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5 CNRS, institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
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Abstract Fluctuation theorems, such as the Jarzynski equality and the Crooks relation, are effective tools connecting non-equilibrium
work statistics and equilibrium free energy differences. However, detailed hands-on, reproducible protocols for implementing and
analyzing these relations in real experiments remain scarce. This tutorial provides an end-to-end workflow for measuring, validating,
and applying fluctuation theorems using a single-beam optical tweezers setup. It introduces the foundational ideas and consolidates
practical calibration (PSD-based trap stiffness and position sensitivity), protocol design (forward/reverse finite-time drives over
multiple amplitudes and durations), and robust estimators for free energy difference and dissipated work, highlighting finite sampling
and rare event effects. We demonstrate the procedures using an extensive set of measured trajectories under different conditions and
provide openly accessible datasets and Python code, enabling new researchers or educators to reproduce the results with minimal
effort. Beyond pedagogical validation, we discuss how these recipes translate to broader soft-matter and mesoscopic contexts. By
combining user-friendly instruments with clear and transparent analysis, this work promotes the education and reliable adoption of
stochastic thermodynamic methods in the curricula of physics and chemistry, as well as among emerging research teams.

1 Introduction

Thermodynamics is one of the most important and well-established physical theories [1–3], with an impressive range of applications,
especially in chemistry and engineering. Despite the initial pragmatic approach, with its humble beginnings in the phenomenological
study of steam engines, and all the revolutionary developments in quantum physics, this classical theory still remains indispensable
for describing energy exchange and dissipation. Its prominent position is due to the effective universality of its core principles. In
this sense, the laws of thermodynamics have proved to be a solid basis for understanding nature, with applications ranging from
chemistry and biology [4–11] to computer science and computation [12–14], and even black hole physics [15–17].

The early discipline of classical thermodynamics, however, was restricted to describing macroscopic systems in equilibrium and
quasistatic processes. Thermodynamic equilibrium refers to static (time-invariant) states of macroscopic variables such as volume,
pressure, and temperature. Quasistatic processes are idealized transformations in which the system is kept in equilibrium throughout
its evolution. Another central concept is the notion of reversibility, which assures that the system can be returned to a previous
state by reverting some relevant parameters. This is intrinsically related to the condition of quasistatic transformations. For these
conditions to hold, quasistatic processes must proceed very slowly because quick shifts in the system’s configuration could push
it out of equilibrium. Nevertheless, in truly macroscopic systems, equilibration usually occurs quickly enough to treat finite-time
changes as approximately quasistatic. Notice that despite the term thermodynamics, the foundational equilibrium theory does not
portray dynamic processes in the usual sense. The dynamics is given through relations between macroscopic quantities, but the
underlying evolution remains hidden. Thus, while effectively predicting the final state of a system, the theory lacks the tools to
describe how, at what rate, or through which mechanisms a system transitions to equilibrium. Capturing these dynamic aspects
usually requires other frameworks to describe the connection to the underlying microscopic processes.

The advent of statistical physics began to bridge the gap with the microscopic nature of matter. This progress introduced
probabilistic and statistical reasoning [18–21], which proved highly successful in describing microscale physics and justifying
previous phenomenological observations. Good examples are Einstein’s explanation of Brownian motion and Perrin’s confirmation
of the atomic hypothesis [22, 23]. These developments opened the way for extensions to smaller systems far from equilibrium and
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finite-time protocols [24–28]. Under these conditions, fluctuations are non-negligible and play a significant role in the physical
description. These ideas are now contained within the broader context of stochastic thermodynamics [29, 30], which provides a
general framework to define quantities such as work, heat, and entropy, for mesoscopic systems following trajectories in phase space.
In this context, these quantities are dynamic stochastic variables that can acquire different values for distinct process realizations,
and familiar laws of thermodynamics are recovered at the average level over an ensemble of realizations.

The fluctuation theorems (FTs) encapsulate some of the most important results of the field [31–41]. Among them, the most
well known were proposed by Jarzynski [42] and Crooks [43, 44] regarding non-equilibrium work relations. In essence, FTs
offer general mathematical statements for the probability distribution of relevant thermodynamic quantities. It is fascinating how
these simple relations carry profound conceptual meanings and far-reaching consequences despite their straightforward structures.
Experimentally, they are well established and verified [45–49] on numerous platforms, such as electrical circuits [50–52], mechanical
torsion pendulums [53], and single-electron boxes [54] (see, for instance, [27]). Furthermore, these results have been extended to
the quantum regime [55–61], in quantum thermodynamics [62–65], and also experimentally verified in various settings [66–75].

Among the experimental platforms, optical tweezers were the first and are still one of the most versatile and widely used. Optical
tweezers (OTs) are powerful tools to probe and verify physical phenomena on the microscale [76]. These devices use focused
laser beams to trap microscopic systems in a noninvasive manner. Using them, researchers can control and analyze systems with
high spatial and temporal resolution by tailoring optical potentials [76–78]. The setup is relatively simple, requiring only standard
optical components. The precision and simplicity of OTs make optically trapped particles ideal testbeds for experimentally assessing
stochastic thermodynamics. Optical trapping has been used in numerous studies to explore these scales [79–87]. For a comprehensive
review, including calibration procedures, see Ref. [78].

Despite the importance and significant progress in stochastic thermodynamics over the past decades, key concepts and main results
remain underrepresented in standard physics curricula, making this knowledge not widely diffused and sometimes overlooked in
their relevance for frontier research in energy, biology, and quantum technologies. For newcomers to the field, including researchers
and graduate students, another challenge lies in the literature itself, which can be difficult to navigate at first glance. While several
excellent reviews have laid out the theoretical foundations [25, 26, 28, 36, 41, 59, 60, 88, 89], and landmark experiments have
confirmed key predictions across diverse platforms [27, 45–54, 66–75], a concise hands-on guide integrating theory and experiments
for non-specialists is still missing. Most existing works separate abstract theory from the complexities of implementation. Very few
detail the experimental procedures, and even fewer share open-source code for calibration and data analysis of raw data.

Here, we aim to close that gap and help update thermodynamics curricula with contemporary verifiable experiments. This paper
introduces the main results of stochastic thermodynamics in an accessible and integrated way for students and new researchers. We
provide a self-contained, hands-on tutorial that connects theoretical concepts to practical steps for building, calibrating, and analyzing
modern experiments using optical tweezers. Specifically, we detail the construction of an OT setup to probe non-equilibrium energy
landscapes in real time. By merging theoretical, experimental, and data analysis techniques, we offer practical tools for exploring
energy conversion limits and developing efficient micro- and nanoscale devices, potentially aiding the establishment of experimental
courses and new research laboratories.

This paper is structured in two main parts: Sect. 2 presents the foundations, starting with a brief overview of macroscopic
thermodynamics and introducing stochastic thermodynamics and fluctuation theorems. Then it describes the use of optical tweezers
to study the thermodynamics of mesoscopic systems. Section 3 details the experimental setup, data acquisition and calibration
methods, results, and analysis. Finally, Sect. 4 provides the discussion and conclusions.

2 Theory

This section outlines the necessary theoretical foundations. It begins with a quick review of the first and second laws, establishing
the basic concepts and terminology. Next, it introduces the fundamental non-equilibrium work relations, expressed by the Jarzynski
equality and the Crooks fluctuation theorem, providing the basic framework and notation needed to understand the analysis in the
following sections.

