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Abstract

Key message Strategic resource allocation in breeding programs is key to balancing cost-effectiveness and genetic
improvement.

Abstract This research aimed to understand the critical role of adopting advanced breeding tools and optimizing breeding
strategies to ensure the sustainability and success of public breeding programs in meeting future food security challenges. In
this context, there are two main objectives: estimate the genetic gains achieved over 110 years in the rice breeding program
of Louisiana State University (LSU); evaluate through stochastic simulations the impacts of modern selection tools such
as genomic selection (GS) and high-throughput phenotyping (HTP) on future genetic gains. Considering the 110 years, the
average increase was 4.55 kg/ha per generation (23 breeding cycles). However, from 1994 to 2018, we observed more sub-
stantial trends in genetic gains, particularly for grain yield, which increased by approximately 56.54 kg/ha per year. Based
on simulations, integrating GS and HTP demonstrated significant advantages, including shorter breeding cycles, enhanced
selection accuracy, and reduced costs. Also, simulation results showed that this approach yielded the highest response to
selection (4.68% per year) due to the synergistic effects of combining advanced phenotyping techniques with GS. Finally, we
assessed the effects of balancing the number of parents, crosses, and progeny sizes to maximize genetic gains and maintain
genetic variability. Variance component analysis indicated that progeny size had the greatest impact on total variance (36%),
followed by the number of crosses (23%) and the number of parents (3.4%). The findings highlight the need for strategic
resource allocation in breeding programs to balance cost-effectiveness and genetic improvement.

Introduction

Public plant breeding programs have a great responsibil-
ity for global food security, as this sector is often the main
source of genetic gain increases for the neediest communi-
ties (Cobb et al. 2019). Many of them have long-term inte-
grated activities such as basic research, germplasm improve-
ment, and the development of improved varieties; these are
essential activities of a public plant program and cannot
be sustained without continuous public funding (Coe et al.
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2020). As a result, developing and adopting high-yielding
varieties have significantly contributed to increasing agricul-
tural productivity and reducing hunger over the last century.
Their contribution will likely continue growing over time
(Qaim and Kouser 2013). In this context, genetic gain is one
of the main benchmarks of success for a breeding program,
and with a high and sustained rate over cycles, genetic gain
plays a central role in agricultural transformation (Xu et al.
2017).

There is a projection regarding the main staple crops
worldwide. A linear progression of genetic gain, targeting
an established rate of 2% per year, must be achieved to over-
come the so-called "2050 challenge" and match the world
population growth (Li et al. 2018). Breeding programs have
a major impact on increasing crop yield at the necessary rate
to match the needs of the world's growing population and
achieve global food security (Cobb et al. 2019). Estimating
genetic gain is one of the strategies to track the performance
of a breeding program on this mission (Xu et al. 2017). It
can be a useful indicator of the efficiency of the breeding
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program in utilizing financial and genetic resources sustain-
ably through the breeding process (Covarrubias-Pazaran
2020). This means that the use of resources is effectively
reflected in genetic progress toward the breeding program's
target goals. In addition to increasing productivity, breeding
programs can have different goals, such as disease resist-
ance and tolerance to soil salinity and drought. The breed-
ing program's target goal directly impacts the genetic gain
estimates. In this context, factors such as breeding scheme,
trait heritability, connectivity, and the number of trials and
sites per genotype can also introduce errors in these esti-
mates (Rutkoski 2019a, b; Raymond et al. 2023). Therefore,
genetic gain estimates should not be used to compare the
efficiency of different breeding programs directly. Instead,
they should be employed to assess the presence of a positive
upward trend or to obtain a close estimate of the realized
genetic gain within a single breeding program (Rutkoski
2019a, b).

Consequently, several studies have assessed the rice
genetic gain of other rice breeding programs worldwide for
grain yield. Streck et al. (2018) estimated the genetic gain of
the irrigated rice breeding program of Embrapa in Southern
Brazil (from 1972 to 2016) and observed a genetic gain of
0.62% per year (37.91 kg/ha/year). Kumar et al. (2021) esti-
mated the genetic gain for rice yield in India from 2005 to
2014. They observed a positive genetic trend in grain yield
of 0.68% (34 kg/hal/year) under irrigated control, 0.87%
(25 kg/ha/year) under moderate drought stress, and 1.9%
(27 kg/halyear) under severe drought stress. Khanna et al.
(2022) estimated the genetic gain of the International Rice
Research Institute (IRRI) rice drought breeding program,
between the years 1980-2015, at the rate of 0.23% (10.22 kg/
ha/year) under non-stress conditions and 0.13% under
drought conditions (2.29 kg/ha/year). Khanna et al. (2024)
estimated the genetic gains in IRRI’s salinity breeding pro-
gram from 2008 to 2019 and Bangladesh from 2005 to 2014.
They observed a positive genetic trend of 0.1% (1.52 kg/
ha) per year in IRRI, Philippines, and 0.31% (14.02 kg/ha)
in Bangladesh. Also, in IRRI, Juma et al. (2021), for the
irrigated rice breeding program, analyzed 102 historical
yield trials conducted in the Philippines from 2012 to 2016
and represented 15,286 breeding lines (including released
varieties). They estimated a rate of genetic gain for grain
yield at 8.75 kg/ha/year (0.23%) for crosses made from 1964
to 2014. Reducing the data to only IRRI-released varieties,
the rate doubled to 17.36 kg/ha/year (0.46%). Regressed
against the breeding cycle, the rate of gain for grain yield
was 185 kg/ha/cycle (4.95%). In turn, Rahman et al. (2023)
have estimated a genetic gain of the Bangladesh breeding
program from the years 1970-2020, at the annual rates of
0.28% for winter rice and 0.18% for monsoon rice, which
corresponds to an increase of 10 kg/ha per year in grain
yield for both. More recently, Seck et al. (2023) reviewed 29
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rice studies conducted between 1999 and 2023, covering dif-
ferent regions, traits, periods, and estimation methods. The
genetic gain for grain yield, in particular, showed significant
variation, ranging from 1.5 to 167.6 kg/ha/year, with a mean
value of 36.3 kg/ha/year.

