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Abstract
Key message  Strategic resource allocation in breeding programs is key to balancing cost-effectiveness and genetic 
improvement.
Abstract  This research aimed to understand the critical role of adopting advanced breeding tools and optimizing breeding 
strategies to ensure the sustainability and success of public breeding programs in meeting future food security challenges. In 
this context, there are two main objectives: estimate the genetic gains achieved over 110 years in the rice breeding program 
of Louisiana State University (LSU); evaluate through stochastic simulations the impacts of modern selection tools such 
as genomic selection (GS) and high-throughput phenotyping (HTP) on future genetic gains. Considering the 110 years, the 
average increase was 4.55 kg/ha per generation (23 breeding cycles). However, from 1994 to 2018, we observed more sub-
stantial trends in genetic gains, particularly for grain yield, which increased by approximately 56.54 kg/ha per year. Based 
on simulations, integrating GS and HTP demonstrated significant advantages, including shorter breeding cycles, enhanced 
selection accuracy, and reduced costs. Also, simulation results showed that this approach yielded the highest response to 
selection (4.68% per year) due to the synergistic effects of combining advanced phenotyping techniques with GS. Finally, we 
assessed the effects of balancing the number of parents, crosses, and progeny sizes to maximize genetic gains and maintain 
genetic variability. Variance component analysis indicated that progeny size had the greatest impact on total variance (36%), 
followed by the number of crosses (23%) and the number of parents (3.4%). The findings highlight the need for strategic 
resource allocation in breeding programs to balance cost-effectiveness and genetic improvement.

Introduction

Public plant breeding programs have a great responsibil-
ity for global food security, as this sector is often the main 
source of genetic gain increases for the neediest communi-
ties (Cobb et al. 2019). Many of them have long-term inte-
grated activities such as basic research, germplasm improve-
ment, and the development of improved varieties; these are 
essential activities of a public plant program and cannot 
be sustained without continuous public funding (Coe et al. 

2020). As a result, developing and adopting high-yielding 
varieties have significantly contributed to increasing agricul-
tural productivity and reducing hunger over the last century. 
Their contribution will likely continue growing over time 
(Qaim and Kouser 2013). In this context, genetic gain is one 
of the main benchmarks of success for a breeding program, 
and with a high and sustained rate over cycles, genetic gain 
plays a central role in agricultural transformation (Xu et al. 
2017).

There is a projection regarding the main staple crops 
worldwide. A linear progression of genetic gain, targeting 
an established rate of 2% per year, must be achieved to over-
come the so-called "2050 challenge" and match the world 
population growth (Li et al. 2018). Breeding programs have 
a major impact on increasing crop yield at the necessary rate 
to match the needs of the world's growing population and 
achieve global food security (Cobb et al. 2019). Estimating 
genetic gain is one of the strategies to track the performance 
of a breeding program on this mission (Xu et al. 2017). It 
can be a useful indicator of the efficiency of the breeding 
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program in utilizing financial and genetic resources sustain-
ably through the breeding process (Covarrubias-Pazaran 
2020). This means that the use of resources is effectively 
reflected in genetic progress toward the breeding program's 
target goals. In addition to increasing productivity, breeding 
programs can have different goals, such as disease resist-
ance and tolerance to soil salinity and drought. The breed-
ing program's target goal directly impacts the genetic gain 
estimates. In this context, factors such as breeding scheme, 
trait heritability, connectivity, and the number of trials and 
sites per genotype can also introduce errors in these esti-
mates (Rutkoski 2019a, b; Raymond et al. 2023). Therefore, 
genetic gain estimates should not be used to compare the 
efficiency of different breeding programs directly. Instead, 
they should be employed to assess the presence of a positive 
upward trend or to obtain a close estimate of the realized 
genetic gain within a single breeding program (Rutkoski 
2019a, b).

Consequently, several studies have assessed the rice 
genetic gain of other rice breeding programs worldwide for 
grain yield. Streck et al. (2018) estimated the genetic gain of 
the irrigated rice breeding program of Embrapa in Southern 
Brazil (from 1972 to 2016) and observed a genetic gain of 
0.62% per year (37.91 kg/ha/year). Kumar et al. (2021) esti-
mated the genetic gain for rice yield in India from 2005 to 
2014. They observed a positive genetic trend in grain yield 
of 0.68% (34 kg/ha/year) under irrigated control, 0.87% 
(25 kg/ha/year) under moderate drought stress, and 1.9% 
(27 kg/ha/year) under severe drought stress. Khanna et al. 
(2022) estimated the genetic gain of the International Rice 
Research Institute (IRRI) rice drought breeding program, 
between the years 1980–2015, at the rate of 0.23% (10.22 kg/
ha/year) under non-stress conditions and 0.13% under 
drought conditions (2.29 kg/ha/year). Khanna et al. (2024) 
estimated the genetic gains in IRRI’s salinity breeding pro-
gram from 2008 to 2019 and Bangladesh from 2005 to 2014. 
They observed a positive genetic trend of 0.1% (1.52 kg/
ha) per year in IRRI, Philippines, and 0.31% (14.02 kg/ha) 
in Bangladesh. Also, in IRRI, Juma et al. (2021), for the 
irrigated rice breeding program, analyzed 102 historical 
yield trials conducted in the Philippines from 2012 to 2016 
and represented 15,286 breeding lines (including released 
varieties). They estimated a rate of genetic gain for grain 
yield at 8.75 kg/ha/year (0.23%) for crosses made from 1964 
to 2014. Reducing the data to only IRRI-released varieties, 
the rate doubled to 17.36 kg/ha/year (0.46%). Regressed 
against the breeding cycle, the rate of gain for grain yield 
was 185 kg/ha/cycle (4.95%). In turn, Rahman et al. (2023) 
have estimated a genetic gain of the Bangladesh breeding 
program from the years 1970–2020, at the annual rates of 
0.28% for winter rice and 0.18% for monsoon rice, which 
corresponds to an increase of 10 kg/ha per year in grain 
yield for both. More recently, Seck et al. (2023) reviewed 29 

rice studies conducted between 1999 and 2023, covering dif-
ferent regions, traits, periods, and estimation methods. The 
genetic gain for grain yield, in particular, showed significant 
variation, ranging from 1.5 to 167.6 kg/ha/year, with a mean 
value of 36.3 kg/ha/year.