2.1 Fundamentals of equilibrium thermodynamics

The first law of thermodynamics expresses energy conservation for a closed system, distinguishing two mutually exclusive modes
of energy transfer: work (W ) and heat (Q). For a system that undergoes an arbitrary process , the infinitesimal change in internal
energy dU is given by [2]:

dU  W + Q, (1)

where W and Q represent inexact differentials that depend on the path  followed by the system. These quantities are fundamentally
distinct. Work (W ) is the energy transferred when external variables (e.g., volume) change under the action of an external agent,
while heat (Q) is the energy transferred solely due to a temperature difference between systems, via mechanisms such as conduction,
convection, or radiation.
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Fig. 1 Schematic representation
of work probability density for
mesoscopic and macroscopic
systems, with average values
indicated by dashed lines.
Fluctuations are negligible in
macroscopic systems, and
uncertainty is limited only by
measurements, whereas in
mesoscopic systems, fluctuations
are significant, with values
comparable to the average work
W 

The second law of thermodynamics introduces the concept of entropy (S) and addresses the feasibility and reversibility of
processes. Essentially, it constrains possible processes even further, limiting even those that satisfy the first law. For a system in
contact with a thermal bath at temperature T , it can be expressed as [2]:

d S ≥ Q

T
, (2)

with equality holding for reversible cases. For isolated systems where no heat exchange occurs, the second law simplifies to d S ≥ 0.
For irreversible cases, the entropy change is strictly positive, leading to entropy production.

Equations (1) and (2) are entirely general and can be adapted to more convenient variables by introducing thermodynamic
potentials via Legendre transformations. For example, the Helmholtz free energy, defined as F : U − T S, allows the second law
to be reformulated for isothermal (constant temperature) processes as:

W ≥ dF. (3)

This form indicates that the minimum (or maximum) work performed (or received) is bounded by the change in free energy between
the initial and final equilibrium states, with equality holding only for reversible processes.

2.2 Brief overview of stochastic thermodynamics

Equilibrium thermodynamics normally ignores fluctuations in macroscopic systems for good reasons. For example, consider a
3D box filled with an ideal monoatomic gas of N particles in thermal equilibrium at a temperature T . The equipartition theorem
gives the average internal energy U T  3

2 NkB T , where ·T represents averages over equilibrium quantities and kB is the
Boltzmann constant. The variance of the energy is given by Var(U )  3

2 Nk2
B T 2, and the relative fluctuation in the internal energy,

UU T


√
Var(U )
U T

≈ 1√
N

. This relative fluctuation is negligible for a macroscopic system with N ≈ 1023, and the energy distribution
is sharply peaked around its mean value. Allowing fluctuations to be safely ignored in such systems. However, this is no longer true
for small systems, such as N ≈ 102, when fluctuations become significant compared to the relevant energy scales, requiring them
to be included in the thermodynamic description.

Let us consider another illustrative example, a thought experiment in which a box undergoes repeated cycles of the same protocol,
such as an isothermal expansion that doubles its volume. In a macroscopic box, where the number of particles is large, fluctuations in
pressure and volume due to particle collisions with the walls are negligible. Consequently, the uncertainty in the measured average
work is much smaller than the mean work value.

In contrast, if the same experiment is performed in a microscopically sized box with a small number of particles, the relative
fluctuations in pressure become significant, even in an idealized hard wall box. This leads to noticeable fluctuations in the measured
average work, even after many repetitions of the protocol and perfect measurements. Figure 1 illustrates this scenario for mesoscopic
systems which are large enough to be readily observable but sufficiently small for fluctuations (on the order of kB T ) to cause significant
measurement deviations.

Stochastic thermodynamics treats quantities like internal energy, work, and heat as stochastic variables, allowing the portrayal
of average and individual trajectories in phase space for finite-time processes and non-equilibrium states.

Let x : (q, p) represent the phase space coordinates for a small system in contact with a thermal bath, and let  denote an external
control parameter (e.g., potential, position, or magnetic field). A modification of , parameterized by time t, defines a protocol,
(t). Due to the bath’s stochastic fluctuations, phase space trajectories vary even under identical protocols. The Hamiltonian of the
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system, H (x, ), represents its internal energy U (x, ). Energy changes can arise from shifts in phase space variables (heat, Q) or
from changes in external parameters (work, W ), consistent with the first law of thermodynamics:

dW : ∂U

∂
d, dQ : ∂U

∂x
dx. (4)

Therefore, given a protocol (t), the total work along a single stochastic trajectory over time t is simply

W 
 t

0

∂U

∂

d

dt 
dt , (5)

with an analogous expression for the heat.
Although it is outside the scope of this introduction, it is worth mentioning that the same reasoning can be applied to define

fluctuating entropy [90], for example.
Finally, the ensemble average of work, obtained by repeating the protocol multiple times, is:

W  
 t

0


∂U

∂


d

dt 
dt  


W P(W )dW , (6)

where P(W ) is the probability distribution function of work and · represents the ensemble average over all repetitions.

2.2.1 Brownian motion

The erratic trajectory of a mesoscopic particle immersed in a fluid is well described by the paradigmatic Brownian motion [22]. This
motion results from collisions with numerous surrounding particles, making it an excellent testbed for the formalism of stochastic
thermodynamics.

Consider a Brownian particle subjected to a one-dimensional potential U(x), initially in thermodynamic equilibrium with its
environment (fluid) at temperature T . The particle’s time evolution is fully characterized by the Langevin equation [91–93]:

mẍ  − ẋ − dU (x)

dx
+ Fth , (7)

where Fth is the stochastic force, given by Gaussian white noise arising from the system’s interaction with its thermal reservoir
characterized by: Fth(t)  0 and Fth(t)Fth(t )  2 kB T (t − t ), with  being the Dirac delta function. In Eq. (7), m is the
mass of the particle,   6πηR denotes the particle’s friction coefficient, where η is the medium’s viscosity and R the particle’s
radius. Thus, the particle’s dynamics are governed by the deterministic force from the external potential and the stochastic thermal
forces, which are non-negligible at the mesoscopic scale.

Figure 2 shows a simulation [94] of the Brownian motion for a particle immersed in water in a harmonic potential U (x)  1
2 x2

over a time interval of   10 ms, in the upper part. The lower part of the figure contrasts this behavior with   1 s for different
trap stiffnesses, 1  1 pN/m, and 2  10 1. Higher values of the force constant  result in the particle being more spatially
constrained, as is evident from the smaller standard deviation of its center of mass position.