Given the numbers above, it is easy to realize that plant
breeding is a complex long-term activity, and every deci-
sion has to consider the huge amount of time and resources
invested in it. Even with the amount of information we have
generated in the last decades, adopting new tools in plant
breeding demands a lot of caution. The time and resources
needed to develop the plant breeding practices do not allow
for many tests of new strategies. In addition, comparing
breeding strategies based only on field trials could be risky
once a unique or a couple of field trials is a random sample
and does not represent all possible outcomes of a random
effect, leading to low-reliability results (Li et al. 2012).
Thus, stochastic simulation can help the breeder overcome
those aspects and project the future once the breeders have a
cost-effective way to simulate breeding scenarios to optimize
a breeding program. Moreover, allows us to test new strate-
gies and tools through many cycles, with many repetitions to
estimate random effects better, and all of those with the cost
of a powerful computer machine and advanced knowledge in
quantitative genetics and plant breeding to simulate relevant
scenarios (BancicC et al. 2024).

To accomplish future demands, the adoption of advanced
tools such as genomic selection (GS) and high-throughput
phenotyping (HTP) is indispensable to improving genetic
gain rates (Cobb et al. 2019), of course, when all other
components of the breeding program are already optimized
(Rutkoski 2019b; Seck et al. 2023). The main advantages of
genomic selection (GS) include the reduction of breeding
cycle length, higher selection accuracy of top-performing
genotypes, and reduced costs associated with classical phe-
notyping (Crossa et al. 2017). In addition to the costs of
manual phenotyping, measurements are prone to human
error and subjectivity. HTP tools can increase selection
accuracy at lower costs and with higher selection intensity,
enabling the phenotyping of more plots (Xu et al. 2021).
HTP can be implemented using phenotyping platforms (Yas-
sue et al. 2022) and remote sensing with unmanned aerial
vehicles (Hassan et al. 2019). The advantages of GS and
HTP may be further enhanced when these tools are com-
bined. The synergistic effect between GS and HTP has been
observed in many empirical studies involving crops such as
wheat (Sun et al. 2019), maize (Adak et al. 2024), and soy-
bean (Moreira et al. 2021), but it is not so evident in rice yet.

The Louisiana State University (LSU) rice breeding pro-
gram was established in 1908 and has been instrumental in
advancing the rice industry in Louisiana (USA) and globally.
Since then, we have released 63 varieties and groundbreak-
ing technologies, such as the Clearfield® Rice (Sudianto
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et al. 2013). Despite the program's evolution and success
over the years, the primary objectives and priorities have
remained consistent, focusing on the release of improved
varieties. However, to design new strategies for the future,
we need to quantify the success of our past efforts and then
define the best balance between labor and budget and genetic
gains for future initiatives. Thus, the main objectives of this
work were to: (i) estimate the genetic gains achieved in 110
years of Louisiana State University's (LSU) long-grain rice
breeding program, (ii) use stochastic simulations to evaluate
the impacts of adopting modern selection tools, such as GS
and HTP, and the effect of balancing the number of par-
ents, crosses, and progeny size on genetic gain and resource
allocation.

Material and methods
The LSU rice breeding framework

We have used a recurrent selection approach involving mul-
tiple rounds of selection and interbreeding among superior
offspring for subsequent selection cycles. This program
operates through a closed-loop germplasm pipeline, concen-
trating on population improvement. It employs a tiered trial
system wherein top-performing lines progress toward poten-
tial varietal release. In the early breeding stages, selections
focus on highly heritable traits like plant height, maturity,
and type. As the cycle progresses, the emphasis shifts from
high heritable qualitative traits to lower heritable traits like
grain yield and milling characteristics. Field evaluations for
trait assessments are conducted locally at LSU and through
multi-environmental trials across the Louisiana rice region.
For adaptation trials, evaluations are extended to neighbor-
ing states to evaluate stability and adaptability to other pro-
duction areas. Furthermore, the increase in seed numbers
and generational advancements occur in Puerto Rico, con-
tributing to the program's meticulous and comprehensive
breeding operations.

The breeding process starts with hybridization and popu-
lation development, with approximately 300 new popula-
tions developed annually. A critical component of the popu-
lation development stage is choosing the right parents and
determining the size and number of populations. The F; gen-
eration is grown at LSU, and each population is confirmed
by DNA marker testing. The F, generation is immediately
planted at the winter nursery in Lajas, Puerto Rico. Panicles
are selected from single F, plants and advanced to the line
development stages at the LSU, consisting of approximately
20,000 F,:5 to 9000 Fj;., panicle rows. The line develop-
ment stage, lasting 1-2 years, aims to achieve crucial objec-
tives: firstly, ensuring the homogeneity and inbreeding of the
lines; secondly, selecting highly heritable traits; and thirdly,

increasing seed quantity to provide a sufficient supply for
future trials. Moreover, the marker-assisted selection (MAS)
strategy is employed at these early stages to aid in selecting
qualitative traits.

Subsequently, the selected lines progress to preliminary
yield testing (PYT), marking the initial evaluation stage in
plots. This phase represents the parents to be selected for the
next cycle and is a valuable GS training set (TS) source. The
primary objective at this juncture is to identify and select the
most promising materials to advance to the subsequent stage.
Conducted across two environments, involving two plant-
ing dates with one replicate each, this evaluation typically
includes F;:F5 materials and is approximately 1500 entries
across all segments combined.

Finally, regional and advanced yield testing (RYT and
AYT, respectively) are conducted across multiple environ-
ments and locations. The RYT test is conducted across 4-5
environments. At this stage, we have approximately 200
entries distributed in a randomized complete block design
(RCBD) with two replicates, comprising materials advanced
from the PYT stage. The AYT is conducted across eight
environments with 10 entries and three replicates, also
arranged in a randomized complete block design (RCBD),
comprising materials advanced from the RYT stage or lines
repeated from the previous year’s AYT. The AYT entries
are primarily Fs.;, materials. At these stages, a major empha-
sis is on evaluating key quantitative traits and assessing the
response to the environment and stability. The stage deter-
mines the breeding cycle, and we select the parents to com-
pose the next generation.

