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Abstract

The purpose of this paper is to extend to spaces of nonlinear operators, and also to
more general spaces of linear operators, a recent result on lineability of sets of non-
injective linear operators. We prove, for quite general spaces A of (linear or nonlinear)
maps from an arbitrary set to a sequence space, that, for every 0 # f € A, the
subset of A of non-injective maps contains an infinite dimensional subspace of A
containing f. We provide applications to spaces of linear operators between quasi-
Banach spaces, to spaces of linear operators belonging to an operator ideal, and, in
the nonlinear setting, to spaces of homogeneous polynomials and to spaces of vector-
valued Lipschitz functions on metric spaces.

Keywords Spaceability - Lineability - Sequence spaces - Function spaces - Operator
and polynomial ideals - Lipschitz functions
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1 Introduction

Let A be a nonlinear set formed by vectors of an infinite dimensional linear space
E satisfying some distinguished property, and let « be a cardinal number not greater
than the dimension of E. One of the purposes of the fashionable subject of lineability
is to decide whether or not there exists an o-dimensional subspace W of E such
that W C A U {0}. If yes, the set A is said to be «-lineable. If E is a topological
vector space and W can be chosen to be closed, then A is said to be «-spaceable.
For a comprehensive account of this subject, see Aron et al. (2015). Lineability and
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spaceability in spaces of nonlinear operators have already been studied, for example,
in spaces of homogeneous polynomials (Botelho et al. 2010; Gdmez-Merino et al.
2012) and in spaces of Lipschitz functions (Avilés et al. 2024; Dantas et al. 2023).
New topics are constantly being added to the scope of lineability, we mention just a
few recent examples: convergence of random variables (Aratjo et al. 2024), spaces
of frequently hypercyclic vectors (Maiuriello 2023), Sobolev spaces (Carmona Tapia
et al. 2022) and sets of multilinear forms failing classical inequalities (Raposo and
Serrano-Rodriguez 2023, Section 7).

A standard technique in the field consists in fixing 0 # x € A and manipulating
x conveniently in such a way to construct the subspace W. It just so happens that,
sometimes, the mother vector x unfortunately does not belong to W. Applications
of the mother vector technique with happy endings were studied in Pellegrino and
Raposo (2021), where A is said to be pointwise a-lineable (pointwise a-spaceable)
if, for every x € A, there is a (closed) w-dimensional subspace W of E such that
x € W C A U {0}. For cardinal numbers « and f, the quite general notions of
(o, B)-lineability/spaceability were introduced in Favaro et al. (2020). Pointwise
a-lineability/spaceability is closely related to (1, «)-lineability/spaceability, but in
general these notions are not equivalent (see Pellegrino and Raposo 2021, Example
2.2). However, for sets of non-injective maps, which happens to be the subject of
this paper, these notions are equivalent. Therefore, denoting by ¢ the cardinality of
the continuum, in our results it is irrelevant if we write that a set is pointwise c-
lineable/spaceable or (1, c¢)-lineable/spaceable. One more word about terminology:
since infinite dimensional Banach spaces have dimension not smaller than ¢, we shall
write pointwise spaceable instead of pointwise c-spaceable, which, in our context of
sets of non-injective maps, is equivalent to (1, c)-spaceable.

Pointwise lineability and (1, c)-lineability of sets of injective/non-injective bounded
linear operators between classical spaces were studied in Diniz and Raposo (2021);
Diniz et al. (2020); Favaro et al. (2020). The purpose of this paper is to extend the
result we state next to (possibly non-normed) spaces of (possibly nonlinear) operators.

Theorem 1.1 (Favaro et al. 2020, Theorem 3.1) For 1 < p,q < oo, the set of non-
injective bounded linear operators from £, to £, is pointwise c-lineable.