Sekimoto [93, 95] showed that when the particle is subjected to an external control parameter (t), the trajectory can be directly
related to thermodynamic quantities such as heat and work. To establish this connection, consider the overdamped regime of the
Langevin equation, where the inertial term mẍ is negligible. After rearranging the terms, we obtain:

 ẋ  −dU (x)

dx
+ Fth(t). (8)

According to Sekimoto [93], the heat dQ exchanged with the thermal reservoir is defined as:

dQ  −(− ẋ + Fth(t))dx , (9)

where the sign convention here is opposite to the usual in macroscopic thermodynamics; therefore, dQ  −dQ.
Using the first law of thermodynamics, dU  dQ + dW , where dW is the work done on the system, we can write:

dW  dQ + dU  ∂U

∂
d. (10)

Thus, the stochastic work applied to the system by the external control along the trajectory x(t) is given by Eq. (5), and the stochastic
heat dissipated by the system into the bath is:

Q 
 t

0
dt 

−(− ẋ + Fth(t ))ẋ

. (11)

Therefore, from the particle’s trajectory x(t) and values of the control parameter (t) of the modulated potential, it is possible to
compute the time evolution of work and heat during a given (single) process and determine their final values using Eq. (5) and
Eq. (11). Due to the stochastic force, each realization will result in different values, and one can obtain their average across an
ensemble of trajectories, as in Eq. (6).
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Fig. 2 Simulated trajectories of a
water-immersed particle trapped
at room temperature in a harmonic
potential. (Top) Trajectories for a
trap stiffness 1  1 pN/m over
10 ms. (Bottom) Comparison of
trajectories for trap stiffnesses 1
and 2  10 1 over 1 s. The
simulations use a time interval of
10 s between points with
parameters: T  300 K,
  6πηR,
η  0.001 N · s · m−2, and
R  1 m

For completeness, one might be interested in an ensemble-level description of this physical setting, rather than the individual
trajectory picture provided by the Langevin equation. This is captured by the Fokker–Planck equation [96, 97], which gives the
dynamics of the probability density function P(x, t) corresponding to the particle’s position x at time t:

∂ P(x , t)

∂t
 1



∂

∂x


dU (x)

dx
P(x , t) + kB T

∂ P(x , t)

∂x


. (12)

2.3 Fluctuation theorems

To accurately describe the thermodynamics of mesoscopic systems, one cannot neglect the role of fluctuations. Surprisingly, these
fluctuations carry valuable information. The FTs provide formal mathematical relations that express certain system symmetries,
usually expressed in terms of the probability distribution of some stochastic variable. This is a broad and rich subject, but here we
will focus on two emblematic results that helped spur the entire field of study. The reader can find a more comprehensive discussion
in [24, 29, 30, 41, 59, 90, 98]. In the following, we introduce the non-equilibrium work relations [25, 42–44].

2.3.1 Jarzynski equality

One of the most relevant examples of FT is the Jarzynski equality (JE), proposed in [42] by Christopher Jarzynski. It relates the
non-equilibrium work distribution within a given protocol to the difference in Helmholtz free energy, F .

Let us assume our thermodynamic system of interest is described by a Hamiltonian H (x, ), where  represents the external
control parameter. Now, consider the following simple procedure: (i) Initially, place the system in thermal contact with a reservoir at
temperature T , with  fixed at i ; (ii) after equilibration, modify  according to some predefined finite-time protocol until it reaches
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a final value1  f . During this execution, stochastic work is performed, as quantified by Eq. (5). After repeating this process several
times, one can calculate the statistics for this process. Under these conditions, the following equality holds:

e−W/kB T

 e−F/kB T , (13)

where F : F f − Fi , with Fi , f being the Helmholtz free energy relative to the equilibrium state characterized by i , f .
This expression is surprising for several reasons. First, it is an equality, which contrasts with the usual thermodynamic relation

between work and free energy for non-equilibrium processes (Eq. (3)). Additionally, its derivation and validity do not depend on
the specific protocol or the system’s final state, even though the latter strongly depends on the former. This means that as long as
the system reaches  f , the work protocol can be executed as rapidly as desired, potentially driving the system to states far from
equilibrium. Its main relevance is that one can gain access to helpful equilibrium quantities without relying on quasistatic processes
by simply collecting work statistics from arbitrary finite-time processes.

Furthermore, applying Jensen’s inequality ex  ≥ ex to Eq. (13), it is possible to recover the standard statement of the second
law (Eq. (3)):

W  ≥ F. (14)

Notice that this inequality refers to the average value of work, indicating that individual stochastic trajectories may eventually exhibit
work values below F .

2.3.2 Crooks fluctuation theorem

Following Jarzynski’s proposal [42], Gavin Crooks introduced another general equality related to similar quantities in [43, 44].
To understand Crooks fluctuation theorem (CFT), consider the same basic procedure as before, but now, both ways are needed:

forward and backward. Define a forward protocol as a sequence where  changes from i to  f , and a backward protocol as the
time-reversed sequence where  changes from  f back to i . In forward (backward) execution, the system starts in equilibrium
according to i( f ).

The CFT is expressed as:
PF (W )

PR(−W )
 e(W−F)/kB T , (15)

where PF (W ) is the probability of performing the work W during the execution of the forward protocol, while PR(−W ) is the
probability of attaining the work −W during the execution of the backward (reverse) protocol.

This expression encodes several essential insights. First, notice that the distributions PF (W ) and PR(−W ) coincide exactly
when W  F . This feature allows the straightforward identification of F by simply observing the intersection point of both
stochastic work distributions. Additionally, by directly integrating Eq. (15) and using the normalization of the probability distributions∫ ∞
−∞ dW PR(−W )  1, one can easily derive the Jarzynski equality in Eq. (13).

Thus, the Crooks fluctuation theorem provides a deeper understanding of non-equilibrium processes and connects forward and
reverse protocols, reinforcing the fundamental principles of thermodynamics at the mesoscopic scale.

2.4 Probing stochastic thermodynamics with optical tweezers

2.4.1 Optical tweezers

The development of the first laser optical traps began in the late 1960s, when Arthur Ashkin observed that a laser beam could
push micrometer-sized transparent particles due to radiation pressure. Subsequently, the counter-propagating beam trap was used to
demonstrate the first all-optical trap [100], and years later, the first single-beam trap, known as optical tweezers, was introduced [101].
This tool revolutionized the way scientists interact with microscopic objects, mainly due to its ability to precisely manipulate micro-
and nanoscale systems in a noninvasive manner using forces exerted by light. In fact, due to its numerous applications in various
scientific fields, ranging from studying biological systems [102–105] and chemical processes [106] to studies of thermodynamics
at the microscale [45, 46, 48, 49, 107, 108], optical trapping has become an essential modern tool. Arthur Ashkin was awarded the
2018 Nobel Prize in Physics for developing this powerful technique.

For the discussion here, focused on stochastic thermodynamics, and given the size of the optically trapped particle (with R ≈
1 m), we can safely use the simplest description for the operation of the optical tweezer, using geometric optics and momentum
conservation. For further details and more general descriptions, we refer to Refs. [76–78, 109].

An optical tweezer employs a highly focused laser beam to manipulate a microscopic particle (Fig. 3). As light reflects and
refracts upon entering and exiting the particle, its momentum changes, generating a radiation pressure force ( FR P ) along the beam

1 For simplicity, the system and reservoir were assumed to be decoupled during protocol execution. However, in the proposed experiment, the bath remains
coupled to the system throughout the process. Although there are subtleties when dealing with strong coupling scenarios (see [25] and [99] for more details),
Eq. (13) remains valid for both cases.
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Fig. 3 Basic scheme of the beam’s
trajectory (black lines) during the
reflection and refraction, and the
resulting forces are radiation
pressure (orange) and trapping
force (green), respectively. The
gravitational force (purple) is also
represented but usually is much
smaller

Fig. 4 A schematic representation
of a piston showing two different
volumes, analogous to a particle
trapped in a harmonic potential
with two corresponding trap
stiffnesses

axis and a trapping (gradient) force ( FT ) toward the region of highest intensity at the focal point. For materials with an index of
refraction larger than its surroundings, like silica beads in water, FT is attractive, balancing FR P and the small gravitational force
( FG ) to achieve stable trapping.