The most promising lines being considered for potential
commercial release undergo a pre-commercial (PC) testing
stage. This test is conducted across 25-30 environments in
collaboration with the University of Arkansas, Horizon Ag.,
and Nutrien Ag. Each collaborator nominates five lines to be
included in the trial each year. At the PC stage, we have three
replicates and it comprehensively tests yield, agronomics,
grain quality, and disease resistance. This rigorous evalu-
ation ensures a robust understanding of the potential new
varieties before release.

Estimating the realized genetic gains

With the aid of current and former researchers of the LSU
rice breeding program, phenotypic information from the last
24 years (1999-2022) was gathered, as well as the whole
pedigree (1615 parents) since the founders (110 years). The
data correspond to 26,882 plots, 597 genotypes, and 178
trials in 19 locations in completely randomized blocks. The
genotypes to be evaluated will be grain yield, plant height,
and whole milling. The traits evaluated presented zero or
a low correlation among them (Supplementary Fig. 2). To
capture the environmental trend over time, we estimated the
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yield trend of check genotypes that were present in at least
60% of the years from 1999 to 2022. These checks serve
as a consistent benchmark across environments and help to
account for non-genetic changes in yield over the years (Sup-
plementary Fig. 3).

The data were processed, organized, and subjected to sta-
tistical quality control and descriptive statistical analyses.
The distribution of the data and the presence of outliers were
checked. The Bonferroni test was used for outlier removal.
The Bonferroni p-values for testing each observation, in
turn, are a mean-shift outlier based on standardized residuals
in linear (z-tests), generalized linear models (normal tests),
and linear mixed models. More details can be found at Fox
and Weisberg (2019).

After quality control, the data were modeled in three
stages. In the first stage, for each trial and each of the three
evaluated traits, a mixed model was used to estimate the
adjusted means and weights for each genotype, in each of
the trials and for the three traits via REML (restricted maxi-
mum likelihood) method using the sommer package in the
R environment (Covarrubias-Pazaran 2016):

y=Xg+Zr+e €))

where y is the vector of phenotypic values; g is the fixed
effect of genotype; r is the random effect of replicate, where
N(O, Icrz); e is the random effect of the residue, where N(O,
Rcez); X is the incidence matrix for the fixed effect, in this
case, genotypes; Z is the incidence matrix for the random
effect. Also, the same model was adjusted considering geno-
type as a random effect to estimate the components of vari-
ance and the plot basis broad-sense heritability:

2
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¢ %
where aé corresponds to the genetic component of variance

and o-f, corresponds to the residual component of variance.
Heritability was used as a quality control for the trials. All
trials that showed heritability lower than 0.35 were removed
from further analyses (13 of 434), less than 3%. To find more
details, a supplementary file summarizes all trials, traits,
heritability, missing data, year, and location (Supplementary
File 1).In the second stage, a joint analysis was conducted,
considering the following model:

y'=Xg+X;t+e 3)

where y* corresponds to the adjusted means obtained in the
first step of each line:trait:trial combination. The fixed effect
of genotype is represented by g; the fixed effect of year is
of field evaluation represented by t; e corresponds to the
random effect of the residue with N(O, anW) (Krause et al.
2023). The matrices X, and X, are the incidence matrices for
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the fixed effects of the genotype and the year, respectively.
W is a diagonal matrix with the weights, and I is an identity
matrix. This step is important to minimize the year of evalu-
ation effect to estimate more reliable genetic values. For that,
the connectivity over the years is vital. Both the first and
second steps generated adjusted means, corrected for a set
of effects described in both models presented.

The percentage of shared genotypes across the years
ranged from 14 to 36%. Between 2003 and 2004, the
shared genotype percentage was 14%, serving as a linkage
between the 2 years, while between 2016 and 2017, this
figure rose to 36%, indicating a higher degree of continuity
between these years. In 24 years evaluated, a connectiv-
ity rate below 20% was noted in only six instances. Con-
versely, the remaining 18 years demonstrated connectiv-
ity rates exceeding 20%, highlighting a consistent linkage
between the evaluated genotypes and the subsequent year
(Fig. 1).

To estimate the breeding value of the founders or early
breeding generations (predict the past), a variation of
this model was used, including the pedigree matrix (A),
obtained from the whole historical data, composed of 1615
parents over the 110 years (Supplementary Fig. 1):

y*=Xp+Za+e 4)

where y* corresponds to the adjusted means for the evalu-
ated trait from the first step of each line:trial combination;
X corresponds to the incidence matrix of fixed effect for
the years of field evaluation; p corresponds to the vector
of year fixed effects; Z corresponds to the incidence matrix
of random (genetic) effects; a corresponds to the additive
genetic effect, where a0 ~N(O0, Acaz); and e corresponds to
the random effect of the residue with N(O, 6§W), (Krause
et al. 2023). As described earlier, W is a diagonal matrix
with the weights.

Finally, in the third step, a regression for each trait was
performed to estimate the genetic gains, following the
model:

y¥x=a+ Xi +¢€ 5)

where y** is the vector of adjusted means or breeding values
from the second step analysis of the lines for each trait evalu-
ated; a is the intercept of the regression, proving the over-
all population performance; i is the slope of the regression,
related to the population improvement over the years (in this
case, year is the year the cross was made or the genotype
was introduced; in other words, when the genotypes were
obtained); € is the residue random effect, where € ~ N(0, Io-ez).
The genetic gain was estimated by dividing the slope by the
intercept. At this stage, we did not apply the weights, as they
would be homogeneous due to the adjustments made in the
previous two stages.
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Fig. 1 Percentage of genotypes
shared between each two-year
combination from 1999 to
2022. They ranged from 14

to 36%, with only six of the 2020
24 years showing a percentage
lower than 20%. Connectiv-
ity corresponds to the number
of genotypes shared by year,
represented by the colors of
the dots ranging from 17 to 43
genotypes
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Based on the pedigree records, the generations were cal-
culated using the countGen function from the pedigree R
package, version 1.4.2. Each individual's generation was
determined by iterating through the pedigree and assigning a
generation number: one plus the highest generation number
of the known parents or zero for founders. The generation
interval was approximately 5 years, resulting in 23 genera-
tions over 110 years.