We shall generalize the result above in the following directions: (i) The space of
bounded linear operators shall be replaced by much more general function spaces,
going far enough to include spaces of different types of nonlinear operators. (ii) The
domain space £, shall be replaced by an arbitrary set, which is not required even to
be a linear space. (iii) The target space £, shall be replaced by much more general
sequence spaces, which can be quasi-Banach spaces of vector-valued sequences. (iv)
In such a quite general setting, we prove pointwise spaceability instead of pointwise
c-lineability.

In the linear setting, our main result generalizes Theorem 1.1 to the range 0 <
P, q < oo and to the much smaller sets of non-injective compact operators and non-
injective nuclear operators. In the nonlinear setting, we provide applications of our
main result to sets of non-injective homogeneous polynomials, to sets of non-injective
bounded Lipschitz functions and to sets of non-injective Lipschitz functions that fix a
distinguished point.
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By Bg we denote the closed unit ball of the Banach space E, and by E* we denote
its topological dual. For Banach space theory we refer to Megginson (1998)

2 Spreading Sequence Spaces and Stable Function Spaces

In this section we introduce the spaces we shall use to generalize Theorem 1.1. The
abstract definitions are followed by a number of concrete examples. For the theory of
quasi-Banach spaces and p-Banach spaces, 0 < p < 1, we refer to Kalton (2003);
Kalton et al. (1984); Stiles (1970). Unless explicitly stated otherwise, all linear spaces
are over K = R or C. Henceforth, all linear spaces and subspaces, including Banach
and quasi-Banach spaces, are supposed to be non-null, that is, different from {0}.

Definition 2.1 Let 0 < ¢ < 1 and let W be a linear space. A W-spreading q-space is
a linear subspace V of the space W™ of W-valued sequences with the coordinatewise
operations, endowed with a complete g-norm || - ||y such that the following condition
holds:

o If (aj)?":1 € Vand Ny = {j; < j» < j3 < ---}is an increasing infinite subset
of N, then the sequence (b./)‘;il given by

by — | @i itk = ji,
k=1 0. otherwise,

belongs to V and ||(bj);?°;1 ly < ||(aj);?°=1 |lv. In this case we say that the sequence
(bj);?ozl is the spreading of (aj);?ozl with respect Np, and we write (bj);?ozl =
Sp((a)%21: No).

In the normed case ¢ = 1 we write W-spreading space instead of W-spreading
1-space.

Example 2.2 Most usual scalar-valued or vector-valued sequence spaces are spreading
spaces. Let E be a Banach space.

(i) The following are E-spreading spaces with respect to the supremum norm || - || so:
the space co(E) of norm null sequences, the space £, (E) of bounded sequences
and the space c( (E) of weakly null sequences.

(ii) If 1 < p < oo, then the space £, (E) of absolutely p-summable sequences is an
E-spreading space with respect to its usual norm || - || ,. If 0 < p < 1, then it is
a E-spreading p-space.

(iii) If 1 < p < oo, then the space £} (E) of weakly p-summable sequences endowed

with its usual norm [|(x,)°% lw,p = sup [[(x*(xx))2, [l p, and its closed sub-
X*EBE*
space

By = {2y € 0B 1 Tim 1), lu.p =0

of unconditionally p-summable sequences (see Defant and Floret 1993, 8.2), are
E-spreading spaces. If 0 < p < 1, then they are E-spreading p-spaces.
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As a counterexample, it is clear that the Banach space c of scalar-valued convergent
sequences with the supremum norm is not a K-spreading space.

We shall use a couple of times that every Banach space is a g-Banach space for
any 0 < g < oo. Actually, from Garling, (2007, Proposition 5.5.2) it follows that, if
0 < g < p <1, then every p-norm is a g-norm, hence every p-Banach space is a
g-Banach space.