The resulting force can be approximated as a linear restoring force for small displacements of particles from their equilibrium
position, expressed as FOT  −x . In this regime, the trapped particle behaves as a mass–spring system in a harmonic potential
U  1

2 x2, as illustrated in Fig. 5. In addition, it is possible to dynamically control relevant parameters such as the spring constant
 and the equilibrium position simply by adjusting the intensity and position of the beam. Moreover, by appropriately controlling
the temporal and spatial modulations of the beam, a wide variety of optical potentials can be generated [84, 110, 111], making OTs
a versatile platform for experimental research.

2.4.2 Mechanical analogy and control protocols

In classical thermodynamics, the compression and expansion of a piston containing an ideal gas provide one of the simplest scenarios
for the theory. Starting from equilibrium, external work is required to compress the piston into a smaller volume, while work is
produced during the reverse process. In this case, the control parameter (t) is simply the position of the piston as a function of time.

This emblematic macroscopic scenario maps directly onto the mesoscopic regime using an optically trapped microsphere as a
prototype model for a Brownian particle in a harmonic potential, as illustrated in Fig. 4. In this analogy, the role of the piston is
played by a dynamically controlled optical potential U (x , t)  1

2 (t)x2, where the control parameter is the trap stiffness of the
optical potential. Thus, from now on, the external protocol parameter corresponds to (t) ≡ (t).

In the compression process, the stiffness of the trap increases, restricting the particle to a smaller region. This is analogous to
the piston case. In contrast, as the stiffness decreases, the trap becomes weaker, allowing the particle to access a larger volume,
representing the expansion process. Figure 5 shows this connection explicitly with potentials reconstructed directly from experiments
at different trap strengths. To calculate the potential directly from the particle position data, one starts by allowing thermal equilibrium
with the environment (fluid) at temperature T . Thus, its probability distribution follows the Maxwell–Boltzmann distribution.

P(x)  P0 exp
[

− U (x)

kB T

]
, (16)

where P0 is a normalization factor, such that
∫

P(x)dx  1. Hence, the potential U(x) can be readily determined by

U (x)  −kB T ln[P(x)] + U0, (17)

where U0 is an arbitrary additive constant.
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Fig. 5 Measured harmonic
potentials for different force
constants  (acting as the control
parameter ), with 1 > 2 > 3.
Results were obtained from
position histograms of a trapped
2 m silica bead. The value of  is
proportional to the laser intensity.
In experiments, the compression
and expansion protocols are
executed by modulating the
intensity

This simple experiment provides a quick and essentially model-independent outline of the optical potential, which is very practical
in the laboratory but usually does not have enough precision. In Sect. 3.2, we present a more precise and robust calibration method
for the case of a harmonic potential.

Since the particle remains immersed in a fluid with fixed temperature T , performing isothermal processes is straightforward.
The control protocol (t) (corresponding to stiffness) can be easily programmed for different types of profiles, allowing for various
experiments. For simplicity, here, we focus on a linear protocol:

(t)  i +


P
t , (18)

where    f − i is the modulation amplitude and P is the time duration of the protocol.
The particle’s Hamiltonian is given by H (t)  p2/2m + U (t), where p is the particle’s momentum and U(t) is the trapping

harmonic potential

U (t)  (t)x2

2
. (19)

Thus, the partition function for a given  is

Z 
 +∞

−∞
dx

 +∞

−∞
dp e−H/kB T  Z p


2πkB T


, (20)

where Z p  ∫ +∞
−∞ dp e−p2/2mkB T  √

2πmkB T .
For a finite-time process, the work relative to a single run of the protocol can be computed using Eqs. (5), (18), and (19):

W  

2P

 P

0
x2(t) dt. (21)

For an ensemble of trajectories, the average work is

W  
 P

0
dt

d(t)

dt


∂U (x , )

∂


 

2P

 P

0
x2(t) dt. (22)

From Eq. (12) and the initial condition obtained from the equipartition theorem of energy, i.e., x2(0)  kB T/i , it is possible to
estimate x2 and compute the average work.

Finally, given the Helmholtz free energy F : −kB T ln Z , one can obtain F relative to the equilibrium states characterized by
i and  f :

F  −kB T ln
Z f

Zi
 −kB T ln


i

 f
. (23)

Note that, given Eq. (3) for the second law, one can quickly approximate this quantity as the minimum amount of energy necessary
to pay for driving the particle’s state from i to  f , such that W  ≥ F , where the equality is only achieved by infinite-time
protocols (quasistatically).

In conclusion, it is possible to gather statistics that recover meaningful thermodynamic quantities by measuring the particle’s
position during many repetitions of the same protocol. This can be done at the individual trajectory levels, by examining how work
evolves during a single protocol run, and at the ensemble level, by repeating the process N times. However, a critical experimental
challenge lies in accurately characterizing and controlling the external potential that the particle experiences, while also accurately
recording its position.
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Fig. 6 Experimental setup consists of a trapping system with a 1064 nm infrared laser passing through a two-axis acousto-optic deflector (AOD). A telescope
expands the beam waist to fill the entrance of a 63× immersion objective lens (NA  1.32, Leica Germany HCX PL APO). For position detection, a 785 nm
laser is aligned with the trapping laser. A condenser collects the scattered light and directs it through lens L1, which reduces the beam’s diameter to fit
within the active area of the quadrant photodiode (QPD). Additionally, a white LED and a CCD camera (Mikrotron MC 1310) are also used to visualize
and record the particle’s position. Mirrors and dichroic filters (D1, D2, D3) guide the beams. A notch filter (F1) blocks all wavelengths except the 785 nm
light, allowing it to reach the QPD, while a long-pass filter (F2) prevents the 785 nm light from reaching the photodetector (PD) used to monitor the trapping
IR laser. Lens L2 focuses the infrared beam onto the PD to maximize its signal. The inset at the top depicts the custom-designed U-shaped fluidic cell that
enables long-duration measurements by preventing interference from other particles

3 Experiment

This section presents the experimental part of this work, demonstrating how to verify the fluctuation theorems using a custom-built
optical tweezers setup. First, we introduce the experimental configuration and outline the calibration process for characterizing the
harmonic potential. Then, we present the results and their analysis.

In short, the physical system under investigation is a trapped 2 m silica microsphere (bead) manipulated dynamically using
optical fields. Controlling the optical potential while simultaneously recording the bead’s position, we can calculate the stochastic
trajectories introduced in Sect. 2.2 and use the gathered statistics of the ensemble to verify Eqs. (13) and (15).

3.1 Experimental setup

The experimental setup is illustrated in Fig. 6. A 1064 nm infrared (IR) laser (FORTE 02163 1064-SLM, supply 93580 LD 3000,
Laser Quantum) is used to trap the particles. The laser is connected to two perpendicular acousto-optic deflectors (AODs), specifically
the Optoelectronic DTSXY model, which allows precise control over the beam’s intensity and angular position.

The two-axis AOD uses piezoelectric transducers to modulate an optical medium (TeO2 crystal). When a radio frequency (RF)
signal from a function generator (AFG3102) drives the piezoelectric device, an acoustic wave propagates through the crystal,
diffracting the passing light. By aligning the system with the first order of diffraction (m=1), we gain control over the intensity
and angular position of the beam by adjusting the amplitude and frequency of the RF signal. The two perpendicular AODs enable
independent control of the beam’s position along the x- and y-axes; however, we will focus only on the intensity modulation for the
proposed protocols ((t)) and movements along one direction (x(t)).