Optimizing the future breeding generations

We used the R package AlphaSimR (Gaynor et al. 2021) to
simulate different breeding strategies and numbers for the
stochastic simulations. Each scenario described below was
simulated over 20 breeding cycles replicated 100 times and
compared regarding population performance improvement
over a 15-year horizon.

Crop history of evolution and genetic parameters

We simulated an initial historical population of 1000 inbred
individuals, featuring 1644 segregating loci distributed

2005
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Connectivity
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across 12 chromosomes, averaging 137 loci per chromo-
some, by the “GENERIC” option and diploid species. Then,
for the initial parameters of the target quantitative trait, such
as grain yield, we defined the existence of 360 quantitative
trait loci (QTL) controlling the trait (30 quantitative trait
nucleotide (QTN) per chromosome), an SNP chip with 45
markers per chromosome, totaling 540 high-quality markers.
Moreover, SNP and QTN sites were not allowed to over-
lap. The additive, dominance, and average degree of domi-
nance parameters were defined based on Li et al. (2008). We
assigned additive and dominance effects to each QTN. Total
genetic values for each genotype were obtained by summing
all additive and dominance effects times the appropriately
scaled genotype dosage for all QTN; for details, see Gaynor
(2021). Additive effects (a) were sampled from a gamma
distribution with scale and shape parameters equal to 1 and
randomly assigned for each QTN. Similarly, dominance
effects (d) for each QTN were computed by multiplying the
absolute value of its additive effect (g;) by locus-specific
dominance degree (6,). Dominance degrees were sampled
from a Gaussian distribution with 6; ~ N(,u(s, ag), where
us is the average dominance degree equal to 0.22 and ag
is the variance of the dominance degrees equal to 0.125.
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Therefore, at least a 26% chance that the delta will be nega-
tive (bidirectional dominance deviations) and a 1% chance
that it will exceed the unit (overdominance).

The initial mean of the quantitative trait was 0, and its
initial total genetic variance was 1. The phenotypic values
of individuals were generated by adding the error, sampled
from a normal (Gaussian) distribution, to the total genetic
value of each individual. The initial values for broad-sense
and narrow-sense heritability were set at 0.63 and 0.60,
respectively, and these values were set according to the
accuracy selection we have empirically observed in the
LSU breeding program over the breeding stages (Table 1).
Also, this study did not consider epistasis, although it may
contribute to heterosis in rice (Huang et al. 2016). In this
study, our primary objective was to assess genetic gain over
time based on selection strategies. We therefore focused on
genotype means per year or cycle, rather than simulating
plot-level data in multi-environment trials. We acknowledge
that including plot-level data and genotype-by-environment
interactions would be important for more detailed mode-
ling of trial efficiency or prediction accuracy, but it is not

essential for the main goal of this manuscript, which is to
evaluate the effectiveness of selection strategies in driving
genetic gain.

Base population, burn-in phase, and the first GS
training set

The base population of 40 individuals was obtained from
the initial 1000 lines of the historical population based on
their superior phenotypic values. On average, the Ne was
28 when using 40 parents and roughly 70% of the parents
in the other scenarios. We first considered a traditional rice
breeding program named “Previous” (Fig. 2). The breeding
scheme is an adaptation of the pedigree method. Thus, based
on that, we simulated three selection cycles totaling 15 years
of breeding in the burn-in stage. In each cycle, 40 parental
lines were crossed to generate 160 F1 plants, which were
selfed to produce 100 F2 plants from each cross. After three
breeding cycles, we obtained the base population to evaluate
the downstream scenarios of this study (Fig. 2).

Table 1 Empirically observed broad-sense (H?) and narrow-sense heritability (4?) for grain yield at each LSU rice breeding program breeding

stage
Heritability F, F; F, Fs Fe F,
1 0.03 0.15 0.40 0.60 0.70 0.80
2
H 0.06 0.20 0.45 0.63 0.72 0.81
1 = Previous 2 = Current Trad 3=GSinF3 4=GSinF?2 5=4
+
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Fig.2 The five breeding frameworks used or to be tested in the LSU rice breeding program. The number of entries in red compose the most

important breeding stages
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Regarding the GS, the initial training set (T'S) comprised
1152 inbred lines from 30 crosses between 60 individu-
als (parents), with nearly 40 plants per cross from the base
population after the burn-in stage. The marker effects were
predicted using the ridge-regression best linear unbiased
prediction (RRBLUP) (Endelman 2011) according to the
equation below:

y=1lu+Zu+e

where y is the vector of individual phenotypic values from
the TS (adjusted means); u is the mean (intercept); u is the
vector of marker effects, where u ~ N(0,162); and € is the
vector of random residuals. 1 is the vector of ones and Z, is
the incidence matrix of TS genotypes for m markers. Z, is
coded as 1 for homozygous A;A,, —1 for homozygous A,A,,
and O for heterozygous A1A2.

To perform the GS, the genomic estimated breeding
value (GEBV) was estimated using the following equation:
GEBV = Mu, where M is the incidence matrix of selection
candidate genotypes, and u is the vector of predicted marker
effects.

Comparing Breeding methods and the deployment
of modern tools

First, we compared three different breeding frameworks used
in the LSU rice breeding program in the last 40 years and
two scenarios planned for the coming years (Fig. 2). The
"Previous" method corresponds to the traditional pheno-
typic-based breeding scheme used for more than 30 years
until 2017. The current "Current_Trad" was an adapta-
tion of the "Previous,” including one more stage of phe-
notypic evaluation. It was used mainly for 5 years, and its
importance has decreased yearly due to the deployment of
genomic selection.

Regarding the “modern” era, the "GS in F3" corresponds
to the application of genomic selection on the F; genera-
tion and update of training population and markers effect
on the last three breeding cycles, as described by Sabadin
et al. (2022), based on the preliminary yield test (PYT) data,
Then, to reduce the breeding cycle, we designed the “GS in
F2” scheme breeding cycle with the application of GS on the
F, population. The TS and marker effects updates are done
with the F;.5 population from the last three breeding cycles.
Finally, the fifth scenario, "GS.F2_HTP.F3," corresponds to
the fourth one, plus the deployment of high-throughput phe-
notyping (HTP) for grain yield on the F; population. In this
case, there will be another round of selection (1200 geno-
types) at the progeny row stage under an estimated accuracy
of 0.40 (empirical results not present here).

