture widely existing phenotypes, it is important to compute them on a
dataset of multiple clinical institutions. In that case, data privacy is endangered due to
the data sharing. Moreover, some approaches suggest adding noises to the models, which
is not applicable for phenotypes. These noises, or technically differential privacy [121],
can mislead clinical scientists with dangerous results. Herein, we discuss two different
approaches with respect to privacy concerns.

3.5.1. Federated Tensor Factorization

Authors in [92] proposed a federated framework that aims to preserve privacy by using
tensor factorization for horizontally partitioned data. This approach, TRIP, is developed for
computing phenotypeswithout sharing patient data. After formulating the function of this
framework, the authors attempted to solve the optimization problem using the ADMM
(alternating direction method of multipliers) [122] algorithm. Within the study, ADMM
divides the main problem into sub-problems for each institution. This process is performed
by repeatedly updating the local factor matrices from individual components. As soon
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as all the local factors are updated within hospitals, the global factor is updated and sent
to the hospitals. After a specific number of iterations, the framework’s performance is
evaluated within two different settings of central and local models. Accuracy and time
are the major measurements of performance, which can be impacted by two issues such
as nonzero values and skewed data. Results demonstrated an accurate performance even
with small and uneven distribution of data. Consequently, TRIP can be deployed in large
datasets for discovering phenotypes regarding the existing privacy concerns [92].

3.5.2. Clinical Data

Manual extraction of medical information by medical experts could be very time
consuming. Moreover, natural language processing (NLP) has been widely adopted by
scientists to better analyze medical data. As a task within the clinical NLP, automatic
phenotyping has been used for capturing specific patients. Authors in [94] implemented a
federated machine learning framework in order to address two important challenges in
medical NLP. First, data sharing among different institutions for better model training is
not applicable. In addition, mapping the medical information using patient representation
learning or better classifier training also requires a massive dataset. This is shown in previ-
ously adopted models, including supervised [123] and unsupervised [124]. The framework
adopts two stages of supervised patient representation learning and phenotyping extraction
of clinical notes. The first one enables the applicability of training an Artificial Neural Net-
work (ANN) on large datasets. Additionally, phenotyping captures the functions within the
medical information, which enables disease prediction. Various experiments with different
settings were conducted in the study, and it was found that the federated setting for both
patient representation and phenotyping demonstrated appropriate performance [94].

3.6. Arrhythmia Detection

The IoT technology has been widely applied to the healthcare domain within different
areas including health monitoring, chronic diseases, etc. [125]. Traditionally, machine
learning algorithms have been used in order to train sufficient models on the server. There-
fore, IoT devices should upload their data to the server, which brings privacy and security
concerns. According to [126], the new technique of FL for training in a decentralized
manner demonstrated different challenges including source of the energy for devices, low
computational capacity, etc. Yuan et al. [95] proposed a FL framework for detecting ar-
rhythmia disease that achieves better accuracy and reduces the communication bandwidth.
The detection is achieved by monitoring cardiac arrhythmias captured by IoT devices.

3.7. Large-Scale Medical Data

Nowadays, a significant number of MRI images are being stored across various
data centers, which have to be analyzed in order to better understand different diseases.
However, sharing patient data from various data centers is not applicable due to the privacy
concerns and regulations. Consequently, adopting different analysis methods including FL
and meta-analysis [127] has enabled researchers to better work on data. Authors in [97]
proposed a FL framework based onmedical imaging data in order to access and analyze
the data without risking privacy. This study is mainly focused on comprehension of brain
disorders with respect to the limitations of data exploitation. This approach implemented
the ADMM [128] algorithm that decreases the number of iterations in order to prevent
gradient-based optimization. Synthetic data were first adopted for evaluation, and then
multiple medical datasets were deployed. Overall, the framework met the intended aims.
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3.8. Critical Assessment

The FL applications surveyed in this section demonstrate significant potential in
healthcare, yet their real-world applicability, maturity level, and scalability warrant further
discussion to contextualize their practical impact.