Definition 2.3 Let Q2 be an arbitrary nonempty set, let F' be a g-Banach space, 0 <
g < 1, and, as usual, let F £ denote the linear space of maps from €2 to F with the
pointwise operations. A linear subspace A # {0} of F*, endowed with a complete
g-norm || - || 4, 1s said to be an (2, F')-stable function space if the following conditions
hold:

(i) The (metrizable) topology on A generated by the g-norm || - || 4 contains the topol-
ogy of pointwise convergence.

(i) If g € Aandu: F —> F is a bounded linear operator, then u o g € A and

llwogla < llull-lgla-

Example2.4 (a) Let 0 < p,q < 1, let E be a p-Banach space and let F be a g-
Banach space. It is immediate that the space L(E; F') of bounded linear operators
from E to F, endowed with the g-norm given by ||7|| = supy,<; I7(x)], is an
(E, F)-stable function space.

(b) For the theory of quasi-Banach operator ideals, we refer the reader to Defant
and Floret (1993, Section 9) and Pietsch (1980, Part 2). Let (Z, || - ||7) be a g-
Banach operator ideal, where 0 < g < 1. Since Banach spaces are g-Banach
spaces, Z(E; F) is an (E, F)-stable function space for all Banach spaces E and
F. Denoting by || - || the usual norm on L(E; F), the inequality || - || < || - ||z
Pietsch (1980, Proposition 6.1.4) gives condition (i) of the definition. Condition
(ii) follows from the ideal inequality of || - ||z (just take m = 1 in (1)).

For the reader’s convenience, we now recall the notion of quasi-Banach ideal of
homogeneous polynomials (see Botelho and Torres 2018; Floret and Garcia 2003). By
P("E; F) we denote the Banach space of continuous m-homogeneous polynomials P

from the Banach space E to the Banach space F with the norm || P|| = sup || P(x)].
X€BE

Given x* € E* and b € F, by (x*)™ ® b we denote the m-homogeneous polynomial
defined by [(x*)™ ® b](x) = x™*(x)™b. For the basic theory of spaces of homogeneous
polynomials between Banach spaces, see Dineen (1999); Mujica (2010). For 0 < g <
1, a g-Banach ideal of homogeneous polynomials, or simply, a g-Banach polynomial
ideal is a subclass Q of the class P of all continuous homogeneous polynomials
between Banach spaces, endowed with a function || - [[g: @ —> R, such that, for
every m € N and all Banach spaces E and F', the component

QME; F):=P("ME; F)NQ
satisfies the following conditions:
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e Q("E; F) is a linear subspace of P("E; F) containing the polynomials of the
type (x*)" @ b, x* € E*and b € F.
e The restriction of || - |[g to Q("E; F) is a g-norm and

1Zn: K — K, In(0) =1"g = 1.

o Ifu e L(Fy, F),P € Q("Ey; Fy) andv € L(E; Ep),thenuoPov € Q("E; F)
and

luoPovlg <lull-lIPlg-IlvI™. (1

Plenty of examples, concerning polynomials that are approximable, compact,
weakly compact, of absolutely summing-type and of nuclear-type, can be found in
Botelho and Torres (2018); Floret (2001); Floret and Garcia (2003). Techniques to
generate polynomial ideals from a given operator ideal, which also provide a number
of examples, can be found, e.g., in Aron and Rueda (2012); Botelho (2005); Botelho
et al. (2007).

Example 2.5 Let (Q, ||-||o) be ag-Banach polynomialideal,0 < ¢ < 1.Forallm € N
and Banach spaces E, F, Q("E, F) is an (E, F)-stable function space (we are using
again that Banach spaces are g-Banach spaces). Condition (i) of the definition follows
from the inequality || - | < || - g, where || - || is the usual norm on P("E; F) (see
Botelho and Torres 2018, Remark 2.2). Condition (ii) follows from (1).

All metric spaces in this paper are supposed to have at least two points.