Given the numbers above, it is easy to realize that plant 
breeding is a complex long-term activity, and every deci-
sion has to consider the huge amount of time and resources 
invested in it. Even with the amount of information we have 
generated in the last decades, adopting new tools in plant 
breeding demands a lot of caution. The time and resources 
needed to develop the plant breeding practices do not allow 
for many tests of new strategies. In addition, comparing 
breeding strategies based only on field trials could be risky 
once a unique or a couple of field trials is a random sample 
and does not represent all possible outcomes of a random 
effect, leading to low-reliability results (Li et al. 2012). 
Thus, stochastic simulation can help the breeder overcome 
those aspects and project the future once the breeders have a 
cost-effective way to simulate breeding scenarios to optimize 
a breeding program. Moreover, allows us to test new strate-
gies and tools through many cycles, with many repetitions to 
estimate random effects better, and all of those with the cost 
of a powerful computer machine and advanced knowledge in 
quantitative genetics and plant breeding to simulate relevant 
scenarios (Bančič et al. 2024).

To accomplish future demands, the adoption of advanced 
tools such as genomic selection (GS) and high-throughput 
phenotyping (HTP) is indispensable to improving genetic 
gain rates (Cobb et al. 2019), of course, when all other 
components of the breeding program are already optimized 
(Rutkoski 2019b; Seck et al. 2023). The main advantages of 
genomic selection (GS) include the reduction of breeding 
cycle length, higher selection accuracy of top-performing 
genotypes, and reduced costs associated with classical phe-
notyping (Crossa et al. 2017). In addition to the costs of 
manual phenotyping, measurements are prone to human 
error and subjectivity. HTP tools can increase selection 
accuracy at lower costs and with higher selection intensity, 
enabling the phenotyping of more plots (Xu et al. 2021). 
HTP can be implemented using phenotyping platforms (Yas-
sue et al. 2022) and remote sensing with unmanned aerial 
vehicles (Hassan et al. 2019). The advantages of GS and 
HTP may be further enhanced when these tools are com-
bined. The synergistic effect between GS and HTP has been 
observed in many empirical studies involving crops such as 
wheat (Sun et al. 2019), maize (Adak et al. 2024), and soy-
bean (Moreira et al. 2021), but it is not so evident in rice yet.

The Louisiana State University (LSU) rice breeding pro-
gram was established in 1908 and has been instrumental in 
advancing the rice industry in Louisiana (USA) and globally. 
Since then, we have released 63 varieties and groundbreak-
ing technologies, such as the Clearfield® Rice (Sudianto 



Theoretical and Applied Genetics         (2025) 138:142 	 Page 3 of 18    142 

et al. 2013). Despite the program's evolution and success 
over the years, the primary objectives and priorities have 
remained consistent, focusing on the release of improved 
varieties. However, to design new strategies for the future, 
we need to quantify the success of our past efforts and then 
define the best balance between labor and budget and genetic 
gains for future initiatives. Thus, the main objectives of this 
work were to: (i) estimate the genetic gains achieved in 110 
years of Louisiana State University's (LSU) long-grain rice 
breeding program, (ii) use stochastic simulations to evaluate 
the impacts of adopting modern selection tools, such as GS 
and HTP, and the effect of balancing the number of par-
ents, crosses, and progeny size on genetic gain and resource 
allocation.

Material and methods

The LSU rice breeding framework

We have used a recurrent selection approach involving mul-
tiple rounds of selection and interbreeding among superior 
offspring for subsequent selection cycles. This program 
operates through a closed-loop germplasm pipeline, concen-
trating on population improvement. It employs a tiered trial 
system wherein top-performing lines progress toward poten-
tial varietal release. In the early breeding stages, selections 
focus on highly heritable traits like plant height, maturity, 
and type. As the cycle progresses, the emphasis shifts from 
high heritable qualitative traits to lower heritable traits like 
grain yield and milling characteristics. Field evaluations for 
trait assessments are conducted locally at LSU and through 
multi-environmental trials across the Louisiana rice region. 
For adaptation trials, evaluations are extended to neighbor-
ing states to evaluate stability and adaptability to other pro-
duction areas. Furthermore, the increase in seed numbers 
and generational advancements occur in Puerto Rico, con-
tributing to the program's meticulous and comprehensive 
breeding operations.

The breeding process starts with hybridization and popu-
lation development, with approximately 300 new popula-
tions developed annually. A critical component of the popu-
lation development stage is choosing the right parents and 
determining the size and number of populations. The F1 gen-
eration is grown at LSU, and each population is confirmed 
by DNA marker testing. The F2 generation is immediately 
planted at the winter nursery in Lajas, Puerto Rico. Panicles 
are selected from single F2 plants and advanced to the line 
development stages at the LSU, consisting of approximately 
20,000 F2:3 to 9000 F3:4 panicle rows. The line develop-
ment stage, lasting 1–2 years, aims to achieve crucial objec-
tives: firstly, ensuring the homogeneity and inbreeding of the 
lines; secondly, selecting highly heritable traits; and thirdly, 

increasing seed quantity to provide a sufficient supply for 
future trials. Moreover, the marker-assisted selection (MAS) 
strategy is employed at these early stages to aid in selecting 
qualitative traits.

Subsequently, the selected lines progress to preliminary 
yield testing (PYT), marking the initial evaluation stage in 
plots. This phase represents the parents to be selected for the 
next cycle and is a valuable GS training set (TS) source. The 
primary objective at this juncture is to identify and select the 
most promising materials to advance to the subsequent stage. 
Conducted across two environments, involving two plant-
ing dates with one replicate each, this evaluation typically 
includes F3:F5 materials and is approximately 1500 entries 
across all segments combined.

Finally, regional and advanced yield testing (RYT and 
AYT, respectively) are conducted across multiple environ-
ments and locations. The RYT test is conducted across 4–5 
environments. At this stage, we have approximately 200 
entries distributed in a randomized complete block design 
(RCBD) with two replicates, comprising materials advanced 
from the PYT stage. The AYT is conducted across eight 
environments with 10 entries and three replicates, also 
arranged in a randomized complete block design (RCBD), 
comprising materials advanced from the RYT stage or lines 
repeated from the previous year’s AYT. The AYT entries 
are primarily F5:7 materials. At these stages, a major empha-
sis is on evaluating key quantitative traits and assessing the 
response to the environment and stability. The stage deter-
mines the breeding cycle, and we select the parents to com-
pose the next generation.