Real-world Applicability: Deploying FL in healthcare settings faces practical chal-
lenges. For instance, drug discovery applications like Cross-silo FL [57] and FL-QSAR [59]
rely on collaboration across institutions (e.g., pharmacies, labs), which requires standard-
ized protocols, robust network infrastructure, and compliance with regulations like HIPAA
or GDPR. Medical imaging applications (e.g., BrainTorrent [71], COVID-19 detection [78])
are promising for multi-center studies, but their adoption may be hindered by the need for
compatible hardware (e.g., CT scanners, MRI machines) and trained personnel. Prediction
tasks (e.g., CBFL for mortality [63]) and patient similarity learning [90] could integrate
into hospital workflows, yet their effectiveness depends on the availability of high-quality,
diverse EHR datasets, which vary widely across regions.

Maturity Level: The maturity of these applications varies. Some, like BrainTorrent [71]
and FL-based COVID-19 detection [68], have been tested on real datasets (e.g., MALC,
COVIDx) and show performance comparable to centralized methods, suggesting a tran-
sition from experimental to near-deployable stages. Others, such as FL-QSAR [59] and
phenotyping via tensor factorization [92], remain largely theoretical or prototype-based,
with limited evidence of real-world deployment. Arrhythmia detection [95] and thyroid
imaging [89] show promise with IoT and ultrasound data, but their maturity is constrained
by small-scale evaluations (e.g., PhysioNet, 8457 images), requiring broader validation.

Scalability: Scalability is a critical factor for FL’s success in healthcare. Applications
like Cross-silo FL [57] and dynamic-fusion COVID-19 detection [80] address communica-
tion overhead, making them scalable to larger networks of institutions, though compu-
tational costs rise with data heterogeneity. Brain segmentation [74] and cardiovascular
detection [86] scale well with imaging data but may struggle with diverse hardware or
small datasets (e.g., 180 subjects in [86]). Patient similarity [91] and phenotyping [94]
frameworks handle large EHRs (e.g., MIMIC-III), yet their scalability is limited by non-IID
data and processing complexity. Arrhythmia detection [95] offers bandwidth efficiency, but
IoT device constraints (e.g., energy, computation) pose scalability challenges.

Overall, while these FL applications showcase innovative solutions to privacy and
collaboration challenges, their real-world deployment requires overcoming infrastructural,
regulatory, and validation hurdles. Future work should focus on standardizing frameworks,
expanding testbeds, and addressing scalability bottlenecks to fully realize their potential
in healthcare.

4. Challenges
While federated learning (FL) offers numerous advantages, such as decentralized

training and enhanced privacy, it faces significant limitations and challenges, particularly
within the healthcare industry. These challenges must be carefully addressed when design-
ing and implementing federated training models. In this section, we explore key challenges
and highlight potential strategies and ongoing research efforts aimed at overcoming them.

4.1. Communication Efficiency

As we previously discussed, a FL setting occurs when the training data are distributed
over a significant amount of clients. The clients are not reliable, and they most likely do not
have a fast connection. The distribution of training data divides communications into two
parts, namely uplink and downlink [129]. Since different domains especially healthcare are
in need of a cost-efficient setting for distributing training data and local models, there have
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been many efforts to enhance the communication efficiency. With that being said, simply
the size of messages has to be reduced. Here, the messages are either the training datasets
or local models [130]. In order to enhance the efficiency of communication, there are three
segments that can be reduced including clients’ numbers, updates’ numbers, and size of
updates. Based on the recent research, these three techniques have been addressed using
four types of methods, as follows (see Figure 13).

Figure 13. Methods for reducing bandwidth [28]. (a) Model compression simplifies neural networks
to reduce variables. (b) Client selection chooses a subset of clients (e.g., hospitals) to participate.
(c) Update reduction decreases the frequency of updates between clients and the server. (d) Peer-to-
peer learning enables direct model exchange among clients, omitting the central server, to enhance
communication efficiency in FL for healthcare applications.