Example 2.6 Let (M, d) be a metric space and let E be a Banach space. A map
f: M — E is a Lipschitz function if

ILf ) = FOIl

|| ||d:=su{ xyeM.x }<oo,
/ P17 aG» y bl

According to Johnson (1970), the set Lip(M, E) of bounded Lipschitz functions from
M to E is a Banach space with the norm || f||Lip := max{|| f |l4, || fllco}. The inequality
I flloo < Il fllLip gives condition (i) of Definition 2.3. Given f € Lip(M, E) and
u € L(E, E),itiseasy tocheck that luo fllg < lullll flla and [[uo flloo < lltlF] flloo-
Henceu o f € Lip(M, E) and |[u o f|lLip < |lull- || fllLip» Which gives condition (ii).
Therefore, Lip(M, E) is an (M, E)-stable function space.

Example 2.7 By a pointed metric space we mean a metric space M in which a point
0 € M has been distinguished. The space Lipy(M, E) of all (possibly unbounded)
Lipschitz functions f from a pointed metric space M to a Banach space E such that
f(0) = 0 is a Banach space endowed with the norm || - ||z (see, e.g., Brudnyi and
Brudnyi 2007). For allx € M and f € Lipy(M, E), || f ()|l < | flla - d(x, 0), which
gives condition (i) of Definition 2.3. Condition (ii) follows as in the example above.
Therefore, Lip,(M, E) is an (M, E)-stable function space.
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3 Main Result

A couple of preparatory results are needed to prove our main result.

Lemma 3.1 Let W be a linear space and 0 < q < 1. Any W-spreading q-space is at
least c-dimensional.

Proof Let V be a W-spreading g-space. Using Baire’s category theorem, it is not dif-
ficult to check that every infinite dimensional g-Banach space is at least c-dimensional
(see Aron et al. 2015, Proposition III.5, Mackey 1945, Theorem I-1). Therefore, it is
enough to prove that V is infinite dimensional. To do so, choose v = (v /) 2, € V\{0}

and split N into countably many pairwise disjoint subsets (Nz)72 ;. For each keN,

we write N = {nik) < nék) < ---}. Given ko € N, define my,: WN — W by

nko((xn)ff’ 1) = Xgo- Since v # 0, there is jo € N so that vj, = mj,(v) # 0. Using

that V a W-spreading space, for every k € N, the sequence wy = (w( ))‘X’ | given by

® _ Jui,if j = n® e Ny,
j 0, if j ¢ Ny

belongs to V. We claim that the set {wy : k € N} is linearly independent. To prove the
claim, let o, . .., a;, be given scalars, m € N, and suppose that

awy +oowy + -+ aw, =0e V. )
In particular,

a1, (W) + oo, <1>(w2) + - Famm,o (W) =0 W.
J() Jo

Note that 7 (1)(w1) = vj, # 0 and, since n( ) ¢ Uk SN, (1)(wj) = 0 for every

2<j<m. Thus a1vj, = 0, from which we get a; = 0. Therefore (2) collapses to
Wy + -+ Ay wy = 0.
In particular,

o, @ (w2) + -+ + a0 (wy) =0 € W. 3
J0

JO

Using thatn ) e Ny and N; NN; = @ foralli # j, we have 7 (z)(wz) =vj, #0
"o
and nn@(wj) = 0 forevery 3 < j < m.From (3) we get apvj, = 0, hence ap = 0.

i
Repeating the procedure finitely many times we conclude that ¢ = --- = o, = O,
which shows that V is infinite dimensional and completes the proof. O

We skip the easy proof of the following lemma.
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Lemma 3.2 If'V is an infinite dimensional linear space and Q2 is a nonempty set, then
V< is infinite dimensional.

Theorem 3.3 Let W be a linear space, let V be a W-spreading q-space, 0 < g < 1,
let Q2 be a nonempty set and let A be a (2, V)-stable function space. Then the subset
of A of non-injective maps is either {0} or pointwise spaceable.