The most promising lines being considered for potential 
commercial release undergo a pre-commercial (PC) testing 
stage. This test is conducted across 25–30 environments in 
collaboration with the University of Arkansas, Horizon Ag., 
and Nutrien Ag. Each collaborator nominates five lines to be 
included in the trial each year. At the PC stage, we have three 
replicates and it comprehensively tests yield, agronomics, 
grain quality, and disease resistance. This rigorous evalu-
ation ensures a robust understanding of the potential new 
varieties before release.

Estimating the realized genetic gains

With the aid of current and former researchers of the LSU 
rice breeding program, phenotypic information from the last 
24 years (1999–2022) was gathered, as well as the whole 
pedigree (1615 parents) since the founders (110 years). The 
data correspond to 26,882 plots, 597 genotypes, and 178 
trials in 19 locations in completely randomized blocks. The 
genotypes to be evaluated will be grain yield, plant height, 
and whole milling. The traits evaluated presented zero or 
a low correlation among them (Supplementary Fig. 2). To 
capture the environmental trend over time, we estimated the 
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yield trend of check genotypes that were present in at least 
60% of the years from 1999 to 2022. These checks serve 
as a consistent benchmark across environments and help to 
account for non-genetic changes in yield over the years (Sup-
plementary Fig. 3).

The data were processed, organized, and subjected to sta-
tistical quality control and descriptive statistical analyses. 
The distribution of the data and the presence of outliers were 
checked. The Bonferroni test was used for outlier removal. 
The Bonferroni p-values for testing each observation, in 
turn, are a mean-shift outlier based on standardized residuals 
in linear (t-tests), generalized linear models (normal tests), 
and linear mixed models. More details can be found at Fox 
and Weisberg (2019).

After quality control, the data were modeled in three 
stages. In the first stage, for each trial and each of the three 
evaluated traits, a mixed model was used to estimate the 
adjusted means and weights for each genotype, in each of 
the trials and for the three traits via REML (restricted maxi-
mum likelihood) method using the sommer package in the 
R environment (Covarrubias-Pazaran 2016):

where y is the vector of phenotypic values; g is the fixed 
effect of genotype; r is the random effect of replicate, where 
N(0, Iσr

2); e is the random effect of the residue, where N(0, 
Rσe

2); X is the incidence matrix for the fixed effect, in this 
case, genotypes; Z is the incidence matrix for the random 
effect. Also, the same model was adjusted considering geno-
type as a random effect to estimate the components of vari-
ance and the plot basis broad-sense heritability:

where �2

G
 corresponds to the genetic component of variance 

and �2

E
 corresponds to the residual component of variance. 

Heritability was used as a quality control for the trials. All 
trials that showed heritability lower than 0.35 were removed 
from further analyses (13 of 434), less than 3%. To find more 
details, a supplementary file summarizes all trials, traits, 
heritability, missing data, year, and location (Supplementary 
File 1).In the second stage, a joint analysis was conducted, 
considering the following model:

where y* corresponds to the adjusted means obtained in the 
first step of each line:trait:trial combination. The fixed effect 
of genotype is represented by g; the fixed effect of year is 
of field evaluation represented by t; e corresponds to the 
random effect of the residue with N(0, �2

e
�) (Krause et al. 

2023). The matrices X1 and X2 are the incidence matrices for 

(1)� = �� + �� + �

(2)H2 =
�2

G

�2

G
+ �2

E

(3)�∗ = �1� + �1� + �

the fixed effects of the genotype and the year, respectively. 
W is a diagonal matrix with the weights, and I is an identity 
matrix. This step is important to minimize the year of evalu-
ation effect to estimate more reliable genetic values. For that, 
the connectivity over the years is vital. Both the first and 
second steps generated adjusted means, corrected for a set 
of effects described in both models presented.

The percentage of shared genotypes across the years 
ranged from 14 to 36%. Between 2003 and 2004, the 
shared genotype percentage was 14%, serving as a linkage 
between the 2 years, while between 2016 and 2017, this 
figure rose to 36%, indicating a higher degree of continuity 
between these years. In 24 years evaluated, a connectiv-
ity rate below 20% was noted in only six instances. Con-
versely, the remaining 18 years demonstrated connectiv-
ity rates exceeding 20%, highlighting a consistent linkage 
between the evaluated genotypes and the subsequent year 
(Fig. 1).

To estimate the breeding value of the founders or early 
breeding generations (predict the past), a variation of 
this model was used, including the pedigree matrix (A), 
obtained from the whole historical data, composed of 1615 
parents over the 110 years (Supplementary Fig. 1):

where y* corresponds to the adjusted means for the evalu-
ated trait from the first step of each line:trial combination; 
X corresponds to the incidence matrix of fixed effect for 
the years of field evaluation; β corresponds to the vector 
of year fixed effects; Z corresponds to the incidence matrix 
of random (genetic) effects; α corresponds to the additive 
genetic effect, where α ~N(0, Aσa

2); and e corresponds to 
the random effect of the residue with N(0, �2

e
�) , (Krause 

et al. 2023). As described earlier, W is a diagonal matrix 
with the weights.

Finally, in the third step, a regression for each trait was 
performed to estimate the genetic gains, following the 
model:

where y** is the vector of adjusted means or breeding values 
from the second step analysis of the lines for each trait evalu-
ated; a is the intercept of the regression, proving the over-
all population performance; i is the slope of the regression, 
related to the population improvement over the years (in this 
case, year is the year the cross was made or the genotype 
was introduced; in other words, when the genotypes were 
obtained); ε is the residue random effect, where ε ∼ N(0, I�2

e
 ). 

The genetic gain was estimated by dividing the slope by the 
intercept. At this stage, we did not apply the weights, as they 
would be homogeneous due to the adjustments made in the 
previous two stages.

(4)� ∗= �� + �� + �

(5)y ∗∗= a + Xi + �
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Based on the pedigree records, the generations were cal-
culated using the countGen function from the pedigree R 
package, version 1.4.2. Each individual's generation was 
determined by iterating through the pedigree and assigning a 
generation number: one plus the highest generation number 
of the known parents or zero for founders. The generation 
interval was approximately 5 years, resulting in 23 genera-
tions over 110 years.

Optimizing the future breeding generations

We used the R package AlphaSimR (Gaynor et al. 2021) to 
simulate different breeding strategies and numbers for the 
stochastic simulations. Each scenario described below was 
simulated over 20 breeding cycles replicated 100 times and 
compared regarding population performance improvement 
over a 15-year horizon.