The 40 parents are selected from the PYT and the
advanced yield test (AYT). Moreover, the number below

corresponds to the whole breeding program, with five main
market segments (Fig. 2). For the simulations, we adjusted
the number to 80% of them, representing the long-grain
efforts, which is the most important for our target market
(Fig. 3).

For 50-60 years, the LSU rice breeding program relied
mainly on introductions. Then, the more recent and intense
hybridization era was considered a burn-in, matching Dr.
Steve Lipscombe’s phase (21-24 years), representing three
breeding cycles. Then, the optimization represents the Dr.
Famoso era and the plans for the rice breeding framework,
including modern tools and adjustments in the selection
process.

Number of parents, crosses, and siblings

Based on the best breeding framework scenario identified
in the simulations described above ("GS.F2_HTP.F3"), we
aimed to determine the best combination of the number of
parents to be used in the crossing block (20, 40, 60, or 80),
crosses (80, 12, 160, or 200), and progeny size (50, 100,
150, 200). Consequently, we compared 64 breeding num-
ber combinations. Each scenario was independently simu-
lated over 100 replicates, totaling 6400 simulation runs (64
combinations X 100 replicates). Each replicate simulates an
independent breeding program trajectory from the same
burn-in population (pop.trad) but with stochastic variation
in recombination, selection, and phenotypic expression. The
use of 100 replicates per scenario was chosen to account
for this stochasticity and provide robust estimates of central
tendency and variance. To be more realistic with the prac-
tice, it is important to highlight that not all individuals were
"genotyped” and went to GS. In this context, we considered
a phenotypic negative selection of F, plants; only 70% of the
superior plants are advanced.

Results
Genetic trends in the last decades

The heritability calculated for plant height (the first box in
red), whole milling (the second box in green), and plant
yield (the third box in blue) showed high variance across
the years for all the traits. Most values and central tendency
across years are distributed above 0.6, and the distribution
showed similar fluctuation patterns across the traits. The
main difference is due to the variability of the values, where
the heritabilities to plant height have presented less varia-
tion across years than the values of whole milling and grain
yield.

The plant height showed a minimum value of 81.06 cm
and a maximum of 136.3 cm. The linear regression of the
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Fig. 3 Heritabilities over the years

plant height values against the year trial from 1994 to 2018
revealed a negative slope of -0.044, with an estimated reduc-
tion of plant height of around —0.04% per year. Despite the
negative slope, we could observe that the values still have a
good distribution around the mean of 100 centimeters across
the years and a reduction of extreme values (Fig. 4—on the
left).

We observed that the whole milling percentage values
are concentrated at 60%, with a minimum value of 27.38%
and a maximum value of 71.21%. The breeding program
achieved a modest increase of approximately 0.02% per

Grain yield
Plant height

¥ =5893.405 + Year x 56.541

Estimaled per year = 0.86 %

Estimated per year = -0.05 %

y =100.573 + Year x -0.046

year in the whole milling percentage. The data dispersion
did not change significantly over the years, indicating that
this trait had a decent amount of variability (Fig. 4—in
the center).

Finally, we observed a clear, constant, and positive
trend for grain yield. Due to the genetic effect, grain yield
increased by 0.86% per year, or approximately 56.54 kg/ha
per year, for the lines obtained from 1994 to 2018. Besides
the increase in productivity, we could maintain the data
variation range across the years.

Whole milling

y=62.25 + Yearx 0.012

Estimated per year = 0.02 %

Fig.4 Plant height (centimeters; on the left), whole milling (percentage; in the center), and grain yield (kg/ha; on the right) performances for all

the lines obtained from 1994 and 2018
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The genetic gains

The regression analysis of the breeding values for yield
across generations showed an estimated gain of 0.07%,
which means a small but constant increase of approximately
4.55 kg/ha per generation over 23 generations of the rice
breeding program spanning 110 years (Fig. 5). We also
observed significant variability in the trait across the breed-
ing generations. This steady improvement underscores the
efficacy of the breeding program in enhancing grain yield
through successive generations. Despite the overall positive
trend, significant variability was observed in the trait across
different breeding generations. This variability highlights
the influence of both genetic and environmental factors on
the breeding outcomes. The scatter plot shows the distribu-
tion of grain yield across generations, with the regression
line illustrating the average trend of genetic gain over time.

We noticed a more pronounced trend in the genetic gains
during the last 10 breeding generations, leading us to con-
duct a detailed analysis for this interval. This key transition
represents a shift in the breeding program from germplasm
introduction and evaluation to hybridization and recycling
of parents. When we examined only the last 10 generations,
encompassing 50 years, we found a greater genetic gain per
generation of 1.39%, reflecting an increase of 92.63 kg/ha
per generation or 18.43 kg/ha per year (Fig. 6).

Comparing breeding frameworks via simulations

Regarding population performance, we see that almost all
the selection methods reached a plateau between 10 and 14
cycles; however, they did so at different levels. Besides the
close values, we noticed that the "Current_Trad" method
performed best at the 20th cycle, followed by “Previous”
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Fig.5 Additive genetic gains for grain yield (kg/ha) over 110 years (1908-2018) in the LSU rice breeding program, comprising 23 generations

of selection
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Fig.6 Additive genetic gains
for grain yield (kg/ha) over
50 years (1968-2018) in the
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and the GS-based methods. In the first breeding cycles,
the best variety performance followed the same pattern
as the average population performance in almost all the
methods (Fig. 7a, b). Concerning genetic variability, the
phenotypic-based selection methods preserved more than
the GS-based methods (Fig. 7c). Besides being interest-
ing, these results do not provide a fair comparison because
each breeding framework has a different length (Fig. 2).
Therefore, we set a horizon of 15 years of breeding and
estimate the genetics gain per year (%) for each scenario
tested (Fig. 8).

In this case, the "Previous" method exhibited a mod-
erate gain of 2.2% annually. The "Current_Trad" method
demonstrated an improved performance with an increase
of 2.6% annually. The "GS_F3" method, utilizing genomic
selection, further enhanced the response to 3.3% per year.
The "GS_F2" method showed another increase, achiev-
ing a 3.45% annual gain. Finally, the highest response was
observed in the "GS.F2_HTP.F3" method, which combined
genomic selection with high-throughput phenotyping,
yielding a remarkable 3.65% gain per year. These results
underscore the superior efficiency of advanced genomic and
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phenotyping techniques in accelerating genetic gains in plant
breeding.