Proof Suppose that N := {f € A : f is non-injective} # {0}. Pick 0 # f € A and
let span{ f} be the 1-dimensional subspace generated by f. It is clear that span{ f} C
N (this is exactly the reason why pointwise spaceability and (1, ¢)-spaceability are
equivalent for A). Being f non-injective, there are

wo, to € 2, wo # ty, such that f(wgy) = f (7). 4)

For every w € 2, we denote by (f(w)); the j-th coordinate of f(w), thatis, f(w) =

((f(w))j)‘l?il. As f # 0, there exists z € 2 such that f(z) # 0, hence there is

Jo € N such that (f(2))j, # 0. Let (N;)72, be a sequence of pairwise disjoint
o0

infinite subsets of N not containing jo, that is, jo ¢ | Ni. For each k € N we write
k=1

Ny = {nik) < nék) < ---} and consider the map

xi, if j = ngk) e N,

ug: V—V, (ur(x)); = { 0, if j ¢ N,

where x = (x,,);’lozl. The map uy is well defined, in the sense that it is V-valued,
because V is a W-spreading g-space. Given x = (x,);2,,y = (yu)pe; € V and
reK,wehavex + Ay = (x, +Ay)oo . If j = ngk) € Ng, then

(wi(x +2y))j =xi +Ayi = (ur(x)); + A(ur(y));.
And if j ¢ (g N, then the equality above holds with 0 = 0. This proves that uy
is linear. For each k € N, define f; := ux o f: Q — V. We claim that f; € A for
every k € N. Since A is a (€2, V)-stable fucntion space, it is enough to show that the

linear operator uy, is bounded. This is true because, since ux(x) = Sp(x, N) for every
x € V, we have

lux () llv = ISpCx, N lly = llxllv,
which gives that uj is bounded with |Juy|| < 1. Therefore, fr = ux o f € A and
I filla = lluk o flla < Nuill - N flla < I1f1la (5)
for every k € N. Note that, for every w € Q: (i) If j ¢ N, then (fr(w)); =

(ur(f(w)); =0.G)If j = n,(,]f) for some m € N, then (fx(w)); = up(f(w))); =
(f (w))m. In other words, fi(w) can be written in the form

@ Springer
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—_ ,®
(fe(w)); = {(f O S s (©)

From f(wp) = f (o) if follows now immediately that

Ji(wo) = fi(to) for every k € N. (7

Therefore f; is non-injective, that is, f; € N para every k € N. Our next purpose is
to show that the set { f, fx : k € N} is linearly independent. To do so, let k € N and
leta,ap,...,ar € Kbe such that

af +a1fi+---+arfr =0. ®)

Evaluating at the element z € € for which (f(z)) j, # 0, we have

af () +a1 /1@ +---+arfr(z) =0.

In particular,
a(f(2)jo +a1(f1(2)jo + - +a(fk(2)) j, = 0. )

Since jo ¢ U,fil N, we have (f1(z)j, = --- = (fx(2))j, = 0, hence (9) gives
a(f(2)j, = 0, from which we conclude that a = 0. Therefore, (8) collapses to
ai f1 + - - + ax fr = 0, which implies, in particular, that

ar(f1(2),0 + -+ a(fi(2) 0 = 0. (10)
Jo J0

Since N| = {nil),ng), ...ng.(l)), ...} and, for every w € Q, (fi(w)); = (f(w));

whenever j = nf ) e N, we have

(1), m = (f(@)j, # 0.
o

o
Noting that (fk(z)) (1) = 0 for every k > 1 because n(.l) ¢ U Ny, (10) collapses
to a1 (f1 (z)) (|> = O which implies that a; = 0. Hence, a2f2 + .4 acfi = 0.