A 63× immersion objective lens (NA  1.32, Leica Germany HCX PL APO) focuses the IR beam to trap the particle. A telescope
composed of two lenses collimates and magnifies the trapping laser, ensuring that it fills the entrance pupil of the objective. This
maximizes trapping efficiency, as the gradient force, which is proportional to the intensity gradient, is optimized by tightly focusing
the beam. After the objective, a sample holder connected to a 3D nanopositioning stage allows for precise adjustments of the
sample’s position. We trap low-concentration 2 m silica beads within a U-fluidic cell (see inset in Fig. 6). This homemade cell
is constructed by gluing a slide to a coverslip using double-sided tape and attaching a glass cylinder in the center to minimize the
distance between the surfaces to approximately 50 m. This design can significantly reduce the influx of particles in the measurement
region, facilitating long-term data acquisition [109, 112]. For measurements, the monitored particle is captured at the edges of this
region and optically dragged into the central area.

For particle visualization, we use a bright-field CCD camera (Mikrotron MC 1310) and a white LED for illumination. The trapped
particles are tracked using a quadrant photodiode Detector (QPD) to achieve the high sampling rate necessary for out-of-equilibrium
processes. A low-power 785 nm laser (Thorlabs LP785-SF20) is integrated into the trapping path and aligned collinearly with the
trapping laser. The interference between the incoming and scattered fields produces a position-dependent pattern, collected by a
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Fig. 7 Power spectra density
(PSD) analysis of a 2 m silica
bead trapped at three different
laser powers, increasing from
green to blue (1 > 2 > 3).
Higher laser power increases trap
stiffness and lowers the PSD
baseline plateau at low frequencies

condenser with a numerical aperture NA  0.53 (Leica 521500) and directed to a homemade QPD. The 4 QPD output voltage
signals (A, B, C, and D), from which the particle’s center of mass positions are calculated as:

xQPD  (A + C) − (B + D), (24)

yQPD  (A + B) − (C + D). (25)

Finally, the control of the function generator, along with readings from the QPD voltages and the PDA36A-EC photodetector, which
monitors the power of the infrared beam, is managed using a high-speed, multifunction data acquisition (DAQ) board (National
Instruments PXI-4472).

3.2 Characterizing harmonic potentials

Various methods exist to determine the trap stiffness, x(y), and the factor Sx(y), which relates the QPD output to actual position
readings. Section 2.4.2, in Eq.(17), discussed one of the simplest. However, the power spectral density (PSD) analysis [113] is the
most reliable approach [76], and it is the method used in this study. The procedure involves trapping a particle in a static potential
and recording the position x(t) at a sampling frequency fs over a time interval Ts . The analysis focuses on the x-axis, but the same
applies to the y- and z-axes.

From the position data x(t), a numerical discrete Fourier transform can convert it to the frequency domain, yielding x̆( f ). The
PSD is then calculated as:

P( f )  lim
Ts→+∞

|x̆( f )|2
Ts

. (26)

For PSD computation, we used Welch’s method [114], using an acquisition rate at fs  100 kHz and Ts  30 s. This resulted in the
number of points NFFT  8×105 used for characterization of x and Sx , with an overlap of 90% between segments. Figure 7 displays
the PSD from experimental data of a 2 m silica bead trapped at three different laser powers. Higher laser power corresponds to
increased trap stiffness and reduced mean-squared displacement within the trap. At each power level, 10 measurements were taken
and the PSD presented represents the average of these measurements. Laser power is controlled directly via the AOD amplitude
channel.

The analytical PSD for a harmonic trap in the overdamped regime is given by the Lorentzian form [76, 113]:

P( f )  S2
x D

2π2( f 2 + f 2
c )

, (27)

where D  kB T/ is the diffusion coefficient, Sx is the amplification factor converting the QPD voltage output to position
(x(t)  xQPD(t)/Sx ), fc  x/2π is the corner frequency, and   6πηR is the particle’s friction coefficient (η is the medium
viscosity and R is the radius of the particles). Detailed derivations are given in [109]. From data and using the least squares fit,2 one
can extract the trap stiffness x and the amplification factor Sx .

Figure 8 presents the calibration curves for the trap stiffness and amplification factor obtained from the PSD data. A linear
relationship between trap stiffness and laser power is observed as expected. Notice that the amplification factor also varies slightly
(≈12%) with laser power due to radiation pressure changing the equilibrium position along the z-axis, which affects Sx(y). Using
the data, we establish a calibration curve for the QPD response:

Sfit,x  aS VPD + bS , (28)

2 While Eq. (27) is the standard method for calibrating optical tweezers, we use a fitting function that also takes into account hydrodynamic interactions and
inertial effects, as detailed in [115]. According to [116], memory effects become significant for trap calibration at high sampling frequencies, making these
corrections essential for accurate estimations of potential. Although not strictly required, these corrections may improve calibration accuracy. In the range
used here, we find approximately 1 − 4% differences in the amplification coefficient and 5–10% in the trap stiffness.
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Fig. 8 Calibration curves for trap
stiffness and amplification factor
obtained from PSD fits as a
function of the infrared laser
power, monitored by VP D . The
trap stiffness calibration yields a
slope
aTS  24.9 ± 0.1 (pN/m)/V
and intercept
bTS  0.09 ± 0.04 pN/m. The
amplification factor calibration
(inset) provides
aS  1.17 ± 0.05 m−1, and
bS  3.33 ± 0.01 V/m

Fig. 9 Position variance during
thermalization at
i  1.5 pN/m, starting from
11i . A linear protocol with
duration P  0.1 R is applied,
followed by thermalization with
equilibration time eq  20 ms.
This case was selected because it
is the weakest trap stiffness used
in the experiments here, with the
longest equilibration time

where VPD is the infrared PD signal and aS and bS are the slope and intercept of the linear fit (inset of Fig. 8).
By simultaneously recording the QPD (xQPD) and infrared PD signals, we determine the particle’s center of mass position:

x(t)  xQPD(t)

Sfit,x
, (29)

and estimate the trap stiffness:

  aTSVPD + bTS, (30)

where aTS and bTS are the slope and intercept of the linear fit, as shown in Fig. 8.

3.3 Results and analysis

3.3.1 Protocol application and work inference

After characterizing the optical potential, the protocols for compression and expansion (see Sect. 2.4.2) were applied to the same
particles used in the calibrations, using the linear protocol in Eq. (18). To ensure thermal equilibrium, the laser power is kept constant
in the initial state i for a time interval eq > R , where R   /i is the relaxation time in the state i . Figure 9 shows the measured
position variance of the particle,  2

x , during the equilibration period at i  1.5 pN/m, demonstrating that eq  20 ms is sufficient
for the variance to stabilize and reach a steady state even for the weakest trap.

After equilibration, the protocol is executed by linearly increasing the trap stiffness until it reaches a final value  f > i . The
laser intensity is then maintained until the particle thermalizes again at  f . This constitutes the compression process. To execute
the expansion protocol, after the equilibration period at  f , the particle is linearly returned to the initial value i , and the process is
repeated thousands of times.