The balance between the number of parents,
crosses, and progeny size

Our results demonstrate that even the best breeding frame-
work (“GS.F2_HTP.F3”) can be further improved by finding
the best combination of numbers of parents, crosses, and
progeny sizes (Fig. 9). The response to selection per year
ranged from approximately 2.5-4.5% between combinations.
Overall, combinations with more crosses (C) and mainly
larger progeny sizes (S) showed better responses to selection
per year (Fig. 9 and Table 3).

Furthermore, the analysis of variance (Table 2) high-
lighted the significance of the factors of the number of par-
ents (P), number of crosses (C), and the progeny size (S) on
the response to selection. Also, the importance of each one
of these components (VC%) in explaining the improvements
in population performance. In this context, these results of
the variance component showed that the progeny size had
the major effect, accounting for around 35.9% of the total
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Fig.7 The average population performance (a), the best line (potential variety) performance (b), and the genetic variability (c) for each one of

the five breeding methods over 20 breeding generations
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Fig.8 The average gains per year (%) in terms of population mean for each of the five breeding frameworks over 15 years of breeding. The red

dots represent outliers observed in the simulations
variance, followed by the number of crosses with 23%. The Finally, to identify which combinations are signifi-
number of parents had the lowest impact on the results and  cantly different in response to selection, we compared

the scenarios via the Scott—Knott test, which effectively

explained 3.3% of the total variance (Table 3).
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Fig. 9 Response to selection over 15 years of breeding with different combinations of the number of parents (P), number of crosses (C), and

progeny size (S). The red dots represent outliers observed in the simulations

Table 2 Analysis of variance

X Source Df SS MS F value Pr(>F) VC%
for the factors P (number of
parents), C (number of crosses),  p 3 21.706 7.235 166.6439 <2.2e—16%** 3.36
S (progeny size), and their C 3 136.140 45.380 1045.2125 <22e—16%#% 23.01
interactions
S 3 212.693 70.899 1632.9415 <2.2e—16%* 35.92
P:C 9 1.725 0.192 4.4141 8.887e—06%** 0.31
P:S 9 4.884 0.543 12.4998 <2.2e—16%x 1.03
C:S 9 3.569 0.397 9.1331 7.373e—14%%x 0.73
P:C:S 27 1.140 0.042 0.9726 0.5044 0.00
Residuals 6336 275.091 0.043 35.65

Degrees of freedom (Df), the sum of squares (SS), mean squares (MS), F values, and p-values (Pr(> F)),
and the percentage of the total variance (VC%) explained for each source in the model

Significance codes: 0 “***” 0.001 “** 0.01 *** 0.05 <" 0.1 *’ 1

grouped all breeding strategies into distinct categories.
The Scott—Knott test was chosen specifically because it
organizes treatments into disjoint groups based on statisti-
cal significance, simplifying the identification of clusters
of superior combinations without the complexity of inter-
preting numerous pairwise comparisons. This approach
helped us determine an optimal balance between high per-
formance and practical affordability. Combinations with
higher numbers of crosses and larger progeny sizes tend
to perform better, as seen in Group 1 (Table 3).
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Discussion
Heritability and genetic connectivity

Regarding heritability estimates, most of the values and
central tendency across years are distributed above 0.6
values, indicating a strong genetic component and reliable
data. This pattern was observed for plant height, whole
milling, and yield. Heritability values for plant height
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Table 3 The first three groups of population performances and 16
best combinations of the number of parents (P), number of crosses
(C), and progeny size (S), obtained via the Scott—Knott test

P C_S Population per- Gl G2 G3
formance

P40_C200_S200 9.6 a

P20_C200_S200 9.56 a

P60_C200_S200 9.54 a

P40_C200_S150 9.54 a

P80_C200_S200 9.53 a

P40_C160_S200 9.51 b

P20_C200_S150 9.5 b

P20_C160_S200 9.48 b

P60_C160_S200 9.48 b

P20_C160_S150 9.47 b

P40_C160_S150 9.47 b

P60_C200_S150 9.47 b

P20_C200_S100 9.45 c

P40_C120_S200 9.44 c

P80_C200_S150 9.44 c

P80_C160_S200 9.43 c

(DUMeans followed by equal letters in the columns belong to the same
grouping, according to Scott—Knott's test, at 5% probability

fluctuate less over time than whole milling and yield. This
suggests a more stable genetic control for plant height,
attributed to fewer environmental interactions or more effi-
cient selection practices (Yan et al. 2023). In contrast, the
heritabilities of whole milling and yield display greater
variability. This is because yield and whole milling are
more quantitative traits; they are influenced by multiple
genes and environmental factors, leading to complex inter-
actions that affect their heritability (Saeidnia et al. 2023).

Various factors can introduce errors in genetic gain esti-
mates, including breeding scheme, trait heritability, connec-
tivity, and the number of trials and sites per variety (Rut-
koski 2019a, b; Raymond et al. 2023). Therefore, direct
estimates of genetic gain should not be used to compare
breeding programs. Instead, genetic gain estimates should be
employed to assess the presence of a positive upward trend
or to obtain a close estimate of the realized genetic gain
within a breeding program (Rutkoski 2019a, b). Breeding
programs have a major impact on increasing crop yield at
the necessary rate to match the needs of the world's grow-
ing population and achieve global food security (Cobb et al.
2019). One of the strategies to track the performance of a
breeding program on this mission is the estimation of the
genetic gain (Xu et al. 2017).

Therefore, genetic connectivity is critical to estimat-
ing genetic gain in a given period based on historical data.
The lack of connectivity can lead to biased estimations by
confounding genetic and year effects (Rutkoski 2019a, b).