Repeating the latter argument, we conclude thata = a; = --- = ax = 0. Thus far
we have proved that {f, fx : k € N} is an infinite linearly independent subset of A
contained in V. In particular, A is infinite dimensional. Let us check that the map

Vily — A, Y@y =af+ Yy ajfi1

j=2
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is well defined. For every n € N,

n n
lar £+ D aj -l = lal - 1AIG + D laj |- 1 fial

j=2 j=2

®) -
a1+ D lail - A1

j=2

n o0
= 1F1% Y Hail? < A1 eyl < oo
j=1 j=1

Letting n — oo we get [lai f1|% + > laj fi—1ll% < oo, that is, the series a1 f +
Z?iz aj fj—1 is g-absolutely convergent in the g-Banach space A. From Aron et al.
(2015, Lemma 3.2.5) it follows that the series converges in A, proving that ¥ is well
defined. The linearity of i follows easily. Let us prove now that ¥ is injective. Indeed,
if ¥ ((ar)72;) = 0, then

arf+) ajfj-1=0. (11)

j=2

Applying at z for which (f(z)), # 0, we get

ar(f@)jy+ > a;(fj-1())j, =0.

j=2

Since jo ¢ U Nk, we have (fj-1(2))j, = O for every j > 2. Hence,

> ai(fi-1@)j, = 0.

j=2

from which it follows that a; (f(z)) j, = 0, thatis, a; = 0. So, equality (11) collapses
to 72, a; fj—1 = 0. The same reasoning we made in (8) allows us to conclude that
aj = 0 forevery j. This proves that v is injective. We have that v is a linear injective
operator on the c-dimensional space ¢, therefore v (£,) is a c-dimensional subspace
of A. Since f =¥ ((1,0,0,...)), we have f € ¥ (£,). For every (ak),fil € £, with
ay # 0 for some k € N we have

Y ((ar)ge) (wo) = ay f (wo) + az fi(wo) + a3 foa(wo) + - -

40 ay f(to) + az f1(to) + a3 f2(to) + - -

= ¥ ((a)pZ)) (t0),
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showing that v ((ax)2 |) is non-injective, that is, ¥ (£,) is a c-dimensional subspace
of A contained in A and containing f.

All that is left to prove is that ¥ (£,) C N. Given g € ¥ (€y), as the closure is
taken in the metrizable topology of A, we can take a sequence (gx)x in ¥ (£,) such

that gi pnd' g with respect to the g-norm of A. For every k there is (a;k));?oz | €44
such that
o
(k) (k) (k)
g =1 (@) =al’ r+ Y al g
Jj=2
For every k € N,
- (CXQ)]
k k . k
gk(wo) = a]( ) f(wo) + Zaﬁ )fjfl(uJo) = af ) £ (t0)
j=2
oo
k
+Y 'l fi-1(10) = gi(t0). (12)
j=2

Since A is a (€2, V)-stable space, its topology contains the topology of pointwise
convergence, hence the convergence gy —> g in A implies that gz (w) —> g(w) for
every w € 2. In particular,

. a2 .
g(wp) = lim gr(wo) =" lim g (to) = g(to).
k—00 k—o00

This shows that g is non-injective, that is, g € A. Thus, ¥ (£y) is a closed infinite
dimensional subspace of A contained in A/ containing f. The proof is complete. O

4 Applications

In this section we use the examples provided in Section 2 to give applications of the
main theorem which go far beyond the linear and normed scope of Theorem 1.1.

Although keeping the linear environment of Theorem 1.1, the first application
encompasses much more general domain and target spaces and, moreover, gives point-
wise spaceability.

Corollary 4.1 Let O < p,q < 1, let E be a p-Banach space such that dim E > 1
and E* # {0}, let W be a linear space and let V be W-spreading q-space. Then the
set of non-injective bounded linear operators from E to V is pointwise spaceable in
L(E,V).

Proof By Example 2.4(a) we know that L(E; V) is a (E, V)-stable function space.
Taking 0 # x* € E* and 0 # b € V, using that dim £ > 1 it is not difficult to check
that x* ® b is a non-null non-injective bounded linear operator. The result follows
from Theorem 3.3. O
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Given a Banach space F' and 0 < g < oo, we consider the set V, p =
{co(F), ¢ (F), Loo(F), £q(F), €5 (F), £5(F)}.