4.1.1. Client Section

Despite the fact that selecting clients is one of the most effective factors in improving
efficiency, it is also the most accessible method to decrease the bandwidth of communication.
This means the communication costs can be reduced by lowering the number of clients or
updating a specific parameter.

4.1.2. Model Compression

As the name suggests, the model mainly works towards compressing the data that
are exchanged from the server to the client. This reduces the communication bandwidth
and consequently the communication cost. The first compression method is based on
structured updates. This means the model attempts to use fewer variables. There are
different structured updates such as low rank and random mask. Further, a sketched
update occurs when the update is learned by the model, encoded or simply compressed
for sending to the server. It is decoded thereafter by the server [129].

4.1.3. Update Reduction

As mentioned before, reducing the number of updates can effectively decrease the
communication costs. For example, a research has been proposed in order to reduce the
communication costs of large distributed systems by averaging different models [131].

4.1.4. Peer-to-Peer Learning

One principle of FL is the need for a central server for distributing training data to-
wards achieving a global model. Also, since the available networks are dynamic, accessing
a specific central server is not practical. In addition, due to the high dependency on the
central server, a trusted centralized model should be agreed upon by different clients. This
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can be a complex approach to implement. Therefore, implementing a fully decentralized
model can be an appropriate solution in order to omit the central server [28].

Recent research has proposed several strategies to further enhance communication
efficiency. For instance, gradient compression techniques, such as quantization and sparsi-
fication, have shown promise in reducing the size of updates without significantly compro-
mising model accuracy [132]. Additionally, ongoing efforts explore adaptive communica-
tion protocols that dynamically adjust the frequency and size of updates based on network
conditions and client reliability [133]. These approaches aim to balance efficiency with
performance, a critical consideration for resource-constrained healthcare settings.

4.2. Privacy

It is always assumed that the number of clients in a FL setting is large. This indicates
the potential presence of malicious clients. As a result of training data locally, there should
not be any data leakage within this setting, but clients might gain access to the sensitive
data from the shared model. Despite the fact that privacy has been vastly researched within
FL settings, it is crucial to maintain a good outcome regarding the different aspects of model
including accuracy, performance, etc. This can be one of the most important attempts to
address privacy issues [130]. Consequently, here, we provide a brief description of the most
important aspects when ensuring privacy in the FL model.

4.2.1. Performance

Within the application of FL, data privacy can be improved by only sharing the models
and not the data. However, there are many other privacy concerns that have to be addressed
in different domains particularly in healthcare. Various regulations are defined in order
to prevent data leakage, which make ensuring data privacy even more challenging. It
is because there is not a solution that can satisfy all the aspects. Some techniques have
been deployed to ensure data privacy including privacy-preserving techniques and secure
computations [134]. However, a trade-off here is that performance, such as accuracy,
may decrease by applying these techniques including differential privacy (DP) [135] and
secure multi-party computation [136]. It is crucial to ensure that this does not influence
other aspects.

4.2.2. Level of Trust

Since medical data are highly important, data leakage has to be prevented. Without
trust in the captured data, the healthcare system cannot count on the performance of
the model [137]. To divide the trustworthiness of different parties within FL, there are
two levels of trust, as follows.

Trusted

A trustworthy FL system can be considered when all parties agree to collaborate. As a
result, the system is capable of preventing any malicious attempts for accessing sensitive
information. This lowers the threats to the system, which means reducing the demand
for countermeasures.

Non-Trusted

When it comes to a large number of parties, for instance, multiple institutions, it is
unrealistic to establish an agreement on collaborating in a same manner. Parties may try to
extract others’ sensitive information, shut the system down, etc. With this scenario, it is
important to implement security strategies to handle adversarial attacks effectively.
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4.2.3. Information Leakage

Despite the use of FL for training medical data by maintaining the privacy, the model
can contain private information that is used for local training. This can occur if the model
updates, gradients, and adversarial attacks are reversed [138–140]. Additionally, leakage
can be increased due to the captured changes in model updates by adversaries. In order to
prevent this issue in the system, counter-measures (for instance adding noise inside the
data) should be applied to ensure privacy preserving [74].