The connectivity values present in our study ranged from
17 genotypes (2003-2004) to 43 genotypes (2016-2017)
shared genotypes between sequenced years. Consequently,
the data have a considerable degree of connectivity over the
years, which is desirable for reliable estimates of genetic
gain. Our connectivity is similar to historical studies that
estimated genetic gain on yield, such as those by Rahman
et al. (2023), which had connectivity ranging from 16 to 45
genotypes between years, and Khanna et al. (2024), with
connectivity ranging from 6 to 64 genotypes. To get low
errors and a high correlation between the real and the esti-
mated breeding values, studies of genetic gain with historical
data also require a good long-term pedigree record within
the breeding program to allow a good estimate of the addi-
tive relationship between the lines (Rutkoski 2019a, b). The
main limitations of historical studies, connectivity, and pedi-
gree records were overcome in the present study, which adds
reliability to our results.

Genetic trends in the last decades

Plant height is a critical factor in rice cultivation, as it is
directly associated with lodging and grain yield (Wu et al.
2022; Seck et al. 2023). Rice breeders must find a balance
between reducing plant height to minimize lodging and pro-
mote tillering while avoiding excessive reduction in height
that could lead to smaller grain size and excessive tillering,
ultimately reducing yield (Liu et al. 2018). With a minimal
negative trend of -0.04%, our breeding program has success-
fully maintained plant height at a balanced length of around
100 centimeters, preserving trait variability and reducing
outlier values over the years. Field management practices
and environmental changes significantly influence rice plant
height (Liu et al. 2018; Wu et al. 2022). Maintaining varia-
bility within our breeding program provides a buffer to adapt
our selection process to these changes, mitigating potential
yield losses.

Rice milling is a quantitative trait due to several QTLs
and many instances of epistasis (You et al. 2022; Ali et al.
2023). Despite the modest positive genetic trend of 0.02%
per year, the breeding program could maintain constant
improvement for milling with the predominance of milling
rates above 60%. Moreover, it has a high genotype X envi-
ronment effect, and this interaction makes it challenging to
achieve consistent genetic improvement in milling across
different environments or/and years (Cruz et al. 2021; Ali
et al. 2023). Cruz et al. 2021 observed a negative additive
genetic trend of —0.16% in the Latin American Fund for
Irrigated Rice breeding program over 20 years of selection.
They highlighted the complexity of improving the trait and
how applying MAS and GS, which consider genotype X
environment interactions, can enhance the rate of genetic
gain for milling.
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To match food and biofuel demands to meet the projected
human population in 2050, the so-called “2050 challenge,”
we will need an increase in crop yield at the annual rate of
2% (Li et al. 2018). We observed a positive trend with a rise
of 0.86% per year due to the additive genetic effect, which
increased to approximately 56.54 kg/ha per year from 1994
to 2018. During this period of 24 years, we could bring the
mean value for grain yield from 5893 to 7250 kg/ha, which
means an increase of 23%. Despite the significant increase
that we have made, we are aware that we need to improve
our genetic grain rate and increase our selection efficiency
with the adoption of new strategies and breeding tools, such
as genomic selection, which is a reality in our breeding pipe-
line. Besides the main objective of increasing yield, a sus-
tainable breeding program should effectively utilize genetic
diversity to achieve genetic improvement in specific traits
while preserving genetic diversity in non-target loci (Meu-
wissen et al. 2020). Maintaining genetic diversity within
a breeding population presents a significant challenge for
achieving long-term genetic gains. We could observe the
presence of great variability in the distribution of values for
the three traits evaluated (plant height, whole milling, and
grain yield).

Genetic gain in 110 years

The population breeding value improved over 110 years
and 23 breeding generations by approximately 0.07% per
generation, equating to an average increase of 4.55 kg/ha
(Fig. 5). This steady improvement underscores the efficacy
of the breeding program in enhancing grain yield through
successive generations. Despite the overall positive trend,
significant variability in grain yield was observed across
different breeding generations, highlighting the influ-
ence of genetic and environmental factors on grain yield.
A more pronounced genetic gain was observed during the
last 10 generations of the breeding program. During this
period, encompassing 50 years, the genetic gain per gen-
eration increased to 1.39%, reflecting an average increase
of 92.63 kg/ha per generation. Rice cultivation in the USA
has been done since the 1600s using cultivar introductions
(Wang et al. 2024). In the early 20th century, advancements
in understanding inheritance laws led to rapid progress
in genetic disciplines and applied plant breeding. In this
period, the US rice experiment stations began implement-
ing directed hybridization and artificial cross-pollination
with rice materials to generate genetic variability and then,
the selection of adapted materials to the Southern US con-
ditions aiming for stability and higher yields (McKenzie
et al. 2015; Wand et al. 2024). This marked improvement
in the last 10 generations is attributed to a shift in breeding
strategies from introducing genotypes from other regions to
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performing hybridization between stable materials within
the programs (Fig. 6).

The observed genetic gains in grain yield through suc-
cessive generations of selection indicate the long-term
effectiveness of the breeding program. The greater genetic
gain in the most recent generations suggests that modern
breeding techniques, including hybridization and the selec-
tion of stable genotypes, have contributed significantly to
this improvement. Future breeding efforts could benefit from
continuously integrating established modern tools such as
GS techniques, HTP, and optimized statistical models to
enhance further the accuracy and efficiency of selecting
superior genotypes. Studies have shown that incorporating
genomic selection can yield substantial genetic gains by
accelerating the breeding cycle and improving selection pre-
cision (Biswas et al. 2023). HTP tools can increase selection
accuracy at lower costs and with higher selection intensity,
enabling the phenotyping of more plots (Xu et al. 2021).
The combination of GS and HTP has great potential to be
the next turning point in the breeding program based on the
results of our simulations.