To calculate the work during the protocol execution, one can discretize Eq. (21), considering that data is acquired at regular time
intervals t  1/ fs , leading to the cumulative work at instant tn given by3

Wn  1

2
t

n−1∑

j0

 j+1 −  j

t
x2

j  1

2

n−1∑

j0

( j+1 −  j )x
2
j , (31)

3 We do not use the derivative d/dt  /P ; instead, we compute it directly from light intensity measurements in the PD output signal.
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Fig. 10 Measured control
parameter (top) and 500 stochastic
trajectories (bottom) for linear
compression protocol with
eq  20 ms, i  1.5 pN/m,
  10 i , and P  0.1 R ,
where R   /i ≈ 12 ms is the
relaxation time in the state i . The
black dashed lines indicate the
beginning and end of the protocol

Fig. 11 Temporal evolution of
work for 10 arbitrary trajectories
using the same linear compression
protocol, with i  1.5 pN/m,
  10 i , and P  0.1 R ,
where R ≈ 12 ms, and
eq  20 ms. The black dashed
lines indicate the beginning and
end of the protocol

where t j  jt with j  0, 1, 2, . . . , n. For a protocol with duration P , the temporal evolution of the work can be expressed
in terms of the time step n. Therefore, the final work value is calculated using n  P/t . It is important to note that work only
contributes when d/dt  0; which means that the thermalization period does not contribute to work.

After applying the protocol and recording the particle’s one-dimensional position, x j , simultaneously with the stiffness of the
trap,  j , one has all the information needed to compute the relevant thermodynamic quantities. To illustrate the experimental results
of this step, Fig. 10 shows the stochastic position measurements for 500 repetitions of the compression protocol, with P  0.1R

and   10i .
Using Eq. (31) and the acquired data, one calculates the fluctuating work across the stochastic trajectories. Figure 11 displays

the results for 10 distinct runs of the same protocol.
After a large number of repetitions (N  104) of the same protocol, a histogram is produced using the calculated work and the

probability density function (pdf), P(W ), is determined, ensuring
∫

P(W ) dW  1. Figure 12 shows the results for two modulation
amplitudes () and three different protocol durations (P ). For each colored solid curve, a vertical dashed line indicates the average
work, while the free energy change, F , is marked by the black vertical dashed lines. As expected, the measured work exhibits
significant fluctuations with W  > F . Figure 12 also allows a direct comparison of the work pdf between far-from-equilibrium
(quick, P  0.1R) and near-equilibrium (slower, P  2R) protocols.

Examining these distributions, we see that the work variance decreases and the average work approaches the free energy difference
as the protocol is driven more slowly. This behavior is consistent with the second law, as described in Eq. (3). In the ideal quasistatic
scenario (where the process is infinitely slow), one would expect a succession of equilibrium states with a narrow distribution
centered at the free energy difference F , the minimum required to change the state.

In particular, although the average work never falls below the free energy difference, individual trajectories can occasionally
be below F . These instances have sometimes been called “violations” of the second law. The frequency of these rare events
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Fig. 12 Work probability
distributions (colored solid lines)
and the respective average value
of work (same color dashed lines)
for protocol times: P  {0.1R ,
0.45R , 2R}, in blue, orange,
and green respectively. Two
modulation amplitudes are
considered,   i (top) and
  10 i (bottom). Results are
from N  104 trajectories of
forward linear protocols with
eq  20 ms, i  1.5 pN/m,
and R ≈ 12 ms. The black
dashed line indicates the
difference in free energy. The
number of bins used for the
histograms is 100

increases as the process deviates further from equilibrium, i.e., with larger modulation amplitudes and shorter protocol durations.
Nevertheless, the distributions of the works always satisfy

∫ F
−∞ P(W ) dW <

∫ ∞
F P(W ) dW .

3.3.2 Jarzynski equality

Building on previous steps, we can verify JE, Eq. (13). As mentioned earlier, the exact free energy difference for the linear protocol
is given by Eq. (23). Therefore, the right-hand side of Eq. (13) can be expressed simply as

e−F/kB T  Z f

Zi



i

 f
, (32)

where Z{i , f } and {i , f } are the partition functions and the trapping control parameters of the initial and final states.
Using the work statistics obtained from the experimental data, the left-hand side of Eq. (13) can also be calculated.
The uncertainty of e−F/kB T is calculated using uncertainty propagation:


[
e−F/kB T

]
 1

2




i

 f

2

+

(
i f

2
f

)2

, (33)

where (t) 
√

(mT S VP D(t))2 + (VP D(t)mT S)2 + (bT S)2 represents the uncertainties in the stiffness of the trap in the
initial (i ) and final ( f ) states. The uncertainty of 

exp(−W/kB T ) is determined by dividing the dataset into sub-
sets (blocks) and using the block averaging method. Specifically, we computed the averages  j  {exp(−Wn/kB T )}n1, ..., 1000
for 10 sets, each set (block) containing 1000 trajectories. The uncertainty 

exp(−W/kB T ) was then estimated from the standard
deviation of these values, calculated as the standard error of the mean for these independent sets:  j /

√
10.

Figure 13 illustrates the behavior of e−W/kB T  as a function of the number of repeats of the protocol. Note that the average value
converges toward a stable value as the number of trajectories increases. Ideally, an infinite number of samples would be required
for an exact verification, but the results show that N ≈ 2000 realizations are sufficient to confirm the Jarzynski equality within the
calculated uncertainties.

Figure 14 presents the verification of the Jarzynski equality across different durations of the protocol (from P  0.1R to
P  2R) and modulation amplitudes (  {i , 3i , 10i }), all with N  104 realizations. The results indicate that for small
amplitude modulation (  i ), the JE holds consistently across all examined protocol durations. More specifically, the value
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Fig. 13 Convergence of
e−W/kB T  versus the number of
experimental executions of the
linear compression protocol for
  i and same parameters of
Fig. 12. The black solid center line
corresponds to e−F/kB T , and
dashed lines represent the
uncertainty range

Fig. 14 Verification of Jarzynski
equality for a linear compression.
The average e(F−W )/kB T  for
different durations P and
modulation amplitudes:
/i  {1, 3, 10}, in blue,
orange, and green, respectively.
Each point represents data from
104 realizations of the experiment
at the same conditions. The black
dashed line shows the (exact)
expected value, and the bars
indicate the uncertainty for each
point

Fig. 15 Probability distributions
of work for the linear expansion
protocol with N  104

trajectories, eq  20 ms,
i  1.5 pN/m, P  0.1 R ,
R ≈ 12 ms,   10 i , and
using 100 bins

of e−F/kB T obtained from the PD readings during the initial and final equilibrium periods aligns well with e−W/kB T  obtained
from the work distributions. For higher values of , a better agreement is observed with shorter protocol times. This discrepancy
is likely due to the miscalibration of the amplification factor Sx depending on the power of the trapping beam, as we explain later.

Interestingly, in the linear expansion protocol, the stiffness of the trap decreases over time, i.e., d/dt < 0, leading to negative
work values since x2 > 0, as shown in Fig. 15. It is important to understand that here the rare events (occurring in the tails of
the probability distributions) significantly impact the calculation of e−W/kB T . This illustrates a general caveat when using the
Jarzynski estimator in regimes where rare events dominate convergence: Although the equality holds exactly, convergence can be
prohibitively slow, as shown in Fig. 16. Most repetitions have little influence on the average value, while a few rare events greatly
affect the exponential average [97, 117]. In cases like this, it is better to use the Crooks relation, Eq. (15), because it uses the
probabilities ratio and is less affected by these rare events.