Crop history of evolution and genetic parameters

We simulated an initial historical population of 1000 inbred 
individuals, featuring 1644 segregating loci distributed 

across 12 chromosomes, averaging 137 loci per chromo-
some, by the “GENERIC” option and diploid species. Then, 
for the initial parameters of the target quantitative trait, such 
as grain yield, we defined the existence of 360 quantitative 
trait loci (QTL) controlling the trait (30 quantitative trait 
nucleotide (QTN) per chromosome), an SNP chip with 45 
markers per chromosome, totaling 540 high-quality markers. 
Moreover, SNP and QTN sites were not allowed to over-
lap. The additive, dominance, and average degree of domi-
nance parameters were defined based on Li et al. (2008). We 
assigned additive and dominance effects to each QTN. Total 
genetic values for each genotype were obtained by summing 
all additive and dominance effects times the appropriately 
scaled genotype dosage for all QTN; for details, see Gaynor 
(2021). Additive effects ( a ) were sampled from a gamma 
distribution with scale and shape parameters equal to 1 and 
randomly assigned for each QTN. Similarly, dominance 
effects ( d ) for each QTN were computed by multiplying the 
absolute value of its additive effect ( ai ) by locus-specific 
dominance degree ( �i​). Dominance degrees were sampled 
from a Gaussian distribution with �i ∼ N

(

�� , �
2

�

)

 , where 
�� is the average dominance degree equal to 0.22 and �2

�
 

is the variance of the dominance degrees equal to 0.125. 

Fig. 1   Percentage of genotypes 
shared between each two-year 
combination from 1999 to 
2022. They ranged from 14 
to 36%, with only six of the 
24 years showing a percentage 
lower than 20%. Connectiv-
ity corresponds to the number 
of genotypes shared by year, 
represented by the colors of 
the dots ranging from 17 to 43 
genotypes
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Therefore, at least a 26% chance that the delta will be nega-
tive (bidirectional dominance deviations) and a 1% chance 
that it will exceed the unit (overdominance).

The initial mean of the quantitative trait was 0, and its 
initial total genetic variance was 1. The phenotypic values 
of individuals were generated by adding the error, sampled 
from a normal (Gaussian) distribution, to the total genetic 
value of each individual. The initial values for broad-sense 
and narrow-sense heritability were set at 0.63 and 0.60, 
respectively, and these values were set according to the 
accuracy selection we have empirically observed in the 
LSU breeding program over the breeding stages (Table 1). 
Also, this study did not consider epistasis, although it may 
contribute to heterosis in rice (Huang et al. 2016). In this 
study, our primary objective was to assess genetic gain over 
time based on selection strategies. We therefore focused on 
genotype means per year or cycle, rather than simulating 
plot-level data in multi-environment trials. We acknowledge 
that including plot-level data and genotype-by-environment 
interactions would be important for more detailed mode-
ling of trial efficiency or prediction accuracy, but it is not 

essential for the main goal of this manuscript, which is to 
evaluate the effectiveness of selection strategies in driving 
genetic gain.

Base population, burn‑in phase, and the first GS 
training set

The base population of 40 individuals was obtained from 
the initial 1000 lines of the historical population based on 
their superior phenotypic values. On average, the Ne was 
28 when using 40 parents and roughly 70% of the parents 
in the other scenarios. We first considered a traditional rice 
breeding program named “Previous” (Fig. 2). The breeding 
scheme is an adaptation of the pedigree method. Thus, based 
on that, we simulated three selection cycles totaling 15 years 
of breeding in the burn-in stage. In each cycle, 40 parental 
lines were crossed to generate 160 F1 plants, which were 
selfed to produce 100 F2 plants from each cross. After three 
breeding cycles, we obtained the base population to evaluate 
the downstream scenarios of this study (Fig. 2).

Table 1   Empirically observed broad-sense (H2) and narrow-sense heritability (h2) for grain yield at each LSU rice breeding program breeding 
stage

Heritability F2 F3 F4 F5 F6 F7

h2 0.03 0.15 0.40 0.60 0.70 0.80
H2 0.06 0.20 0.45 0.63 0.72 0.81

Fig. 2   The five breeding frameworks used or to be tested in the LSU rice breeding program. The number of entries in red compose the most 
important breeding stages
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Regarding the GS, the initial training set (TS) comprised 
1152 inbred lines from 30 crosses between 60 individu-
als (parents), with nearly 40 plants per cross from the base 
population after the burn-in stage. The marker effects were 
predicted using the ridge-regression best linear unbiased 
prediction (RRBLUP) (Endelman 2011) according to the 
equation below:

where y is the vector of individual phenotypic values from 
the TS (adjusted means); � is the mean (intercept); u is the 
vector of marker effects, where u ∼ N

(

0, I�2

u

)

 ; and � is the 
vector of random residuals. 1 is the vector of ones and Zu is 
the incidence matrix of TS genotypes for m markers. Zu is 
coded as 1 for homozygous A1A1, −1 for homozygous A2A2, 
and 0 for heterozygous A1A2.

To perform the GS, the genomic estimated breeding 
value (GEBV) was estimated using the following equation: 
GEBV = Mu , where M is the incidence matrix of selection 
candidate genotypes, and u is the vector of predicted marker 
effects.

Comparing Breeding methods and the deployment 
of modern tools

First, we compared three different breeding frameworks used 
in the LSU rice breeding program in the last 40 years and 
two scenarios planned for the coming years (Fig. 2). The 
"Previous" method corresponds to the traditional pheno-
typic-based breeding scheme used for more than 30 years 
until 2017. The current "Current_Trad" was an adapta-
tion of the "Previous,” including one more stage of phe-
notypic evaluation. It was used mainly for 5 years, and its 
importance has decreased yearly due to the deployment of 
genomic selection.

Regarding the “modern” era, the "GS in F3" corresponds 
to the application of genomic selection on the F3 genera-
tion and update of training population and markers effect 
on the last three breeding cycles, as described by Sabadin 
et al. (2022), based on the preliminary yield test (PYT) data, 
Then, to reduce the breeding cycle, we designed the “GS in 
F2” scheme breeding cycle with the application of GS on the 
F2 population. The TS and marker effects updates are done 
with the F3:5 population from the last three breeding cycles. 
Finally, the fifth scenario, "GS.F2_HTP.F3," corresponds to 
the fourth one, plus the deployment of high-throughput phe-
notyping (HTP) for grain yield on the F3 population. In this 
case, there will be another round of selection (1200 geno-
types) at the progeny row stage under an estimated accuracy 
of 0.40 (empirical results not present here).