To mitigate privacy risks, ongoing research has focused on advanced cryptographic
techniques and differential privacy enhancements. Homomorphic encryption, for example,
allows computations on encrypted data, preventing sensitive information exposure during
model updates [141]. Similarly, federated learning frameworks incorporating personalized
differential privacy (DP) adjust noise levels based on individual client data sensitivity,
improving the privacy–utility trade-off [142]. These strategies aim to safeguard healthcare
data while maintaining model performance, though their computational overhead remains
a challenge under active investigation.

4.3. Data Skewing

The data in real life are not always perfect, and it is a critical factor in training al-
gorithms. Data skewing is primarily related to the distribution of the data for training.
It can be caused by different factors, but mainly occurs due to missing classes, features,
and values [143]. In addition, Imbalanced data are also a major factor contributing to
data skewing in training distributions. With respect to these issues, the traditional FL
methods can fail if they they are not taken into account. Authors in [143] have shown
practical approaches in different machine learning algorithms in order to address the data
skewing issues. In short, the server plays an important role in implementing the proposed
techniques, such as limiting the training data exchange and bounds-aware fusion.

Addressing data skewing is an active area of research. Techniques such as data aug-
mentation and synthetic data generation are being explored to balance skewed distributions
across clients [144]. Moreover, federated optimization algorithms, like FedProx, introduce
regularization terms to handle non-IID (non-independent and identically distributed)
data, improving convergence and model robustness [145]. These strategies aim to ensure
equitable model performance across diverse healthcare datasets.

4.4. Traceability

The importance of reproducibility is obvious in all algorithms used in healthcare. It
means that a system should be able to keep track of different parts including events, history
of accessing data, and changes made to the configuration. This can be applied during
training processes [29]. One of the advantages of traceability is that overlapping between
the training dataset and the testing dataset can be prevented by considering the history
of previously trained data in the model [146]. As we previously discussed regarding the
non-trusted systems, traceability requires integrity for better tracing different activities.
It is also worth tracking the history of consumed resources and the contribution of each
institution after achieving the optimal model.

4.5. System Architecture

Healthcare institutions are capable of computing large scale FL models due to their
computational equipment. They usually have reliable throughput networks, which allows
them to perform various approaches for achieving a highly consistent model. An example
of approaches is the training of large models with large shared local models [147]. Within
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healthcare, the ability to perform larger training models can lead to various issues including
data integrity, security of data transferred to resources, and design of node schedulers [29].

4.6. Data Heterogeneity

Heterogeneity itself can be described as a set of dissimilar contents. Similarly, data
heterogeneity is the diversity of variable data distributions. With respect to the healthcare
domain, this challenge occurs often due to the assortment of patients’ captured data
including diagnosis, treatments, etc. [148,149]. Authors in [150] proposed a FL framework
to better train the model for handling the heterogeneous distribution of data among
clients using optimization. Moreover, demographics should be considered. Overall, data
heterogeneity can pose a challenge within the model. The distribution of data in FL models
is often independent and identically distributed [151]. Additionally, it is critical to note that
the global solution may differ from the final solution, which requires all the clients to agree
on the proposed training before training the model [29].

4.7. Scalability

As FL systems expand to include more clients or larger datasets, scalability becomes
a critical challenge, particularly in healthcare where institutions vary in computational
resources and data volume. Managing an increasing number of clients can strain commu-
nication networks and central servers, leading to bottlenecks and delays. Furthermore,
training larger models on heterogeneous hardware introduces complexity in resource al-
location and synchronization. Recent efforts to address scalability include hierarchical
FL architectures, where intermediate servers aggregate updates from clusters of clients
before forwarding them to a global server [152]. Additionally, asynchronous FL approaches
allow clients to update models independently, reducing synchronization overhead [153].
These strategies aim to support the growth of FL systems while maintaining efficiency and
accuracy, though their application in healthcare requires further validation.