Optimizing for the future

Concerning the trend of genetic variability, the methods
based just on phenotypic selection had a slow rate of vari-
ability reduction compared to methods that use genomic
information. Marker-based BLUP methods are naturally
based on the covariance between genotypes. They will cause
relatives to be co-selected more frequently, reducing genetic
variability faster than phenotypic selection (Heslot et al.
2015). Fritsche-Neto et al. (2024) also observed this trend in
a study that simulated a rice breeding program. The genomic
selection methods showed a greater reduction in genetic var-
iability than traditional phenotype-based methods (Fritsche-
Neto et al. 2024). This pattern was also observed in other
studies that simulated the use of genomic selection in vari-
ous breeding programs across different systems, including
sorghum (Muleta et al. 2019), maize (DoVale et al. 2022),
pulses (Li et al. 2022), trees (Degen and Miiller 2023), live-
stock (Wientjes et al. 2022), and chickens (Pocrnic et al.
2023). Our results also suggest that the reduction of genetic
diversity was inversely proportional to the genetic gain and
the variety performance. The methods that implemented GS
had an accelerated rate of genetic gain and variety perfor-
mance in the initial cycles, and this was reflected proportion-
ally in the genetic diversity loss. The final results at the 20th
cycle also showed the inverse proportion; methods based on
phenotypic selection could preserve more genetic variability
and presented higher final values for population mean and
variety performance compared with methods with GS.
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The response to selection highlighted the potential of
implementing GS when considering the possibility of
shortening the breeding cycle. After simulating 15 years of
a breeding program to compare all the methods with their
correspondent breeding cycle length, we had three breed-
ing cycles of "Previous and the "Current_Trad," 4 of the
"GS_F3," and 5 of the "GS_F2" and "GS.F2_HTP.F3." The
"Previous" method shows a moderate response to selection
even when compared to the “Current_Trad.” This suggests
substantial increases in response to selection can be obtained
by including another round of phenotypic selection, increas-
ing the overall framework accuracy without penalizing the
cycle length.

Regarding genetic gains observed via simulations, usu-
ally, they are typically overestimated. Therefore, our objec-
tive is not to focus on the actual numbers but to compare
breeding frameworks and determine which will provide a
relatively better genetic gain at a lower cost. In this con-
text, all the GS methods outperformed the methods based
on phenotypic selection, even when the methods had almost
the same breeding cycle length. The selection based on esti-
mated breeding values improves the probability of selecting
the top-performing lines, increasing the selection differen-
tial and the genetic gain (Cobb et al. 2019). Another main
advantage of GS is reducing the breeding cycle length while
enhancing the expected genetic gain and selection response
per unit of time (Crossa et al. 2017). The reduction of the
cycle length significantly impacted the response to selec-
tion between the methods. However, from our perspective,
the key distinction between the phenotypic-based and GS-
based methods is due to the enhanced accuracy in selecting
the top-performing lines in the early stages (Heslot et al.
2015; Hickey et al. 2017). Furthermore, the “GS.F2_HTP.
F3” forecasts the implementation of GS on the F, generation
and HTP in F;, resulting in the highest response to selection
per year, mainly because it replaces a low accurate pheno-
typic selection in those stages for a better and more precise
strategy and of course, with the lowest cost.

Regarding the optimization of breeding numbers, our
results have practical implications for rice breeding pro-
grams without abrupt changes in logistics or substantial
costs. It is well-known that the maximization of genetic
gain and the maintenance of genetic variability are achieved
with the increase of the number of parents to ensure a wide
genetic base, the conduction of more crosses to generate
diverse progeny, and the utilization of larger progeny sizes to
enhance selection accuracy and genetic gains. Fritsche-Neto
et al. (2024) also observed the same results in a simulation
study with rice, where a bigger population size generated
higher genetic gain and better maintenance of genetic vari-
ability over a small population size. The response to selec-
tion per year varied between approximately 2.5-4.5%, with
higher numbers of crosses and larger progeny sizes showing

better responses (Fig. 9). Furthermore, the variance compo-
nent analysis (Table 2) revealed that progeny size had the
major effect on the total variance, contributing 35.92%, fol-
lowed by the number of crosses (23.01%) and the number of
parents (3.36%). This hierarchy of influence underscores the
critical role of progeny size in breeding programs, as larger
progeny sizes ensure a broader genetic base, facilitating the
selection of superior individuals. Consequently, this result
may help define the best strategies in resource allocation
and shed light on the old question: Lees and big or more and
smaller progenies?

In this context, a smaller population size will maximize
the rate of allele fixation and boost the reduction of genetic
variability; smaller populations will also influence genetic
drift (Fritsche-Neto et al. 2024). Maximizing the popula-
tion size not only mitigates the negative effects of genomic
selection and drift over the genetic variability and allele
fixation, but it will also increase the genetic gain with the
possibility of higher selection intensity (Xu et al. 2017), and
the Mendelian sampling, hardening the genomic selection
advantages. However, increasing the population size of a
breeding program is not simple. Although the main objective
is to constantly increase genetic gain, a breeding program
must also be cost-effective to keep its sustainability. Using
GS can make it possible to test more lines, increasing the
selection intensity and genetic gain. Still, there is a trade-
off between the accuracy generated by the markers and the
genotyping costs.

The allocation of resources regarding the number of par-
ents, crosses, and progeny size will depend on the breeder's
interest in maximizing the variation among or within fami-
lies. It will also depend on factors such as family correlation
and the number of traits to evaluate (Covarrubias-Pazaran
et al. 2021). Hence, finding an equilibrium between those
numbers and the cost to genotype is key to optimizing the
cost-benefits of genomic selection within a breeding pro-
gram. In this context, simulation studies can help us to test
a wide range of conditions within a breeding program under
a certain budget, designing the best strategies to maximize
genetic gain per amount invested (Muleta et al. 2019; Li
et al. 2022).

Conclusion

The results of this study demonstrate that the Louisiana State
University (LSU) rice breeding program has achieved sub-
stantial genetic gains over 110 years, with a notable increase
in grain yield. These gains were most pronounced over the
last 25 years, and recent modifications have been simulated
to increase the rate of gain. Also, methods based on genomic
selection stood out for their superior selection response when
compared to phenotypic methods. Simulations demonstrate
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that additional gains can be realized by modifying the
existing program and incorporating new approaches, such
as HTP. Therefore, the breeding method, which combines
genomic selection (GS) and high-throughput phenotyping
(HTP), has proved highly effective and is a priority for the
coming years. Moreover, a better combination of the number
of parents, crosses, and progeny sizes will be placed, not
the best tested, but the best we can afford (the 4th). Finally,
our results reinforced the importance of modern selection
tools and strategic resource allocation to optimize program
efficiency. They underscored the necessity of continuously
adopting new technologies and breeding strategies to ensure
the sustainability of breeding programs and meet future
global food demands.
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