3.3.3 Crooks fluctuation theorem

As introduced in Sect. 2.3, Gavin Crooks proposed Eq. (15), which relates the probabilities of work in a forward protocol (PF (W ))
and its backward protocol (time-reversed) (PR(−W )). In our experiment, the expansion (reverse) protocol was applied after the
compression (forward) protocol, allowing sufficient time for equilibration before proceeding, as explained previously.
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Fig. 16 Convergence of
e−W/kB T  versus the number of
experimental executions of the
linear expansion protocol for
  10 i , P  0.21 R ,
eq  20 ms, i  1.5 pN/m,
and R ≈ 12 ms. The black
dashed lines represent the
uncertainty range. Notice the
significant effect of rare events
(sudden jumps) in the convergence

Fig. 17 Probability distributions
PF (W ), PR (W ), and PR (−W ) for
104 trajectories with eq  20 ms,
i  1.5 pN/m, P  0.1 R ,
with R   /i ≈ 12 ms, and
  i (top) and   10i
(bottom). The black dashed line
indicates the free energy
difference F . The number of
bins is set to 100 for each range
from zero to the maximum
positive work value observed in
the forward protocol

Figure 17 displays the stochastic work distributions from N  104 experimental realizations for two modulation amplitudes. As
anticipated, the crossing point PF (W )  PR(−W ) occurs precisely at the work value equal to the difference in free energy F ,
as indicated by the vertical black dashed lines calculated using Eq. (23). This observation provides a straightforward method to
estimate F . Moreover, it is worth noting that in this particular case, verifying the result from the Crooks theorem is easier and
more robust than using Jarzynski because the intersection point is positioned near the peaks of the histograms, which minimizes the
effect of rare events on the results [97, 117].

Taking the logarithm of Eq. (15) yields

ln


PF (W )

PR(−W )


 W − F

kB T
, (34)

allowing us to assess the validity of the relation for various work values by plotting ln
[

PF (W )
PR (−W )

]
versus W . Figure 18 shows the

experimental values of ln
[

PF (W )
PR (−W )

]
for different durations and amplitudes of the protocol. The data align with the linear function

W−F
kB T at lower work values with higher counts, while it scatters at larger work values due to rare events (lower counts). There is

better agreement between experimental data and theoretical predictions for protocols with smaller modulation amplitudes and shorter
durations, probably due to miscalibration of the amplification factor, as mentioned before. However, the data remain consistent with
the expected behavior and comply with the CFT [117].
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Fig. 18 Verification of Crooks
Fluctuation Theorem for   i
(top) and   10 i (bottom).
Experimental values of ln[

PF (W )
PR (−W )

]
for 10, 000 trajectories

with i  1.5 pN/m and
different P

4 Discussion and conclusions

This work helps to disseminate knowledge of stochastic thermodynamics by introducing and measuring the Jarzynski and Crooks
relations, along with key ideas introduced by Sekimoto [95]. Here, we present a simple home-built apparatus and thoroughly
explain the methods for measuring and validating these outstanding results of contemporary thermodynamics through experiments
with optical tweezers. These non-equilibrium work relations connect an equilibrium quantity, the free energy difference, and out-
of-equilibrium measurements. Notably, these relations enable the determination of free energy differences without performing a
quasistatic process, which would require prohibitively long times or would be otherwise practically impossible (e.g., in a chemical
reaction) for processes for which the transformation rate cannot be directly controlled.

The experiment used finite-time compression and expansion protocols on an optically trapped Brownian particle. By modulating
the intensity of the trapping beam, we can dynamically adjust the parameters of the external potential, thereby altering the state of
the particle. By characterizing the optical potential at various laser intensities and analyzing the particle’s trajectory, we can compute
the fluctuating work applied during each protocol execution to construct probability distributions from an ensemble of repetitions.
The calculated free energy values for the initial and final states, which are determined experimentally through the well-characterized
optical potential, can be directly compared with those obtained experimentally from the work probability distributions.

Regarding Jarzynski equality, the experimental values of
〈
e−W/kB T

〉
were verified to be consistent with e−F/kB T after a few

thousand realizations of the compression protocol, being largely stable across all parameter sets. We experimented with different
modulation amplitudes and protocol times to confirm the robustness of this convergence. For the expansion protocol, due to the
negative work values, we showed that the Jarzynski average can be significantly affected by rare events.

Applying the Crooks relation, we showed that it is more robust and less sensitive to rare events, and we also obtained a good
agreement between theory and experiments. This agreement is stronger for higher counts, with some scattering observed in the
regions corresponding to rare events.

Overall, both fluctuation theorems were verified experimentally, essentially matching theoretical predictions, with better agree-
ment for lower modulation amplitudes and shorter protocol times. The difference at higher intensities results from a small systematic
miscalibration of the amplification factor, sensitive to radiation pressure [109], as indicated in the inset of Fig. 8. The equilibrium posi-
tion of the particle at a constant intensity determines the amplification factor. When the intensity of the trapping beam varies during
the protocol, the amplification factor may change as the particle moves along the z-axis due to radiation pressure. However, without
access to the actual movement, we calculate the amplification factor based on the initial state, represented as Sx  S f i t , x (VP D, eq ),
where VP D, eq  is the average reading during the equilibrium period. For fast protocols, the position of the particle along the z-axis
does not change significantly, making this approximation sufficient. In practice, this systematic error introduces only minor variations
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that do not deviate significantly from what is expected. These results show the versatility of optical tweezers for experiments to test
and explore fundamental principles in stochastic thermodynamics.

For a long time, our understanding of thermodynamics was limited to near-equilibrium macroscopic systems. In the last few
decades, adding to the toolset of statistical mechanics, the advent of stochastic thermodynamics and versatile experimental platforms
like optical tweezers has provided a new set of tools to explore non-equilibrium phenomena of small systems. The true horizon
for these tools, however, lies in their application to opening new frontiers and helping solve pressing energy challenges. In fact,
the present-day drive for new, sustainable, and efficient energy sources is pushing technology to the nanoscale and is increasingly
demanding a deeper understanding of energy transduction across all scales, particularly at the mesoscopic and nanoscale levels,
where thermal fluctuations are dominant and the familiar laws of macroscopic thermodynamics are no longer sufficient. To rationally
design and optimize these technologies, a new set of tools is required.

The fluctuation theorems and the broader stochastic thermodynamics toolkit provide actionable design principles for small-scale
energy transduction. In practice, JE and CFT transform non-equilibrium work statistics into equilibrium free energy differences (an
indicator of the energy storage capacity of molecules and the efficiency of chemical reactions), allowing robust estimates of F
and W  under sampling constraints and offering guidance to benchmark protocols [24, 42, 43, 48]. These ideas are transferable
across soft-matter and mesoscopic platforms (e.g., colloids, biomolecular handles, micromachines), where finite-time protocols
and dissipation matter. The same logic supports the directions in sustainable energy research, in the design of efficient artificial
molecular motors, strategies to harvest ambient fluctuations, and the relationship between the meso- and macroscopic theory of
chemical reaction networks [26, 89, 118, 119]. More broadly, the framework clarifies the trade-offs between power efficiency in
microscopic heat engines [88] and connects to the thermodynamics of information, where the energetic costs of measurement and
computation become operationally relevant [12, 14].