The 40 parents are selected from the PYT and the 
advanced yield test (AYT). Moreover, the number below 

y = 1� + Zuu + �

corresponds to the whole breeding program, with five main 
market segments (Fig. 2). For the simulations, we adjusted 
the number to 80% of them, representing the long-grain 
efforts, which is the most important for our target market 
(Fig. 3).

For 50–60 years, the LSU rice breeding program relied 
mainly on introductions. Then, the more recent and intense 
hybridization era was considered a burn-in, matching Dr. 
Steve Lipscombe’s phase (21–24 years), representing three 
breeding cycles. Then, the optimization represents the Dr. 
Famoso era and the plans for the rice breeding framework, 
including modern tools and adjustments in the selection 
process.

Number of parents, crosses, and siblings

Based on the best breeding framework scenario identified 
in the simulations described above ("GS.F2_HTP.F3″), we 
aimed to determine the best combination of the number of 
parents to be used in the crossing block (20, 40, 60, or 80), 
crosses (80, 12, 160, or 200), and progeny size (50, 100, 
150, 200). Consequently, we compared 64 breeding num-
ber combinations. Each scenario was independently simu-
lated over 100 replicates, totaling 6400 simulation runs (64 
combinations × 100 replicates). Each replicate simulates an 
independent breeding program trajectory from the same 
burn-in population (pop.trad) but with stochastic variation 
in recombination, selection, and phenotypic expression. The 
use of 100 replicates per scenario was chosen to account 
for this stochasticity and provide robust estimates of central 
tendency and variance. To be more realistic with the prac-
tice, it is important to highlight that not all individuals were 
"genotyped” and went to GS. In this context, we considered 
a phenotypic negative selection of F2 plants; only 70% of the 
superior plants are advanced.

Results

Genetic trends in the last decades

The heritability calculated for plant height (the first box in 
red), whole milling (the second box in green), and plant 
yield (the third box in blue) showed high variance across 
the years for all the traits. Most values and central tendency 
across years are distributed above 0.6, and the distribution 
showed similar fluctuation patterns across the traits. The 
main difference is due to the variability of the values, where 
the heritabilities to plant height have presented less varia-
tion across years than the values of whole milling and grain 
yield.

The plant height showed a minimum value of 81.06 cm 
and a maximum of 136.3 cm. The linear regression of the 
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plant height values against the year trial from 1994 to 2018 
revealed a negative slope of -0.044, with an estimated reduc-
tion of plant height of around −0.04% per year. Despite the 
negative slope, we could observe that the values still have a 
good distribution around the mean of 100 centimeters across 
the years and a reduction of extreme values (Fig. 4—on the 
left).

We observed that the whole milling percentage values 
are concentrated at 60%, with a minimum value of 27.38% 
and a maximum value of 71.21%. The breeding program 
achieved a modest increase of approximately 0.02% per 

year in the whole milling percentage. The data dispersion 
did not change significantly over the years, indicating that 
this trait had a decent amount of variability (Fig. 4—in 
the center).

Finally, we observed a clear, constant, and positive 
trend for grain yield. Due to the genetic effect, grain yield 
increased by 0.86% per year, or approximately 56.54 kg/ha 
per year, for the lines obtained from 1994 to 2018. Besides 
the increase in productivity, we could maintain the data 
variation range across the years.

Fig. 3   Heritabilities over the years

Fig. 4   Plant height (centimeters; on the left), whole milling (percentage; in the center), and grain yield (kg/ha; on the right) performances for all 
the lines obtained from 1994 and 2018
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The genetic gains

The regression analysis of the breeding values for yield 
across generations showed an estimated gain of 0.07%, 
which means a small but constant increase of approximately 
4.55 kg/ha per generation over 23 generations of the rice 
breeding program spanning 110 years (Fig. 5). We also 
observed significant variability in the trait across the breed-
ing generations. This steady improvement underscores the 
efficacy of the breeding program in enhancing grain yield 
through successive generations. Despite the overall positive 
trend, significant variability was observed in the trait across 
different breeding generations. This variability highlights 
the influence of both genetic and environmental factors on 
the breeding outcomes. The scatter plot shows the distribu-
tion of grain yield across generations, with the regression 
line illustrating the average trend of genetic gain over time.

We noticed a more pronounced trend in the genetic gains 
during the last 10 breeding generations, leading us to con-
duct a detailed analysis for this interval. This key transition 
represents a shift in the breeding program from germplasm 
introduction and evaluation to hybridization and recycling 
of parents. When we examined only the last 10 generations, 
encompassing 50 years, we found a greater genetic gain per 
generation of 1.39%, reflecting an increase of 92.63 kg/ha 
per generation or 18.43 kg/ha per year (Fig. 6).

Comparing breeding frameworks via simulations

Regarding population performance, we see that almost all 
the selection methods reached a plateau between 10 and 14 
cycles; however, they did so at different levels. Besides the 
close values, we noticed that the "Current_Trad" method 
performed best at the 20th cycle, followed by “Previous” 

Fig. 5   Additive genetic gains for grain yield (kg/ha) over 110 years (1908–2018) in the LSU rice breeding program, comprising 23 generations 
of selection
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and the GS-based methods. In the first breeding cycles, 
the best variety performance followed the same pattern 
as the average population performance in almost all the 
methods (Fig. 7a, b). Concerning genetic variability, the 
phenotypic-based selection methods preserved more than 
the GS-based methods (Fig. 7c). Besides being interest-
ing, these results do not provide a fair comparison because 
each breeding framework has a different length (Fig. 2). 
Therefore, we set a horizon of 15 years of breeding and 
estimate the genetics gain per year (%) for each scenario 
tested (Fig. 8).

In this case, the "Previous" method exhibited a mod-
erate gain of 2.2% annually. The "Current_Trad" method 
demonstrated an improved performance with an increase 
of 2.6% annually. The "GS_F3" method, utilizing genomic 
selection, further enhanced the response to 3.3% per year. 
The "GS_F2" method showed another increase, achiev-
ing a 3.45% annual gain. Finally, the highest response was 
observed in the "GS.F2_HTP.F3" method, which combined 
genomic selection with high-throughput phenotyping, 
yielding a remarkable 3.65% gain per year. These results 
underscore the superior efficiency of advanced genomic and 

phenotyping techniques in accelerating genetic gains in plant 
breeding.