Example4.2 1et 0 < p < 1, let E be a p-Banach space such that dim £ > 1 and
E* # {0}, and let F' be a Banach space. Forany 0 < ¢ < ooandevery V € V, r,from
Example 2.2 and the corollary above it follows that the set of non-injective bounded
linear operators from E to V is pointwise spaceable.

The next application, although considering operators between Banach spaces, goes
a bit further by assuring pointwise spaceability of sets much smaller than the set of
non-injective bounded linear operators.

Corollary 4.3 Let E be a Banach space with dimE > 1, let W be a linear space, let V
be a W-spreading space and let (Z, || - ||7) be a g-Banach operator ideal, 0 < g < 1.
Then the subset of Z(E; V) of non-injective bounded linear operators is pointwise
spaceable.

Proof By Example 2.4(b) we know that Z(E; V) is a (E, V)-stable function space.
The non-null non-injective operator x* ® b of the proof of Corollary 4.1 has finite
rank, hence it belongs to Z(E; V). The result follows from Theorem 3.3. O

Example 4.4 Let E and F be Banach spaces and let (Z, | - ||7) be a g-Banach operator
ideal, 0 < ¢ < 1.Forany 1 < p < oo and every V € V), g, from Example 2.2 and
the corollary above it follows that the subset of Z(E; V') of non-injective operators is
pointwise spaceable. In particular, the sets of non-injective compact operators (with
the usual operator norm) and of non-injective nuclear operators (with the nuclear
norm) from E to V, which are, in general, much smaller than the set of non-injective
bounded operators, are pointwise spaceable.

Now we proceed to give applications in spaces of nonlinear operators. In the next
result we consider only m-homogeneous polynomials with m > 2 odd in real Banach
spaces. The reason is that, if m is even or K = C, then m-homogeneous polynomials
are never injective, therefore this case is not of interest.

Corollary 4.5 Let K = R, let E be a Banach space, let W be a linear space, let be V be
a W-spreading space, and let (Q, || - || o) be a q-Banach polynomial ideal, 0 < q < 1.
Then, for every m > 2 odd, the subset of Q(™E; V) of non-injective polynomials is
pointwise spaceable.

Proof By Example 2.5 we know that Q(™E; V) is a (E, V)-stable function space.
Taking 0 # x* € E* and 0 # b € V, (x*)™ ® b is a non-null non-injective m-
homogeneous polynomial which belongs to Q("E; V) because Q is a polynomial
ideal. The result follows from Theorem 3.3. O

Example 4.6 Let K = R, let E and F be a Banach spaces and let (Q, || - [|g) be a g-
Banach polynomial ideal,0 < ¢ < 1.Forany 1 < p < oo,every V € V) r and every
m > 2 odd, from Example 2.2 and the corollary above it follows that the subset of
Q(™E; V) of non-injective polynomials is pointwise spaceable. In particular, the sets
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of non-injective compact m-homogeneous polynomials (with the usual polynomial
norm) and of non-injective nuclear m-homogeneous polynomials (with the nuclear
norm) from E to V, which are, in general, much smaller than the set of non-injective
continuous m-homogeneous polynomials, are pointwise spaceable.

Injectivity of Lipschitz functions was thoroughly investigated in Garcia-Lirola et al.
(2023). The presence of non-null constant functions makes the pointwise spaceability
of the set of non-injective bounded Lipschitz functions very simple:

Proposition 4.7 Let (M, d) be a metric space and let E be a Banach space. Then the
set of non-injective Lipschitz functions f: M —> E is pointwise dimE-spaceable in
Lip(M, E).