As the quest for sustainable energy continues to push further into the nanoscale domain, the concepts presented in this tutorial will
form a valuable toolkit for scientists and engineers. Furthermore, the successful hands-on verification of fundamental fluctuation
theorems, such as the Jarzynski and Crooks, highlights the relative simplicity of this approach to explore and deepen the understanding
of non-equilibrium thermodynamics experimentally, hopefully helping educators to inspire new generations to advance the field
further.
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78. J. Gieseler, J.R. Gomez-Solano, A. Magazzù, I.P. Castillo, L.P. Garc́a, M. Gironella-Torrent, X. Viader-Godoy, F. Ritort, G. Pesce, A.V. Arzola et al.,

Optical tweezers-from calibration to applications: a tutorial. Adv. Opt. Photon. 13, 74 (2021). https://doi.org/10.1364/AOP.394888
79. J.-D. Wen, M. Manosas, P.T. Li, S.B. Smith, C. Bustamante, F. Ritort, I. Tinoco, Force unfolding kinetics of rna using optical tweezers. i. Effects of

experimental variables on measured results. Biophys. J. 92, 2996 (2007). https://doi.org/10.1529/biophysj.106.094052
80. M. Manosas, J.-D. Wen, P.T. Li, S.B. Smith, C. Bustamante, I. Tinoco, F. Ritort, Force unfolding kinetics of rna using optical tweezers. ii. modeling

experiments. Biophys. J. 92, 3010 (2007). https://doi.org/10.1529/biophysj.106.094243
81. A. Alemany, A. Mossa, I. Junier, F. Ritort, Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nat. Phys.

8, 688 (2012). https://doi.org/10.1038/nphys2375
82. I.A. Martinez, E. Roldán, J.M. Parrondo, D. Petrov, Effective heating to several thousand kelvins of an optically trapped sphere in a liquid. Phys. Rev.

E 87, 032159 (2013). https://doi.org/10.1103/PhysRevE.87.032159
83. P.A. Quinto-Su, A microscopic steam engine implemented in an optical tweezer. Nat. Commun. 5, 5889 (2014). https://doi.org/10.1038/ncomms6889
84. T. T. Martins, S. R. Muniz, Dynamically controlled double-well optical potential for colloidal particles (SBFoton-IOPC-2021: SBFoton International

Optics & Photonics Conference, São Carlos, 2021) pp. 1–4. https://ieeexplore.ieee.org/document/9461866
85. S. Krishnamurthy, R. Ganapathy, A. Sood, Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions. Nat.

Commun. 14, 6842 (2023). https://doi.org/10.1038/s41467-023-42350-y
86. G. Nalupurackal, M. Lokesh, S. Suresh, S. Roy, S. Chakraborty, J. Goswami, A. Pal, B. Roy, Towards stirling engine using an optically confined

particle subjected to asymmetric temperature profile. N. . Phys. (2023). https://doi.org/10.1088/1367-2630/acd94e
87. B. Das, S. Paul, S.K. Manikandan, A. Banerjee, Enhanced directionality of active processes in a viscoelastic bath. N. J. Phys. 25, 093051 (2023).

https://doi.org/10.1088/1367-2630/acfb31

123



   71 Page 20 of 20 Eur. Phys. J. Plus          (2026) 141:71 

88. G. Benenti, G. Casati, K. Saito, R. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1 (2017).
https://doi.org/10.1016/j.physrep.2017.05.008

89. M.P. Leighton, D.A. Sivak, Flow of energy and information in molecular machines. Annu. Rev. Phys. Chem. 76, 379 (2025). https://doi.org/10.1146/
annurev-physchem-082423-030023

90. U. Seifert, Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423 (2008). https://doi.org/10.1140/epjb/e2008-00001-9
91. B.G. de Grooth, A simple model for brownian motion leading to the langevin equation. Am. J. Phys. 67, 1248 (1999). https://doi.org/10.1119/1.19111
92. L.E. Reichl, A Modern Course in Statistical Physics (Wiley-VCH Verlag, 2016). https://doi.org/10.1002/9783527690497
93. K. Sekimoto, Langevin equation and thermodynamics. Prog. Theor. Phys. Suppl. 130, 17 (1998). https://doi.org/10.1143/PTPS.130.17
94. G. Volpe, G. Volpe, Simulation of a brownian particle in an optical trap. Am. J. Phys. 81, 224 (2013). https://doi.org/10.1119/1.4772632
95. K. Sekimoto, Stochastic Energetics (Springer-Verlag, Berlin, 2010). https://doi.org/10.1007/978-3-642-05411-2
96. A. Siegman, Simplified derivation of the Fokker–Planck equation. Am. J. Phys. 47, 545 (1979). https://doi.org/10.1119/1.11783
97. L. P. Kamizaki, Studies of stochastic thermodynamics with optical tweezers, Master’s thesis, Instituto de F́sica de São Carlos, Universidade de São

Paulo - USP (2022). https://doi.org/10.11606/D.76.2022.tde-13072022-121617
98. H.G. Schuster, Nonequilibrium Statistical Physics of Small Systems (John Wiley, New York, 2013). https://doi.org/10.1002/9783527658701
99. C. Jarzynski, Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech.: Theory Exp. 2004, P09005 (2004).

https://doi.org/10.1088/1742-5468/2004/09/P09005
100. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970). https://doi.org/10.1103/PhysRevLett.24.156
101. A. Ashkin, J.M. Dziedzic, J. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288

(1986). https://doi.org/10.1364/OL.11.000288
102. A. Ashkin, K. Schütze, J. Dziedzic, U. Euteneuer, M. Schliwa, Force generation of organelle transport measured in vivo by an infrared laser trap.

Nature 348, 346 (1990). https://doi.org/10.1038/348346a0
103. S.M. Block, L.S. Goldstein, B.J. Schnapp, Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348 (1990). https://

doi.org/10.1038/348348a0
104. C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Entropic elasticity of -phage dna. Science 265, 1599 (1994). https://doi.org/10.1126/science.

8079175
105. J.T. Finer, R.M. Simmons, J.A. Spudich, Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113 (1994). https://

doi.org/10.1038/368113a0
106. C. Yi, C.-W. Li, S. Ji, M. Yang, Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560, 1 (2006). https://

doi.org/10.1016/j.aca.2005.12.037
107. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the

generalized Jarzynski equality. Nat. Phys. 6, 988 (2010). https://doi.org/10.1038/nphys1821
108. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information

and thermodynamics. Nature 483, 187 (2012). https://doi.org/10.1038/nature10872
109. T.T. Martins, Studies of microscopic nonequilibrium stochastic dynamics in optical tweezers, Ph.D. thesis, Instituto de F́sica de São Carlos, Universidade

de São Paulo - USP (2024). https://doi.org/10.11606/T.76.2024.tde-21062024-102349
110. J.A. Albay, G. Paneru, H.K. Pak, Y. Jun, Optical tweezers as a mathematically driven spatio-temporal potential generator. Opt. Express 26, 29906

(2018). https://doi.org/10.1364/OE.26.029906
111. L.P. Kamizaki, M.V.S. Bonança, S.R. Muniz, Performance of optimal linear-response processes in driven brownian motion far from equilibrium. Phys.

Rev. E 106, 064123 (2022). https://doi.org/10.1103/PhysRevE.106.064123
112. A. Berut, Fluctuations and Interactions of Brownian particles in multiple Optical Traps, Ph.D. thesis, Ecole normale superieure de Lyon - ENS Lyon

(2015)
113. K. Berg-Sørensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594 (2004). https://doi.org/10.1063/1.1645654
114. P. Welch, The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms.

IEEE Trans. Audio Electroacoustics 15, 70 (1967). https://doi.org/10.1109/TAU.1967.1161901
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116. B. Lukić, S. Jeney, Z Sviben, A.J. Kulik, E.-L. Florin, L. Forró, Motion of a colloidal particle in an optical trap. Phys. Rev. E 76, 011112 (2007).

https://doi.org/10.1103/PhysRevE.76.011112
117. C. Jarzynski, Rare events and the convergence of exponentially averaged work values. Phys. Rev. E 73, 046105 (2006). https://doi.org/10.1103/

PhysRevE.73.046105
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