The balance between the number of parents, 
crosses, and progeny size

Our results demonstrate that even the best breeding frame-
work (“GS.F2_HTP.F3”) can be further improved by finding 
the best combination of numbers of parents, crosses, and 
progeny sizes (Fig. 9). The response to selection per year 
ranged from approximately 2.5–4.5% between combinations. 
Overall, combinations with more crosses (C) and mainly 
larger progeny sizes (S) showed better responses to selection 
per year (Fig. 9 and Table 3).

Furthermore, the analysis of variance (Table 2) high-
lighted the significance of the factors of the number of par-
ents (P), number of crosses (C), and the progeny size (S) on 
the response to selection. Also, the importance of each one 
of these components (VC%) in explaining the improvements 
in population performance. In this context, these results of 
the variance component showed that the progeny size had 
the major effect, accounting for around 35.9% of the total 

Fig. 6   Additive genetic gains 
for grain yield (kg/ha) over 
50 years (1968–2018) in the 
LSU rice breeding program, 
comprising 10 generations of 
hybridization and selection
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variance, followed by the number of crosses with 23%. The 
number of parents had the lowest impact on the results and 
explained 3.3% of the total variance (Table 3).

Finally, to identify which combinations are signifi-
cantly different in response to selection, we compared 
the scenarios via the Scott–Knott test, which effectively 

Fig. 7   The average population performance (a), the best line (potential variety) performance (b), and the genetic variability (c) for each one of 
the five breeding methods over 20 breeding generations

Fig. 8   The average gains per year (%) in terms of population mean for each of the five breeding frameworks over 15 years of breeding. The red 
dots represent outliers observed in the simulations
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grouped all breeding strategies into distinct categories. 
The Scott–Knott test was chosen specifically because it 
organizes treatments into disjoint groups based on statisti-
cal significance, simplifying the identification of clusters 
of superior combinations without the complexity of inter-
preting numerous pairwise comparisons. This approach 
helped us determine an optimal balance between high per-
formance and practical affordability. Combinations with 
higher numbers of crosses and larger progeny sizes tend 
to perform better, as seen in Group 1 (Table 3).

Discussion

Heritability and genetic connectivity

Regarding heritability estimates, most of the values and 
central tendency across years are distributed above 0.6 
values, indicating a strong genetic component and reliable 
data. This pattern was observed for plant height, whole 
milling, and yield. Heritability values for plant height 

Fig. 9   Response to selection over 15 years of breeding with different combinations of the number of parents (P), number of crosses (C), and 
progeny size (S). The red dots represent outliers observed in the simulations

Table 2   Analysis of variance 
for the factors P (number of 
parents), C (number of crosses), 
S (progeny size), and their 
interactions

Degrees of freedom (Df), the sum of squares (SS), mean squares (MS), F values, and p-values (Pr(> F)), 
and the percentage of the total variance (VC%) explained for each source in the model
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Source Df SS MS F value Pr(> F) VC%

P 3 21.706 7.235 166.6439  < 2.2e−16*** 3.36
C 3 136.140 45.380 1045.2125  < 2.2e−16*** 23.01
S 3 212.693 70.899 1632.9415  < 2.2e−16*** 35.92
P:C 9 1.725 0.192 4.4141 8.887e−06*** 0.31
P:S 9 4.884 0.543 12.4998  < 2.2e−16*** 1.03
C:S 9 3.569 0.397 9.1331 7.373e−14*** 0.73
P:C:S 27 1.140 0.042 0.9726 0.5044 0.00
Residuals 6336 275.091 0.043 35.65
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fluctuate less over time than whole milling and yield. This 
suggests a more stable genetic control for plant height, 
attributed to fewer environmental interactions or more effi-
cient selection practices (Yan et al. 2023). In contrast, the 
heritabilities of whole milling and yield display greater 
variability. This is because yield and whole milling are 
more quantitative traits; they are influenced by multiple 
genes and environmental factors, leading to complex inter-
actions that affect their heritability (Saeidnia et al. 2023).

Various factors can introduce errors in genetic gain esti-
mates, including breeding scheme, trait heritability, connec-
tivity, and the number of trials and sites per variety (Rut-
koski 2019a, b; Raymond et al. 2023). Therefore, direct 
estimates of genetic gain should not be used to compare 
breeding programs. Instead, genetic gain estimates should be 
employed to assess the presence of a positive upward trend 
or to obtain a close estimate of the realized genetic gain 
within a breeding program (Rutkoski 2019a, b). Breeding 
programs have a major impact on increasing crop yield at 
the necessary rate to match the needs of the world's grow-
ing population and achieve global food security (Cobb et al. 
2019). One of the strategies to track the performance of a 
breeding program on this mission is the estimation of the 
genetic gain (Xu et al. 2017).

Therefore, genetic connectivity is critical to estimat-
ing genetic gain in a given period based on historical data. 
The lack of connectivity can lead to biased estimations by 
confounding genetic and year effects (Rutkoski 2019a, b). 

The connectivity values present in our study ranged from 
17 genotypes (2003–2004) to 43 genotypes (2016–2017) 
shared genotypes between sequenced years. Consequently, 
the data have a considerable degree of connectivity over the 
years, which is desirable for reliable estimates of genetic 
gain. Our connectivity is similar to historical studies that 
estimated genetic gain on yield, such as those by Rahman 
et al. (2023), which had connectivity ranging from 16 to 45 
genotypes between years, and Khanna et al. (2024), with 
connectivity ranging from 6 to 64 genotypes. To get low 
errors and a high correlation between the real and the esti-
mated breeding values, studies of genetic gain with historical 
data also require a good long-term pedigree record within 
the breeding program to allow a good estimate of the addi-
tive relationship between the lines (Rutkoski 2019a, b). The 
main limitations of historical studies, connectivity, and pedi-
gree records were overcome in the present study, which adds 
reliability to our results.