4.8. Interoperability

In healthcare, FL systems often involve collaboration across institutions with diverse
data formats, protocols, and regulatory requirements. Interoperability—the ability of
different FL systems to work seamlessly together—poses a significant challenge. Lack
of standardized frameworks can hinder model sharing and aggregation, limiting the
potential for large-scale federated networks. To overcome this, ongoing research explores
the development of standardized FL protocols, such as the OpenFL framework, which
facilitates cross-system compatibility [154]. Additionally, ontology-based approaches aim
to harmonize heterogeneous healthcare data, enabling consistent interpretation across
clients [155]. Enhancing interoperability could unlock broader collaboration, though it
requires consensus on standards and robust testing across real-world settings.

5. Future Directions
In this section, we discuss future directions to motivate researchers to address the

challenges identified earlier, offering detailed and actionable recommendations for those
entering the field of federated learning (FL) in healthcare. These directions aim to bridge
current gaps and advance practical implementation.

5.1. Privacy and Security Issues

Security and privacy are critical concerns in the healthcare sector, where protecting
patient data is paramount. While methods such as differential privacy and cryptographic
techniques offer mechanisms to safeguard data, they introduce significant trade-offs, such
as reduced accuracy and increased computational demands on healthcare devices involved
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in FL. The design of FL systems must therefore balance privacy assurance with system
efficiency, a challenge that requires comprehensive solutions before practical medical
deployment. One promising approach involves edge computing, which enhances data
privacy and computational efficiency by processing data locally, reducing the need to
transmit sensitive information across networks [156].

Future Research Questions: How can edge computing be optimized to minimize
computational overhead while maximizing privacy in resource-constrained healthcare
settings? What lightweight cryptographic protocols can be developed to secure FL without
sacrificing model performance? Researchers could explore hybrid privacy-preserving
frameworks that combine edge-based processing with adaptive differential privacy tailored
to medical data sensitivity.

5.2. Communication Cost

Effective communication is crucial in FL due to its distributed nature and the need for
multiple rounds of information exchange between clients and the central server to train a
global model. In healthcare environments with numerous geographically dispersed clients,
this can strain bandwidth and lead to bottlenecks, especially when network connections are
unreliable. Techniques like gradient compression, sparsification, and quantization reduce
communication cycles and speed up preprocessing [157], but their scalability across large
networks remains underexplored.

Future Research Questions: How can communication-efficient techniques be scaled
to support thousands of healthcare clients without compromising model convergence? Can
adaptive compression algorithms dynamically adjust to fluctuating network conditions in
real-time? Investigating scalable communication protocols, such as federated distillation
or hierarchical aggregation, could provide practical solutions for large-scale healthcare
FL deployments.

5.3. Heterogeneity Data

Medical data heterogeneity, arising from diverse sources like imaging, EHRs, ge-
nomics, and wearables, poses a significant challenge in FL’s distributed setting. Increased
heterogeneity often degrades performance, necessitating innovative solutions. Participant
selection ensures maximum update aggregation by choosing clients strategically [158],
while personalized FL, such as Federated Multi-Task Learning (FMTL), adapts models to
client-specific data characteristics [159].

Future Research Questions: How can participant selection algorithms be optimized to
balance computational load and data diversity in real-time? What meta-learning techniques
can enhance personalized FL to handle extreme heterogeneity in healthcare datasets?
Future work could focus on developing robust FMTL frameworks that dynamically adjust
to client-specific nuances while maintaining global model integrity.

5.4. Scalability

As FL systems grow to include more clients and larger datasets, scalability emerges
as a critical barrier, particularly in healthcare where institutions vary in computational
resources. Hierarchical FL architectures [152] and asynchronous updates [153] address
some issues, but their practical limits in massive networks are unclear.