Proof For every x € E, denote by iy: M — E the constant function i, (w) = x for
every w € M. It is clear that iy € Lip(M, E) and that the operator x € E > i, €
Lip(M, E) is an isometric isomorphism onto its range. Let f € Lip(M, E) be a non-
injective function. If f is constant, put X = {iy : x € E}; and if f is non-constant, put
X =span{f}®{iy : x € E}.Inboth cases, X is a closed dim E-dimensional subspace
of Lip(M, E) containing f and contained in the set of non-injective functions. O

It is clear that, when dealing with spaces of Lipschitz functions, it is not interesting
to be confined to constant functions. In our opinion, when the mother function f
is non-constant, the solution above is somewhat disappointing, in the sense that the
resulting space X is formed by functions that are constant modulo the mother function
f. More precisely, every function in X differs from a multiple of f by a constant
function. The space obtained in the next application of our main result (and its proof)
contains functions of the form A f + g for every g belonging to an infinite dimensional
space formed, up to the null function, by non-constant functions.

Proposition 4.8 Let (M, d) be a metric space, let W be a linear space and let V bea W -
spreading space. For every non-injective non-constant Lipschitz function f: M —
V, there exists a closed infinite dimensional subspace X of Lip(M, V') such that:

(1) f € X and every function in X is non-injective.

(ii) There exists an infinite dimensional subspace Z of X formed, up to the null function,
by non-constant functions, such that Z N span{f} = {0} and A f + g € X, hence
Af + g is non-injective, for every A € K and every g € Z.

Proof We use the notation of the proof of Theorem 3.3.

(1) By Example 2.6 we know that Lip(M, V) is a (M, V)-stable function space. Since
0 # f € Lip(M, V) is non-injective, from the proof of Theorem 3.3 we know that
X = (£)) is a closed infinite dimensional subspace of Lip(M, V) containing f and
contained in the set of non-injective functions.

(ii) Also from the proof of Theorem 3.3, we know that Z := span{ f; : k € N} is an
infinite dimensional subspace of X such that Z N span{f} = {0}. Given A € K and
g € Z, there are ay, . . ., a; € K such that

Af+g=rf+afi+ -Fafi=v(r, a1, ...,a,0,0,...)) e y(£y) C X.
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All that is left to be proved is that every non-null function of Z is non-constant. Given
0 # g € Z,wecanwrite g = ay fi+- - -+ay fy wherea; # Oforsome j € {1, ..., k}.
Using that f is non-constant, let wi, wo» € M be such that f(w;) # f(wy). In this
case there is i € N so that (f(w1)); # (f(w3));. For every m € N, from (6) we get

(fm (w1, = (f(w)i # (f W2))i = (fm(W2)),, . 13)

hence fi,(w1) # fu(w2). This proves that each f, is non-constant, in particular, f;

)

is non-constant. Taking the n;*”-coordinates of g(w) and g(w2), we get, forr = 1, 2,

&wp), i = ar(fi(wy) i +---+a;j(fjw) o+ +a(fitw)), o, (14)

n?) ¢ UZ , Neoby @ wehave (fe(wn) 0 = felwn)), 0 = Ofore =1,.... j-
Lj+1,.. k Combining (13), (14) and using that a; # 0 we conclude that

(g(wl))nl(n = aj(fj(wl))n;j) b aj(fj(wz))n§/> = (g(wz))nlm,

hence g(w1) # g(wy). This proves that g is non-constant. O

The proof of Proposition 4.7 does not apply to Lip,-spaces because these spaces do
not contain non-null constant functions. But our main theorem applies: the following
corollary is a combination of Theorem 3.3 and Example 2.7.

Corollary 4.9 Let (M, d) be a pointed metric space, let W be a linear space and let
V be a W-spreading space. Then the set of non-injective Lipschitz functions is either
{0} or pointwise spaceable in Lipy(M, V).

In the same way we did before, one obtains concrete applications of Proposition
4.8 and of the corollary above using the spaces from Example 2.2.
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