Genetic trends in the last decades

Plant height is a critical factor in rice cultivation, as it is 
directly associated with lodging and grain yield (Wu et al. 
2022; Seck et al. 2023). Rice breeders must find a balance 
between reducing plant height to minimize lodging and pro-
mote tillering while avoiding excessive reduction in height 
that could lead to smaller grain size and excessive tillering, 
ultimately reducing yield (Liu et al. 2018). With a minimal 
negative trend of -0.04%, our breeding program has success-
fully maintained plant height at a balanced length of around 
100 centimeters, preserving trait variability and reducing 
outlier values over the years. Field management practices 
and environmental changes significantly influence rice plant 
height (Liu et al. 2018; Wu et al. 2022). Maintaining varia-
bility within our breeding program provides a buffer to adapt 
our selection process to these changes, mitigating potential 
yield losses.

Rice milling is a quantitative trait due to several QTLs 
and many instances of epistasis (You et al. 2022; Ali et al. 
2023). Despite the modest positive genetic trend of 0.02% 
per year, the breeding program could maintain constant 
improvement for milling with the predominance of milling 
rates above 60%. Moreover, it has a high genotype × envi-
ronment effect, and this interaction makes it challenging to 
achieve consistent genetic improvement in milling across 
different environments or/and years (Cruz et al. 2021; Ali 
et al. 2023). Cruz et al. 2021 observed a negative additive 
genetic trend of −0.16% in the Latin American Fund for 
Irrigated Rice breeding program over 20 years of selection. 
They highlighted the complexity of improving the trait and 
how applying MAS and GS, which consider genotype × 
environment interactions, can enhance the rate of genetic 
gain for milling.

Table 3   The first three groups of population performances and 16 
best combinations of the number of parents (P), number of crosses 
(C), and progeny size (S), obtained via the Scott–Knott test

( 1)Means followed by equal letters in the columns belong to the same 
grouping, according to Scott–Knott's test, at 5% probability

P_C_S Population per-
formance

G1 G2 G3

P40_C200_S200 9.6 a
P20_C200_S200 9.56 a
P60_C200_S200 9.54 a
P40_C200_S150 9.54 a
P80_C200_S200 9.53 a
P40_C160_S200 9.51 b
P20_C200_S150 9.5 b
P20_C160_S200 9.48 b
P60_C160_S200 9.48 b
P20_C160_S150 9.47 b
P40_C160_S150 9.47 b
P60_C200_S150 9.47 b
P20_C200_S100 9.45 c
P40_C120_S200 9.44 c
P80_C200_S150 9.44 c
P80_C160_S200 9.43 c
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To match food and biofuel demands to meet the projected 
human population in 2050, the so-called “2050 challenge,” 
we will need an increase in crop yield at the annual rate of 
2% (Li et al. 2018). We observed a positive trend with a rise 
of 0.86% per year due to the additive genetic effect, which 
increased to approximately 56.54 kg/ha per year from 1994 
to 2018. During this period of 24 years, we could bring the 
mean value for grain yield from 5893 to 7250 kg/ha, which 
means an increase of 23%. Despite the significant increase 
that we have made, we are aware that we need to improve 
our genetic grain rate and increase our selection efficiency 
with the adoption of new strategies and breeding tools, such 
as genomic selection, which is a reality in our breeding pipe-
line. Besides the main objective of increasing yield, a sus-
tainable breeding program should effectively utilize genetic 
diversity to achieve genetic improvement in specific traits 
while preserving genetic diversity in non-target loci (Meu-
wissen et al. 2020). Maintaining genetic diversity within 
a breeding population presents a significant challenge for 
achieving long-term genetic gains. We could observe the 
presence of great variability in the distribution of values for 
the three traits evaluated (plant height, whole milling, and 
grain yield).

Genetic gain in 110 years

The population breeding value improved over 110 years 
and 23 breeding generations by approximately 0.07% per 
generation, equating to an average increase of 4.55 kg/ha 
(Fig. 5). This steady improvement underscores the efficacy 
of the breeding program in enhancing grain yield through 
successive generations. Despite the overall positive trend, 
significant variability in grain yield was observed across 
different breeding generations, highlighting the influ-
ence of genetic and environmental factors on grain yield. 
A more pronounced genetic gain was observed during the 
last 10 generations of the breeding program. During this 
period, encompassing 50 years, the genetic gain per gen-
eration increased to 1.39%, reflecting an average increase 
of 92.63 kg/ha per generation. Rice cultivation in the USA 
has been done since the 1600s using cultivar introductions 
(Wang et al. 2024). In the early 20th century, advancements 
in understanding inheritance laws led to rapid progress 
in genetic disciplines and applied plant breeding. In this 
period, the US rice experiment stations began implement-
ing directed hybridization and artificial cross-pollination 
with rice materials to generate genetic variability and then, 
the selection of adapted materials to the Southern US con-
ditions aiming for stability and higher yields (McKenzie 
et al. 2015; Wand et al. 2024). This marked improvement 
in the last 10 generations is attributed to a shift in breeding 
strategies from introducing genotypes from other regions to 

performing hybridization between stable materials within 
the programs (Fig. 6).

The observed genetic gains in grain yield through suc-
cessive generations of selection indicate the long-term 
effectiveness of the breeding program. The greater genetic 
gain in the most recent generations suggests that modern 
breeding techniques, including hybridization and the selec-
tion of stable genotypes, have contributed significantly to 
this improvement. Future breeding efforts could benefit from 
continuously integrating established modern tools such as 
GS techniques, HTP, and optimized statistical models to 
enhance further the accuracy and efficiency of selecting 
superior genotypes. Studies have shown that incorporating 
genomic selection can yield substantial genetic gains by 
accelerating the breeding cycle and improving selection pre-
cision (Biswas et al. 2023). HTP tools can increase selection 
accuracy at lower costs and with higher selection intensity, 
enabling the phenotyping of more plots (Xu et al. 2021). 
The combination of GS and HTP has great potential to be 
the next turning point in the breeding program based on the 
results of our simulations.