Future Research Directions: Researchers should investigate how hierarchical FL can
be adapted for dynamic healthcare networks with fluctuating client participation. What
are the trade-offs of asynchronous FL in terms of accuracy versus scalability in real-world
medical settings? Actionable steps include designing scalable FL simulators to test these
approaches under realistic healthcare conditions and exploring resource-aware scheduling
algorithms to optimize client contributions.
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5.5. Standardization

Interoperability challenges in healthcare FL stem from diverse data formats, proto-
cols, and regulations across institutions. Standardized frameworks like OpenFL [154]
and ontology-based data harmonization [155] offer potential solutions, but consensus on
standards remains elusive.

Future Research Questions: What standardized FL protocols can be universally
adopted across healthcare institutions with varying regulatory requirements? How
can ontology-based approaches be streamlined to reduce integration complexity? Re-
searchers could develop open-source standardization toolkits and testbeds to facilitate
cross-institutional collaboration, ensuring practical interoperability in FL deployments.

5.6. Model Explainability

While FL enhances privacy and scalability, the interpretability of its models crucial
for healthcare decision-making remains underexplored. Black-box models may hinder
trust and adoption by clinicians, especially when local updates obscure global model
behavior [160].

Future Research Directions: How can explainable AI (XAI) techniques, such as
SHAP or LIME, be integrated into FL to provide interpretable insights at both local and
global levels? Can federated explainability frameworks balance privacy with transparency?
Researchers should prioritize developing lightweight XAI methods tailored for FL, testing
their efficacy in clinical settings to enhance trust and regulatory compliance.

5.7. Integrating FL with Emerging Technologies

Integrating federated learning (FL) with emerging technologies, such as blockchain,
edge computing, and the Internet of Things (IoT), offers significant potential to enhance
its capabilities. Blockchain, for example, with its decentralized nature, enables secure and
transparent data exchanges in FL and eliminates the need for a transfer data to a central
server while protecting against malicious attack. Along with the ability to improve security
and scalability in FL, blockchain also ensures data integrity. It decreases latency through
local data processing at local data devices or in edge devices [161]. Edge computing is
another emerging technology that can integrate with FL for local processing. The ability of
edge computing to reduce latency and preserve privacy is also a critical advantage, partic-
ularly in latency-sensitive applications like healthcare and smart cities [162]. Optimizing
FMTL frameworks to balance global model performance is one of the critical areas for
future research.

Future Research Questions: How can FL be seamlessly integrated into legacy health
IT systems without disrupting workflows? What middleware solutions can bridge FL with
existing EHR platforms while ensuring data security? Practical research could focus on
designing plug-and-play FL modules and conducting pilot studies in hospitals to validate
integration feasibility.

5.8. Hyperparameter Optimization

Hyperparameter selection plays a pivotal role in optimizing knowledge aggregation
algorithms. However, in the context of FL, hyperparameter optimization presents novel
challenges and remains a significant area of ongoing research. In FL, the optimal hyperpa-
rameter configuration may differ for each participant, depending on their data distribution.
Indeed, it is crucial for each participant to optimize their hyperparameter settings based
on their specific data properties [163]. One potential method for achieving hyperparam-
eter optimization is through an auction mechanism. This approach can be implemented
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by offering incentives to clients, encouraging them to contribute to the hyperparameter
optimization process through an auction mechanism [164].

Future Research Directions: How can decentralized hyperparameter optimization
be scaled across heterogeneous healthcare clients? Can auction mechanisms ensure equi-
table participation without bias toward resource-rich clients? Future work could explore
automated hyperparameter tuning frameworks using reinforcement learning or Bayesian
optimization, validated in diverse medical FL scenarios.

6. Conclusions
In the smart healthcare domain, machine learning methods for disease detection have

become increasingly prevalent, which raises profound concerns about the privacy and
security of patient data. Due to federated learning’s non-sharing of medically sensitive data,
FL is emerging as a promising decentralized learning framework for medical applications.
In this paper, we provide a systematic review of the growing use of federated learning (FL)
in the area of smart healthcare. This paper comprehensively reviews the federated learning-
based architecture associated with a smart healthcare environment. Also, the paper presents
the application of federated learning in various fields such as disease prediction, drug
discovery, treatment, and medical imaging. Moreover, we discuss the challenges of using
federated learning and define some future research directions.
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