Optimizing for the future

Concerning the trend of genetic variability, the methods 
based just on phenotypic selection had a slow rate of vari-
ability reduction compared to methods that use genomic 
information. Marker-based BLUP methods are naturally 
based on the covariance between genotypes. They will cause 
relatives to be co-selected more frequently, reducing genetic 
variability faster than phenotypic selection (Heslot et al. 
2015). Fritsche-Neto et al. (2024) also observed this trend in 
a study that simulated a rice breeding program. The genomic 
selection methods showed a greater reduction in genetic var-
iability than traditional phenotype-based methods (Fritsche-
Neto et al. 2024). This pattern was also observed in other 
studies that simulated the use of genomic selection in vari-
ous breeding programs across different systems, including 
sorghum (Muleta et al. 2019), maize (DoVale et al. 2022), 
pulses (Li et al. 2022), trees (Degen and Müller 2023), live-
stock (Wientjes et al. 2022), and chickens (Pocrnic et al. 
2023). Our results also suggest that the reduction of genetic 
diversity was inversely proportional to the genetic gain and 
the variety performance. The methods that implemented GS 
had an accelerated rate of genetic gain and variety perfor-
mance in the initial cycles, and this was reflected proportion-
ally in the genetic diversity loss. The final results at the 20th 
cycle also showed the inverse proportion; methods based on 
phenotypic selection could preserve more genetic variability 
and presented higher final values for population mean and 
variety performance compared with methods with GS.
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The response to selection highlighted the potential of 
implementing GS when considering the possibility of 
shortening the breeding cycle. After simulating 15 years of 
a breeding program to compare all the methods with their 
correspondent breeding cycle length, we had three breed-
ing cycles of "Previous and the "Current_Trad," 4 of the 
"GS_F3," and 5 of the "GS_F2" and "GS.F2_HTP.F3." The 
"Previous" method shows a moderate response to selection 
even when compared to the “Current_Trad.” This suggests 
substantial increases in response to selection can be obtained 
by including another round of phenotypic selection, increas-
ing the overall framework accuracy without penalizing the 
cycle length.

Regarding genetic gains observed via simulations, usu-
ally, they are typically overestimated. Therefore, our objec-
tive is not to focus on the actual numbers but to compare 
breeding frameworks and determine which will provide a 
relatively better genetic gain at a lower cost. In this con-
text, all the GS methods outperformed the methods based 
on phenotypic selection, even when the methods had almost 
the same breeding cycle length. The selection based on esti-
mated breeding values improves the probability of selecting 
the top-performing lines, increasing the selection differen-
tial and the genetic gain (Cobb et al. 2019). Another main 
advantage of GS is reducing the breeding cycle length while 
enhancing the expected genetic gain and selection response 
per unit of time (Crossa et al. 2017). The reduction of the 
cycle length significantly impacted the response to selec-
tion between the methods. However, from our perspective, 
the key distinction between the phenotypic-based and GS-
based methods is due to the enhanced accuracy in selecting 
the top-performing lines in the early stages (Heslot et al. 
2015; Hickey et al. 2017). Furthermore, the “GS.F2_HTP.
F3” forecasts the implementation of GS on the F2 generation 
and HTP in F3, resulting in the highest response to selection 
per year, mainly because it replaces a low accurate pheno-
typic selection in those stages for a better and more precise 
strategy and of course, with the lowest cost.

Regarding the optimization of breeding numbers, our 
results have practical implications for rice breeding pro-
grams without abrupt changes in logistics or substantial 
costs. It is well-known that the maximization of genetic 
gain and the maintenance of genetic variability are achieved 
with the increase of the number of parents to ensure a wide 
genetic base, the conduction of more crosses to generate 
diverse progeny, and the utilization of larger progeny sizes to 
enhance selection accuracy and genetic gains. Fritsche-Neto 
et al. (2024) also observed the same results in a simulation 
study with rice, where a bigger population size generated 
higher genetic gain and better maintenance of genetic vari-
ability over a small population size. The response to selec-
tion per year varied between approximately 2.5–4.5%, with 
higher numbers of crosses and larger progeny sizes showing 

better responses (Fig. 9). Furthermore, the variance compo-
nent analysis (Table 2) revealed that progeny size had the 
major effect on the total variance, contributing 35.92%, fol-
lowed by the number of crosses (23.01%) and the number of 
parents (3.36%). This hierarchy of influence underscores the 
critical role of progeny size in breeding programs, as larger 
progeny sizes ensure a broader genetic base, facilitating the 
selection of superior individuals. Consequently, this result 
may help define the best strategies in resource allocation 
and shed light on the old question: Lees and big or more and 
smaller progenies?

In this context, a smaller population size will maximize 
the rate of allele fixation and boost the reduction of genetic 
variability; smaller populations will also influence genetic 
drift (Fritsche-Neto et al. 2024). Maximizing the popula-
tion size not only mitigates the negative effects of genomic 
selection and drift over the genetic variability and allele 
fixation, but it will also increase the genetic gain with the 
possibility of higher selection intensity (Xu et al. 2017), and 
the Mendelian sampling, hardening the genomic selection 
advantages. However, increasing the population size of a 
breeding program is not simple. Although the main objective 
is to constantly increase genetic gain, a breeding program 
must also be cost-effective to keep its sustainability. Using 
GS can make it possible to test more lines, increasing the 
selection intensity and genetic gain. Still, there is a trade-
off between the accuracy generated by the markers and the 
genotyping costs.

The allocation of resources regarding the number of par-
ents, crosses, and progeny size will depend on the breeder's 
interest in maximizing the variation among or within fami-
lies. It will also depend on factors such as family correlation 
and the number of traits to evaluate (Covarrubias-Pazaran 
et al. 2021). Hence, finding an equilibrium between those 
numbers and the cost to genotype is key to optimizing the 
cost-benefits of genomic selection within a breeding pro-
gram. In this context, simulation studies can help us to test 
a wide range of conditions within a breeding program under 
a certain budget, designing the best strategies to maximize 
genetic gain per amount invested (Muleta et al. 2019; Li 
et al. 2022).

Conclusion

The results of this study demonstrate that the Louisiana State 
University (LSU) rice breeding program has achieved sub-
stantial genetic gains over 110 years, with a notable increase 
in grain yield. These gains were most pronounced over the 
last 25 years, and recent modifications have been simulated 
to increase the rate of gain. Also, methods based on genomic 
selection stood out for their superior selection response when 
compared to phenotypic methods. Simulations demonstrate 
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that additional gains can be realized by modifying the 
existing program and incorporating new approaches, such 
as HTP. Therefore, the breeding method, which combines 
genomic selection (GS) and high-throughput phenotyping 
(HTP), has proved highly effective and is a priority for the 
coming years. Moreover, a better combination of the number 
of parents, crosses, and progeny sizes will be placed, not 
the best tested, but the best we can afford (the 4th). Finally, 
our results reinforced the importance of modern selection 
tools and strategic resource allocation to optimize program 
efficiency. They underscored the necessity of continuously 
adopting new technologies and breeding strategies to ensure 
the sustainability of breeding programs and meet future 
global food demands.
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